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Abstract

This paper describes the computation of reachable sets and tubes for linear

time-invariant systems with an unknown input bounded by integral quadratic

constraints, modeling e.g. delay, rate limiter, or energy bounds. We define a

family of paraboloidal overapproximations. These paraboloids are supported

by the reachable tube on touching trajectories. Parameters of each paraboloid

are expressed as a solution to an initial value problem. Compared to previous

methods based on the classical linear quadratic regulator, our approach can be

applied to unstable systems as well. We tested our approach on large scale

systems.

Keywords: Reachability analysis, Set-based simulation, Integral Quadratic

Constraints, Uncertain systems

1. Introduction

We consider the reachability problem for Linear Time-Invariant (LTI) with

Integral Quadratic Constraints (IQC). Reachable set computation is an active

field of research in control theory (see [1]). It has many applications such as

state estimation (see [2]) or verification (see [3]) of dynamical systems. IQC is
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a classical tool of robust control theory (see e.g. [4, 5]). It can model infinite

dimensional states, non-linear dynamics, delays, rate limiters, uncertain systems

(see [6, 7, 8] and [9]). Up to now, IQCs have mainly been used to evaluate the

stability of systems. Despite their ability to model complex systems, we are still

lacking results: we do not have a proper characterization of the reachable set.

In this paper, we extend reachability analysis based on ellipsoidal techniques

(see e.g. [10, 11, 12]) for LTI systems subject to an IQC. This IQC is a tra-

jectory constraint (i.e. valid at any time) between past state-trajectory, input

signals, and unknown disturbance signals. To override dealing with constraints

over the state-trajectories, we study the LTI system augmented with a state

corresponding to the integral term in the IQC. For a given parabolic set of ini-

tial states, the reachable set of the augmented system is overapproximated by a

time-varying parabolic set. Parameters of this paraboloid are expressed as the

solution to an Initial Value Problem (IVP) partially described by a Differential

Riccati Equation (DRE). The paraboloid is a tight overapproximation as it stays

in contact with the boundary of the reachable set on so-called touching trajecto-

ries. By studying touching trajectories that are close to violating the constraint,

we find conditions to generate all the supporting time-varying parabolic sets.

At a given time, the intersection of these supporting parabolic sets is an exact

representation of the reachable set. A wise choice of these paraboloids can be

made to always have a bounded overapproximation of the reachable set. An

algorithm to overapproximate the reachable set is provided (with an adaptation

from [13] of the Chandrasekhar method for numerical integration of the DRE

in the case where the solution is not sign-definite). An open source version of

our implementation is available on-line [14].

Related work. Reachability analysis of LTI systems with ellipsoidal bounded

inputs is studied in [10, 11, 12]. Such systems can model infinity norm bounded

input-output LTI systems. The reachable set (which is convex and bounded; see

[11]) can be overapproximated with time-varying ellipsoidal sets. Each ellipsoid

is described by its parameters (center and radius) that are solutions to an IVP.
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These parameters produce tight ellipsoids (i.e., ellipsoids touching the reachable

set) which are external approximations of the reachable set. When multiple

ellipsoids with different touching trajectories are considered, their intersection

is a strictly smaller overapproximation of the reachable set. The accuracy of the

overapproximation can be made arbitrarily small by adding more well-chosen

ellipsoids. The exact representation of the reachable set is possible by using

an uncountable set of ellipsoids. Our work presents a similar approach for a

different class of systems, namely LTI with IQC constraint; and different sets,

instead of ellipsoids, we use paraboloids.

An optimal control formulation of the reachable set problem is also possible

[15, 16]. For a given state, if the maximal integral cost leading to this state

violates the constraint, then this state is unreachable. It can be solved (us-

ing Hamilton-Jacobi-Bellman -HJB- viscosity subsolutions, see [17]) leading to

global constraints over the reachable set. If the reachable set can be expressed

as the intersection (possibly uncountable) of elements of the chosen function

family, then the intersection of the resulting constraints gives an exact repre-

sentation of the reachable set. However, HJB solutions are known to not scale

well with the system dimension. Our specialized solution showed good results

for large systems.

HJB based methods propagate the constraints along the flow of the dynami-

cal system. Occupation measures and barrier certificates methods aim at finding

constraints over the reachable tube of a dynamical system: [18] uses IQCs for

verification purposes using barrier certificates where the positivity of the ener-

getic state is ensured by using a nonnegative constant multiplier: [19, 20] use an

occupation measure approach where the IQC can potentially be incorporated as

a constraint over the moment of the trajectories (note however these references

do not deal explicitly with IQCs). A hierarchy of semi-definite programs are de-

rived for polynomial dynamics. Then, off-the-shelf Semi-Definite Programming

(SDP) solvers are used to solve the feasibility problem. Optimization-based

methods do not usually take advantage of the model structure as they consider

a large class of systems (convex, Lipschitz or polynomial dynamics for example).
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Similarly than for HJB methods, moment based methods can be used for a large

class of systems, but they do not scale well, i.e. they are limited to systems with

a small number of states. However, few properties about the reachable set can

be formalized such as its domain of existence, its boundedness. We hereby study

a narrow class of systems that both have practical and theoretical importance

(LTI+IQC system). Our methods scale favorably with the number of states,

and the existence and boundedness of the overapproximation is always granted.

The study of LTI systems with IQC constraint is closely related to the Lin-

ear Quadratic Regulator (LQR) problem. In the LQR problem, a quadratic

integral is minimized at the terminal time. Optimal trajectories belong to a

time-varying parabolic surface, whose quadratic coefficients are a solution to a

DRE. References [21, 22, 16] describe the reachable set of LTI systems with ter-

minal IQC. Reference [23] formalizes the problem with a game theory approach.

Reference [24] solves the differential Riccati inequality over a finite horizon using

a basis of polynomial functions, then an SDP solver search for a solution that

minimizes the final volume of the overapproximation. This algorithm has been

implemented in available tools (see LTVTools toolbox, [25]). In all these works,

the overapproximation of the reachable set is conditioned by the existence of

a solution to the DRA over the interval of integration. In the case of unsta-

ble systems, there exists no stable solution to the continuous algebraic Riccati

equation. Any reachable set overapproximation is then defined only over a finite

interval of time. By taking into account the constraint over the full integration

range, we can always find an overapproximation valid over any interval of in-

tegration. Therefore, our method is less conservative than the standard LQR

approach.

Contributions. We study the reachable set computation of an LTI system with

IQC. To the knowledge of the authors, this is the first paper to provide a set-

based solution for reachable set computation for LTI systems with IQC that

make use of the constraint over the full integration time (not only at the terminal

time). In the conference paper [26], we presented our preliminary results. Under
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strong assumptions on the system, we proved that our overapproximation is the

exact reachable set computation. In the current paper:

• We have an exact characterization of the reachable set for a larger class

of systems compared to our previous results presented in [26].

• We extend the existing ellipsoidal method [presented in 10, 11, 12] for

the reachability analysis of bounded-input LTI systems to the reachability

analysis of LTI systems with IQC. These parabolic constraints are defined

by time-varying parameters which are the solution to an IVP. Part of this

IVP (the quadratic coefficient of the parabolic constraint) is a DRE. The

IVP convergence property is obtained thanks to the convergence property

of the DRE.

• The constraint in the IQC system is modeled as a constraint over the state

of an augmented system. Unlike in [27, 21, 28, 23], where the constraint is

only used at the terminal time, we rather use the constraint on the entire

time-domain. The differential equations of the paraboloid’s parameters are

then differently defined than in previous works. The differential equations

depend on a so-called scaling function: a time-varying parameter defined

by the user. This scaling function can always be chosen such that the

overapproximation is defined over any time domain.

• Our method can efficiently be used for large scale systems for which mo-

ment based methods [19, 20] could not be applied.

Outline. The LTI system with IQC and the reachability analysis problem are in-

troduced (Section 1). Parabolic constraints and their associated parameter IVP

are defined, their domain of definition is analyzed, the overapproximation prop-

erty is formulated, as well as the touching trajectories (Section 2). A method

to generate a set of time-varying parabolic constraints is described. The inter-

section of these paraboloids exactly describes the reachable set of the system

(Section 3). An algorithm to overapproximate the reachable set is described
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(Section 4). This algorithm is evaluated for numerical examples and large-scale

LTI systems (Section 5).

