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and therefore, we have that

4

. We refer to [4] for discussions and properties of the Hardy constant. As one checks, for any γ < γ H (Ω), there exists K = K(Ω, γ, s) > 0 such that (1) holds for all u ∈ D 1,2 (Ω). For a ∈ L ∞ (Ω), we define

J Ω γ,s,a (u),

where

). From now on, we assume that 0 ∈ ∂Ω. When Ω is a smooth domain, criteria for existence are in Ghoussoub-Robert [8]: in particular, there is a dichotomy between large dimension (where the criterion is local) and the small dimensions (where the criterion is global). In [4], we studied the case of domains that are modeled on cones:

Introduction

Let Ω be a bounded domain of R n , n ≥ 3. We fix s ∈ [0, 2] and γ ∈ R. It follows from the classical Caffarelli-Kohn-Nirenberg inequalities [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] that if γ < (n-2) 2

4

, there exists K > 0 such that (1)

Ω |u| 2 (s) |x| s dx 2 2 (s) ≤ K Ω |∇u| 2 -γ u 2 |x| 2 dx,
for all u ∈ D 1,2 (Ω), where 2 (s) := 2(n-s) n-2 and D 1,2 (Ω) is the completion of C ∞ c (Ω) with respect to the norm u → ∇u 2 . We define the Hardy constant by

γ H (Ω) := inf Ω |∇u| 2 dx Ω u 2 |x| 2 dx
; u ∈ D 1,2 (Ω)\{0} > 0.
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Definition 1. We fix 1 ≤ k ≤ n. Let Ω be a domain of R n . We say that x 0 ∈ ∂Ω is a singularity of type (k, n -k) if there exist U, V open subsets of R n such that 0 ∈ U , x 0 ∈ V and there exists a diffeomorphism φ ∈ C ∞ (U, V ) such that φ(0) = x 0 and

φ(U ∩ R k + × R n-k ) = φ(U ) ∩ Ω and φ(U ∩ ∂ R k + × R n-k ) = φ(U )
∩ ∂Ω, with the additional hypothesis that the differential at 0, namely dφ 0 , is an isometry.

In the sequel, we write R k+,n-k := R k + × R n-k . We have that (see [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF])

γ H (R k+,n-k ) = (n -2 + 2k) 2 4 .
We have proved the following:

Theorem 1.1 (Cheikh-Ali [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF]). Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix 0 ≤ s < 2 and 0 ≤ γ < γ H (Ω). In addition, suppose that either {s > 0} or {s = 0, n ≥ 4 and γ > 0}. We assume that

(3) γ ≤ γ H (R k+,n-k ) - 1 4 that is n ≥ n γ,k := 4γ + 1 + 2 -2k.
Then there are extremals for µ γ,s,0 (Ω) if GH γ,s (Ω) < 0

where GH γ,s (Ω) is the generalized mean curvature defined below in [START_REF] Ghoussoub | Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF].

The assumption [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] {s > 0} or {s = 0, n ≥ 4 and γ > 0} will be reminiscent in the statements below. Its sole utility is to ensure the existence of extremals for µ γ,s,0 (R k+,n-k ) (see ). This result is for large dimension n ≥ n γ,k (see [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]). In the present article, we tackle the case of the remaining small dimensions. The argument based on local geometry performed for the proof of Theorem 1.1 is not working here. Here, the global geometry has an impact: in order to obtain extremals, we must introduce a "mass" in the spirit of Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] and . Concerning low dimension phenomena, we refer to the pioneer work of Brezis-Nirenberg [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], Jannelli [START_REF] Jannelli | The role played by space dimension in elliptic critical problems[END_REF] and the more recent reference Ghoussoub-Robert [START_REF] Ghoussoub | Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF] for further discussions. Our main theorem is the following: Theorem 1.2. Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix 0 ≤ s < 2, γ < γ H (Ω) and a ∈ C 0,θ (Ω) (θ ∈ (0, 1)). We assume that condition (4) holds and that

γ > γ H (R k+,n-k ) - 1 4 that is n < n γ,k .
We assume that the operator -∆ -(γ|x| -2 + a(x)) is coercive and has a mass m γ,a (Ω) (see Definition 3), and that m γ,a (Ω) > 0. Then there are extremals for µ γ,s,a (Ω). In particular, there exists u ∈ C 2,θ (Ω) ∩ D 1,2 (Ω) such that

(5)

     -∆u -γ |x| 2 + a(x) u = u 2 (s)-1 |x| s
in Ω, u > 0 in Ω, u = 0 on ∂Ω.

In the second part of this paper, we consider the perturbative Hardy-Schrödinger equation. Given a, h ∈ C 0,θ (Ω) for some θ ∈ (0, 1) and q ∈ (1, 2 -1) where 2 = 2 (0), we investigate the existence of solutions u ∈ C 2 (Ω) ∩ D 1,2 (Ω) to ( 6)

     -∆u -γ |x| 2 + a(x) u = u 2 (s)-1 |x| s + h(x)u q in Ω, u > 0 in Ω, u = 0 on ∂Ω.
We refer to Brezis-Nirenberg [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] (γ = 0 and s = 0 on a smooth domain Ω), Ghoussoub-Yuan [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF] (γ = 0, s > 0 and 0 ∈ Ω), Ghoussoub-Kang [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF] and Jaber [START_REF]Influence of Mean Curvature on Mountain-Pass Solutions for Hardy-Sobolev Equations[END_REF] (γ = 0, s > 0 and 0 ∈ ∂Ω). In the Riemannian context with no boundary, still for γ = 0, we refer to Djadli [START_REF] Djadli | Nonlinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds[END_REF] when s = 0, and to Jaber [START_REF] Jaber | Mountain pass solutions for perturbed Hardy-Sobolev equations on compact manifolds[END_REF] for s > 0 and h ≡ 0.

The case a, h ≡ 0 was tackled in [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] for n ≥ n γ,k for nonsmooth domains. We prove the following:

Theorem 1.3. Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. Let a, h ∈ C 0,θ (Ω) (θ ∈ (0, 1)) be such that -∆ -(γ|x| -2 + a) is coercive and h ≥ 0. Consider s ∈ [0, 2) and γ < γ H (R k+,n-k ).
We assume that condition (4) holds and we fix q ∈ (1, 2 -1), 2 = 2 (0). Then, there exists a positive Mountain-Pass solution u ∈ D 1,2 (Ω) to the perturbative Hardy-Schrödinger equation (6) under one of the following conditions:

• 0 ≤ γ < γ H (R k+,n-k ) -1 4 , and    GH γ,s (Ω) < 0 if q + 1 < 2n-2 n-2 , c 1 GH γ,s (Ω) -c 2 h(0) < 0 if q + 1 = 2n-2 n-2 , h(0) > 0 if q + 1 > 2n-2 n-2 , • 0 ≤ γ = γ H (R k+,n-k ) -1 4 , and GH γ,s (Ω) < 0 if q + 1 ≤ 2n-2 n-2 , h(0) > 0 if q + 1 > 2n-2 n-2 , • γ > γ H (R k+,n-k ) -1 4 , and      m γ,a (Ω) > 0 if q + 1 < 2n-2(α+-α-) n-2 , c 3 m γ,a (Ω) + c 2 h(0) > 0 if q + 1 = 2n-2(α+-α-) n-2 , h(0) > 0 if q + 1 > 2n-2(α+-α-) n-2
,

where GH γ,s (Ω) is the generalized curvature (see [START_REF] Ghoussoub | Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF]), m γ,a (Ω) is the mass of Ω at 0

(see Definition 3), α + -α -= 2 γ H (R k+,n-k ) -γ (see (8) below) and c 1 , c 2 , c 3 > 0 are defined in (70).
This result shows how the subcritical nonlinearity has an impact on the existence of solutions. When the subcritical nonlinearity is close to being linear, only the geometry of Ω commands the existence. Conversely, when it is close to being critical, the subcritical nonlinearity commands the existence, whatever the geometry is. Notation: In the sequel, C denotes a positive constant, the value of which may change from one page to another and even from one line to the next. This paper is organized as follows. Section 2 is devoted to the definitions of the generalized curvature and the singular interior mass. In Section 3, we introduce some preliminary results that will be of use in the sequel. In Section 4, we prove Theorem 1.2, which is a existence of extremals for µ γ,s,a (Ω) is ensured for small dimensions when the mass m γ,a (Ω) is positive. In Section 6, we prove Theorem 1.3, which is a general existence result for a Mountain-Pass solution for equation [START_REF] Felli | Almgreen-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF]. In Section 7, we make test-function estimates in order to obtain a sufficient condition of existence for (6).

