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Abstract—FPGA devices have been proving to be good
candidates to accelerate applications from different research
topics. For instance, machine learning applications such as
K-Means clustering usually relies on large amount of data to
be processed, and, despite the performance offered by other
architectures, FPGAs can offer better energy efficiency. With
that in mind, Intel® has launched a platform that integrates
a multicore and an FPGA in the same package, enabling
low latency and coherent fine-grained data offload. In this
paper, we present a parallel implementation of the K-Means
clustering algorithm, for this novel platform, using OpenCL
language, and compared it against other platforms. We found
that the CPU+FPGA platform was more energy efficient than the
CPU-only approach from 70.71% to 85.92%, with Standard and
Tiny input sizes respectively, and up to 68.21% of performance
improvement was obtained with Tiny input size. Furthermore, it
was up to 7.2× more energy efficient than an Intel® Xeon Phi™ ,
21.5× than a cluster of Raspberry Pi boards, and 3.8× than the
low-power MPPA-256 architecture, when the Standard input size
was used.

Index Terms—K-Means, OpenCL, FPGA, energy efficiency.

I. INTRODUCTION

In order to address the ever-increasing demands for High
Performance Computing (HPC), the Computer Architecture
community introduced a great variety of massively parallel
architectures, such as large-scale multicores, low-power
NoC-based manycore processors and heterogeneous
architectures. While in the past decade, the former solution
was widely exploited, it soon got refutable as a scalable
solution, due to restrictions in their interconnection systems.
Large-scale multicores are inherently power-hungry and do
not deliver a good balance between performance and power
consumption, which is primordial to achieve exascale [1], [2].
On the other hand, low-power manycores and heterogeneous
architectures may deliver better energy-efficiency and thus
are emerging as promising alternatives.

Graphics Processing Units (GPUs) and the accelerators
such as Xeon Phi™ have been used in current platforms,
since they can significantly accelerate overall performance,
although power consumption remained an open-challenge.
These architectures can be used in a heterogeneous fashion,
introducing new concerns, for instance, in the way the data is
exchanged between the host processor and the device. Usually,
such accelerators are connected to the host using interfaces
such as the Peripheral Component Interconnect Express (PCIe)
interface. These devices have their own memories, where

copies of host data are put to be processed. Thus, there might
be communication problems, which impair performance and
increase energy consumption. Also, when specific domains
that deal with big data volumes are considered (e.g., Machine
Learning), the problem gets worse.

A good alternative for high performance in big data
processing is the use of Field Programmable Gate Arrays
(FPGAs). As an example, the K-Means clustering is an
algorithm in big data domain that have been implemented in
different ways for this kind of architecture [3], [4]. FPGA is
a device which has a flexible hardware that can be adapted
to perform specific computational tasks. This means that
the processing is done at hardware level, without general
processing units, which might lead to better performance and
lower power consumption than other architectures. Current
FPGAs can offer about 1/10 of GPUs’ power consumption
at near or better performance levels [5]. Thus, they are good
candidates for big data processing, as well as to reach the
exascale era, providing better scalability than GPUs and CPUs
when a higher number of devices are used [6].

Despite the advantages, low bandwidth is still a problem in
traditional FPGA devices. To avoid this, multi-chip packaging
(MCP) technology can be employed. The purpose of such
technology is to integrate multiple heterogeneous devices
or chips in a single board, approximating them to address
performance, communication bandwidth, power consumption,
chip area costs, among other constraints [7]. Thinking of
offering a device with these characteristics, Intel® has launched
a hybrid platform, which integrates an Intel® Xeon® Broadwell
processor and an Intel® Arria 10 FPGA, all on a multi-chip
package, connected by two PCIe and one Intel® QuickPath
Interconnect (QPI). This device is capable to offer low latency
and coherent data offload in a fine-grained fashion, improving
the use of the FPGA. It has been used in different areas,
such as neural network processing, compression and collision
detection [8]–[10], presenting good results.

Getting back to big data, Machine Learning is a hot research
topic that is increasingly gaining attention from the scientific
community. Algorithms of this domain, also referred as data
mining methods, rely on a set of knowledge discovery methods
for uncovering non trivial information from their input data.
For instance, Deep Neural Networks (DNNs) are being used
to recognize complex patterns; Q-Learning is being explored
to enable automated learning; and the already mentioned



K-Means is being employed on cluster analysis [11]–[13].
Notwithstanding, with the ever growing amount of data to
be processed, data mining algorithms are constantly requiring
better performance from computing platforms.