1.1. Notation

Let Sn ⊂ Rn×n the set of real valued symmetric square matrices of size

n. For A ∈ Sn, we write A � 0 (resp. A ≺ 0) when A is positive definite

(resp. negative definite). We define the matrix norm ‖A‖ =
√

tr(A>A) for

A ∈ Rn×m, where tr(B) is the trace of B ∈ Rn×n. Let a signal be a function

that associates to a time instant in [0,+∞[ a vector from Rn. For a given

interval I ⊆ R, let L2(I;Rn) denote the Hilbert space of signals equipped with

the norm: ‖u‖ =
√∫

t∈I u
T (t)u(t)dt < ∞. Let L2,loc(R+;R+) be the set of

locally square integrable signals from R+ to R+. Let |X| the cardinality of a

countable set X. For a set Ω ⊂ Rn, let ∂Ω denote its boundary. Let C 1(I;Rn)

the set of functions from I to Rn which are continuous and differentiable with

continuous derivative. Let sign : R 7→ {−1, 0, 1} such that sign(s) = 1 is s > 0,

sign(s) = −1 if s < 0, sign(s) = 0 otherwise.

1.2. System

For a given input signal u ∈ C 1(R+;Rp) ∩ L2,loc(R+;Rp), given matrices

A ∈ Rn×n, B ∈ Rn×m, Bu ∈ Rn×p, and a given terminal time t > 0, we study

the trajectories x ∈ L2([0, t];Rn) of the LTI system:ẋ(τ) = Ax(τ) +Bw(τ) +Buu(τ) with τ ∈ [0, t]

x(0) = x0

(1)

where w ∈ L2,loc([0, t];Rm) is an unknown disturbance that satisfies:

xq0 +

τ∫
0

[
x(s)
u(s)
w(s)

]>
M

[
x(s)
u(s)
w(s)

]
ds ≥ 0 for all τ ∈ [0, t] (2)

for given initial conditions (x0, xq0) ∈ Rn × R+, and given symmetric matrix

M =


Mx Mxu Mxw

M>xu Mu Muw

M>xw M>uw Mw

 ∈ Sn+m+p (3)
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with Mw ≺ 0. Many IQC models verify such condition, as the one described in

[4].

In this work, the constraint (2) is expressed as a constraint over a state

xq ∈ L2([0, t];R) defined for s ∈ [0, t] by:

xq(τ) = xq0 +

τ∫
0

[
x(s)
u(s)
w(s)

]>
M

[
x(s)
u(s)
w(s)

]
ds, (4)

then

xq(τ) ≥ 0 for all τ ∈ [0, t]. (5)

The constrained dynamical system S (Z0, t) is then defined for a given set of

initial states Z0 ⊂ Rn × R and a terminal time t > 0:

z = (x,xq) ∈ S (Z0, t)⇔



x solves (1)

and xq solves (4)

with (x0, xq0) ∈ Z0

xq satisfies (5)

(6)

Define the reachable set:

R(Z0, t) = {z(t)|z ∈ S (Z0, t)} . (7)

Then, R(Z0, t) ⊆ Z+ where Z+ = Rn × R+, and let Z∗ = Rn × {0}.

1.3. Paraboloids

We overapproximate the reachable set R(Z0, t) of S (Z0, t) with paraboloids:

Definition 1 (Paraboloid). Given (E, f, g) ∈ Sn × Rn × R, define the value

function:

h : Rn × R → R

(x, xq) 7→ x>Ex− 2f>x+ g + xq,

and the paraboloid:

P(E, f, g) =
{

(x, xq) ∈ Rn+1
∣∣h(x, xq) ≤ 0

}
.
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Let P = {P(E, f, g)|E ∈ Sn, f ∈ Rn, g ∈ R} be the set of paraboloids. Ele-

ments of P are not strictly speaking paraboloids since E � 0 is not assumed in

the definition.

Definition 2 (Scaled Paraboloid). For P ∈ P with parameters (E, f, g) and a

scaling factor γ > 0, let γP ∈ P be the scaled paraboloid defined by parameters

(γE, γf, γg).

Scaled paraboloids satisfy the following:

Property 1. Given P ∈ P and γ ≥ 1, it holds P ∩ Z+ ⊆ γP ∩ Z+.

Proof. Let h and h′ (resp.) the value functions of (E, f, g) = P and γP (resp.)

evaluated at (x, xq) ∈ P. Since (x, xq) ∈ P, h ≤ 0, i.e. x>Ex−2f>x+g ≤ −xq.

Then, h′ = γ(x>Ex−2f>x+g)+xq ≤ −(γ−1)xq. Since (x, xq) ∈ Z+ and since

γ − 1 ≥ 0, we have (γ − 1)xq ≥ 0 i.e. h′ ≤ 0 meaning that (x, xq) ∈ γP ∩ Z+.

For P a function that associates to a time t of a time-interval I ⊂ R+ a set

of states P (t) ⊂ Rn+1. We define a touching trajectory :

Definition 3 (Touching Trajectory). A trajectory z∗ solution to (1, 4) is a

touching trajectory of P when z∗(t) belongs to the surface of P (t) at any time

t ∈ I, i.e. z∗(t) ∈ ∂P (t).

1.4. Problem Statement

We are now ready to state the two problems studied in this work.

Problem 1. Find an overapproximation of the reachable set R(P0, t) at any

t > 0 for a given paraboloid of initial conditions P0 ∈ P.

Theorem 1 in Section 2 solves Problem 1. It restates classical results about

LQR systems applied to reachability analysis of IQC systems when the con-

straint (2) is a terminal time constraint. Theorem 2 in Section 3 is another

solution to Problem 1. It extends the result in Theorem 1 taking into account

the constraint over the entire interval of integration.
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Problem 2. Find a sequence of overapproximations that converges to the reach-

able set R(P0, t) at any t > 0 for a given paraboloid of initial conditions P0 ∈ P.

Theorem 3 in Section 3 solves Problem 2. We prove for any given state on

the boundary of R(P0, t) that there exists a tight overapproximation touching

R(P0, t) on this state. Then, we can describe the reachable set as the intersection

of all the possible overapproximations.

2. Overapproximation with Paraboloids

In this section, Problem 1 is solved using time-varying paraboloids P : I → P

where I is the interval of definition of P . Time-varying parameters (E,f , g)

of P satisfies a differential equation that guarantees an overapproximation rela-

tionship with the reachable set, i.e. R(P0, t) ⊆ P (t) for any t ∈ I. We express

existence and domain of definition I of the time-varying paraboloid P . We prove

that the overapproximations P are tight since there are touching trajectories of

R(P0, t) that both belong to the surface of P (t) and to the surface of R(P0, t)

for t ∈ I. Finally, the method is presented for a simple toy example.

Parameters of P are expressed as solutions to an initial value problem. For

given E0 ∈ Sn, let E be the solution to the following Differential Riccati Equa-

tion (DRE) with initial condition E(0) = E0:

Ė(t) =−E(t)A−A>E(t)−Mx

+
(
B>E(t) +M>xw

)>
M -1
w

(
B>E(t) +M>xw

)
.

(8)

Let TE(E0) ∈ R+∪{+∞} be defined for the initial condition E0 s.t. [0, TE(E0)[

is the interval of definition of the solution of (8) (existence, uniqueness, con-

vergence properties and continuity of the solution are studied in [29]). Let f

denote the solution to the following IVP with initial condition f(0) = f0:

ḟ(t) =−A>f(t) + (Mxu +E(t)Bu)u(t)

+ (E(t)B +Mxw)M -1
w(B>f(t)−M>uwu(t)).

(9)
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f satisfies a linear varying parametric differential equation with a continuous

input signal. On [0, TE(E0)[, solution f to (9) exists, is unique and continuous.

By continuity of f and u over [0, TE(E0)[, g is defined on [0, TE(E0)[. For

t ∈ [0, TE(E0)[, let:

g(t) = g0 +

t∫
0

[
f(τ)
u(τ)

]>
G
[
f(τ)
u(τ)

]
dτ (10)

where

G =

 BM -1
wB
> Bu −BM -1

wM
>
uw

(Bu −BM -1
wM

>
uw)> −Mu +MuwM

-1
wM

>
uw

 .
Definition 4 (Time-Varying Paraboloid). For an initial paraboloid P0 ∈ P, let

the time-varying paraboloid P be defined as:

P : I → P

t 7→ P(E(t),f(t), g(t))

where the time-varying coefficients (E,f , g) are solutions to (8,9,10) with initial

condition P(E0, f0, g0) = P0. Let T be the function that associates to the initial

paraboloid P0 ∈ P the time-varying paraboloid P . Let TP (P ) = TE(E0) and

I(P ) = [0, TP (P )[ be the interval of definition of P .

For P = T (P0), let h(t, ·) be the value function of P (t) at t ∈ I(P ). For

zt = (xt, xq,t) ∈ Rn+1, wt ∈ Rm, hz(t) = h(t, z(t)) is the value function along

the trajectory z = (x,xq) solution to (1, 4) generated by w such that w(t) = wt

and z(t) = zt.

Property 2. The maximum time derivative of the value function h(t, z(t))

along the trajectories z for a disturbance wt exists for all t ∈ I(P ) and it is

equal to zero.

