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Reachability Analysis of Linear Time

Invariant Systems with Integral
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February 27, 2019

Abstract

This work extends reachability analyses based on ellipsoidal tech-
niques to Linear Time Invariant (LTI) systems subject to an integral
quadratic constraint (IQC) between the past state and disturbance sig-
nals, interpreted as an input-output energetic constraint. To compute
the reachable set, the LTI system is augmented with a state corre-
sponding to the amount of energy still available before the constraint
is violated. For a given parabolic set of initial states, the reachable
set of the augmented system is overapproximated with a time-varying
parabolic set. Parameters of this paraboloid are expressed as the solu-
tion of an Initial Value Problem (IVP) and the overapproximation re-
lationship with the reachable set is proved. This paraboloid is actually
supported by the reachable set on so-called touching trajectories. Fi-
nally, we describe a method to generate all the supporting paraboloids
and prove that their intersection is an exact characterization of the
reachable set. This work provides new practical means to compute
overapproximation of reachable sets for a wide variety of systems such
as delayed systems, rate limiters or energy-bounded linear systems.
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1 Introduction

We consider the reachability problem for Linear Time Invariant (LTI) with
Integral Quadratic Constraints (IQC). Reachable set computation is an active
field of research in control theory (see [3]). It has many applications such as
state estimation (see [9]) or verification (see [2]) of dynamical systems.

IQC is a classical tool of robust control theory (see e.g. [16, 17]). It can
model complex systems (infinite state dimension or non-linear dynamics)
such as delays, rate limiters and uncertain systems (see [7, 15, 18] and [1]).
Up to now, IQC have mainly been used to evaluate the stability of systems.
Despite their modeling power, we still lack tools to manipulate such systems:
computing their reachable set is challenging.

In this paper, we extend reachability analysis based on ellipsoidal tech-
niques (see e.g. [4,12,13]) for LTI systems subject to an IQC. This IQC is a
trajectory constraint (i.e. valid at any time) between past state-trajectory,
input signals and unknown disturbance signals. To override dealing with con-
straints over the state-trajectories, we study the LTI system augmented with
a state corresponding to the integral term in the IQC. For a given parabolic
set of initial states, the reachable set of the augmented system is overap-
proximated by a time-varying parabolic set. Parameters of this paraboloid
are expressed as the solution of an Initial Value Problem (IVP) partially
described by a Riccati differential equation. This paraboloid is a tight over-
approximation of the reachable set as it is supported by the reachable set
on so-called touching trajectories. By studying touching trajectories that
are close to violating the constraint, we find conditions to generate all the
supporting time-varying parabolic sets. At a given time, the intersection of
these supporting parabolic sets is an exact representation of the reachable
set.

Related work Reachability analysis of LTI systems with ellipsoidal bounded
inputs is studied in [4,12,13]. Such systems can model infinity norm bounded
input-output LTI systems. The reachable set (which is convex and bounded;
see [12]) can be overapproximated with time-varying ellipsoidal sets. Each
ellipsoid is described by its parameters (center and radius) that are solution
of an IVP. These parameters produce tight ellipsoids (i.e., ellipsoids touch-
ing the reachable set) which are external approximations of the reachable set.
When multiple ellipsoids with different touching trajectories are considered,
their intersection is a strictly smaller overapproximation of the reachable set.
The accuracy of the overapproximation can be made arbitrarily small by



adding more well chosen ellipsoids. The exact representation of the reach-
able set is possible by using a infinite set of ellipsoids.

An optimal control formulation of the reachable set problem is also pos-
sible [6, 14]. For some given cost function (usually linear in the case of hy-
perplane constraints), the maximal cost reached through the system flow for
a given set of initial states defines a constraint over the reachable set: any
state of the reachable set has lower cost. This optimization problem can
be locally solved (see e.g. with the Pontryagin Maximum Principle -PMP-,
see [5, 6, 14, 23]) leading to local description of the reachable set boundary.
It also can be solved globally (using Hamilton-Jacobi-Bellman -HJB- vis-
cosity subsolutions for example, see [22]) leading to global constraints over
the reachable set. If the reachable set can be expressed as the intersection
(possibly uncountable) of elements of the chosen function family, then the
intersection of the resulting constraints gives an exact representation of the
reachable set.

HJB and PMP based methods propagate the constraints along the flow of
the dynamical system. Occupation measures and barrier certificates methods
aim at finding constraints over the reachable tube of a dynamical system: [19]
uses IQCs for verification purposes using barrier certificates where the posi-
tivity of the energetic state is ensured by using a nonnegative constant multi-
plier: [8,10] use an occupation measure approach where the integral constraint
can be incorporated as a constraint over the moment of the trajectories. A
hierarchy of semi-definite conditions are derived for polynomial dynamics.
Then, off-the-shelf semi-definite programming solvers are used to solve the
feasibility problem. Optimization-based methods do not usually take advan-
tage of the model structure as they consider a large class of systems (convex,
Lipschitz or polynomial dynamics for example).

The study of LTI systems with two norm bounded energy is closely related
to the Linear Quadratic Regulator (LQR) problem. In the LQR problem, a
quadratic integral is minimized at the terminal time. Optimal trajectories
belong to a time-varying parabolic surface, whose quadratic coefficients are
solution of a Riccati differential equation. [20] describes the reachable set of
LTI systems with terminal IQC.