Therefore, hybrid MCPs, such as the Intel® CPU+FPGA,
can potentially accelerate these types of applications. In this
context, the main goal of this paper is to propose and
evaluate an energy efficient parallel K-Means algorithm for
the Intel® Xeon® Broadwell + Arria 10 FPGA. In summary,
this work delivers the following new contributions to the
state-of-the-art:

• A parallel K-Means proposal using OpenCL focusing on
a hybrid MCP platform with FPGA acceleration.

• A demonstration of an iterative development process
in which we highlight some aspects that have to be
taken into account when developing for the hybrid MCP
platform.

• A comparative analysis against other platforms which
unveils that the CPU+FPGA is a considerable energy
efficient approach which also offers high performance.

The remainder of the paper is organized as follows. In
Section II, we explain how K-Means works and present
the target platform. In Section III, we present related work.
In Section IV, we detail our K-Means implementation. In
Section V, we present our methodology, and in Section VI
we discuss the experimental results. Finally, in Section VII,
we present our final considerations.

II. BACKGROUND

In this section we present the K-Means algorithm and details
of the target CPU+FPGA platform.

A. K-Means Clustering

The K-Means Clustering is an unsupervised machine
learning algorithm that is widely employed in data mining to
partition and group data according to their features [14], [15].
Algorithm 1 outlines how this method works. Given a set of n
points in a real d-dimensional space, the algorithm partitions
these n points into k clusters so as to minimize overall mean
squared distance from each point to its nearest centroid.

Algorithm 1 K-Means Clustering
1: procedure KMEANS(k, points, d)
2: centroids ← random centroids(k, points, d)
3: repeat
4: map ← compute distances(points,centroids, d)
5: recalculate centroids(points,centroids,map,d)
6: until not check if should stop()
7: return map
8: end procedure

The algorithm starts by randomly assigning data points to
each of the k clusters. Next, (1) the centroid of each one of the
k clusters is computed; and then (2) data points are reassigned
to the cluster whose centroids is the closest according to
the Euclidean Distance [16]. Steps 1 and 2 are repeated
until all centroids do not change, or until a preset threshold
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Fig. 1. K-Means clustering example.

is reached. Figure 1 shows an example of a hypothetical
K-Means clustering process, with four centroids and their
associated points. As a baseline to perform our experiments,
we considered a parallel version from the K-Means algorithm,
which is implemented in the CAP Bench suite [17] using the
OpenMP library.

B. The CPU-FPGA platform

Recently, Intel® launched a novel heterogeneous platform
that enabled the design of new solutions for fine-grained
communication-intensive applications [8]. This architecture
features an Intel® Xeon® processor (host) with an FPGA
(device) in the same package. The host and device are
connector through a dedicated a high-speed interconnection.
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PCIe

CCIMulti chip package
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R

Fig. 2. Intel® Xeon® + FPGA platform overview.

Figure 2 shows an overview of the new Intel’s architecture.
The platform we used in this work consists of a 14-core
Intel® Xeon® , at 2.4GHz (Broadwell), connected to an
Intel® FPGA Arria 10, model GX1150, by three interfaces: two
PCIe interfaces which offer a theoretical maximum bandwidth
of 16 GB/s together, and one Intel® QuickPath Interconnect
(QPI) which can provide up to 12.8 GB/s throughput. The
FPGA is divided into two sections. The first one is the FPGA
Interface Unit (FIU), provided by Intel® , which contains
the bit stream responsible for make the interface between
the mentioned interconnections and the user-provided bit
stream. The second part is the user-provided bit stream,
called Accelerated Function Unit (AFU). Between those two
sections, there is an interface responsible for expose the
channels of communication to the user (CCI). If the QPI
is used, the communication is done in a coherent fashion
(between the host and the FPGA memories).



In this platform, the CPU and FPGA shares the DDR
memory, which improves the acceleration of algorithms, and
simplifies the application development. This is an advantage of
MCP strategy, since off-chip memory accesses are much faster
than on traditional CPU and FPGA systems. With respect to
the development for the platform, it is possible to use High
Level Synthesis (HLS) or hardware description languages,
(e.g., Verilog and VHDL). The Intel® SDK for OpenCL is a
development kit available to implement kernel functions in
OpenCL, compile and execute them on the FPGA.