Proof. At a time t ∈ I(P ), it holds

hz(t) =

x(t)

1

>  E(t) −f(t)

−f>(t) g(t)

x(t)

1

> + xq(t)

10



and the time derivative of hz at t is

ḣz(t) =
[
x(t)
1

]> [ Ė(t) −ḟ(t)
−ḟ>(t) ġ(t)

] [
x(t)
1

]
+ 2

[
x(t)
1

]> [ E(t) −f(t)
−f>(t) g(t)

] [
ẋ(t)
0

]
+

[
x(t)
u(t)
wt

]>
M

[
x(t)
u(t)
wt

]
.

(11)

Therefore, k(wt) = ḣz(t) is a quadratic function of wt:

k(ws) =d(t)> + 2
(
B>(Ex− f) +

[
Mxw

Muw

]>
[ xu ]
)>

wt

+ w>t Mwwt

where d is function of E(t), f(t), g(t), x(t) and u(t) and system parameters.

Since Mw ≺ 0, the supremum of wt 7→ k(wt) exists and is attained for wt =

w∗(t) = arg maxwt∈Rm k(wt) with:

w∗ = −M -1
w

(
B>(Ex− f) +

[
Mxw

Muw

]>
[ xu ]
)
. (12)

Since Mw ≺ 0, M -1
w is well defined. Using (8,9,10) in (11), we get maxwt∈Rm ḣz =

0. Therefore, ḣz ≤ 0 for any wt ∈ Rm.

We can now state one of our main results:

Theorem 1 (Solution to Problem 1). Let P = T (P0) for a set of initial states

P0. For all t ∈ I(P ), the reachable set R(P0, t) of S (P0, t), is overapproximated

by P (t), i.e.:

∀t ∈ I(P ),R(P0, t) ⊆ P (t) ∩ Z+.

Proof. Using Property 2, by integration of ḣz, if hz(0) ≤ 0 then ∀t ∈ I(P ), hz(t) ≤

0, i.e.:

z(0) ∈ P (0)⇒ z(t) ∈ P (t) for all t ∈ I(P ).

The constraint (5) ensures that z(t) ∈ Z+.

Property 3. Let z∗ be a trajectory generated by w∗ defined in (12) such that

initial condition satisfies z∗(0) ∈ ∂P0. At any time t ∈ I(P ), it holds z∗(t) ∈

∂P (t).
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Figure 1: Convergence analysis of the DRE for Example 1

Proof. z∗ is the trajectory generated by the optimal disturbance w∗. Using

Property 2, ḣz∗(t) = 0 for any t ≥ 0. Since hz∗(0) = 0, by integration, hz∗(t) =

0.

Trajectories generated by w∗ defined in (12) stay in contact with the surface

of their time-varying paraboloids. Touching trajectories of P do not necessar-

ily belong to S (P0, t), t ∈ I(P ), as the energetic constraint might be locally

violated.

Remark 1 (Representation of paraboloids). In [21], the time-varying value

function is a quadratic function defined by its quadratic coefficient S, its center

xc and its value at the center ρ, all satisfying an IVP. In [21], the center xc can

diverge when the determinant of S vanishes. However, the corresponding time-

varying value function is time-continuous and can be extended continuously. In

this paper, we choose to work with variables E, f and g (see Definition 1) to

avoid this issue.

Example 1. Let A = −1, B = 1, M =
[
1 0 0
0 1 0
0 0 −2

]
, Bu = 0 and u : [0,∞[ 7→ 0.

Solutions to IVP (8) (that is Ė = − 1
2E

2 + 2E − 1) diverge for E0 ≺ E− (see

Figure 1) where E− ≺ E+ are the roots of the equation − 1
2E

2 + 2E − 1 = 0

for E ∈ R, E− = 2 −
√

2 and E+ = 2 +
√

2. Figure 2 shows the trajectory of

the paraboloid for E0 in the stable region E0 � E− while Figure 3 shows the

trajectory of the paraboloid for E0 in the unstable region E0 ≺ E−.
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Figure 2: Time-varying paraboloid overapproximating the reachable set at different time

instants t in {0.00, 0.91, 1.62, 10.00} for an initial maximum energetic level of xq,0 = 0.06.

The solution to (8) converges to a constant value when t → +∞. The shaded regions are

the reachable set R(P0, t), the thin lines are the boundary of the overapproximation P (t) of

Theorem 1.

Figure 3: Time-varying paraboloid overapproximating the reachable set at different time

instants t in {0.00, 0.91, 1.62, 10.00} for an initial maximum energetic level of xq,0 = 0.03.

The solution to (8) has a finite escape time and diverge at t = 1.68. The shaded regions are

the reachable set R(P0, t), the thin lines are the boundary of the overapproximation P (t) of

Theorem 1.
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2.1. Domain of definition of P

By Definition 4, the domain of a time-varying paraboloid P is the domain

of its quadratic time-varying coefficient E. Since the solution of the DRE (8)

might diverge in a finite time TE(E0) < ∞ (where E0 is the initial condition

of (8)), P is defined only in the right-open interval [0, TE(E0)[. In this part,

we show that since the touching trajectories of P are defined over the closed

interval [0, TE(E0)],the definition of P can be prolongated to the same closed

interval.

Property 2 and (8,9,10) can be derived solving the following optimal control

problem (for t > 0):

max
w∈L2([0,t];Rm)

t∫
0

[
x(τ)
u(τ)
w(τ)

]
M

[
x(τ)
u(τ)
w(τ)

]
dτ − xq,t

s.t. ẋ = Ax+Bw +Buu

x(t) = xt

for given (xt, xq,t) ∈ Z+. This is a special instance of the LQR problem (see

e.g. [21]). For x ∈ L2(T ;Rn) a touching trajectory, let

n = Ex− f .

be the normal to the paraboloid surface. Using (8,9,10), n satisfies the following

differential equation: ẋ
ṅ

 = L

x
n

+Nu

where

L =

 A−BM -1
wM

>
xw −BM -1

wB
>

−(Mx −MxwM
-1
wM

>
xw) −A> +MxwM

-1
wB
>


and

N =

 Bu −BM -1
wM

>
uw

−(Mxu −MxwM
-1
wM

>
uw)

 .
The value function evaluated along the touching trajectory x is then ob-

tained by introducing the parameter r = g − f>x which satisfies:

ṙ = u
(
H R

) [
x
n
u

]
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with

H =
(
MuwM

-1
wMxw −M>xu −(Bu −MuwM

-1
wB
>)
)

and

R = Mu −MuwM
-1
wM

>
uw.

The value function is then equal to:

ht(x(t)) = x(t)>n(t)> + r(t).

Let the time-varying paraboloid P = T (P0) diverge in finite time, i.e.

TP (P0) < ∞. Since all the touching trajectories are continuous in time, each

touching trajectory is defined over [0, TP (P0)]. Their corresponding value func-

tion h evaluated along the touching trajectory is as well continuous over [0, TP (P0)].

Therefore, one can prolongates the definition of P until TP (P0) by continuity

of the value function:

P (T ) = {z ∈ Rn+1| lim
t→T
t≤T

h(t, z) ≤ 0}.

where T = TP (P0). We state this result in the following property:

Property 4. For any P = T (P0), if the quadratic coefficient of the time-varying

paraboloid set P diverges in finite time, then the prolongation to the right of P

is defined:

P (T ) = {z ∈ Rn+1| lim
t→T
t≤T

h(t, z) ≤ 0}.

3. Exact Reachable Set

In this section, we first show that the state constraint (2) can be used to

redefine the time-varying paraboloids (in Sections 3.1 and 3.2). Then we define

a set of time-varying paraboloid (in Section 3.3). At each time instant, the

intersection of these paraboloids is an overapproximation of the reachable set

(in Section 3.4). Finally, we prove that when some topological assumption holds

about the reachable set, our overapproximation is equal to the reachable set (in

Sections 3.5, 3.6 and 3.7).
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3.1. Scaled Paraboloids

Property 1 ensures that the overapproximation relationship is still valid when

we scale the paraboloid. In this section, a definition of time-varying paraboloid

with continuous time scaling is given.
For a given scaling function γ ∈ L2,loc(R+;R+) (non-negative and locally

square integrable function), an initial scaling factor γ0 ≥ 1 and given initial
conditions P0 = (E0, f0, g0) ∈ P, as in differential equations (8,9,10) in Section 2,
we can similarly define the initial value problem:

Ė(t) =−E(t)A−A>E(t)−Mx (13a)

+
(
B>E(t) +M>xw

)>
M -1
w

(
B>E(t) +M>xw

)
+ γ(t)E(t)

ḟ(t) =−A>f(t) + (Mxu +E(t)Bu)u(t) (13b)

+ (E(t)B +Mxw)M -1
w(B>f(t)−M>uwu(t))

+ γ(t)f(t)

ġ(t) =
[
f(t)
u(t)

]>
G
[
f(t)
u(t)

]
+ γ(t)g(t) (13c)

with

(E(0),f(0), g(0)) = (γ0E0, γ0f0, γ0g0). (14)

The differential equation (13) is similar to (8,9,10) except that a multiplicator

to the constraint is added to the value function and the initial condition of the

time-varying paraboloid is scaled by γ0.