Definition of the generalized curvature and the mass

Generalized curvature. Definition 2. Let Ω be a domain in R n with n ≥ 3 such that 0 ∈ ∂Ω is a singularity of type (k, n -k). We define

Ω i := φ(U ∩ {x i > 0}) for all i = 1, ..., k,
where (φ, U ) is a chart as in Definition 1. We have that:

• For all i = 1, ..., k, Ω i is smooth around 0 ∈ ∂Ω i .

• Up to permutation, the Ω i 's are locally independent of the chart φ.

• The Ω i 's define locally Ω: there exists δ > 0 such that

Ω ∩ B δ (0) = k i=1 Ω i ∩ B δ (0).
We set Σ := ∩ k i=1 ∂Ω i where k ∈ {1, ..., n}. The vector H Σ 0 denotes the meancurvature vector at 0 of the (n -k)-submanifold Σ. For any m = 1, ..., k, II ∂Ωm 0 denotes the second fundamental form at 0 of the oriented (n -1)-submanifold ∂Ω m . The generalized mean curvature of Ω is defined by:

GH γ,s (Ω) := c 1 γ,s k m=1 H Σ 0 , ν m + c 2 γ,s k i,m=1, i =m II ∂Ωm 0 ( ν i , ν i ) (7) +c 3 γ,s k p,q,m=1, |{p,q,m}|=3 II ∂Ωm 0 ( - → ν p , - → ν q )
where for any m = 1, ..., k, ν m is the outward normal vector at 0 of ∂Ω m and c 1 γ,s , c 2 γ,s , c 3 γ,s are positive explicit constants. We refer to [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] for details on this curvature.

The mass. Let α ∈ R be a real number and fix γ < γ H (R k+,n-k ). Then

-∆ - γ |x| 2 S α = 0 ⇔ α ∈ {α -, α + }, where: (8) S α := |x| -α-k k i=1 x i and α ± = α ± (γ, n, k) := n -2 2 ± γ H (R k+,n-k ) -γ.
The functions S α-, S α+ are prototypes of solution to (5) vanishing on ∂R k+,n-k .

Definition 3.

Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix γ < γ H (Ω) and a ∈ C 0,θ (Ω) (θ ∈ (0, 1)). We say that a coercive operator -∆ -(γ|x| -2 + a) has a mass if there exists G ∈ C 2 (Ω) ∩ D 1,2 loc,0 (Ω) such that

(9)      -∆G -γ |x| 2 + a(x) G = 0 in Ω, G > 0 in Ω, G = 0 on ∂Ω\{0},
and there exists c ∈ R such that

(10) G(x) = k i=1 d(x, ∂Ω i ) |x| -α+-k + c|x| -α--k + o(|x| -α--k ) as x → 0,
where α ± is defined in [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]. We can therefore define the quantity m γ,a (Ω) := c as the boundary mass of the operator -∆ -(γ|x| -2 + a). The function G is unique, so that the definition of the mass makes sense.

Examples of domains with positive or negative mass are in Section 5 below.

Some background results

We start with the following result that is reminiscent for critical elliptic problems:

Theorem 3.1. [see Cheikh-Ali [4]]
Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. Assume that γ < γ H (R k+,n-k ), 0 ≤ s ≤ 2, and µ γ,s,a (Ω) < µ γ,s,0 (R k+,n-k ). Then there are extremals for µ γ,s,a (Ω).

Indeed, Theorem 3.1 was proved in [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] when a ≡ 0. The proof extends to the general case with no effort. Recall now an optimal regularity theorem.

Theorem 3.2. [See Felli-Ferrero [START_REF] Felli | Almgreen-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] and [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF]] Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix γ < γ H (R k+,n-k ). Let f : Ω × R → R be a Caratheodory function such that

(11) |f (x, v)| ≤ C|v| 1 + |v| 2 * (s)-2 |x| s for all x ∈ Ω, v ∈ R.
Let u ∈ D 1,2 (Ω) loc,0 , be a weak solution to

-∆u - γ + O(|x| τ ) |x| 2 u = f (x, u) in D 1,2 (Ω) loc,0
for some τ > 0. Then there exists K ∈ R such that

λ α-u(λφ(x)) → K|x| -α- k i=1 x i |x| k in B 1 (0) ∩ R k+,n-k ,
uniformly in C 1 as λ → 0, where φ is a chart as in Definition 1.

In section 4, we will need the following lemma:

Lemma 3.1. [See [4]] Assume that u ∈ D 1,2 (R k+,n-k ) loc,0 is a weak solution of -∆u -γ+O(|x| τ ) |x| 2 u = 0 in D 1,2 (R k+,n-k ) loc,0 , u = 0 on B 2δ (0) ∩ ∂R k+,n-k ,
for some τ > 0 and α ∈ {α -, α + }. Assume there exists c > 0 such that |u(x)| ≤ c|x| -α for x → 0, x ∈ R k+,n-k .

• Then, there exists c 1 > 0 such that

|∇u(x)| ≤ c 1 |x| -α-1 as x → 0, x ∈ R k+,n-k . • If lim x→0 |x| α u(x) = 0, then lim x→0 |x| α+1 |∇u(x)| = 0.
4. Test-functions estimates for the mass: proof of Theorem 1.2

Let U ∈ D 1,2 (R k+,n-k ) be a positive extremal for µ γ,s,0 (R k+,n-k ). Then J R k + ,n-k γ,s,0 (U ) = R k + ,n-k |∇U | 2 -γ|x| -2 U 2 dx R k + ,n-k |x| -s |U | 2 (s) dx 2 2 (s) = µ γ,s,0 (R k+,n-k ).
Therefore, there exists ξ > 0 such that

(12)    -∆U -γ|x| -2 U = ξ|x| -s U 2 (s)-1 in R k+,n-k , U > 0 in R k+,n-k , U = 0 on ∂R k+,n-k .
For r > 0, we define (13) B r := B r (0) and B r,

+ := B r (0) ∩ R k+,n-k .
Therefore, with δ > 0 small, the chart φ of Definition 1 yields

φ(B 3δ ∩ R k+,n-k ) = φ(B 3δ ) ∩ Ω and φ(B 3δ ∩ ∂R k+,n-k ) = φ(B 3δ ) ∩ ∂Ω. We fix η ∈ C ∞ c (R n ) such that (14) η(x) = 1 for x ∈ B δ , 0 for x / ∈ B 2δ .
Define also for convenience, x i for all x ∈ R k+,n-k .