Contributions We study the reachable set computation of an LTI system
with IQC. To the knowledge of the authors, this is the first paper to provide
a set-based solution for reachable set computation for LTI systems with IQC.

• We extend the existing ellipsoidal method for reachability analysis of
bounded-inputs LTI systems to reachability analysis of LTI systems
with IQC. These parabolic constraints are defined by time-varying pa-



rameters which are solution of an IVP. Part of this IVP (the quadratic
coefficient of the parabolic constraint) is a Riccati differential equation.
The IVP convergence property is obtained thanks to the convergence
property of the Riccati differential equation.

• These parabolic constraints are external approximations of the reach-
able set. The use of parabolic set is particularly suited to the system
of interest: the approximation is tight in the sense that each constraint
stays in contact with the boundary of the reachable set. We exhibit
these touching trajectories. Under some conditions, the reachable set
is exactly described by the intersection of well chosen time-varying
paraboloid.

Plan The LTI system with temporal IQC and the reachability analysis
problem are introduced (Section 1.1). Parabolic constraints and their as-
sociated parameter IVP are defined, their domain of definition is analyzed,
the overapproximation property is formulated, as well as the touching tra-
jectories (Section 2). A method to generate a set of time-varying parabolic
constraints is described. The intersection of these paraboloids exactly de-
scribes the reachable set of the system (Section 3). An example of a stable
system is described (Section 4).

1.1 Notation

Let Sn ⊂ Rn×n denote the set of real valued symmetric square matrices of
size n. For A ∈ Sn, we write A � 0 (resp. A ≺ 0) when A is positive definite
(resp. negative definite). We define the matrix norm ‖A‖ =

√
tr(A>A) for

A ∈ Rn×m, where tr(B) is the trace of B ∈ Rn×n. Let a n-vector valued
signal be a function that associates to a time instant in [0,+∞[ a vector
from Rn. For a given interval I ⊆ R, let L2(I;Rn) denote the Hilbert space

of signals equipped with the norm: ‖u‖ =
√∫

t∈I uT (t)u(t)dt <∞. For a set

Ω ⊂ Rn, let ∂Ω denote its boundary. Let C 1(I;Rn) the set of functions from
I to Rn which are continuous and differentiable with continuous derivative.

1.2 System

For a given input signal u ∈ C 1(R+;Rp), given matrices A ∈ Rn×n, B ∈
Rn×m, Bu ∈ Rn×p, and a given terminal time t > 0, we study the trajectories



x ∈ L2([0, t];Rn) of the LTI system:{
ẋ(τ) = Ax(τ) +Bw(τ) +Buu(τ) with τ ∈ [0, t]

x(0) = x0

(1)

where w ∈ L2([0, t];Rm) is an unknown disturbance that satisfies:

xq0 +

∫ τ

0

[
x(s)
u(s)
w(s)

]>
M

[
x(s)
u(s)
w(s)

]
ds ≥ 0 for all τ ∈ [0, t] (2)

for given initial conditions (x0, xq0) ∈ Rn × R+, and given matrix

M =

Mx Mxu Mxw

M>
xu Mu Muw

M>
xw M>

uw Mw

 ∈ Sn+m+p (3)

with Mw ≺ 0.
In this work, the constraint (2) is expressed as a constraint over a state

xq ∈ L2([0, t];R) defined for s ∈ [0, t] by:

xq(τ) = xq0 +

∫ τ

0

[
x(s)
u(s)
w(s)

]>
M

[
x(s)
u(s)
w(s)

]
ds, (4)

then
xq(τ) ≥ 0 for all τ ∈ [0, t]. (5)

The constrained dynamical system S (X0, t) is then defined for a given set
of initial states X0 ⊂ Rn × R and a terminal time t > 0:

(x,xq) ∈ S (X0, t)⇔


x is solution of (1)
and xq is solution of (4)
with (x0, xq0) ∈ X0

xq satisfies (5)

(6)

Let the reachable set be defined by:

R(X0, t) = {(x (t) ,xq (t))|(x,xq) ∈ S (X0, t)} . (7)

Then, R(X0, t) ⊆ X+ where X+ is the subset of the state-space where the
constraint xq ≥ 0 is satisfied:

X+ = Rn × R+.



1.3 Paraboloids

We overapproximate the reachable set R(X0, t) of S (X0, t) with paraboloids :

Definition 1 (Paraboloid). Given (E, f, g) ∈ Sn ×Rn ×R, define the value
function:

h : Rn × R → R
(x, xq) 7→ x>Ex− 2f>x+ g + xq,

and the paraboloid:

P(E, f, g) =
{

(x, xq) ∈ Rn+1
∣∣h(x, xq) ≤ 0

}
.

Let P = {P(E, f, g)|E ∈ Sn, f ∈ Rn, g ∈ R} be the set of paraboloids.

Definition 2 (Scaled Paraboloid). For P ∈ P with parameters (E, f, g)
and a scaling factor γ > 0, let γP ∈ P be the scaled paraboloid defined by
parameters (γE, γf, γg).