For γ ∈ L2,loc(R+;R+), γ0 ≥ 1, let P = T (P0, γ0,γ) be the time-varying

paraboloid with time-varying parameters defined by (13) for initial conditions

defined by P0. The Hamiltonian form of the equation can be as well defined and

when the quadratic coefficient E diverges in finite time, the interval of definition

of the time-varying paraboloids can be as well prolongated to the closed interval.

The worst disturbance is still expressed by (12) and Property 2 can be re-

stated as:

Property 5. For γ ∈ L2,loc(R+;R+), γ0 ≥ 1, and P0 ∈ P, let P = T (P0, γ0,γ).

For an optimal trajectory z∗ generated by the disturbance w defined in (12) s.t.

z∗(0) ∈ ∂P (0), for any t ≥ 0 it holds:

ḣz∗(t) = γ(t)(hz∗(t)− x∗q(t)). (15)
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Proof. Direct derivation from (13).

When z∗(0) ∈ ∂P (0), the solution to the ODE (15) is, for t ∈ I(P ):

hz∗(t) = (1− γ0)x∗q(0)−
t∫

0

γ(s)x∗q(s)e
∫ t
s
γ (r)drds. (16)

Since
∫ T
0
γ(t)x∗q(t)dt might not be equal to 0, trajectories generated by the worst

case disturbance w∗ do not necessarily stay in contact with the time-varying

paraboloid and therefore are not touching trajectories. For this reason, we call

optimal trajectories the trajectories generated by w∗ given in (12) .

Property 6. Let z∗ an optimal trajectory of P s.t. z∗(0) ∈ ∂P (0), if:

(1− γ0)x∗q(0)−
t∫

0

γ(τ)x∗q(τ)dτ = 0

for any t ≥ 0 and hz∗(0) = 0, then z∗ is a touching trajectory of P .

Proof. Using (16).

Therefore, for any other trajectory of the constrained system S , h is a

decreasing function of time along the trajectory. In this case, Theorem 1 can

be rewritten for continuously scaled time-varying paraboloid:

Theorem 2. For a set of initial states P0, a scaling function γ ∈ L2,loc(R+;R+)

and an initial scaling factor γ0 ≥ 1, let P = T (P0, γ0,γ). The reachable set

R(P0, t) of S (P0, t), t > 0, is overapproximated by P (t), i.e.:

∀t ∈ I(P ),R(P0, t) ⊆ P (t) ∩ Z+.

Proof. By integration of (16) over the interval [0, t].

3.2. Definition domain of time-varying paraboloid

In the case where the DRE in (8) does not have any convergent solution for

any positive definite initial condition (i.e. when system defined in Section 1.1
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is unstable), works based on the LQR formulation of the IQC cannot overap-

proximate the reachable set for any t ≥ 0 (for any initial condition of the DRE,

the solution to the DRE is defined over a finite escape time). In this part,

we show that for any system (whether it is stable or unstable) there is always

a γ ∈ L2,loc(R+;R+) such that the corresponding time-varying paraboloid is

defined over R+. This is one of the key advantages of our approach.

For a given positive definite initial condition E0 � 0, for the scaling factor

γ(·) = κ ≥ 0

over R+ and a scaling factor γ0 = 1, the corresponding solution E to the DRE

(13a) does not diverge over R+ if:−E0A−A>E0 −Mx + κE0 B>E0 +M>xw

(B>E0 +M>xw)> −Mw

 � 0. (17)

Since −Mw � 0, the Schur complement of (17) leads to the equivalent non-

negativity condition:

E0 + κE0 � 0

where

E0 =− E0A−A>E0 −Mx+(
B>E0 +M>xw

)>
M -1
w

(
B>E0 +M>xw

)
.

By choosing κ such that

κ >

∥∥E0

∥∥
‖E0‖

,

then there is a convergent solution E to the DRE (13a). Therefore, for any

given E0 � 0, there exists a κ > 0 such that (17) is satisfied.

Property 7. There is a γ ∈ L2,loc(R+;R+) such that P = T (P0, 1,γ) is defined

over R+.

By Property 1, P (t) ∩ Z+ is an overapproximation of the reachable set

R(P0, t) for any t ≥ 0.
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Figure 4: Stabilized constraint Ps(t) versus finite escape time constraints Pns(t). The time-

varying paraboloid Pns is defined over [0, 3] whereas Ps is defined over R+.

Remark 2. At a given time, the reachable set of an IQC system is always

bounded. Whether the DRE (8) has a solution or not over a given interval

[0, T ], T > 0, we can always bound the set of reachable states. This result is the

main difference with other works in reachable set overapproximation for IQC

systems (see [21, 22, 16, 23, 24]). Up to the knowledge of the authors, other

works reachable set overapproximation for IQC systems only use results from

Theorem 1. These results are dependent on the existence of a solution to the

DRE. By taking into account the constraint over the interval of integration and

not only at the terminal time, we have less conservative results.

Example 2. Figure 4 shows plots of the reachable set of the unstable system

S (P0) defined by parameters:

A = −1, B = 1, Bu = 0, M =
[
1 0 0
0 1 0
0 0 −0.9

]
and a zero input signal u. The set of initial states Z0 is a paraboloid Z0 = P0 =

P(E0,f0, g0) with:

E0 = 1, f0 = 0 and g0 = 0.015.

The solution to DRE (13a) for γ = 0 and γ0 = 0 has a finite escape time and

diverges at TP (Pns) = 1.7. The solution to DRE (13a) for γ = 0 and γ0 = 1 is

defined over R+.

3.3. Overapproximation with an intersection of time-varying paraboloids

In this section, a set of time-varying paraboloids is defined. At a given

time, the intersection of the paraboloids gives better overapproximations of the
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reachable set. With additional assumptions about the topology of the reachable

set, the reachable set is exactly characterized. This approach relies on the

use of Property 1 and preliminary results showing that for any state of the

overapproximation, there exists a trajectory in S (P0, t), t > 0, leading to this

state.

Let Π be defined as follows:

Π = {T (P0, γ0,γ)|γ ∈ L2,loc(R+;R+),γ ≥ 0, γ0 ∈ R, γ0 ≥ 1}. (18)

Π corresponds to the set of all time-varying paraboloids with initial conditions

P0 and generated by the set of non-negative scalings γ ∈ L2,loc(R+;R+) and

the set of initial scaling factors γ0 ≥ 1. Let

Π(t) = {P ∈ Π|t ∈ I(P )} (19)

the set of all the defined time-varying paraboloids at time t ≥ 0. By Property 7,

Π(t) 6= ∅ for any t ≥ 0. In other words, Π is defined over R+ as well.

For t ≥ 0, let

Π∩(t) =
⋂

P∈Π(t)

P (t) (20)

the intersection of all the defined time-varying paraboloids P of Π at time t

(see Figure 5). Since Π∩(·) is defined over R+, Π∩(·) is defined over R+.

Figure 5: For a given t ≥ 0, let 3 time-varying paraboloids Pi ∈ Π, i = 1, 2, 3. Light color

shaded area are their corresponding parabolic set Pi(t) at t, i = 1, 2, 3. Grey color shaded is

their intersection. By (20), Π∩(t) is a subset of P1(t) ∩ P2(t) ∩ P3(t).

We now prove that, when some assumptions about the topology of Π∩ hold
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(Assumption 1 and 2), we haveR(P0, t) = Π∩(t)∩Z+, for any t ≥ 0 (Theorem 3,

Section 3.7). To achieve that:

• we prove the overapproximation relationshipR(P0, t) ⊆ Π∩(t) (Section 3.4);

• we prove that any state (x, xq) ∈ Π∩(t) is reachable from a state (x, x′q) ∈

∂Π∩(t) with xq ≤ x′q (Section 3.5);

• for a state zt ∈ ∂Π∩(t), we find a touching trajectory z∗ = (x∗,x∗q) of Π∩

such that z∗(t) = zt. This touching trajectory (x∗,x∗q) of Π∩ satisfies the

state constraint xq(·) ≥ 0 over [0, t] (Section 3.6);

• finally, we conclude that any zt ∈ Π∩(t) is reachable from P0, thus

R(P0, t) = Π∩(t) ∩ Z+ (Section 3.7).