A specific abstraction layer for the hybrid MCP platform
is also provided, in order to initiate the device, compile the
kernel code, among other features. The data exchange between
the host and the device is specified by parameters in the kernel.
Thus, the programmer creates the OpenCL kernel, specifying
inputs and outputs (parameters), and the programming logic
itself. The compiler produces bit streams which are loaded
into the FPGA AFU, to be called by the host part of the code.
At the end of the application, other calls and functions from
the host unloads internal modules of the multi-chip package
system.

III. RELATED WORK

In this section, we briefly discuss current research
efforts that are related to our work. Machine Learning
has recently become a hot research area due to its wide
applicability, and thus several works currently focus on
accelerating computational kernels on this domain. For
instance, concerning FPGA-based solutions, some authors
studied existing challenges to process DNNs in FPGAs [18],
and they found out that these were related to memory
restrictions, such as, bandwidth and reduced memory
addressing space. Based on this observation, they proposed
the use of stream buffers to better exploit locality to minimize
data exchange between the FPGA and the host. Likewise,
a framework based on OpenCL for large-scale DNNs was
proposed [19]. In this work, the authors proposed to use
a pipeline of kernels to reduce issues related to memory
bandwidth, increasing on-chip data reuse. To improve external
memory access, the authors of [20] proposed a strategy to
reduce floating point precision on FPGA operations, despite a
small loss of accuracy. These papers mentioned at the outset
demonstrates how important is to be worried with FPGA
implementations when implementing big data applications.
Also, they reinforces one of the proposals of the hybrid MCP
platform, which is to have high communication capabilities
between the host and the device.

Specifically about the K-Means clustering, prior works were
also carried out, not only with FPGA platforms. For instance,
a Raspberry Pi Cluster was employed to run K-Means [21].
An Intel® Xeon Phi™ was used as baseline for comparison, and
results uncovered that an eight-node quad-core Raspberry Pi
cluster presented 85.17% lower energy consumption than the
former platform. Alternative works also investigate the use of
standalone FPGAs to address the problem.

Also, a hardware of K-Means was designed and
implemented [4]. The hardware had some level of parallelism
when processing data features. When comparing it against a
Intel® Xeon® E5-2620 processor, it was possible to achieve
gains between 91% and 98% in the number of processing
cycles, which led to 95% less energy consumption. Both works
presented constraints regarding the communication bandwidth.
In the former, a local area network restricted the bandwidth
to 10 GBits/s, and in the latter, the hardware design itself.

A parallel and parameterized hardware design of K-Means
was proposed [22], in which the number of parallel units
to calculate the Manhattan distance and the number of
accelerating cores can be modified. The architecture relies
on 32-bit data and the authors compared their results against
a software implementation. When varying the number of
cores, number of points, dimensions and centroids, the
implementation in the ZYNQ 7045 FPGA reached about 105
Gflops at best, achieving a performance efficiency of 99%,
thus, presenting a speedup of 10× in relation to the software
version.

There is also a work in which a parallel K-Means on
CPU was implemented [23]. The authors developed it using
OpenMP and Basic Linear Algebra Subroutines (BLAS), as
well as in GPU, using CUDA. The authors employed what
they called ‘kernelization’ in the data, transforming them into
a new vector representation, solving some problems related
to non-linearly separable data. Their evaluation used different
datasets, varying the number of clusters, features and patterns,
demonstrating that OpenMP and CUDA implementations
were, respectively, 2× and 6× better than the sequential
approach.

Other authors analyzed a K-Means implementation on
heterogeneous platforms with a Symmetric Multiprocessor
(SMP) and a GPU or an FPGA [24]. The goal was to
use the OmpSs programming model, which allowed to
simplify communication between the host processor and the
accelerators, in a transparent manner for the programmer. The
results showed that the system formed by SMP and FPGA
consumed less energy than the one with SMP and GPU, but
the latter stood out in terms of speedup.

An approach for data science programmers was carried out
using the Intel® FPGA SDK for OpenCL [3]. The proposal was
to implement the K-Means algorithm, running it on a Stratix
V A7 FPGA, comparing its performance against a six-core
Intel® Xeon® W3670, and its power consumption against the
GPU GTX280. Experimental results unveiled that it is possible
to achieve from 3× to 21× better performance with the FPGA,
while being 29× more energy efficient than the GPU approach.