Scaled paraboloids satisfy the following:

Property 1. Given P ∈ P and γ ≥ 1, it holds P ∩ X+ ⊆ γP ∩ X+.

Proof: Let h and h′ (resp.) the value functions of (E, f, g) = P and
γP (resp.) evaluated at (x, xq) ∈ P . Since (x, xq) ∈ P , h ≤ 0, i.e.
x>Ex−2f>x+g ≤ −xq. Then, h′ = γ(x>Ex−2f>x+g)+xq ≤ −(γ−1)xq.
Since (x, xq) ∈ X+ and since γ − 1 ≥ 0, we have (γ − 1)xq ≥ 0 i.e. h′ ≤ 0
meaning that (x, xq) ∈ γP ∩ X+. �

For P a time-dependent subset of X+ that associates to a time t of an
interval I ⊂ R+ a subset of P (t) of X+, we define a touching trajectory :

Definition 3 (Touching Trajectory). A trajectory X∗ solution of (1,4) is a
touching trajectory of P when X∗(t) belongs to the surface of P (t) at any
time t ∈ I, i.e. X∗(t) ∈ ∂P (t).

1.4 Problem Statement

We are now ready to state the problems which are respectively solved in
Theorem 1 (in Section 2) and Theorem 2 (in Section 3), the main results of
our paper.

Problem 1. Find an overapproximation of the reachable set R(P0, t) at any
t > 0 for a given paraboloid of initial conditions P0 ∈ P.

Problem 2. Find an exact characterization of the reachable set R(P0, t) at
any t > 0 for a given paraboloid of initial conditions P0 ∈ P.



2 Overapproximation with Paraboloids

In this section, Problem 1 is solved using time-varying paraboloids P : I →
P where I is the interval of definition of P . Parameters (E(·), f(·),g(·))
of P (·) are solution of a Riccati differential equation that guarantees an
overapproximation relationship with the reachable set, i.e. R(P0, t) ⊆ P (t)
for any t ∈ I. Existence and domain of definition I of P are expressed.
We prove that the overapproximations P are tight since there are so-called
touching trajectories of R(P0, t) that both belong to the surface of P (t) and
to the surface of R(P0, t) for t ∈ I. Finally, the method is presented for a
simple toy example.

Parameters of P are expressed as the solutions of an initial value problem.
For given E0 ∈ Sn, let E be the solution of the following Riccati differential
equation with initial condition E(0) = E0:

Ė(t) =− E(t)A− A>E(t)−Mx

+
(
B>E(t) +M>

xw

)>
M -1

w

(
B>E(t) +M>

xw

)
.

(8)

Let [0, TE(E0)[ be the interval of definition of (8)’s solutions (existence,
uniqueness, convergence properties and continuity of the solution are studied
in [11]). Let f denote the solution of the following IVP with initial condition
f(0) = f0:

ḟ(t) =− A>f(t) + (Mxu + E(t)Bu)u(t)

+ (E(t)B +Mxw)M -1
w (B>f(t)−M>

uwu(t)).
(9)

f satisfies a Linear Varying Parameters differential equation with a continu-
ous input signal. On [0, TE(E0)[, solution f to (9) exists, it is unique and con-
tinuous. By continuity of f and u over [0, TE(E0)[, g is defined on [0, TE(E0)[.
For t ∈ [0, TE(E0)[, let:

g(t) = g0 +

∫ t

0

[
f(τ)
u(τ)

]>
G
[

f(τ)
u(τ)

]
dτ (10)

where G =

[
BM -1

wB
> Bu −BM -1

wM
>
uw

(Bu −BM -1
wM

>
uw)> Mu −MuwM

-1
wM

>
uw

]
.

Definition 4 (Time-Varying Paraboloid). For an initial paraboloid P0 ∈ P,
let the time-varying paraboloid

P : I→ P
t7→ P(E(t), f(t),g(t))



be defined by the time-varying coefficients (E, f ,g) solutions of (8,9,10) with
initial condition P(E0, f0, g0) = P0. Let P = T (P0) be the function that
associates to initial paraboloid the time-varying paraboloid. Let TP (P ) =
TE(E0) and I(P ) = [0, TP (P )[ be the interval of definition of P .

For P = T (P0), let h(t, ·) the value function of P (t) at t ∈ I(P ). For
Xt = (xt, xq,t) ∈ Rn+1, wt ∈ Rm, let hX(t, wt) = h(t,X(t)) be the value
function along the trajectory X = (x,xq) solution of (1,4) generated by w
such that w(t) = wt and X(t) = Xt.

Property 2. The maximum time derivative of the value function h(t,X(t))
along the trajectories X for a disturbance wt at t exists and it is equal to
zero.

Proof: The time derivative of hX is the quadratic function:

ḣX =
[ xt
u(t)
wt

]>
H(t)

[ xt
u(t)
wt

]
(11)

where H is obtained using (1,4,8-10). H(t) is a function of E(t), f(t) and g(t).