3.4. Overapproximation Relationship

Theorem 2 states that each time-varying paraboloid defined in Section 3.1

is an overapproximation of the reachable set. An intersection of many time-

varying paraboloids is as well an overapproximation of the reachable set.

Property 8. R(P0, t) ⊆ Π∩(t) ∩ Z+ for any t ≥ 0.

Proof. This is a direct consequence of Theorem 2 and (20).

Example 3 (Continued from Example 1). In the case where the solution to (8)

does not converge (i.e. E0 < E
−), Figure 6 shows several paraboloid trajectories

with different initial scaling factors. Scaling functions are equal to 0 and initial

scaling factors γi are greater than 1, P0 ∩ Z+ ⊂ γiP0 ∩ Z+. Therefore, each

time-varying paraboloid is a valid constraint that bounds R(P0, t), t ∈ I(Π)

(Theorem 1). Therefore, R(P0, t) ⊆ P∩(t) = P0(t) ∩ P1(t) ∩ · · · ∩ P4(t) where

Pi = T (P0, γi,), and γi are resp. equal to 1, 1.6, 2.2, 2.7 and 3.3 for i =

0, . . . , 4. In this case, the overapproximation P∩(t) is strictly included in P0(t).

Observations in Example 3 motivate the use of multiple time-varying paraboloids

to get better overapproximations of the reachable set R(P0, t), t > 0.
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Figure 6: Time-varying paraboloids overapproximating the reachable set at different time

instants t in {0.00, 0.91, 1.62, 10.00} for different scalings. Scaling functions (i.e. time-varying

scaling factors, see Section 3.1) are equal to zeros, γ i = , and initial scaling factors γ0i ≥ 1

are respectively equal to 1.0, 1.6, 2.2, 2.7 and 3.3 for i = 0, . . . , 4. The shaded regions are

the reachable set R(P0, t), the thin lines are the boundary of the overapproximation P (t) of

Theorem 1.

3.5. Past trajectory for states in the overapproximation’s interior

Property 9 is already presented in [26, Property 7], we restate it hereby for

completeness.

Property 9 shows that the state (x, αxq) is reachable from the given state

(x, xq) for any given α ∈ [0, 1].

Property 9. For t ≥ 0, if (x, xq) ∈ R(P0, t) then (x, αxq) ∈ R(P0, t) for all

α ∈ [0, 1].

Proof. Let f : t, x 7→ Ax + Bw(t) + Buu(t). Since for any (t, x) ∈ R+ × Rn,

f(., x) is locally measurable over R+, f(t, .) is Lipschitz over Rn, (1) has a

unique solution x (see [30], Theorem 1.1) that is time-continuous. Therefore,

for a trajectory (x,xq) ∈ S (P0, T ), T > 0, x is time-continuous.

For ε > 0, let w ∈ L2([0, t + ε];Rm), s.t. w>(s)Mww(s) = −(1 − α)xq(t) 1
ε

when s ∈ [t, t+ ε]. Then∫ t+ε

t

w>(s)Mww(s)ds→ −(1− α)xq(t)

when ε→ 0. Using Cauchy-Schwartz inequality:∣∣∣∣∣∣
t+ε∫
t

(−Mw)
1
2w(s)ds

∣∣∣∣∣∣ ≤ √ε
√√√√√ t+ε∫

t

−wT (s)Mww(s)ds
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and the time-continuity of x, the quantity

t+ε∫
t

[
x(s)
u(s)
0

]>
M

[
x(s)
u(s)
w(s)

]
ds→ 0

when ε → 0. By integration, xq(t + ε) → αxq(t) when ε → 0. Since x is

time-continuous, x(t+ ε)→ x(t) when ε→ 0. By continuity of u, x and w over

[t, t+ ε], xq is continuous over [t, t+ ε]. Then, there exists a t′ ∈ [t, t+ ε] such

that xq(τ) ≥ αxq(t) ≥ 0 for all τ ∈ [t, t′] and xq(t′) → αxq(t) when ε → 0.

Therefore, the constraint xq(·) ≥ 0 is satisfied over [t, t′] and the trajectory

(x,xq) is a valid trajectory of S (P0, t
′) for all t ≤ t′.

3.6. Past trajectory for states in the overapproximation’s boundary

In this section, touching trajectories of Π∩ are identified. We show that all

these touching trajectories satisfies the state constraint (5).

The value function h̃ of a time-varying paraboloid P̃ ∈ Π can be approxi-

mated at the first order along a touching trajectory z∗ of another time-varying

paraboloid P ∈ Π when their scaling functions γ̃ and γ and initial scaling fac-

tor γ̃0 and γ0 are close. In this part, we compute this first order approximation

when γ̃ = γ +δ and γ̃0 = γ0 + δ0 for small variations δ ∈ L2(R+;R) and δ0 ∈ R

(i.e. when ‖δ‖+ |δ0| tends to 0).

To prove that the reachable setR(P0, t), t > 0, is exactly described byΠ∩(t),

we show that for any optimal trajectory z∗ of P ∈ Π∩ s.t. z∗ is violating the

constraint (5), there is a P̃ ∈ Π such that the end point z∗(t) does not belong

to P̃ (t) and therefore to Π∩(t). To do so, we will study the value function of a

time-varying paraboloid P̃ for touching trajectories of P .

Property 10. For γ ∈ L2,loc(R+,R+) and γ0 ≥ 1, let the corresponding time

varying paraboloid P = T (P0, γ0, γ). For any t in the open set of I(P ), it

exists ε > 0 and H > 0 s.t. for any δ ∈ L2(R+;R), ‖δ‖ ≤ ε, for any δ0 ∈ R,

|δ0| ≤ ε, P̃ = T (P0, γ̃0, γ̃) where γ̃ = γ + δ and γ̃0 = γ0 + δ0 s.t. t belongs

to the open set of I(P̃ ), let h̃t the value function of P̃ (t) and z∗ = (x∗,x∗q) an
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optimal trajectory of P , it holds:∣∣∣h̃t(z∗(t))− β(t)
∣∣∣ ≤ Hε2

where

β(t) =
δ0
γ0
x∗q(0) +

t∫
0

δ(s)ψ(s)e
∫ t
s
(γ (r)+δ(r))drds

and

ψ(s) = x∗q(s)−
t∫
s

γ(τ)x∗q(τ)e
∫ s
τ
γ (r)drdτ.

Proof. Let (E ,f , g) and (Ẽ , f̃ , g̃) (resp.) be parameters of P and P̃ (resp.),

and

ν = (E − Ẽ)x∗ − (f − f̃ ).

Using (1, 12, 13), ν satisfies the linear time varying differential equation:

ν̇(τ) = Aν(τ)ν(τ)− δ(τ)n(τ). (21)

with n = Ex∗ − f and Aν(τ) = −A> +MxwM
-1
wB
> + Ẽ(τ)BM -1

wB
> + γ(τ)I.

By (14), initial values of P and P̃ satisfies

1

γ0
P (0) =

1

γ̃0
P̃ (0) = P0,

therefore ν(0) = δ0(E0x
∗(0) − f0) where (E0, f0, g0) = P0. Since t belongs to

the open set of I(P̃ ), Ẽ(·) is bounded over [0, t] (the discontinuity of Ẽ can only

occur at the final integration time). By time-continuity of Ẽ(·) over [0, t], there

is a scalar K > 0 that bounds
∥∥∥Ẽ(·)

∥∥∥ over [0, t]. Then, since γ is measurable,

there exists a measurable function L ∈ L2([0, t];R+) such that:

‖Aν(τ)‖ ≤ L(τ) (22)

over τ ∈ [0, t]. We can integrate (22):

‖ν(t)− ν(0)‖ ≤
t∫

0

L(τ) ‖ν(τ)‖ dτ +

t∫
0

|δ(τ)| ‖n(τ)‖ dτ.
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Since l 7→
∫ l
0
|δ(τ)| ‖n(τ)‖ dτ is a non decreasing function over [0, t], by applying

the Grönwall inequality, we get:

‖ν(t)‖ ≤

‖ν(0)‖+

t∫
0

|δ(τ)| ‖n(τ)‖ dτ

 e
∫ t
0
L(τ)dτ . (23)

Let

q(t) = ht(z
∗(t))− h̃t(z∗(t)). (24)

z∗ is an optimal trajectory of P s.t. z∗(t) ∈ ∂P (t), therefore, ht(z
∗(t)) = 0,

therefore, using (15):

hτ (z∗(τ)) =

t∫
τ

γ(s)x∗q(s)e
∫ s
τ
γ (r)drds. (25)

Using (1, 12, 13, 25), q satisfies:

q̇(τ) =− ν>(τ)BM -1
wB
>ν(τ) + γ(τ)hτ (z∗(τ))

− γ̃(τ)h̃τ (z∗(τ))− γ(τ)x∗q(τ) + γ̃(τ)x∗q(τ).