Equation ( 10) allows us to define Θ : Ω → R such that

G(x) = (ηv|x| -α+-k ) • φ -1 (x) + Θ(x) for any x ∈ Ω,
where φ is as in Definition 1. We then get that Θ ∈ D 1,2 (Ω) and

Θ(x) = m γ,a (Ω)p(x)|x| -α--k + o(p(x)|x| -α--k ) as x → 0. (16) Note that (17) γ > γ H (R k + × R n-k ) - 1 4 ⇔ {α + -α -< 1} ⇔ {n < n γ,k } . Since U satisfies (12), Theorem 3.2 yields K 1 > 0 such that (18) lim λ→0 + λ α-U (λx) = K 1 v(x)|x| -α--k in B 1 (0) ∩ R k+,n-k . The regularity applied to the Kelvin transform x → U (x) := |x| 2-n U ( x |x| 2 ) yields (19) lim λ→+∞ λ α+ U (λx) = K 2 v(x)|x| -α+-k in B 1 (0) ∩ R k+,n-k ,
for some K 2 > 0. Up to multiplying U by a positive constant, we assume that K 2 = 1. Equation (18), the Kelvin transform and Lemma 3.1 yield

(20) |U (x)| ≤ C|x| -α+ and |∇U (x)| ≤ C|x| -1-α+ for any x ∈ R k+,n-k .
For > 0, we define

(21) U (x) := -n-2 2 U ( -1 x) for all x ∈ R k+,n-k and (22) u (x) := (ηU ) • φ -1 (x) for x ∈ Ω and ũ := u + α + -α - 2 Θ.
The main result of this paper is the following:

Proposition 4.1. Let Ω be a bounded domain in R n , n ≥ 3 such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix 0 ≤ s < 2, γ < γ H (Ω) and a ∈ C 0,θ (Ω) (θ ∈ (0, 1)).
Assume that there exists a positive extremal U for µ γ,s,0 (R k+,n-k ). We assume that

γ > γ H (R k+,n-k ) - 1 4 that is n < n γ,k ,
and that the operator -∆ -(γ|x| -2 + a(x)) is coercive with the mass m γ,a (Ω). We let (ũ ) ∈ D 1,2 (Ω) be as in (22). Then

J Ω γ,s,a (ũ ) = µ γ,s,0 (R k+,n-k ) 1 -ζ 0 γ,s m γ,a (Ω) α+-α-+ o( α+-α-) as → 0, where (23) ζ 0 γ,s := (α + -α -)C k,n ξ R k + ,n-k U 2 (s) |x| s dx -1 > 0,
where C k,n is defined in (25).

Remark: as noted in the introduction, the existence of extremals for µ γ,s,0 (R k+,n-k ) is a consequence of (4).

As one checks, Theorem 1.2 is a direct consequence of the combination of Proposition 4.1 and Theorem 3.1.

This section is devoted to the proof of Proposition 4.1.

Proof of Proposition 4.1: From the definitions of ũ and G, and the uniform

C 1 -convergence in (19), it follows that lim →0 ũ α + -α - 2 = G in C 1 loc (Ω) ∩ D 1,2 loc,0 (Ω). ( 24 
)
Define the constant

C k,n := S n-1 ∩R k + ,n-k k i=1 x i 2 dσ. ( 25 
)
In the sequel, ϑ ρ will denote a quantity such

lim ρ→0 lim →0 ϑ ρ = 0.
For convenience, we define

N γ,a (w) := |∇w| 2 -γ|x| -2 + a w 2 .
Step 4.1. For any ρ > 0, we claim that

Ω\φ(Bρ,+) N γ,a (ũ ) dx = α+-α-α + C k,n ρ n-2α+-2 + m γ,a (Ω)(n -2)C k,n + ϑ ρ ,
as → 0 where the constant C k,n is defined in (25).

Proof of Step 4.1: Indeed, it follows from (24) that lim →0 -(α+-α-)

Ω\φ(Bρ,+) N γ,a (ũ ) dx = Ω\φ(Bρ,+) N γ,a (G) dx.
Since G satisfies (9) and vanishes on ∂Ω\{0}, integrating by parts yields

Ω\φ(Bρ,+) N γ,a (G) dx = Ω\φ(Bρ,+) G -∆G -(γ|x| -2 + a(x))G dx - φ(∂(Bρ,+)) G∂ ν G dσ = - (∂Bρ(0))∩R k + ,n-k (G • φ)∂ φ * ν (G • φ) d(φ * σ), (26) 
where ν(x) is the outer normal vector of B ρ (0) at x ∈ ∂B ρ (0). We will now find the value of (G • φ)∂ φ * ν (G • φ). Using (15) and the definition of G, we have that

(27) (G • φ)(x) = v(x)|x| -α+-k + m γ,a (Ω)v(x)|x| -α--k + o(v(x)|x| -α--k ) as x → 0.
From Θ and the uniform convergence in C 1 of G, we have for all l = 1, ..., n that

∂ l (Θ • φ) = ∂ l m γ,a (Ω)v|x| -α--k + o(|x| -α--1 ) as x → 0. (28) Moreover, it follows from the definition of G that ∂ l (G • φ) = ∂ l v |x| -α+-k + m γ,a (Ω)|x| -α--k -x l v (α + + k)|x| -α+-k-2 + (α -+ k)m γ,a (Ω)|x| -α--k-2 + o(|x| -α--1 ). Since φ * ν(x) = x |x| + O(|x|) as x → 0 and α + < α -+ 1,
we obtain as x → 0 that,

(29) ∂ φ * ν (G • φ) = -v α + |x| -α+-k-1 + m γ,a (Ω)α -|x| -α--k-1 + o(|x| -α--1 ).
We combine the equations ( 27), (29) and since α

+ + α -= n -2, -2α --1 > 1 -n, α + -α -< 1, we get -(G•φ)∂ φ * ν (G•φ) = v 2 α + |x| -2α+-2k-1 + m γ,a (Ω)(n -2)|x| -n+1-2k +o(|x| 1-n ).
Moreover, using again the definition of v,

- ∂Bρ,+ (G • φ)∂ φ * ν (G • φ)d(φ * σ) = α + C k,n ρ n-2α+-2 + m γ,a (Ω)(n -2)C k,n + ϑ ρ ,
where lim ρ→0 ϑ ρ = 0 and C k,n is defined in (25). Plugging the last equation in (26) yields Step 4.1.

Step 4.2. We claim that, as → 0,

Ω N γ,a (ũ ) dx = ξ R k + ,n-k |x| -s U 2 (s) dx+m γ,a (Ω)(n-2)C k,n α+-α-+o( α+-α-).
Proof of Step 4.2: The definition (22) of ũ rewrites

(30) ũ • φ(x) = U (x) + α + -α - 2 Θ • φ(x) for all x ∈ B δ,+ .
Fix ρ ∈]0, δ[ that we will eventually let go to 0. We define

I ,ρ := φ(Bρ,+) |∇ũ | 2 -γ|x| -2 + a ũ2 dx.
Let φ * Eucl be the pullback of the Euclidean metric. With (30), we get

I ,ρ = Bρ,+ |∇(ũ • φ)| 2 φ * Eucl - γ |φ(x)| 2 + a • φ (ũ • φ) 2 |Jac(φ)| dx = Bρ,+ |∇U | 2 φ * Eucl - γ |φ(x)| 2 + a • φ U 2 |Jac(φ)| dx + 2 α + -α - 2 Bρ,+ ∇U , ∇(Θ • φ) φ * Eucl - γ |φ(x)| 2 + a • φ (Θ • φ)U |Jac(φ)| dx + α+-α- Bρ,+ |∇(Θ • φ)| 2 φ * Eucl - γ |φ(x)| 2 + a • φ (Θ • φ) 2 |Jac(φ)| dx. Since dφ 0 = Id R n , φ * Eucl = Eucl + O(|x|) and Θ ∈ D 1,2 (Ω), we get that I ,ρ = Bρ,+ |∇U | 2 Eucl - γ |x| 2 + a • φ U 2 dx + O Bρ,+ |x| |∇U | 2 Eucl + |x| -2 U 2 dx + 2 α + -α - 2 Bρ,+ ∇U , ∇(Θ • φ) Eucl - γ |x| 2 + a • φ (Θ • φ)U dx + O α + -α - 2 Bρ,+ |x| |∇U | • |∇(Θ • φ)| + |x| -2 (Θ • φ)U dx + α+-α-ϑ ρ as → 0. The explicit expression (21) of U , (20) and n > 2α + yield Bρ,+ U 2 dx = O α+-α- ρ 0 r n-2α+-1 dr = α+-α-ϑ ρ . (31)
The definition of Θ and α