The quadratic coefficient in wt is
[

0
0
Im

]>
H(t)

[
0
0
Im

]
= Mw. Since Mw ≺ 0,

the supremum of wt 7→ ḣX(t, wt) exists and is reached for wt = w∗(t) =
arg maxwt∈Rm ḣX(t, wt) with:

w∗ = −M -1
w

(
B>(Ex− f) +

[
Mxw
Muw

]>
[ xu ]
)
. (12)

Using (8,9,10) in (11), we get maxwt∈Rm ḣX = 0. �

We can now state one of our main results:

Theorem 1 (Solution to Problem 1). Let P = T (P0) for a set of initial
states P0. The reachable set R(P0, t) of S (P0, t), t > 0, is overapproximated
by P (t), i.e.:

∀t ∈ I(P ),R(P0, t) ⊆ P (t) ∩ X+.

Proof: Using Property 2, by integration of ḣX , if hX(0) ≤ 0 then ∀t ∈
I(P ), hX(t) ≤ 0, i.e.:

X(0) ∈ P (0)⇒ X(t) ∈ P (t) for all t ∈ I(P ).

The constraint (5) ensures that X(t) ∈ X+. �



Property 3. Let X∗ be a trajectory generated by w∗ defined in (12) such that
initial condition satisfies X∗(0) ∈ ∂P0. At any time t ∈ I(P ), X∗ satisfies
X∗(t) ∈ ∂P (t).

Proof: X∗ is the trajectory generated by the optimal disturbance w∗. Us-
ing Property 2, ḣX∗ = 0. Since h0,X∗(0) = 0, by integration, ht(X

∗(t)) = 0.
�
Trajectories generated by w∗ defined in (12) stay in contact with the surface
of their time-varying paraboloids. Touching trajectories of P do not nec-
essarily belong to S (P0, t), t ∈ I(P ), as the energetic constraint might be
locally violated.

Remark 1. Property 2 and (8,9,10) can be derived solving the following
optimal control problem (for t > 0):

max
w∈L2([0,t];Rm)

∫ t

0

[
x(τ)
u(τ)
w(τ)

]
M

[
x(τ)
u(τ)
w(τ)

]
dτ − xq,t

s.t. ẋ = Ax +Bw +Buu
x(t) = xt

for given (xt, xq,t) ∈ X+. This is a special instance of the LQR problem (see
e.g. [20]).

Remark 2 (Representation of paraboloids). In [20], the time-varying value
function is a quadratic function defined by its quadratic coefficient S, its
center xc and its value at the center ρ. S, xc and ρ satisfied an IVP. In this
formulation, the center xc can diverge when the determinant of S vanishes.
However, the corresponding time-varying value function is time-continuous
and can be extended continuously. In this paper, we choose to work with
variables E, f and g (see Definition 1) to avoid this issue.

Example 1. Let A = −1, B = 1, M =
[

1 0 0
0 1 0
0 0 −2

]
, Bu = 0 and u : [0,∞[7→ 0.

Solutions of ODE (8) (that is Ė = −1
2
E2 + 2E−1) diverge for E0 < E− (see

Figure 1) where E− < E+ are the roots of the equation −1
2
E2 + 2E − 1 = 0

for E ∈ R, E− = 2−
√

2 and E+ = 2 +
√

2. Figure 2 shows the trajectory of
the paraboloid for E0 in the stable region E0 > E− while Figure 3 shows the
trajectories of the paraboloid for E0 in the unstable region E0 < E−.



Figure 1: Convergence analysis of (8)’s solutions for Example 1

Figure 2: Time-varying paraboloid overapproximates the reachable set at
different time instants t in {0.00, 0.91, 1.62, 10.00} for an initial maximum
energetic level of xq,0 = 0.06. The solution of (8) converges to a constant
value when t→ +∞. The shaded regions are the reachable set R(P0, t), the
thin green lines are the boundary of the overapproximation P (t) of Theo-
rem 1.

Figure 3: Time-varying paraboloid overapproximates the reachable set at
different time instants t in {0.00, 0.91, 1.62, 10.00} for an initial maximum
energetic level of xq,0 = 0.03. The solution of (8) has a finite escape time
and diverge at t = 1.68. The shaded regions are the reachable set R(P0, t),
the thin green lines are the boundary of the overapproximation P (t) of The-
orem 1.



3 Exact Reachable Set Computation

In this section, a set of time-varying paraboloids is defined. At a given
time, the intersection of the paraboloids gives better overapproximations of
the reachable set. With additional assumptions, the reachable set is exactly
characterized. This approach relies on the use of Property 1 and preliminary
results showing that for any state of the overapproximation, there exists a
trajectory in S (P0, t), t > 0, leading to this state.

Let Π, a set of time-varying paraboloids (Definition 4), be defined by:

Π =
{
T (γP0)

∣∣γ ≥ 1,∃(x, xq) ∈ Pεq0 , ẋ
∗,γ
q (0) ≥ 0

}
(13)

where Pεq0 is a small set of states near ∂P0 in the half-plane xq ≤ 0:

Pεq0 =

{
(x, xq)

∣∣∣∣∣−x>E0x+ 2f>0 x− g0 ∈ [−εq, 0]

xq ∈ [−εq, 0]

}

where (E0, f0, g0) = P0, εq > 0, and (x∗,γ,x∗,γq ) the touching trajectory of γP0

s.t. (x∗,γ,x∗,γq )(0) = (x, xq). Π is defined such that each touching trajectory
of rising energy belongs to a time-varying paraboloid P of Π.