Using (24) and (25):

q̇(τ) =− ν>(τ)BM -1
wB
>ν(τ)

+ δ(τ)ψ(τ) + (γ(τ) + δ(τ))q(τ)
(26)

where

ψ(τ) = x∗q(τ)−
t∫
τ

γ(s)x∗q(s)e
∫ s
τ
γ (r)drds

with initial condition q(0) = h0(z∗(0)) − h̃0(z∗(0)). Since z∗ is a touching

trajectory of P , it holds h0(z∗(0)) = 0, therefore:

x∗q(0) = −γ0(x∗(0)>E0x
∗(0)− 2f>0 x

∗(0) + g0).

Therefore, h̃0(z∗(0)) satisfies:

h̃0(z∗(0)) = − δ0
γ0
x∗q(0)

and q(0) = δ0
γ0
x∗q(0).
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Since t belongs to the open set of I(P̃ ), the optimal trajectory z∗ and ν are

defined and continuous over [0, t]. Moreover, since γ and δ are measurable over

[0, t], the solution to the linear time-varying equation (26) exists over [0, t] and

is:

q(τ) =− h̃0(z∗(0)) +

τ∫
0

[(
− ν(s)>BM -1

wB
>ν(s)

+ δ(s)ψ(s)
)
e
∫ t
s
(γ (r)+δ(r))dr

]
ds.

Then, using (23):∣∣∣∣∣∣q(t)− δ0
γ0
x∗q(0)−

t∫
0

δ(s)ψ(s)e
∫ t
s
(γ (r)+δ(r))drds

∣∣∣∣∣∣ ≤ Hε2
with

H = tRK2N(‖n(0)‖2 + ‖n‖2) (27)

a finite constant whereR =
∥∥BM -1

wB
>
∥∥, K = exp

∫ t
0
L(τ)dτ andN =

∫ t
0
e
∫ t
s
(γ (r)+δ(r))drds.

This ends the proof.

Remark 3. When γ = , Property 10 matches with [26, Property 9] where

their initial scaling correspond to our initial scaling factor γ0.

Property 11 gives conditions where the sign of h̃t(z
∗(t)) is only determined

by its first order approximation defined in Property 10.

Property 11. Let z∗ a touching trajectory of P = T (P0, γ0,γ) for γ ∈

L2,loc(R+;R+), γ0 ≥ 1 given and t ∈ I(P ) given. If there is a δ ∈ L2,loc(R+;R)

and a δ0 ∈ R, s.t. ‖δ‖ ≤ ε and |δ0| ≤ ε and t ∈ I(P̃ ) (where P̃ = T (P0, γ0 +

δ0,γ + δ)) and

Hε2 ≤

∣∣∣∣∣∣ δ0γ0x∗q(0) +

t∫
0

[
δ(s)ψ(s)e

∫ t
s
(γ (r)+δ(r))dr

]
ds

∣∣∣∣∣∣ , (28)

then the sign of

− δ0
γ0
x∗q(0)−

t∫
0

[
δ(s)ψ(s)e

∫ t
s
(γ (r)+δ(r))dr

]
ds

26



is equal to the sign of h̃t(z
∗(t)) where h̃t is the value function of P̃ (t) and H > 0

defined in (27) and

ψ(s) = x∗q(s)−
t∫
s

γ(τ)x∗q(τ)e
∫ s
τ
γ (r)drdτ.

Proof. This is a direct consequence of Property 10 and of the property: (|a− b| ≤

c) ∧ (c < |b|)⇒ sign(a) = sign(b) for a, b, c ∈ R.

Provided the existence of a (δ, δ0) ∈ L2(R+;R) × R such that γ + δ ≥ 0

and γ0 + δ0 ≥ 1, the first order approximation of the value function of P̃ =

T (P0, γ0 + δ0,γ + δ) gives a way to identify time varying paraboloids P̃ that

belongs to Π such that an invalid trajectory with an end state zt ∈ ∂P (t)

(meaning with initial state outside of the initial set P0 or a trajectory violating

the constraint) does not belongs to P̃ (t) and therefore, does not belong to Π∩(t).

Property 12 states that the touching trajectories of Π∩ satisfy the state

constraint (5). Property 12 is proven by choosing a valid trajectory candidate.

If this trajectory violates the state constraint (5), then Property 11 provides a

proof that this trajectory does not belongs to the overapproximation Π∩.

Property 12. For P ∈ Π∩, if zt ∈ ∂Π∩(t) and zt ∈ ∂P (t) for t in the open

set of I(P ), then the optimal trajectory z∗ of P such that z∗(t) = zt is a valid

touching trajectory of P and Π∩.

Proof. Let ψ : R+ 7→ R defined for s ≥ 0 by:

ψ(s) = x∗q(s)−
t∫
s

γ(τ)x∗q(τ)e
∫ s
τ
γ (r)drdτ.

Let τ ∈ [0, t] and I = [τ, t].

• Case 1, x∗q(0) < 0: with δ0 > 0, using Property 11, z∗(t) /∈ P̃ (t) where

P̃ ∈ Π since δ0 + γ0 ≥ 1, so z∗(t) /∈ Π∩(t).

• Case 2, ψ(·) < 0 over I: any δ(·) ≥ 0 over I and δ(·) = 0 elsewhere such

that
∫ t
0
δ(s)ψ(s)ds 6= 0 and for δ0 = 0, using Property 11, z∗(t) /∈ P̃ (t)

where P̃ ∈ Π since γ + δ ≥ 0, so z∗(t) /∈ Π∩(t).
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• Case 3, ψ(·) > 0 over the open of I and there is a l ∈ I, s.t.
∫
s∈[τ,l] γ(s)x∗q(s)ds 6=

0: since γ ≥ 0, there exists a δ ≤ 0 such that γ + δ ≥ 0 and for δ0 = 0,

using Property 11, z∗(t) /∈ Π∩(t).

• Case 4, ψ(·) = 0 over I: since x∗q is continuous over R+, and since γ is

locally square integrable, ψ(t) = 0 ⇒ x∗q(t) = 0, therefore x∗q(·) = 0 over

I. Consequently hτ (z∗(τ)) = 0 for τ ∈ I.

Cases 1 to 4 show that for z∗(t) ∈ ∂Π∩(t):

• either ∀l ∈ I,
∫ l
τ
γ(τ)x∗q(τ)dτ = 0 and ψ(·) = x∗q(s) > 0;

• nor x∗q(l) = 0 for l ∈ I.

Let a partition [0, t] =
⋃
i∈N Ii such that over each open interval Ii, ψ(·) ./i

0 with ./i∈ {<,>,=}. We deduce that for any s ∈ [0, t]: x∗q(s) ≥ 0 and∫
I
γ(τ)x∗q(τ)dτ = 0. z∗ is a valid trajectory, i.e. the constraint (5) is satisfied.

By 15, z∗ is a touching trajectory of P . Moreover, since z∗(0) ∈ P0, z∗ is as

well a touching trajectory of Π∩.

Since Π∩(t) is an intersection of closed sets, Π∩(t) is closed as well. In the

general case, for an infinite intersection Y∩ =
⋂
i∈N Yi of closed sets Yi, i ∈ N,

any boundary point y ∈ ∂Y∩ does not necessarily belongs to the boundary

of any Yi, i ∈ N (e.g.
⋂
ε∈]1,2][−ε, ε] = [−1, 1], but there is no ε ∈]1, 2] such

that 1 ∈ ∂[−ε, ε]). The following assumption states that for every state on the

boundary of the overapproximation Π∩(t), t > 0, there exists a time-varying

paraboloid P such that this state belongs as well to the boundary of the P (t).

Assumption 1. For any zt ∈ ∂Π∩(t), there is a P ∈ Π such that zt ∈ ∂P (t).

This assumption is not a strong one and has been proved for simpler cases

(see [26, Property 11]).

In Property 12, the existence of γ̃ and γ0 is conditioned by t belonging to the

open domain I(P̃ ); to ensure this, ‖E(·)‖ is assumed to be bounded over [0, T ]

(by considering the case where t is in the open set of I(P )). In the general case,

the boundedness of ‖E(·)‖ is not granted (see the unstable case in Example 1

28



and Figure 3). Assumption 2 states that for any state on the boundary of the

overapproximation Π∩(t), t > 0, there is neighbor state on the boundary of P̃ (t)

where P̃ is a time-varying paraboloid of Π not diverging at t (i.e. t belongs to

the interior of TP (P )).