+ + α -= n -2 give α + -α - 2 Bρ,+ a • φ(Θ • φ)U dx = O α+-α- ρ 0 r dr = α+-α-ϑ ρ . (32)
We combine the equations (18), (20), (28), (31) and (32),

I ,ρ = Bρ,+ |∇U | 2 Eucl - γ |x| 2 U 2 dx + 2 α + -α - 2 Bρ,+ ∇U , ∇(Θ • φ) Eucl - γ |x| 2 (Θ • φ)U dx + α+-α-ϑ ρ as → 0.
Integrating by parts and since both U and Θ • φ vanish on ∂R k+,n-k \{0}, we get as → 0 that

I ,ρ = Bρ,+ U -∆U -γ|x| -2 U dx + R k + ,n-k ∩∂Bρ(0) U ∂ ν U dσ + 2 α + -α - 2 Bρ,+ (Θ • φ) -∆U -γ|x| -2 U dx (33) + R k + ,n-k ∩∂Bρ(0) (Θ • φ)∂ ν U dσ + α+-α-ϑ ρ .
We claim as → 0 that (34)

R k + ,n-k ∩∂Bρ(0) (Θ • φ)∂ ν U dσ = -α + α + -α - 2 m γ,a (Ω)C k,n + o( α + -α - 2 
), and

R k + ,n-k ∩∂Bρ(0) U ∂ ν U dσ = -α + C k,n α+-α-ρ n-2α+-2 + o( α+-α-ρ n-2-2α+ ). (35) 
We prove the claim. It follows from the uniform C 1 -convergence in (19) that we have for all l = 1, ..., n

(36) lim λ→+∞ λ α+ ∂ l U (λx) = |x| -α+-k   δ l≤k k j=1;j =l x j -(α + + k) v(x)x l |x| 2   ,
where δ l≤k is such that δ l≤k = 1 if l ≤ k, and δ l≤k = 0 otherwise, and v is defined in (15). The definition of U and (20) yield

∂ l U = α + -α - 2   |x| -α+-k   δ l≤k k j=1;j =l x j -(α + + k) x l |x| 2 v   + o(|x| -α+-1 )   . Since ν(x) = |x| -1
x is the outer normal vector of B ρ (0), we then get

∂ ν U = α + -α - 2 -α + v|x| -α+-k-1 + o(|x| -α+-1 ) , (37) 
as → 0 uniformly on compact subsets of R k+,n-k \{0}. From the definition of Θ and α + + α -= n -2, and (17), we obtain as → 0 that

(Θ • φ)∂ ν U = α + -α - 2 -α + m γ,a (Ω)v 2 |x| -n+1-2k + o(|x| 1-n ) .
Therefore, we get (34). The definition of U and the equations ( 19) and (37) yield

U ∂ ν U = -α + α+-α-v 2 |x| -2α+-2k-1 + o( α+-α-|x| -2α+-1 ),
as → 0 uniformly locally in R k+,n-k \{0}. This yields (35) and proves the claim.

We combine equations (33), (34) and (35) to get

I ,ρ = Bρ,+ U -∆U -γ|x| -2 U dx -α + C k,n α+-α-ρ n-2α+-2 + 2 α + -α - 2 Bρ,+ (Θ • φ) -∆U -γ|x| -2 U dx -2α + α+-α-m γ,a (Ω)C k,n + α+-α-ϑ ρ .
Since U satisfies equation [START_REF]Influence of Mean Curvature on Mountain-Pass Solutions for Hardy-Sobolev Equations[END_REF], with the definition (21) of U , we get

-∆U -γ|x| -2 U = ξ|x| -s U 2 (s)-1 .
Therefore, we get as → 0 that

I ,ρ = ξ Bρ,+ U 2 (s) |x| s dx -α + C k,n α+-α-ρ n-2α+-2 +2 α + -α - 2 ξ Bρ,+ (Θ • φ) U 2 (s)-1 |x| s dx (38) -2α + α+-α-m γ,a (Ω)C k,n + α+-α-ϑ ρ .
It follow from the definition (21) of U and the first estimate in (20) that

ξ R k + ,n-k \(Bρ,+) U 2 (s) |x| s dx ≤ C 2 (s) 2 (α+-α-) .
Therefore, with 2 (s) > 2, we get

(39) ξ Bρ,+ U 2 (s) |x| s dx = ξ R k + ,n-k U 2 (s) |x| s dx + o( α+-α-) as → 0.
The definition (15), ( 21) and the first control in (20) yield

R k + ,n-k \(Bρ,+) v U 2 (s)-1 |x| s+α-+k dx = O α + -α - 2 +∞ -1 ρ r (1-2 (s)
2

)(α+-α-)-1 dr = 2 (s)-1 2 (α+-α-) ϑ ρ .
Therefore, with the definition of Θ, we get as → 0 that

ξ Bρ,+ U 2 (s)-1 |x| s Θ • φ dx = ξm γ,a (Ω) Bρ,+ v U 2 (s)-1 |x| s+α-+k dx + o Bρ,+ v U 2 (s)-1 |x| s+α-+k dx = α + -α - 2 m γ,a (Ω)ξ R k + ,n-k v U 2 (s)-1 |x| s+α-+k dx + ϑ ρ . (40) 
Since (-∆ -γ|x| -2 ) v|x| -α--k = 0 and U vanishes on ∂R k+,n-k \{0}, integrating by parts, we get that

ξ R k + ,n-k v U 2 (s)-1 |x| s+α-+k dx = lim R→+∞ B R,+ v|x| -α--k -∆U -γ|x| -2 U dx = lim R→+∞ B R,+ U -∆ -γ|x| -2 v|x| -α--k dx - R k + ,n-k ∩∂B R ∂ ν U v|x| -α--k dσ . ( 41 
)
Arguing as for (37), it follows from (36) that, as R → +∞

∂ ν U = -α + v|x| -α+-k-1 + o(|x| -α+-1 ) uniformly for x ∈ ∂B R (0) ∩ R k+,n-k . Moreover, since α + + α -= n -2 we get ∂ ν U v|x| -α--k = -α + v 2 |x| -(n+2k-1) + o(|x| 1-n ).
This latest equation yields

lim R→+∞ R k + ,n-k ∩∂B R (0) ∂ ν U v|x| -α--k dσ = -α + C k,n .
Then, by (41)

ξ R k + ,n-k v U 2 (s)-1 |x| s+α-+k dx = α + C k,n . (42) 
Combining (40) and (42), we get

(43) ξ Bρ,+ U 2 (s)-1 |x| s Θ • φ dx = α + -α - 2 (α + m γ,a (Ω)C k,n + ϑ ρ ) as → 0.
Next, the equations (38), ( 39) and (43) yield

I ,ρ = ξ R k + ,n-k U 2 (s) |x| s dx -α + C k,n α+-α-ρ n-2α+-2 + o( α+-α-).
On the other hand, using Step 4.1 the definition of I ,ρ and the last equation, we get Step 4.2 .