Direct computation gives ẋ∗,γq (0) = γ2a+γb+c where a < 0 (consequence
of Mw ≺ 0) and b and c in R. If there is a (x, xq) ∈ Pεq0 such that ẋ∗,1q (0) >
0, since Pεq0 is bounded and since a < 0, there exists a γ > 1 such that
∀(x, xq) ∈ Pεq0 , ẋ

∗,γ
q (0) ≤ 0. Therefore, the set of scalings γ ≥ 1 such that

ẋ∗,γq (0) ≥ 0 is [1, γ]. Π is at most a bounded set of time-varying paraboloids.
Let I(Π) ⊆ R+ be the set of time instant t ∈ I(Π) where there exists a

P ∈ Π that is defined at t (i.e. t ∈ I(P )). Since for each P ∈ Π, 0 belongs
to the interval I(P ), we have:

I(Π) =
[
0, sup

P∈Π
{TP (P )}

[
(14)

For t ∈ I(Π), let

Π∩(t) =
⋂

P∈Π s.t. t∈I(P )

P (t) (15)

the intersection of all the defined time-varying paraboloids P of Π at time t
(see Figure 4).

We now prove that when some assumption about boundedness of (8)’s
solutions (Assumption 1) and touching trajectories behavior around the null
energetic surface (Assumption 2) holds, thenR(P0, t) = Π∩(t)∩X+, for given
t ∈ I(Π) (Theorem 2, Section 3.5). To achieve that:



Figure 4: For t ≥ 0, Pi ∈ Π, i = 1, 2, 3. Light color shaded area are time-
varying constraints of Π at t. Grey color shaded are is their intersection
Π∩(t).

• we prove the overapproximation relationship R(P0, t) ⊆ Π∩(t) (Sec-
tion 3.1);

• we prove that any state (x, xq) ∈ Π∩(t) is reachable from a state
(x, x′q) ∈ ∂Π∩(t) (Section 3.2);

• for a state Xt ∈ ∂Π∩(t), we find a touching trajectory X∗ of Π∩ such
that X∗(t) = Xt (Section 3.3);

• these touching trajectories (x∗,x∗q) of Π∩ satisfy the state constraint
xq(·) ≥ 0 over [0, t] (Section 3.4);

• finally, we conclude that any Xt ∈ Π∩(t) is reachable from P0, thus
R(P0, t) = Π∩(t) ∩ X+ (Section 3.5).

3.1 Overapproximation Relationship

If Y ⊆ Z subsets of Rn+1, then R(Y , t) ⊆ R(Z, t). This result is stated in
Property 4 for the specific case of scaled paraboloids (see Definition 2).

Property 4. For a set of initial states P0 ∈ P and a scaling factor γ ≥ 1,
let Pγ = T (γP0). For any trajectory X ∈ S (P0, t), it holds X(t) ∈ Pγ(t) for
all t ∈ I(Pγ).

Proof: Using Property 1 and Theorem 1, X(t) ∈ P (t) for any t ∈ I(P ). �
As each time-varying paraboloid is an overapproximation of the reachable
set, the intersection of these paraboloids is as well an overapproximation.



Figure 5: Time-varying paraboloids overapproximate the reachable set at
different time instants t in {0.00, 0.91, 1.62, 10.00} for different initial con-
ditions Pi(0) = γiP0, where scaling factors γi are respectively equal to 1.0,
1.6, 2.2, 2.7 and 3.3 for i = 0, . . . , 4. The shaded regions are the reachable
set R(P0, t), the thin green lines are the boundary of the overapproximation
P (t) of Theorem 1.

Property 5. R(P0, t) ⊆ Π∩(t) for any t ∈ I(Π).

Proof: This is a direct consequence of Property 4. �

Example 2 (Continued from Example 1). In the case where the solution
of (8) does not converge (i.e. E0 < E−), Figure 5 shows several paraboloid
trajectories with different initial energetic levels (i.e. different initial scaling).
Since all the scalings γi are greater than 1, P0 ∩X+ ⊂ γiP0 ∩X+. Therefore,
each time-varying paraboloid is a valid constraint that bounds R(P0, t), t ∈
I(Π) (Theorem 1). Therefore, R(P0, t) ⊆ P∩(t) = P0(t)∩P1(t)∩ · · · ∩P4(t)
where Pi = T (γiP0), and γi are resp. equal to 1, 1.6, 2.2, 2.7 and 3.3 for
i = 0, . . . , 4. In this case, the overapproximation P∩(t) is strictly included in
P0(t).

Observations in Example 2 motivate the use of multiple time-varying
paraboloids to get better overapproximation of the reachable set R(P0).

3.2 Past trajectory for states in the interior of Π∩(t)

Property 6. For a trajectory (x,xq) ∈ S (P0, T ), T > 0, x is time-
continuous.

Proof: Let f : t, x 7→ Ax+Bw(t)+Buu(t). Since for any (t, x) ∈ R+×Rn,
f(., x) is locally measurable over R+, f(t, .) is Lipschitz over Rn, (1) has a
unique solution x (see [21], Theorem 1.1) that is time-continuous. �



x trajectories are time-continuous, however, this in not necessarily true
for xq trajectories: xq might have steps due to sudden release of the energy
through the disturbance w. We use the following property to prove that the
state (x, αxq) is reachable from the state (x, xq) for any given α ∈ [0, 1].