A hardware and software architecture called MUCH-SWIFT
was proposed [25], based on the parallelization of K-Means,
using a ZYNQ Ultrascale + FPGA board, with several
hard-core processors and a ZU9EG FPGA. The authors
performed several runs, varying the number of clusters and
iterations. They obtained a speedup of 330× in relation to a
K-Means version in software.

Our work differs from the aforementioned ones since it is



a parallel K-Means proposal for an integrated heterogeneous
MCP platform, with a parallel CPU and a powerful
FPGA. We evaluated the performance of K-Means on an
Intel® Xeon® CPU and Arria 10 FPGA platform, which
offers better peak bandwidth than traditional FPGA devices,
thereby improving performance. Furthermore, our K-Means
implementation offers better Flops per Watt than other
state-of-the-art platforms, as we discuss in Section VI-D.

IV. PROPOSED PARALLEL K-MEANS FOR THE HYBRID
CPU+FPGA PLATFORM

In this Section, we present our strategy to implement and
accelerate K-Means using the Intel® Hhybrid MCP platform.
We implemented our K-Means code based on an OpenMP
version from CAP Bench [17], which is a benchmark suite
for low-power manycore processors. Furthermore, we consider
this code to compare the MCP platform against others. Table I
presents the input sizes from K-Means that we considered in
our work. Furthermore, we set in 200 iterations the threshold
stopping condition for the algorithm. However, this threshold
was not reached with the input sizes we considered.

TABLE I
K-MEANS INPUT SIZES

Workload Nº of data points Nº of centroids Nº of features
Tiny 4096 256 16
Small 8192 512 16

Standard 16384 1024 16
Large 32768 1024 16
Huge 65536 1024 16

To accelerate algorithms on the MCP, we can use OpenCL
language to implement the application kernel, and C/C++
to implement the host code. The latter is responsible for
instantiate and initialize the FPGA device, for allocate host
memory, for define the necessary objects to allocate memory
at the device, and for synchronization tasks.

OpenCL kernels can be loaded on the FPGA using work
items, which are run sections that contains instances from the
developed kernel. These work items are executed in parallel,
sharing different memory resources in the FPGA, accessing
different data elements. This approach is very suitable for
FPGAs, due to the fact that the customized hardware can be
developed thinking of parallel compute units, even more if the
application code snippets has no data dependency (thus, data
can be accessed without mandatory synchronization). Other
approaches to have parallel computing is to use pipelines and
vectorization, which are both possible with the hybrid MCP
platform and its OpenCL development kit.

Figure 3 shows a flowchart of how our final parallel
implementation works. In the rest of this section, we
explain the development decisions we made to reach this
implementation. In a prototype implementation, we first chose
to compute distances and to recalculate centroids on the
FPGA, each step as a separated kernel. Thus, in each iteration,
it has been defined OpenCL memory buffers to exchange data
between the host and kernels, followed by the procedure to

. . .

Init. data structures,
kernel and buffers

Call kernel

Update centroids

Stop

END

false

true

Working Unit P1
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2
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end for
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Fig. 3. Proposed parallel K-Means implementation flowchart.

call the kernels. It is worth noting that data which does not
change during neither the computation need reallocation.

Those kernels were defined using the Single Task approach,
which means that a single compute unit was performed at
the FPGA. When this strategy is used, the compiler explores
kernel loops to infer pipelining, when there is no data
dependency. However, we checked that using single tasks was
not a good strategy, due to small performance to control the
loops, and lower resource usage.

A more interesting strategy was to use the NDRange Kernel,
which uses the FPGA as multiple compute units, with high
parallelism. In this strategy, we need to define how many
working units should be used. We defined the number of data
points as the number of working units, in which distances
will be computed. These values are flexible, since they can
be changed at the host. After performing some tests, we saw
fit to use the number of data points from input sizes as the
number of working units, which are lower than the maximum
value accepted by Arria 10.

Nevertheless, the performance was not the desirable yet. To
verify this, checked the possible bottlenecks, by measuring
how much time each kernel takes, and the host-to-device
communication time. The communication time was irrelevant
when compared to the computation, due to the high bandwidth
that the integrated platform delivers. However, we noted that
centroid recalculation was the major bottleneck. There is not
much complexity on the centroids compute step, since it
computes the average point of a cluster. Furthermore, some
conditional branches are used, which are not adequate for the
FPGA. Thus, we opted to recalculate centroids also at the host.
To achieve better performance, we carried out this computation
in the host, using OpenMP. In Section VI we discuss how good
this alternative was.