Step 4.3. We claim as → 0 that,

Ω ũ2 (s) |x| s dx = R k + ,n-k U 2 (s) |x| s dx + 2 (s)α + m γ,a (Ω)ξ -1 C k,n α+-α-+ o( α+-α-).
Proof of Step 4.3: We fix ρ > 0. The definitions of ũ and Θ, and 2 (s) > 2 yield

φ(B 2δ,+ \Bρ,+) ũ2 (s) |x| s dx = o( α+-α-), (44) 
as → 0. Equations ( 16), ( 18), ( 30) and (44) yield

Ω ũ2 (s) |x| s dx = Bρ,+ U + α + -α - 2 (Θ • φ) 2 (s) |x| s |(1 + O(|x|)| dx + o( α+-α-),
as → 0, and

Ω ũ2 (s) |x| s dx = Bρ,+ U 2 (s) |x| s + 2 (s) α + -α - 2 U 2 (s)-1 |x| s (Θ • φ) dx + Bρ,+ O α+-α-U 2 (s)-2 |x| s (Θ • φ) 2 + 2 (s) 2 (α+-α-) |Θ • φ| 2 (s) dx + o( α+-α-).
Using the asymptotics ( 16) and (18) of Θ and U , we get that

Bρ,+ U 2 (s)-2 |x| s ( α + -α - 2 (Θ • φ)) 2 dx = O 2(α+-α-) -1 ρ 0 r 2 (s) 2 (α+-α-)-1 dr = α+-α-ϑ ρ , (45) 
and, from the definition of Θ and the control (16), we get that

Bρ,+ ( α + -α - 2 Θ • φ) 2 (s) |x| -s dx = O (α+-α-) 2 (s) 2 ρ 0 r 2 (s) 2 (α+-α-)-1 dr = α+-α-ϑ ρ . ( 46 
)
The equations (45) and (46) yield as → 0 that (47)

Ω ũ2 (s) |x| s dx = Bρ,+ U 2 (s) |x| s + 2 (s) α + -α - 2 U 2 (s)-1 |x| s (Θ • φ) dx + α+-α-ϑ ρ .
Therefore, for all ξ > 0 the equations (39), ( 43) and (47) yield the result.

Step 4.4. We are now in a position to prove Proposition 4.1.

Proof of Step 4.4: By Step 4.3, we have that

Ω ũ2 (s) |x| s dx 2 2 (s) = R k + ,n-k U 2 (s) |x| s dx 2 2 (s) + 2α + m γ,a (Ω)ξ -1 C k,n α+-α- R k + ,n-k U 2 (s) |x| s dx 2 2 (s) -1 (48) + o( α+-α-).
We go back to the definition of J Ω γ,a,s . Step 4.3, Equation ( 48) and ( 12) yield

J Ω γ,s,a (ũ ) = J R k + ,n-k γ,s,0 (U ) 1 -m γ,a (Ω)ζ 0 γ,s α+-α-+ o( α+-α-) ,
as → 0, where ζ 0 γ,s is defined in (23). This ends the proof of Proposition 4.1. Combining Proposition 4.1 and Theorem 3.1 yields Theorem 1.2 .

Examples of mass

In this section, we discuss the existence and the sign of the mass. An example of existence of mass is as follows: Proposition 5.1. Let Ω be a bounded domain in R n , n ≥ 3 such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We assume that γ > γ H (R k+,n-k ) -1/4 and that

(49) Ω ∩ B δ (0) = R k+,n-k ∩ B δ (0) for some δ > 0.
We assume that γ H (R k+,n-k ) -1 4 < γ < γ H (Ω), that a ∈ C 0,θ (Ω) vanishes around 0 and that -∆ -(γ|x| -2 + a(x)) is coercive. Then the mass is defined.

Proof of Proposition 5.1. We fix η as in [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF]. For a ∈ C 0,θ (Ω) that vanishes around 0, define on Ω the function

g := -∆ - γ |x| 2 -a(x) ηS α+ ,
where S α+ is defined in [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF] such that -∆S α+ -γ|x| -2 S α+ = 0 on R k+,n-k . Note that this definition makes sense when the support of η is small enough due to (49) and a vanishes around 0. In particular g(x) = 0 around 0. Therefore, we have that

g ∈ L 2n n+2 (Ω) = L 2 (Ω) ⊂ D 1,2 (Ω) . Since the operator -∆ -(γ|x| -2 + a) is coercive, there exists w ∈ D 1,2 (Ω) such that -∆ -γ |x| 2 -a(x) w = g in Ω, w = 0 on ∂Ω.
Since g vanishes around 0, Theorem 3.2 yields the existence of K ∈ R such that

w(x) = K v(x) |x| α-+k + o v(x) |x| α-+k as x → 0,
where v is as in (15). For all x ∈ Ω\{0}, we define the function G 0 := ηS α+ -w. The definition of w yields

-∆ -γ |x| 2 -a(x) G 0 = 0 in Ω, G 0 = 0 on ∂Ω\{0}.
For δ 0 > 0 small enough, the definitions of S α+ , w and α -< α + yield

G 0 (x) = v(x)|x| -α+-k (1 + o(1)) in R k+,n-k ∩ B δ0 ,
with o(1) → 0 as x → 0. Therefore, G 0 > 0 in R k+,n-k ∩ B δ0 . Then coercivity and the comparison principle yield G 0 > 0 in Ω. Moreover, we have that

G 0 (x) = v(x) |x| -α+-k -K|x| -α--k + o(|x| -α--k ) ,
as x → 0. Then the mass at 0 of -∆-(γ|x| -2 +a(x)) is defined and m γ,a (Ω) = -K. This proves Proposition 5.1.

We now discuss briefly examples of negative and positive mass. Here, the reference is Section 9 of Ghoussoub-Robert [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF]. We still assume (49) and that γ > γ H (R k+,n-k ) -1/4, so that the mass m γ,0 (Ω) is defined. When Ω ⊂ R k+,n-k , due to the comparison principle, we get that G 0 < S α+ , and m γ,0 (Ω) < 0. Arguing as in [START_REF]Hardy-singular boundary mass and Sobolev-critical variational problems[END_REF], we are able to define the mass of a domain Ω ⊃ R k+,n-k , for which m γ,0 ( Ω) > 0: then, defining ΩR := Ω ∩ B R (0), we get that lim R→+∞ m γ,0 ( ΩR ) = m γ,0 ( Ω) > 0. So for R > 0 large, we get examples of bounded domains with a singularity of type (k, n -k) at 0 and with positive mass.

Proof of Theorem 1.3: functional background for the perturbed equation

In this section, we proceed as in Jaber [START_REF] Jaber | Mountain pass solutions for perturbed Hardy-Sobolev equations on compact manifolds[END_REF]. For any function

G ∈ C 1 (E, R) where (E, . ) is a Banach space, we say that (u m ) m∈N ∈ E is a Palais-Smale sequence of G if there exists β ∈ R such that G(u m ) → β and G (u m ) → 0 in E as m → +∞.
Here, we say that the Palais-Smale sequence is at level β. The main tool is the Mountain-Pass Lemma of Ambrosetti-Rabinowitz [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]: Theorem 6.1 (Mountain-Pass Lemma [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]). Consider G ∈ C 1 (E, R) where (E, . ) is a Banach space. We assume that G(0) = 0 and that • There exists λ, r > 0 such that G(u) ≥ λ for all u ∈ E such that u = r,

• There exists u 0 in E such that lim sup t→+∞ G(tu 0 ) < 0. We consider t 0 > 0 sufficiently large such that t 0 u 0 > r and G(t 0 u 0 ) < 0, and

β = inf c∈Γ sup t∈[0,1] G(c(t)), where Γ = {c : [0, 1] → E s.t. c(0) = 0, c(1) = t 0 u 0 }.
Then, there exists a Palais-Smale sequence at level β for G. Moreover, we have that β ≤ sup t≥0 G(tu 0 ). Weak solutions to [START_REF] Felli | Almgreen-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] are to the nonzero critical points of the functional