Property 7. For t ≥ 0, if (x, xq) ∈ R(P0, t) then (x, αxq) ∈ R(P0, t) for all
α ∈ [0, 1].

Proof: For ε > 0, let w ∈ L2([0, t + ε];Rm), s.t. w>(s)Mww(s) = −(1 −
α)xq(t)1

ε
when s ∈ [t, t + ε]. Then

∫ t+ε
t

w>(s)Mww(s)ds → −(1 − α)xq(t)

when ε → 0. Using Cauchy-Schwartz inequality:
∣∣∣∫ t+εt

(−Mw)
1
2 w(s)ds

∣∣∣ ≤√∫ t+ε
t

1ds
√∫ t+ε

t
−wT (s)Mww(s)ds and the time-continuity of x (from Prop-

erty 6), the quantity
∫ t+ε
t

[
x(s)
u(s)

0

]>
M

[
x(s)
u(s)
w(s)

]
ds→ 0 when ε→ 0. By integra-

tion, xq(t + ε) → αxq(t) when ε → 0. Since x is continuous (Property 6),
x(t + ε) → x(t) when ε → 0. By continuity of u, x and w over [t, t + ε],
xq is continuous over [t, t + ε]. Then, there exists a t′ ∈ [t, t + ε] such that
xq(τ) ≥ αxq(t) ≥ 0 for all τ ∈ [t, t′] and xq(t′) → αxq(t) when ε → 0.
Therefore, the constraint xq(·) ≥ 0 is satisfied over [t, t′] and the trajectory
(x,xq) is a valid trajectory of S (P0, t

′) for all t ≤ t′. �

3.3 Past trajectory for states in ∂Π∩(t)

The value function h̃ of a time-varying paraboloid P̃ can be approximated
at the first order along a touching trajectory X∗ of another time-varying
paraboloid P when initial conditions P (0) and P̃ (0) are close.

Property 8. For any λ, λ̃ ∈ [1, λ], any t ∈ I(P ) ∩ I(P̃ ):∣∣∣h̃t(X∗(t))− (λ− λ̃)λ-1x∗q(0)
∣∣∣ ≤ N(λ− λ̃)2

where P = T (λP0), P̃ = T (λ̃P0), h̃t is the value function of P̃ (t), X∗ =
(x∗,x∗q) is a touching trajectory of P and N > 0 a scalar.

Proof: Let n = (E−Ẽ)x∗−(f − f̃ ). Using (1,12,8-10), n satisfies the linear
time varying differential equation: ṅ = (−A> +MxwM

-1
wB

> + ẼBM -1
wB

>)n.
Since t belongs to I(P̃ ) and by time-continuity of Ẽ(·) over [0, t], there is a
scalar K > 0 that bounds ‖Ẽ(·)‖ over [0, t]. Then, there exists L > 0 upper
bound of ‖−A>+MxwM

-1
wB

>+Ẽ(·)BM -1
wB

>‖ over [0, t]. Using the Grönwall



inequality, it holds ‖n(τ)‖ ≤ eLτ‖n(0)‖ for τ ∈ [0, t]. Since λ̃-1P̃ (0) =
λ-1P (0) = P0, it holds n(0) = (λ − λ̃)n0 with n0 = E0x

∗(0) − f0. There-

fore, ‖n(τ)‖ ≤
∣∣∣λ− λ̃∣∣∣ eLτ‖n0‖. Along the touching trajectory X∗ = (x∗,x∗q)

of P and by using (8-10), ˙̃ht is equal to : ˙̃ht(X
∗(t)) = n>(t)BM -1

wB
>n(t).

By integration, we have
∣∣∣h̃t(X∗(t))− h̃0(X∗(0))

∣∣∣ ≤ N(λ − λ̃)2, where R =∣∣n0BM
-1
wB

>n0

∣∣ (2L)-1e2LT a finite constant (since Mw ≺ 0). Since X∗ is a

touching trajectory of P : λ(x∗>(0)E0x
∗(0)−2f>0 x∗(0)+g0)+x∗q(0) = 0. Di-

rect computation gives: h̃0(X∗(0)) = (λ−λ̃)λ-1x∗q(0). Thus,
∣∣∣h̃t(X∗(t))− (λ− λ̃)λ-1x∗q(0)

∣∣∣ ≤
N(λ− λ̃)2. �
When Property 8 holds, if N(λ − λ̃)2 ≤ (λ − λ̃)λ-1x∗q(0), then the sign of

h̃t(X
∗(t)) is equal the sign of (λ− λ̃)λ-1x∗q(0). Since h̃t(X

∗(t)) > 0⇒ X∗(t) /∈
Π∩(t), Property 8 provides a way to identify states that do not belongs to
Π∩(t).

Property 9. Let X∗ a touching trajectory of P = T (λP0) (where λ ∈ [1, λ]
given) and t ∈ I(P ) given. If there is a λ̃ ∈ [1, λ], s.t. t ∈ I(P̃ ) (where

P̃ = T (λ̃P0)) and
∣∣∣λ− λ̃∣∣∣ ≤ ∣∣N -1x∗q(0)

∣∣, then

(λ− λ̃)λ-1x∗q(0) > 0⇒ h̃t(X
∗(t)) > 0

where h̃ is the value function of P̃ and N > 0 a scalar.