From now on, we decided that this adapted implementation
should used and optimized. The first optimization concerns to
the distances calculation. In K-Means, to get the assignment
from points to centroids, there is no need to use the square



root from the Euclidean distance. This step adds extra
complexity for calculate distances, and further decreases the
FPGA performance [26]. Since we only need to find the
minor distance between features from points and centroids,
we remove this step from the calculation. Thus, our
implementation can be synthesized in Equation 1.

dist(p, c)2 =

d∑
i=1

|pi − ci|2 (1)

Next, we identified that the loop used to go through the
features could be parallelized, since there is no dependency in
this loop. Thus, we added the directive #pragma loop unroll.
The SDK compiler identify this directive, and parallelize the
hardware. This way, each feature is compared in parallel, and
the result is summarized at the end.

V. EXPERIMENTAL METHODOLOGY

In this section, we detail the tools, resources and strategies
we used to carry out our experiments. We run our tests 20×,
presenting the average results. The standard error was omitted
from the plots presented in this work, due to their low values
(less than 8.8% on CPU, and almost 0% on FPGA). To build
the kernel, we used the Intel® SDK for OpenCL compiler
(AOCL), which has Quartus along with it, version 16.0.2. The
kernel must be compiled off-line, before its execution, since
it it takes to hours to build and synthesize the hardware into
bitstreams. The Arria 10 FPGA resource usage was obtained
from the compiler. The Broadwell host code was written in
C/C++ and compiled with GNU C Compiler (GCC), version
4.9.2. The Intel® MCP platform we have access to is hosted
at the Paderborn Center for Parallel Computing (PC2) in the
context of the Intel® Hardware Accelerator Research Program
(HARP2) [27].

We compared results from the OpenCL K-Means kernel
against an OpenMP version from CAP Bench. The OpenMP
version was compiled also using GCC 4.9.2, and OpenMP
library 4.0. Its execution was done in a system using two
Intel® Xeon® E5-2620 processor (Sandy Bridge), with six
cores and 12 threads each, totaling 24 threads available. The
cores have a private L2 cache with 256 kB each. Those six
cores shares an L3 cache of 15 MB.

We measured the times perceived for each computing step
separately: distance computing, centroids recalculation, and
data off-load. We did not plot off-load time on the chart
so as not to disturb the visibility of other time information.
For energy efficiency, we compute the total floating point
operations of each input size, which is the product from
number of points, centroids, dimensions and iterations. The
number of iterations observed when the algorithm finished
were, for each input size respectively, 13, 15, 14, 25 and 48.
Thus, we measured the floating point operations per second
(Flops) per Watt consumed.

To get the energy consumption from the FPGA, we get the
power consumption, in Watts, from Quartus Power Play. It
is important to note that the measured energy concerns only
to the distances computing step. This was done to enable

a specific understanding of the energy consumption on the
FPGA. On the CPU-only version, we measured the energy
consumption using the PAPI tool [28].

To further check whether the Intel® MCP platform is more
efficient than others, we performed a comparative analysis
between the obtained results against other platforms. The
first compared platform is the Intel® Xeon Phi™ Knights
Corner co-processor [29], a manycore with 61 cores and
support for 244 threads (each core has implemented a 4-way
simultaneous multithreading). This architecture has a memory
system formed by private 32 kB L1 instruction cache, 32 kB
L1 data cache and 512 kB L2 cache per core. They are
interconnected by a ring bus, which also connects them to
the main memory. We also verified an 8-node Raspberry Pi
Cluster [30], interconnected by a Fast Ethernet switch. Each
node is a Raspberry Pi 2 model B with a quad-core ARMv7
processor, with 64 kB L1 instruction cache, 64 kB L1 data
cache, and 512 kB of L2 cache, this one shared among the
4 cores. The last platform was the Kalray MPPA-256 [31],
a low-power manycore processor with 16 compute clusters
interconnected by two folded-torus networks-on-chip. Each
compute cluster has 16 cores, with instruction and data L1
caches of 8 kB, sharing a 2 MB SRAM.

VI. EXPERIMENTAL RESULTS

In this section, we present the FPGA resource usage, time to
solution, and energy efficiency results. At the end, we present
a comparison between our results and those from other works.