E q (u) := 1 2 Ω |∇u| 2 - γ |x| 2 + a u 2 dx - Ω u 2 (s) + 2 (s)|x| s dx - Ω hu q+1 + q + 1 dx,
for any u ∈ D 1,2 (Ω) and where u + = max{u, 0}. In the sequel, we assume that the operator -∆ -γ |x| 2 + a(x) is coercive, so that there exists c 0 > 0 such that ( 50)

Ω |∇w| 2 - γ |x| 2 + a w 2 dx ≥ c 0 Ω |∇w| 2 dx for all w ∈ D 1,2 (Ω). Proposition 6.1.
Let Ω be a bounded domain in R n , n ≥ 3 such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix a, h ∈ C 0,θ (Ω), θ ∈ (0, 1). We assume that h ≥ 0 and that (50) holds. Fix u 0 ∈ D 1,2 (Ω) such that u 0 ≥ 0, u 0 ≡ 0, and q ∈ (1, 2 -1). Then there exists a sequence (u m ) m∈N ∈ D 1,2 (Ω) that is a Palais-Smale sequence for E q at level β such that 0 < β ≤ sup t≥0 E q (tu 0 ).

Proof of Proposition 6.1: Clearly E q ∈ C 1 (D 1,2 (Ω)). Note that E q (0) = 0. It follows from (50) and the Sobolev and Hardy-Sobolev embeddings that there exist

c 0 , c 1 , c 2 > 0 such that (51) E q (u) ≥ c 0 u 2 -c 1 u 2 (s) -c 2 u q+1 for all u ∈ D 1,2 (Ω). Define f (r) = r 2 c 0 -c 1 r 2 (s)-2 -c 2 r q-1 := r 2 g(r)
and since 2 (s), q + 1 > 2 we have g(r) → c 0 as r → 0. Then there exists r 0 > 0 such that r < r 0 , we have g(r) > c0 2 . Therefore, for all u ∈ D 1,2 (Ω) such that u = r0 2 and by (51), we have

E q (u) ≥ c0r 2 0 8 := λ. We fix u 0 ∈ D 1,2 (Ω), u 0 ≡ 0. We have that E q (tu 0 ) = t 2 2 Ω |∇u 0 | 2 -( γ |x| 2 + a)u 2 0 dx - t 2 (s) 2 (s) Ω |u 0 | 2 (s) |x| s dx - t q+1 q + 1 Ω h|u 0 | q+1 dx := t 2 2 R 1 - t 2 (s) 2 (s) R 2 - t q+1 q + 1 R 3 ≤ t 2 (s) t 2-2 (s) 2 R 1 -R 2 ,
where R 1 , R 2 > 0 and R 3 ≥ 0. Since 2 (s) > 2, we have E q (tu 0 ) → -∞ as t → +∞. Then lim sup t→+∞ E q (tu 0 ) < 0. We consider t 0 > 0 large such that t 0 u 0 > r and E q (t 0 u 0 ) < 0. For t ∈ [0, 1], we have E q (c(t)) ≥ λ and then there exists

β := inf c∈Γ sup E q (c(t)) ≥ λ > 0.
Proposition 6.1 then follows from Theorem 6.1.

Proposition 6.2. Let Ω be a bounded domain in R n , n ≥ 3 such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix a, h ∈ C 0,θ (Ω), θ ∈ (0, 1). We assume that h ≥ 0 and that (50) holds. We fix γ < γ H (R k+,n-k ) and β ∈ R such that

(52) β < 2 -s 2(n -s) µ γ,s,0 (R k+,n-k ) n-s 2-s .
Then, for any Palais-Smale sequence (u m ) m∈N ∈ D 1,2 (Ω) for E q at level β, there exists u ∈ D 1,2 (Ω) such that E q (u) = β and we have that (u m ) converges strongly in D 1,2 (Ω) as m → +∞ up to a subsequence. Moreover, we have that E q (u) = 0.

Proof of Proposition 6.2: Let (u m ) m∈N ∈ D 1,2 (Ω) be a Palais-Smale sequence for E q such that E q (u m ) → β and E q (u m ) → 0 in D 1,2 (Ω) .

Step 6.1. We claim that (u m ) m is bounded in D 1,2 (Ω).

Proof of Step 6.1: The coercivity (50) and the definition of

E q yield (53) u m 2 ≤ 2c -1 0 E q (u m ) + 1 2 (s) Ω (u m ) 2 (s) + |x| s dx + 1 q + 1 Ω h(u m ) q+1 + dx . Since E q (u m ) → 0 in D 1,2 (Ω) , we observe that Ω |∇u m | 2 - γ |x| 2 + a u 2 m dx = Ω (u m ) 2 (s) + |x| s dx + Ω h(u m ) q+1 + dx + o( u m ).
The definition of the energy E q and the last equation yield (54)

2E q (u m ) = 1 - 2 2 (s) Ω (u m ) 2 (s) + |x| s dx+ 1 - 2 q + 1 Ω h(u m ) q+1 + dx+o( u m ).
Moreover, since E q (u m ) → β as m → +∞, h ≥ 0 and q + 1 > 2, we obtain that

1 - 2 2 (s) Ω (u m ) 2 (s) + |x| s dx = 2E q (u m ) -1 - 2 q + 1 Ω h(u m ) q+1 + dx + o( u m ) ≤ 2β + o( u m ), therefore, (55) 1 - 2 2 (s) 
Ω (u m ) 2 (s) + |x| s dx = O(1) + o( u m ).
Similarly, we have that

(56) 1 - 2 q + 1 Ω h(u m ) q+1 + dx = O(1) + o( u m ).
Relations ( 53) and ( 54) give

(57) u m 2 ≤ c -1 0 Ω (u m ) 2 (s) + |x| s dx + Ω h(u m ) q+1 + dx + o( u m ).
The equations (55), ( 56) and (57) yield,

u m 2 = O(1) + o( u m ),
as m → +∞. This proves Step 6.1.

Therefore, up to a subsequence, there exists u ∈ D 1,2 (Ω) such that (58) u m u weakly in D 1,2 (Ω), u m → u strongly in L p (Ω) for all 1 < p < 2 . Moreover, we have E q (u) = 0.

Step 6.2. We claim that, as m → +∞ (59)

Ω |∇(u m -u)| 2 -γ (u m -u) 2 |x| 2 dx = Ω (u m -u) 2 (s) + |x| s dx + o(1),
and,

2 -s 2(n -s) Ω |∇(u m -u)| 2 -γ (u m -u) 2 |x| 2 dx ≤ β + o(1). ( 60 
)
Proof of Step 6.2: We have that

E q (u m ), ϕ = Ω (∇u m , ∇ϕ) - γ |x| 2 + a u m ϕ dx - Ω (u m ) 2 (s)-1 + |x| s ϕ dx - Ω h(u m ) q + ϕ dx,
for all ϕ ∈ D 1,2 (Ω). We observe that

o(1) = E q (u m ) -E q (u), u m -u = Ω |∇(u m -u)| 2 -( γ |x| 2 + a)(u m -u) 2 dx (61) - Ω (u m ) 2 (s)-1 + -u 2 (s)-1 + (u m -u) |x| s dx - Ω h (u m ) q + -u q + (u m -u) dx.
Since u m u weakly in D 1,2 (Ω) as m → ∞, integration theory yields

(62) lim m→+∞ Ω (u m ) 2 (s)-1 + |x| s u dx = Ω u 2 (s) + |x| s dx = lim m→+∞ Ω u 2 (s)-1 + |x| s u m dx.
Equation ( 58) yields ( 63)