Proof: This is a direct consequence of Property 8 and of the property:
(|a− b| ≤ c) ∧ (c < |b|)⇒ (ab > 0) for a, b, c ∈ R. �

The existence of λ̃ in Property 9 is conditioned by t belonging to I(λ̃P0).
In this work, to ensure the existence of such λ̃ at a given time t ∈ I(Π), we
enforce the boundedness of ‖E(·)‖ on [0, T ].

Assumption 1. There is a scalar K > 0, such that for any (E, f , r) = P ∈
Π∩, ‖E(·)‖ is bounded by K on [0, T ].

The domain of definition of P ∈ Π is only defined by the domain of
definition of its parameter E (see Section 2). Thus, when Assumption 1
holds, we have [0, T ] ⊂ I(P ) and therefore [0, T ] ⊂ I(Π). Property 9 can
then be restated when Assumption 1 holds:

Property 10. Let Pλ ∈ Π, t ∈ [0, T ], λ ∈ [1, λ], for Xt ∈ ∂Pλ(t) if Xt ∈
Π∩(t) then the touching trajectory X∗ of P such that X∗(t) = Xt is a touching
trajectory of Π∩.



Proof: Since Assumption 1 holds in Property 9, the constant N can be
chosen independently from Ẽ and E (i.e. from P and P̃ ). Let (x∗,x∗q) = X∗.

Lets assume that either (x∗q(0) < 0) ∧ (λ < λ) or (xq(0) > 0) ∧ (λ > 1). For

both cases, we can choose a λ̃ = λ−η, with η s.t. ηx∗q(0) > 0, |η| <
∣∣N -1x∗q(0)

∣∣
and λ̃ ∈ [1, λ]. Since λ̃ ∈ [1, λ], P̃ ∈ Π. Then Property 9 shows that
Xt /∈ P̃ (t), i.e. Xt /∈ Π∩(t)! Therefore, either (x∗q(0) < 0) ∧ (λ = λ) or
(xq(0) > 0) ∧ (λ = 1) or (x∗q(0) = 0) and X∗(0) ∈ ∂P (0). Similar com-

putation than in proof of Property 1 gives X(0) ∈ λ′P0 for any λ′ ∈ [1, λ].
Therefore, X(0) belongs to the intersection which is Π∩(0). Finally, thanks
to Property 5, X is a touching trajectory of Π∩. �

Since Π∩(t) is an intersection of closed sets, Π∩(t) is closed as well. In the
general case, for an infinite intersection Y∩ =

⋂
i∈N Yi of closed sets Yi, i ∈ N,

any boundary point y ∈ ∂Y∩ does not necessarily belongs to the boundary
of any Yi, i ∈ N (e.g.

⋂
ε∈]1,2][−ε, ε] = [−1, 1], but there is no ε ∈]1, 2] such

that 1 ∈ ∂[−ε, ε]).

Property 11. For any Xt ∈ ∂Π∩(t), there is a P ∈ Π such that Xt ∈ ∂P (t).

Proof: Let Q(t, x, λ) = −x>Eλ(t)x + 2f>λ (t)x− gλ(t) where (Eλ, fλ,gλ) =
Pλ = T (λP0) with λ ∈ [1, λ]. By continuity of (8,9,10) solutions, and since
Assumption 1 holds, Q(t, x, ·) is continuous over the closed interval [1, λ]. To
this respect, for any x ∈ Rn, the minimum of xq = Q(t, x, ·) exists and is
reached for a λ∗ ∈ [1, λ]. Therefore, for any (x, xq) ∈ ∂Π∩(t), there is P ∈ Π
s.t. (x, xq) ∈ ∂P (t). �

Lemma 1 shows that any state Xt ∈ ∂Π∩(t) (with t ∈ I(Π) given) is
the terminal state of a touching trajectory X of Π∩ with initial state X0 ∈
∂Π∩(0).

Lemma 1. If Assumption 1 holds, any state Xt ∈ ∂Π∩(t) has a past touching
trajectory X of Π∩.

Proof: This is a direct consequence of Assumption 1, Property 10 and
Property 11. �

3.4 Past trajectory constraint xq(·) ≥ 0

Touching trajectories of P ∈ Π with initial state in Π∩(0) are also touching
trajectories of Π∩ (Lemma 1). We enforce the touching trajectories (x∗,xq

∗)



of Π∩ to satisfy the constraint x∗q(·) ≥ 0 by assuming that no touching
trajectory has a rising x∗q state close to the the null plan xq = 0.

Assumption 2 (Falling touching trajectories). Any touching trajectory (x∗,xq
∗)

of Π∩ have a strictly decreasing energetic state on the null energetic surface:

xq
∗(t) ∈ [−εq, 0]⇒ ẋ∗q(t) < 0.