A. FPGA Resource Usage

Table II presents the estimated resource usage obtained after
compiling K-Means kernel for the integrated platform.

TABLE II
ESTIMATED RESOURCE USAGE

Resource Available FIU + CCI AFU
Logic utilization 1150 49% (563) 10% (115)

ALUTs 427200 23% (98256) 4% (17088)
Registers 1708800 27% (461376) 6% (102528)

Memory blocks 67244 23% (15466) 12% (8069)
DSP blocks 1518 12% (182) 5% (76)

A considerable part of FPGA resources is used by FIU
and CCI interfaces. The amount of each type of resources
used demonstrates that Arria 10 supports well our K-Means
kernel. Certainly, if more complex computational units were
implemented, such as the square root operation, these values
would increase. Since all FPGA logic element resources were
not used, there is still space left for deploying other kernels.

B. Time to Solution

Figure 4 shows the time observed when K-Means was run
using the CPU-FPGA MCP plataform (Broadwell + Arria 10),
and the Xeon® CPU. Note that centroids calculation does not
represent much in time to solution. Indeed, this step walks
through centroids and their assigned points to performs an
arithmetic mean, which is not much complex, and we chose
to execute it at the host.
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We measured the time taken to off-load data from host
to kernel on the integrated platform. The read/write time
was, at most, 1.22% from the overall time, with Tiny input.
This decreases even more when input size is increased,
reaching 0.06% when Huge was used. That demonstrates the
advantages of the platform, using better approaches to fine
grain communication than traditional FPGAs systems.

With respect to distances computing, we verified that our
kernel hardware scaled well when the input size was increased.
The increase in time is pronounced from Tiny to Huge due
to the number of iterations, which is a behavior that cannot
be changed without reduce clustering precision. However, we
evaluated each iteration in an isolated manner, founding that
increasing the input size did not make the FPGA have its
performance impaired. In other words, the presented time to
solution increase was directly proportional to the input size.

Regarding the CPU-only approach, we note that it presented
a better scalability. The advantages from CPU are processing
power (higher frequency) and use of caches. Despite that,
with even higher input sizes, the FPGA will keep its
proportional scalability, while the CPU may slow down, due
to potential synchronization operations overhead and cache
misses. Nevertheless, a good point is that K-Means kernel runs
faster at the integrated FPGA platform, when compared against
a Xeon® CPU. The difference between these architectures
were, from Tiny to Huge input sizes, 68.21%, 36.57%,
14.03%, 23.59% and 10.82%.

C. Energy consumption

In order to understand the energy efficiency from our
implementation using the novel platform, we compared energy
consumption from this device and from CPU. Figure 5 shows
measured floating point operations per second (Flops) per
Watt, that is, the energy efficiency. The information on the
chart pertains only to the distances computing step, enabling
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a specific understanding of the energy consumption on the
FPGA. Although it may seem unfair, it is not, because the
synchronization with the host and centroids computing step
are not much relevant to this measure, that is, the distance
computing is the most consuming part of the algorithm.

When the input size was increased from Tiny to Standard,
the CPU presented 2.17× more energy efficiency, while the
FPGA did not change much. However, if we increase the input
sizes even more, the CPU starts to reduce its efficiency. On
the other hand, the efficiency of the FPGA increased a bit.
Although it represents only 6.27% of increase, the scalability
of energy consumption on Arria 10 is much better than on the
CPU.

Recall that time spent to perform K-Means in Arria
10 is better than in CPU-only too, which led to less
energy being consumed. However, the main factor for such
difference is power consumption. The CPU has much complex
computational units and higher frequency than the FPGA.
Besides that, a more robust memory system and multicore
and multithread support raises this power consumption. We
evaluate our K-Means hardware model, which presented a
total power consumption of 23.05 Watts, while thermal design
power (TDP) from Intel® Xeon® E5-2620 is 95 Watts.

The power consumption on the FPGA is almost constant,
which makes energy consumption to follow this mentioned
behavior. From Standard to Huge input sizes, we found an
increase factor in energy consumption of less than 2×. It
is worth noting that workload size also increased in such
factor, which indicates that even bigger workloads will have
an acceptable proportional increase. Generally, we found that
using a hybrid CPU+FPGA platform was more energy efficient
than the CPU-only approach from 70.71% (Standard) to
85.92% (Tiny).
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Fig. 6. Comparison against other platforms.