Ω h(u m -u) (u m ) q + -u q + dx = Ω h(u m -u) q+1 dx + o(1) = o(1),
as m → +∞. Combining (61), ( 62) and ( 63), we get as m → +∞ that (64)

Ω |∇(u m -u)| 2 - γ |x| 2 + a (u m -u) 2 dx = Ω (u m ) 2 (s) + -u 2 (s) + dx |x| s +o(1). Since 2 (s) > 1, we get that (u m ) 2 (s) + -u 2 (s) + -(u m -u) 2 (s) + ≤ C |u m -u| 2 (s)-1 |u| + |u| 2 (s)-1 |u m -m| ,
for some C > 0 independent of m. Therefore, with (58), we have that

Ω (u m ) 2 (s) + -(u m -u) 2 (s) + dx |x| s = Ω u 2 (s) + |x| s dx + o(1). (65) 
Since u m → u strongly in L 2 (Ω) as m → +∞ and by (64), (65), we obtain (59). With (58) we have that

E q (u m ) -E q (u) = 1 2 Ω |∇(u m -u)| 2 -γ (u m -u) 2 |x| 2 dx - 1 2 (s) Ω ((u m ) 2 (s) + -u 2 (s) + ) dx |x| s + o(1).
With (59), we get

E q (u m ) -E q (u) = 1 2 - 1 2 (s) Ω |∇(u m -u)| 2 -γ (u m -u) 2 |x| 2 dx + o(1).
Since u is a solution to ( 6) then E q (u) ≥ 0. Moreover E q (u m ) → β as m → +∞. Then we then get (60). This proves Step 6.2.

Step 6.3. We claim that

lim m→+∞ u m = u in D 1,2 (Ω). ( 66 
)
Proof of Step 6.3: Since γ < γ H (R k+,n-k ) for all k ∈ {1, ..., n} and by the Proposition 2.1 in Cheikh-Ali [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF], then for all > 0 there exists c > 0 such that for all v ∈ D 1,2 (Ω),

Ω |v| 2 (s) |x| s dx 2 2 (s) ≤ µ γ,s,0 (R k+,n-k ) -1 + Ω |∇v| 2 - γ |x| 2 v 2 dx+c Ω v 2 dx.
Take θ m = u m -u. Since (u m ) converges strongly to u in L 2 (Ω), taking v = θ m yields ( 67) 59) and (67), we get that

Ω (θ m ) 2 (s) + |x| s dx 2 2 (s) ≤ µ γ,s,0 (R k+,n-k ) -1 + Ω |∇θ m | 2 - γ |x| 2 θ 2 m dx+o(1). We write N (θ m ) := Ω |∇θ m | 2 -γ |x| 2 θ 2 m dx. By (
N (θ m ) 2 2 (s) 1 µ γ,s,0 (R k+,n-k ) -1 + N (θ m ) 1-2 2 (s) ≤ o(1).
With (60) and the last inequation, we get that, as m → ∞, (68)

N (θ m ) 2 2 (s)   1 -µ γ,s,0 (R k+,n-k ) -1 + 2(n -s)β 2 -s 2 (s)-2 2 (s) + o(1)   ≤ o(1).
With the assumption ( 52) and (68), taking > 0 small enough, we get that N (θ m ) → 0 as m → +∞ and by coercivity, we obtain (66). With Step 6.3 and since E q (u m ) → β as m → +∞, we get that E q (u) = β. This ends the proof of Proposition 6.2. Theorem 6.2. Let Ω be a bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω is a singularity of type (k, n -k) for some k ∈ {1, ..., n}. We fix γ < γ H (R k+,n-k ), a ∈ C 0,θ (Ω) such that -∆ -(γ|x| -2 + a(x)) is coercive, and h ∈ C 0,θ (Ω) such that h ≥ 0 and let 0 ≤ s < 2 and 1 < q < 2 -1. Assume that there exists u 0 ∈ D 1,2 (Ω), u 0 ≡ 0, such that

(69) sup t≥0 E q (tu 0 ) < 2 -s 2(n -s) µ γ,s,0 (R k+,n-k ) n-s 2-s ,
then equation (6) has a non-vanishing solution in D 1,2 (Ω) of Mountain-Pass type.

Proof of Theorem 6.2: By Proposition 6.1, there exists a Palais-Smale sequence (u m ) m∈N ∈ D 1,2 (Ω) for E q at level β > 0 such that β ≤ sup t≥0 E q (tu 0 ). It then follows from Proposition 6.2 that, up to a subsequence, (u m ) converges strongly to u in D 1,2 (Ω). Then E q (u) = β > 0, so u ≡ 0, and E q (u) = 0. Coercivity and E q (u)[u -] = 0 yield u ≥ 0. Regularity theory and Hopf's principle yield u ∈ C 2,θ (Ω) and u > 0. Then u is a solution of (6). This proves Theorem 6.2.

Proof of Theorem 1.3: Test-Functions estimates

The main result of this section is the following:

Proposition 7.1. We fix γ < γ H (R k+,n-k ) and 0 ≤ s < 2. We assume that there are extremals for µ γ,s,0 (R k+,n-k ) and we let U as in [START_REF]Influence of Mean Curvature on Mountain-Pass Solutions for Hardy-Sobolev Equations[END_REF] be such an extremal. We let (u ) and (ũ ) be as in (22). Then, Proof of Step 7.1: Note that it follows from (20) that

(72) 0 < U (x) ≤ C α + -α - 2 
|x| -α+ for all x ∈ R k+,n-k and > 0.

We first prove Step 7.1 for u , postponing the case of ũ , and then Z , to the end of the proof. We distinguish three cases: Case 1: We assume that n > (p + 1)α + . It follows from (72) that

Ω f |u | p+1 dx ≤ C p+1 2 (α+-α-) Ω |x| -(p+1)α+ dx ≤ C p+1 2 (α+-α-)
as → 0. This proves Step 7.1 for u when n > (p + 1)α + .

Case 2: We assume that n = (p + 1)α + . With (72), we get that

Ω f |u | p+1 dx ≤ C n-n-2 2 (p+1) + C B δ,+ |u | p+1 dx ≤ C n-n-2 2 (p+1) + C n-n-2 2 (p+1) B δ -1 ,+ U p+1 dx ≤ C n-n-2 2 (p+1) + C n-n-2 2 (p+1) -1 δ 1 r -1 dr ≤ C p+1 2 (α+-α-) ln 1 
Case 3: We assume that n < (p + 1)α + . For ρ > 0 small enough, it follows from (72) that Ω\φ(Bρ,+)

f |u | p+1 dx = O p+1 2 (α+-α-)
as → 0.

Independently, since f ∈ C 0,θ (Ω), we have that

φ(Bρ,+) f |u | p+1 dx = Bρ,+ f • φ • U p+1 |Jac φ| dx = n-n-2 2 (p+1) f (0) B ρ -1 ,+ U p+1 dx + O Bρ,+ |x| θ |U | p+1 dx (73) Since n < (p + 1)α + , it follows from (20) that U ∈ L p+1 (R k+,n-k ) and that B ρ -1 ,+ U p+1 dx = R k + ,n-k U p+1 dx + O R k + ,n-k \B ρ -1 ,+ U p+1 dx = R k + ,n-k U p+1 dx + O ∞ -1 ρ r n-(p+1)α+-1 dr = R k + ,n-k U p+1 dx + O (p+1)α+-n (74) We claim that (75) Bρ,+ |x| θ |U | p+1 dx = o n-n-2 2 (p+1)
as → 0. Indeed, when θ + n > (p + 1)α + , we argue as in Case 1. When θ + n = (p + 1)α + , we argue as in Case 2. When θ + n < (p + 1)α + , we make a change of variable y = -1 x and we argue as in (74). This yields (75). Putting (74) and ( 75) in (73) yields Step 7.1 for u in Case 2.