This assumption was found reasonable for several stable IQC systems
study. We use the following intermediate result:

Property 12. Consider a function f : [0, 1] → R continuous and differen-
tiable over [0, 1] with a continuous derivative f ′ over [0, 1] such that f satisfy
f(0) ≤ 0 and ∀x ∈ [0, 1], (f(x) ∈ [−ε, 0]) ⇒ f ′(x) < 0, for a ε > 0. Then
∀x ∈ [0, 1], f(x) < 0.

Proof: Let x ∈ [0, 1] such that f(x) ∈ [ε, 0]. Since f ′(x) < 0 and
f ′ is continuous, there exists a neighborhood [x, x + η], η > 0, such that
f ′(·) < 0 over [x, x + η]. Therefore, by integration f(·) ≤ 0 over [x, x + η].
f(x) ∈ [−ε, 0]⇒ ∃η > 0,∀y ∈ [x, x+ η], f(y) ≤ 0. Since f is continuous and
f(0) < 0, any function f non negative would violate this statement (direct
consequence of the intermediate value theorem). �

3.5 Exact characterization of the reachable set

Exact characterization of R(P0, t) by Π∩(t) for t ∈ I(Π) is guaranteed since
ownership of touching trajectories is proven with Property 1, non-ownership
is guaranteed locally by Property 8. Remaining trajectories of S (P0, t) can
be constructed from Property 7 and touching trajectories of Π. Finally,
all the trajectories satisfy the constraint since touching trajectories satisfy
Assumption 2 and cannot violate the constraint xq(·) ≥ 0 temporarily.

Theorem 2 (Solution to Problem 2). If Assumption 1 and 2 hold, then
R(P0, t) = Π∩(t) ∩ X+ for any t ∈ [0, T ] where Π, Π∩ and I(Π) are defined
by (13,15,14).

Proof: Thanks to Property 7, for Xt ∈ Π∩(t), if the projection of Xt

over ∂Π∩(t) is reachable, then Xt is reachable. Since Assumption 1 holds,
Lemma 1 shows that when Xt ∈ ∂Π∩(t), there exists a touching trajectory
X = (x,xq) of Π∩ s.t. X(t) = Xt. By continuity of E, of the optimal distur-
bance w∗ of X, of u and of x, we have xq ∈ C 1([0, t];R). Since Assumption 2
holds and X(τ) ∈ ∂Π∩(τ) for all τ ∈ [0, t], Property 12 can be applied to xq.



The existence of any τ ∈ [0, t] such that xq(τ) < 0 would violate Property 12
since the terminal state satisfies xq(t) ≥ 0! Therefore, X ∈ S (P0, t) and
Xt ∈ R(P0, t). These properties lead to Π∩(t) ∩ X+ ⊆ R(P0, t). Finally,
using Property 5, we have Π∩(t) ∩ X+ = R(P0, t). �

4 Example

We study the stable IQC system S (P0, t), defined in (6), at a given time t
in [0, 1], for a parabolic set of initial states P0 = P(E0, f0, g0), with E0 =[
a+b a
a a+b

]
, f0 = [ 0

0 ] , g0 = 0.015, a = 10−2 and b = 10−6, and for the follow-

ing parameters A = −I, B = I, Bu = 0, u : R+ 7→ 0 and M =
[
I 0 0
0 1 0
0 0 −2I

]
where I = [ 1 0

0 1 ].
The reachable set R(P0, t) of S (P0, t), defined in (7), is computed using

(13) and Theorem 2, for t ∈ [0, 1]. Figures 6a and 6b show the reachable
set R(P0, t) set at time t = 0.794 and its projection R(P0, t)|x over the LTI
state space (i.e. projection over (x1, x2) states). In Figure 6b, the constraints
boundaries ∂P (t) (for P ∈ Π, Π defined in Section 3) are touching the
reachable set R(P0, t). The non-convexity of R(P0, t) arises from the non-
positive solutions of the Riccati differential equation (8). Figure 6c represents
the projection of the reachable tube t 7→ R(P0, t) projected over the LTI
dimension (x1, x2).

5 Conclusion

In this work, the reachability problem for an LTI system with energetic con-
straint is solved. The solution is a set-based method that relies on overap-
proximations with time-varying paraboloids. The paraboloid parameters are
expressed as solutions of an IVP that involves a Riccati differential equation.
We prove that with assumptions about touching trajectories of the reachable
set and boundedness of Riccati differential equation’s solutions, the inter-
section of a well-chosen set of paraboloids exactly describes the reachable
set. Our method is tractable and has been used to exhibit the reachable
set of a stable system. In some future works, weaker assumptions about the
reachable set will be considered, the LTV case will be studied as well as the
discrete time case. Most of the research around dynamical systems with in-
tegral constraints bring generic solutions, we hope that the linear case gives
a better understanding about how such systems behave.



(a) Reachable set
(b) Reachable set of the
LTI system

(c) Reachable tube of the
LTI system

Figure 6: The green surface in (a) is the reachable set R(P0, t) at t = 0.794
of S (P0, t) computed using Theorem 2. Its projection over the LTI state
space (x1, x2) (in solid red line) is shown in (b), each green line corresponds
to one constraint P ∈ Π computed with Theorem 1. (c) is the reachable
tube t→ R(P0, t) of S (P0, t) projected over the LTI state space (x1, x2) for
t ∈ [0, 1]. The red section corresponds to the time t = 0.794.
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