D. Other platforms

In this Section, we present a comparison between the
results obtained in this work against those from others, using
three different platforms. The first one is the Xeon Phi™ ,
a manycore co-processor with 61 cores and support for 244
threads. The second one is the 8-node Raspberry Pi Cluster,
with each board composed by a quad-core ARM processor,
totaling 32 threads. The last one is the Kalray MPPA-256, a
low-power manycore processor that has 16 compute clusters
with 16 cores each running at low frequency (400MHz).

The results we obtained with those processors using
K-Means are described in other papers [17], [21]. We run
K-Means on them using the same input sizes we used in
this work. Figure 6 shows the comparison of the platforms,
in MFlops per Watt. Tiny and Small input sizes were not
tested for the Xeon Phi™ and the Raspberry Pi Cluster, thus
we do not present these results in the figure. The time and
energy consumption were measured considering both distance
and centroids compute steps, thus, we need to perform the
same measuring. Unfortunately, it was not possible to read
energy from the Broadwell CPU (Figure 6, FPGA+CPU*) at
the environment we have access to, thus, to make the analysis
fairer, we considered the values from the centroids compute
step from SandyBridge, along with the Arria 10 values.

From Figure 6, we can note that our K-Means using a hybrid
CPU+FPGA platform is considerably more efficient than
others. Indeed, the use of a hardware designed for a specific
problem leads to high performance. Furthermore, even if we
consider low-power architectures (Raspberry and MPPA-256),
FPGAs end up having simpler circuits and mechanisms of
control, which improves energy efficiency.

The Raspberry Pi Cluster presented poor efficiency due to
its low computing performance. However, it has the advantage
of scalability at low cost, since Raspberry Pi boards have
lower prices than the other mentioned platforms. The Arria

10 at the integrated platform is up to 21.5× more efficient
than the Raspberries with the Standard input size. The Xeon
Phi™ has high processing power capabilities with its multiple
cores, but it suffers in relation to power consumption, due
to its complex components and interconnection system. The
FPGA approach is up to 7.2× more efficient than the Xeon
Phi™ , when running K-Means with Standard input size. Last,
but not least, MPPA-256 was the closest one to the integrated
platform. Using Huge input size, the FPGA presented results
1.7× better. If we look at the Standard size, we verified results
3.8× better for the FPGA.

VII. CONCLUSION

In this work, we present a performance evaluation of
the K-Means Clustering algorithm on the novel hybrid
CPU+FPGA platform from Intel® , a multicore Xeon® CPU
and an Arria 10 FPGA in the same die. We measured
the performance and energy consumption of this platform
when running our implementation. We considered different
architectural decisions and optimizations, and we contrasted
the performance with a Xeon® CPU-only platform and others.

As a first statement, we noted that the high level
synthesis approach, using the OpenCL language, brought some
advantages, such as faster development and more assertive
optimizations. Also, it could attract software developers to the
use of FPGAs. In a nutshell, the K-Means for the integrated
platform proved to be better than the CPU-only version by up
to 85.92% with Tiny input size, in means of energy efficiency.
An improvement of up to 68.21% in performance was also
noted, with Tiny input size too. It is worth noting that during
the distance computing, the host multicore stayed idle, an thus
it could be used to further improve the parallel computation,
using a specific heterogeneous-aware load balance strategy, or
even be used to process other algorithm or computational task.

Furthermore, the MCP platform achieved better results than
other platforms, which were used before to run K-Means with



the same input sizes we used in this work, also with regard to
energy efficiency. The hybrid CPU+FPGA approach proved to
be more energy efficient than a low power 8-node Raspberry Pi
Cluster up to 21.5×, better than an Intel® Xeon Phi™ processor
up to 7.2×, and up to 3.8× better than the Kalray MPPA-256
with the Standard input size, in terms of Flops per Watt.

The Intel® Hybrid CPU+FPGA MCP can be used to
accelerate K-Means and further Machine Learning algorithms
using the OpenCL language to High Level Synthesis, with high
performance and energy efficiency. However, it is important to
be aware of strategies for reusing data on the FPGA, avoiding
off-chip communications. Also, multiple compute units and
loop unrolling are good strategies when dealing with Machine
Learning non-dependent data objects.

As future works, we intend to explore Shared Virtual
Memory features from the platform; to study load balance
algorithms to exploit the heterogeneity of the system; and to
evaluate further Machine Learning algorithms, such as DNNs,
Support Vector Machines, among others.
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