We now prove Step 7.1. When γ ≤ γ H (R k+,n-k ) - 1 4 , Z = u , and we are done. When γ > γ H (R k+,n-k ) -1 4 , Z = ũ . With the definition (22), we get that 

Ω f |ũ | p+1 dx = Ω f u + α + -α - 2 Θ p+1 dx (76) = Ω f |u | p+1 dx + O α + -α - 2 Ω |u | p |Θ| dx + O p+1 2 (α+-α-) Ω |Θ| p+1 dx Since Θ ∈ D 1,2 ( 
R → R 0 := ξ R k + ,n-k U 2 (s) |x| s dx and B → B 0 := R k + ,n-k U 2 (s) (77) 
|x| s dx.

Step 7.2. We claim that for all > 0, then there exists a unique t such that (78) sup t≥0 E q (tZ ) = E q (t Z ).

Moreover, t verifies

(79) t = S [1 -C 0 C h, + o(C h, )] ,
where S := R B -1 1 2 (s)-2 , C 0 > 0 and t → t 0 as → 0.

Proof of Step 7.2: We have that ∂ t E q (tZ ) = 0 iff t = 0 or g (t) = R where g (t) := B t 2 (s)-2 + C h, t q-1 . Since B , C h, ≥ 0 and g is a strictly increasing map i.e g (t) -R also, and since R > 0 we have g (0) -R < 0 then, there exists t > 0 unique verifying g (t ) = R such that (78) holds. Since g (t ) = R , we get t ≤ S := R B -1 1 2 (s)-2 .

We are using (77), ( 71) and ( 12) to get that S → R 0 B -1

0 1 2 (s)-2 = ξ 1 2 (s)-2
as → 0. Therefore, t is bounded and there exists t 0 such that t → t 0 up to extraction. Since g (t ) = R and C h, → 0 as → 0, we obtain that

t = R B -1 -C h, B -1 t q-1 1 2 (s)-2 = S 1 -C h, R -1 t q-1 1 2 (s)-2 = S [1 -C 0 C h, + o(C h, )] ,
where C 0 := R -1 0 t q-1 0 2 (s)-2 and t 0 = ξ 1 2 (s)-2 . This yields (79) and Step 7.2.

Step 7.3. We claim that, as → 0, E q (t Z ) = 2 -s 2(n -s)

J Ω γ,s,a (Z ) 

q+1 q + 1 C h, = S 2 [1 -2C 0 C h, + o(C h, )] 2 R - S 2 (s) [1 -C 0 2 (s)C h, + o(C h, )] 2 (s) B - S q+1 [1 -(q + 1)C 0 C h, + o(C h, )] q + 1 C h, ,
then,

E q (t Z ) = S 2 2 R - S 2 (s) 2 (s) B - S q+1 q + 1 C h, -C 0 C h, S 2 R -S 2 (s) B -S q+1 C h, + o(C h, ).
Since S := R B -1 1 2 (s)-2 and C h, → 0 as → 0, this yields Step 7.3.

Proof of Proposition 7.1 when 0 ≤ γ ≤ γ H (R k + ,n-k ) -1 4 . In this case, we recall that Z (x) = u (x). Note that γ < (=)γ H (R k+,n-k ) -1 4 ⇔ {α + -α -> (=)1} .

It was proved in Proposition 5.1 in Cheikh-Ali [START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] that

• For γ < γ H (R k+,n-k ) -1 4 , we have that J Ω γ,s,0 (u ) = µ γ,s,0 (R k+,n-k ) (1 + κGH γ,s (Ω) + o( )) . (80)

• For γ = γ H (R k+,n-k ) - 1 4 , we have that (81) J Ω γ,s,0 (u ) = µ γ,s,0 (R k+,n-k ) 1 + κGH γ,s (Ω) ln 1 + o ln 1 ,

where κ := ξ

R k + ,n-k U 2 (s) |x| s dx -1
and GH γ,s (Ω) is defined in [START_REF] Ghoussoub | Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF]. It follows from

Step 7.1 that Ω u 2 dx = o( ) if α + -α -> 1, and O( ) if α + -α -= 1. Therefore (80) and ( 81) hold unchanged with the potential a.

Case 1: We assume that n < (q + 1)α + . It follows from Step 7.1 that

C h, = Ω h|u | q+1 dx = h(0) n-n-2 2 (q+1) R k + ,n-k U q+1 dx + o n-n-2 2 (q+1)
as → 0. Then, when n < (q + 1)α + , Case (a) of Proposition 7.1 follows by combining Step 7.3, (80), (81), the estimate of C h, and studying the relative positions of n -n-2 2 (q + 1) and 1.
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  , ∂Ω i ) for all x ∈ Ω and v(x) := k i=1

  Ω) and p + 1 < 2 , we get that Θ ∈ L p+1 (Ω). It follows from (16) that |Θ(x)| ≤ C|x| -α-for all x ∈ Ω. Arguing as in Cases 1, 2, 3 above, we get that the second term in the right-hand-side of (76) is dominated byΩ |u | p+1 dx. Then Step 7.1 for γ > γ H (R k+,n-k ) -1/4 follows.By Cheikh-Ali[START_REF] Ali | Hardy-Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] and Step 7.1 for the case γ ≤ γ H (R k+,n-k ) -1/4 and Steps 4.2 and 4.3 for the case γ > γ H (R k+,n-k ) -1/4, we get that, as → 0,

  Proof of Step 7.3: The expression (79) of Step 7.2 and (71) yield [1 -C 0 C h, + o(C h, )] [1 -C 0 C h, + o(C h, )] -C 0 C h, + o(C h, )]

	E q (t Z ) =	t 2 2	R -	t 2 (s) 2 (s)	B -	t q+1 q + 1	C h,
	=	S 2 2 2	R -	S	2 (s) 2 (s) 2 (s)	B
		-	S q+1 [1			
								q+1
							2 (s) 2 (s)-2 -	ξ	2 (s)-2

q + 1 C h, + o(C h, ).

  Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47-71. Département de Mathématique, Université libre de Bruxelles, CP 214, Boulevard du Triomphe, B-1050 Bruxelles, Belgium; Institut Élie Cartan, Université de Lorraine, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France

(a) For 0 ≤ γ < γ H (R k+,n-k ) - 1 4 , we have that

4 , we have that

,

Theorem 6.2 and Proposition 7.1 yield Theorem 1.3.

Proof of Proposition 7.1: We define the test-function sequence (Z ) >0 by

, where u and ũ are as in the definition (22). We have:

when → 0 where:

|x| s dx and C h, := Ω hZ q+1 dx.

Step 7.1. We fix f ∈ C 0,θ (Ω), θ ∈ (0, 1), and p ∈ [1, 2 ). We claim that

Moreover, we have that

Case 2: We assume that n ≥ (q + 1)α + . Since α + -α -≥ 1 and q > 1, we then get that

Then, for n ≥ (q + 1)α + , Cases Proof of Proposition 7.1 when γ > γ H (R k+,n-k ) -1 4 . Proposition 4.1 yields

as → 0. Here, we compare n -n-2 2 (q + 1) and α + -α -. Note that

Therefore, since q > 1, when n ≥ (q +1)α + , we have that n-n-2 2 (q +1) > α + -α -. As for the case γ ≤ γ H (R k+,n-k )- 1 4 , we get Case (b) of Proposition 7.1 by studying the relative positions of n -n-2 2 (q + 1) and α + -α -and using Step 7.1 and (82). This proves Case (c) of Proposition 7.1.

All these cases prove Proposition 7.1. As already mentioned, Theorem 6.2 and Proposition 7.1 yield Theorem 1.3.