Assumption 2. For t > 0, for all ε > 0, for any zt ∈ ∂Π∩(t) such that

zt ∈ ∂P (t), P ∈ Π with P unbounded, there is a z̃t that belongs to the boundary

of P̃ (t), z̃t ∈ ∂P̃ (t), such that ‖zt − z̃t‖ < ε.

Lemma 1 shows that any state zt ∈ ∂Π∩(t) (with t ∈ I(Π) given) is the

terminal state of a touching trajectory z∗ of Π∩ with initial state z∗(0) ∈

∂Π∩(0).

Lemma 1. If Assumptions 1 and 2 hold, any state zt ∈ ∂Π∩(t) has a past

touching trajectory z∗ of Π∩ s.t. z∗(t) = zt.

Proof. Let zt /∈ R(P0, t) such that for any ε > 0, there is a touching trajectory

z̃ of P̃ , P̃ finite, with z̃(t) ∈ R(P0, t) and ‖z̃(t)− zt‖ < ε. For xq(t) > 0, we

can define the optimal trajectory z∗ with z∗(t) = z t. For any τ ∈ [0, t], P (τ)

is finite. Then, Property 12 can be used over [0, τ ]. Therefore, if zt ∈ ∂P such

that P diverges at t, it holds:

zt ∈ ∂Π∩(t)⇔ zt ∈ R(P0, t)

For states not belonging to a diverging time-varying paraboloid, the property

is a direct consequence of Assumption 1, Property 12.

Lemma 1 shows that any point on the boundary belongs to the reachable set

since, for any given terminal state, we found a past trajectory (the touching

trajectory) that satisfies the constraint (2) and with initial condition in the set

of initial states.

3.7. Exact Reachable Set

We now state the main result of the paper:
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Theorem 3 (Exact reachability, solution of Problem 2). When Assumptions 1

and 2 hold, the reachable set R(P0, t) of system S (P0, t) (defined in Section 1.1)

is equal to the set Π∩ defined in (20), namely

Π∩(t) = R(P0, t)

for all t ≥ 0.

Proof. Theorem 1 states that R(P0, t) ⊆ Π∩(t). By Property 9, for zt ∈

Π∩(t), we can construct a trajectory z such that z(t) = zt, z(t−) = z∗t ∈

∂Π∩(t) (Property 9). Since z∗t ∈ ∂Π∩(t), using Lemma 1, there exists a trajec-

tory z such that z(t−) = z∗t and z is a touching trajectory of Π∩ on [0, t[. Since

z is a touching trajectory of Π∩, z(0) ∈ ∂Π∩(0) with Π∩(0) = P0 = R(0). By

Property 11, the trajectory z is valid (i.e. satisfies the energy constraint (5))

zt ∈ R(P0, t).

4. Implementation

In this part, we discuss the practical implementation of the reachable sets

overapproximation using Theorem 3. To do so, we compute a subset Π̃ of Π:

Π̃ ⊆ Π (29)

Π̃ corresponds to the time-varying paraboloid set generated by a finite subset of

scaling functions and initial scaling. Then, the intersection of each time-varying

paraboloid evaluated at a given t > 0 is an overapproximation of the reachable

set R(P0, t). Finally, the DRE numerical integration is detailed for the case

of non-negative solutions to the DRE. We propose an algorithm (Algorithm 1)

that computes Π̃, its implementation in Matlab is available online [14].

Subset of scaling functions and initial scaling factors:. In this work, we choose

to consider discrete scalings for the time-varying paraboloids. The scalings are

applied at each kTc, for Tc > 0 given and k in N. A scaling is then described
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by a sequence of scaling factors {λk}k∈N, λk ≥ 1, k ∈ N. The scaling functions

are not used: γ(·) = 0.

In the ideal case, the scaling (function and factors) would be chosen such

that the following property is verified:

∃ε > 0,∀τ ∈ [t, t+ ε],x∗q(τ) ≥ 0 (30)

where (x∗,x∗q) corresponds to the touching trajectory associated with the scal-

ing function γ and scaling factor γ0 and such that (x∗(t),x∗q(t)) = (x, xq).

In practice, since there might be an infinite number of states (x, xq) verifying

ẋq ≥ 0, only a finite number of states are checked. These states are chosen as

projections of a given point in given directions over Z∗∩∂Π̃∩. These points are

then used to evaluate a range of scaling factors γ0 to enforce ẋ∗q(kTc) ≥ 0. γ is

not used.

Paraboloid numerical integration:. Let two paraboloids P = T (P0, 1,γ), P̃ =

T (P0, 1, γ̃). If γ(.) = γ̃(.) over an interval [0, ti], ti > 0, then P (.) = P̃ (.) over

[0, ti]. Let ti ≥ 0 corresponds to the maximal time instant where there is P̃ ∈ Π

such that P̃ |[0,ti] = P |[0,ti] (i.e. such that the restriction of P̃ on [0, ti] is equal

to the one of P on the same interval). And let tf ≥ 0 corresponds either to the

integration horizon T > 0, or to the maximal of the interval of definition of P .

For implementation purposes, each time-varying paraboloid is defined over the

interval [ti, tf ] ⊆ [0, T ].

Since γ(.) = 0 over ]kTc, (k + 1)Tc[, for any τ ∈ [0, Tc], k ∈ N. Over

]kTc, (k + 1)Tc[, the IVP (13) is then equivalent to the ”unscaled” IVP (8,9,10)

for (Ek,fk, gk) over each time interval [kTc, (k + 1)Tc] The solution to P =

T (P0, 1,γ) is then described by parameters (E,f , r) with

(E(t),f(t), g(t)) = (Ek(t),fk(t), gk(t))

for each t ∈ [kTc, (k + 1)Tc], k ∈ N.

Cardinal limitation of Π̃:. In order to have a tractable integration of the reach-

able set computation, we limit the cardinality of Π̃ in the following way:
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• at each time step kTc, we consider only Nnew scaled paraboloids of highest

scaling factor;

• Π̃ below NP , oldest time-varying paraboloids are dismissed in benefit of

more recent ones;

Nnew and NP are user-defined parameters. Choosing the paraboloids with this

heuristic showed good results in practice. These rules try to only consider

elements of Π that are more stable. Since for 2 solutions E and Ẽ of (8)

respectively defined over [0, T ] and [0, T̃ ] where T , T̃ ∈ R∪{∞}, ifE(0) � Ẽ(0),

then E(t) � Ẽ(t) for t in the interval of definition of E and Ẽ , we have T ≥ T̃

(these property follow directly by writing the corresponding value function of

the basic LQR optimization problem). Therefore, for a time-varying paraboloid

that is positive definite at t > 0, its scaled time-varying paraboloid at t will be

defined for a longer time horizon.

DRE numerical integration:. DRE integration is subject to numerical insta-

bility. A direct integration of the DRE (8) does not produce good results in

practice (see [31]). Experiments presented in this works make use of the Chan-

drasekhar method [13]. This method integrates the Ordinary Differential Equa-

tion (ODE) (8) E using an intermediate ODE over the time-dependent matrix

L in L2(R+,Rn×n):

Ė(t) = L(t)L(t)>

L̇(t) = (E(t)BM -1
wB
> −A> −MxwM

-1
wB
>)L(t)

with

E(0) = E0

L(0)L(0)> = Ė0

where Ė0 = Ė(0) given by (1). Then E is a solution to (8).

Since L(t)L(t)> � 0, this method is only applicable to strictly increasing

solutions of the DRE. As seen in Example 1, the solutions to ODE (8) are

not strictly increasing over the time horizon, even for a positive definite initial
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condition. Therefore, the Chandrasekhar method cannot be used directly. We

instead use the following approach, let L,K ∈ L2(R+,Rn×n) such as:

Ė(t) = L(t)L(t)> −K(t)K(t)>

L̇(t) = (E(t)BM -1
wB
> −A> −MxwM

-1
wB
>)L(t)

K̇(t) = (E(t)BM -1
wB
> −A> −MxwM

-1
wB
>)K(t)

with

L(0)L(0)> = Ė+
0

K(0)K(0)> = −Ė−0

where Ė0 = Ė(0) = Ė+
0 + Ė−0 given by (8), with Ė+

0 � 0 and Ė−0 � 0 The

increasing and decreasing parts of E are respectively represented by the terms L

and K. Our Chandrasekhar inspired method performs better since the square

root term L andK are much smaller than E and produces less numerical errors.

For f and g, integration of the ODE as given in (9) and (10) is used.

Algorithm 1 summarizes the computation of Π̃. An implementation on

Matlab is available online [14].

5. Examples

Algorithm 1 deduced from Theorem 2 and 3 is used to compute the over-

approximation Π∩ defined in (29) (subset of Π defined in (19)) of reachable

set R(P0, t) of the system S (P0, t) (described in Section 1.1), t ≥ 0. Sev-

eral examples are treated. With these examples, we provide some performance

evaluations of our approach.

5.1. Examples from COMPleib

To evaluate the performance of our approach, we compute an overapproxima-

tion of the reachable set for several real-life systems from the COMPleib library

[32]. For each system, a stabilizing controller is generated for the generalized

plant using the h2syn function of Matlab, then the system is reduced using a

balanced truncation method to a given state space size. The set of initial states
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input:

A paraboloid P0 ∈ P of initial set of states

An horizon of simulation T > 0

Sample time Tc > 0 of constraint addition

Searching directions Search Dir ⊂ Rn to add

constraints

Nnew: maximal number of new scaled

paraboloid to add

NP: maximal cardinal of Π̃

Result: a set of overapproximating time-varying paraboloids Π̃

1 Π̃ = {T (P0, 1, 0)}

2 t = 0

3 Sim Parab = {(P0, 0)}

4 while t < T do

/* Find the new time-varying paraboloids to consider */

5 New Parab = {}

6 for n ∈ Search Dir do

7 project xc on ∂Π̃∩ in the direction n

8 let x∗ be this projection and P ∗ ∈ Π̃ its corresponding

touching paraboloid

9 compute λ given (x∗,P ∗)

10 for λ = 1 + dλ, 1 + 2dλ, . . . , λ do

11 add (P ∗, λ) to New Parab

12 Sort New Parab according to λ’s values

13 Keep Nnew elements of New Parab with highest λ’s values

14 for (P ∗, λ) ∈ New Parab do

15 add (λP ∗(t), t) to Sim Parab

16 if |Π̃| > NP then

17 Remove the (|Π̃| − NP) oldest elements of Sim Parab
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18

/* Simulate the paraboloid for Tc */

19 for (Pτ , τ) ∈ Sim Parab do

20 Simulate P (·) over [t, t+ Tc] with P (τ) = Pτ ;

21 Add P (·) to Π̃;

22 if P (·) diverges then

23 Remove (P, t) from Sim Parab;

24 end

25 end

26 t = t+ Tc;

Algorithm 1: Computation of Π̃ defined by (29), in Section 4, as the subset

of Π defined by (19), in Section 3.

is chosen such that the quadratic term belongs to the set of stable solutions to

the associated Continuous Algebraic Riccati Equation. The simulation are ran

for an input u(t) = [ 1 ... 1 ]
>

exp(−t) for t ∈ [0, 2]. Each ODE is numerically

integrated using the ode113 solver in Matlab. Finally, we run the simulation

with one time-varying paraboloid and then multiple time-varying paraboloids.

CPU time performances for a computer with an Intel i5 2.5GHz are presented

in Table 2.

In Figure 7, we show several runs for the examples. Each paraboloid is

overapproximated with a box, we show the intersection of these intervals.

Performance is mainly dependent on the number of paraboloids that we

consider, and our ability to efficiently solve the DRE.

5.2. System Verification

We study the stable IQC system S (P0, t), defined in (6), at a given time

t in [0, 1], for a parabolic set of initial states P0 = P(E0, f0, g0), with E0 =[
a+b a
a a+b

]
, f0 = [ 00 ] , g0 = 0.015, a = 10−2 and b = 10−6, and for the following

parameters

A = −I, B = I, Bu = 0, M =
[
I 0 0
0 1 0
0 0 −2I

]
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System

size

Helicopter

(HE7)

Aircraft

(AC10)

Coupled

Spring

(CSE1)

5 4.32 4.64 3.65

10 5.12 5.96 3.86

19 7.42 10.62 7.92

30 n.a. 28.85 n.a.

40 n.a. 50.66 n.a.

49 n.a. 88.00 n.a.

Table 1: Computation times (in seconds) of the overapproximation for different systems sizes,

using a unique time-varying paraboloid. (When the original system’s size is smaller than the

required reduced system size, then the model reduction is not applicable -n.a.-.)

where I = [ 1 0
0 1 ], and with a zero input signal u.

The reachable setR(P0, t) of S (P0, t), defined in (7), is computed using (18)

and Theorem 3, for t ∈ [0, 1]. Figures 8a and 8b show the reachable set R(P0, t)

set at time t = 0.794 and its projection R(P0, t)|x over the LTI state space (i.e.

projection over (x1, x2) states). In Figure 8b, the constraints boundaries ∂P (t)

(for P ∈ Π, Π defined in Section 3) are touching the reachable setR(P0, t). The

non-convexity of R(P0, t) arises from the non-positive solutions to the DRE (8).

Figure 8c represents the projection of the reachable tube t 7→ R(P0, t) projected

over the LTI dimension (x1, x2).

6. Conclusion

IQCs are 2-norm constraints (i.e. energetic constraints) between signals.

Classical models in the robust control community involve 2-norm constraint or

∞-norm constraint (i.e. hard bounds between signal). ∞-norm bounds over

the signals have been treated (e.g. the ellipsoidal method). However, complex

systems can be usually described with many relationships. In future works,

the computation of the reachable set for systems with multiple 2-norm and
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System

size

Helicopter

(HE7)

Aircraft

(AC10)

Coupled

Spring

(CSE1)

5 83.63 (66) 36.64 (13) 213.88 (232)

10 89.55 (57) 25.77 (9) 261.32 (197)

19 167.53 (52) 27.67 (4) 21.97 (4)

30 n.a. 113.72 (7) n.a.

40 n.a. 117.60 (4) n.a.

Table 2: Computation times (in seconds) and number of paraboloids (in parenthesis) of the

overapproximation for different systems sizes. (When the original system’s size is smaller than

the required reduced system size, then the model reduction is not applicable -n.a.-.)

∞-norm relationships will be investigated. Also, such models will be used to

define abstractions for nonlinear systems. The dynamic of the system will be

linearized and the non-linearity modeled as a bounded (2-norm and/or∞-norm)

disturbance.

We showed that the reachable set can be described as an intersection of

uncountably many paraboloids. In our implementation, a subset of these time-

varying paraboloids is computed to overapproximate the reachable set. Then,

we compute a minimal volume paraboloid that contains the intersection of all the

paraboloids. The computation time of our method is directly dependent of the

number of time-varying paraboloids. Finding only one time-varying paraboloid

which minimizes its end volume would avoid integrating multiple time-varying

paraboloids. Solutions exists for this optimization problem.

The differential Riccati equation can be weakly solved using a basis of poly-

nomial solutions. Then Sum-Of-Square relaxation provides a suboptimal over-

approximating paraboloid. Previous works implementing this approach use con-

servative overapproximations that do not fully incorporate the state constraint.

In future works, we will develop such approach with the results presented in

this paper.
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Figure 7: Overapproximation of the output reachable set (projection of the reachable set R(t)

through the observation map; the red area) of the AC10 example from the COMPleib library.

Plain black line correspond to the unperturbed trajectory of the system.

(a) Reachable set

(b) Reachable set of the LTI

system

(c) Reachable tube of the LTI

system

Figure 8: The green surface in (a) is the reachable set R(P0, t) at t = 0.794 of S (P0, t)

computed using Theorem 3. Its projection over the LTI state space (x1, x2) (in solid red

line) is shown in (b), each green line corresponds to one constraint P ∈ Π computed with

Theorem 1. (c) is the reachable tube t → R(P0, t) of S (P0, t) projected over the LTI state

space (x1, x2) for t ∈ [0, 1]. The red section corresponds to the time t = 0.794.

Locally optimal solution of the optimization problem can be derived using

the maximum of Pontryagin principle. Such solution are already available for

the ellipsoidal method. The adaptation to the paraboloidal method will be the

topic of a future work.

Our integration scheme is not guaranteed and the paraboloids we compute
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are subject to the error of the differential equation numerical integration. Guar-

anteed integration scheme exists to overapproximate the reachable set of linear

time-invariant systems. The image of an ellipsoidal set through the matrix ex-

ponential is overapproximated. This result is then used to overapproximate the

reachable set of a linear system. In future works, we will develop a similar

approach for the paraboloidal method.

In our implementation, the scaling functions and initial scaling factor are

chosen such that some touching trajectory validate the constraint in the future.

Other criteria could be derived such as studying the average behaviors of the

trajectories. Since most of the computational effort are linear in the number of

time-varying paraboloids that needs to be simulated, an efficient choice of the

scaling factor can lead to algorithms that demand less computational resources.

In control applications where the system is described by a partial differential

equation, a linear approximation of the model can be derived by projecting the

state over a finite basis of function. The approximation is then described by an

ordinary differential equation that usually have a high number of states (several

order of magnitudes). In its current implementation, our method proved to be

efficient for systems of less than a hundred states. For higher system dimension,

the numerical integration of the differential Riccati equation might cumbersome.

In future works, numerical integration of sparse differential Riccati equation

could be used to treat such examples.
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