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HARDY-SOBOLEV INEQUALITIES WITH SINGULARITIES ON
NON SMOOTH BOUNDARY. PART 2: INFLUENCE OF THE
GLOBAL GEOMETRY IN SMALL DIMENSIONS.

HUSSEIN CHEIKH ALI

ABSTRACT. We consider Hardy-Sobolev nonlinear equations on domains with
singularities. We introduced this problem in Cheikh-Ali [4]. Under a local
geometric hypothesis, namely that the generalized mean curvature is negative
(see @ below), we proved the existence of extremals for the relevant Hardy-
Sobolev inequality for large dimensions. In the present paper, we tackle the
question of small dimensions that was left open. We introduce a "mass”, that
is a global quantity, the positivity of which ensures the existence of extremals
in small dimensions. As a byproduct, we prove the existence of solutions to a
perturbation of the initial equation via the Mountain Pass Lemma.
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1. INTRODUCTION

Let Q be a bounded domain of R, n > 3. We fix s € [0,2] and v € R. It follows

from the classical Caffarelli-Kohn-Nirenberg inequalities |\ that if v < %, there

exists K > 0 such that

2
2*(s) TF(5) 2
( ful . dﬂc) SK/ (|Vu|2—7u2> dx,
o |z Q ||

for all u € DV2(Q2), where 2*(s) := % and D12(€) is the completion of C°(€2)
with respect to the norm u — ||Vu||2. We define the Hardy constant by

Vul2d
M;u e DL2(Q\{0} § > 0.
fQ ‘Zﬁdx

(1

~—

v () := inf {
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The classical Hardy inequality reads vy (R"™) = %

yu () > %. We refer to [4] for discussions and properties of the Hardy con-

stant. As one checks, for any v < vy (Q), there exists K = K(,~,s) > 0 such that
holds for all u € DV2(Q). For a € L>(Q), we define

and therefore, we have that

5,a(§) = inf JQ ;
/’L"h, ( ) uEDl}Zr%Q)\{O} 'y,s,a(u)
where
2 au) = Jo (|Vu|2 7 (# +a(x)) u2) du
v,S,a |u‘2*(5) %@ )
(fg FIE dm)
so that

@ s ([0 0) ™ < [ (s (7 o) )

for all u € DM?(Q). As in [4], we address the question of the existence of extremals
for , more precisely

Q: Is there u € DV2(2)\{0} equality holds in (2))?

When 0 € Q, there are no extremals for 11, 5 0(€2) (see |7]). From now on, we assume
that 0 € 02. When ) is a smooth domain, criteria for existence are in Ghoussoub-
Robert [8]: in particular, there is a dichotomy between large dimension (where the
criterion is local) and the small dimensions (where the criterion is global). In [4],
we studied the case of domains that are modeled on cones:

Definition 1. We fir 1 < k < n. Let Q be a domain of R"™. We say that xg € 0N
is a singularity of type (k,n — k) if there exist U,V open subsets of R™ such that
0 €U, zo € V and there exists ¢ € C*°(U,V) a diffeomorphism such that $(0) = x¢
and

p(UN (R xR™™)) = ¢(U)NQ and ¢(U NI (RE x R*™F)) = ¢(U) N 09,
with the additional hypothesis that the differential at 0 d¢g is an isometry.
In the sequel, we write R¥+n=% .= Rk x R"~*. We have that (see [4])

e n— 2+ 2k)?
’YH(Rk+’ k) = %

We have proved the following:

Theorem 1.1 (Cheikh-Ali [4]). Let Q be a bounded domain in R™, n > 3, such that
0 € 9Q is a singularity of type (k,n — k) for some k € {1,....,n}. We fir 0 < s <2
and 0 < < vy (). Assume that either s > 0, or that {s = 0,n > 4 and v > 0}.
We assume that

1
(3) v < ’)’H(R’H’nik) 1 that is n > ny 1 = /4y + 142 — 2k.
Then there are extremals for . s0() if
GH, Q) <0

where GH., ,(Q) is the generalized mean curvature defined below in (6]).
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This result is for large dimension n > n.x (see (3)). In the present article, we
tackle the case of the remaining small dimensions. The argument based on local
geometry performed for the proof of Theorem is not working here. Here, the
global geometry has an impact: in order to obtain extremals, we must introduce a
"mass” in the spirit of Schoen [14] and Schoen-Yau [15]. Concerning low dimension
phenomena, we refer to the pioneer work of Brezis-Nirenberg [2], Jannelli [13] and
the more recent reference Ghoussoub-Robert 7] for further discussions. Our main
theorem is the following:

Theorem 1.2. Let Q be a bounded domain in R™, n > 3, such that 0 € 0N
is a singularity of type (k,n — k) for some k € {1,..,n}. We fiz 0 < s < 2,
v < vu(Q) and a € C*%(Q) (0 € (0,1)). Assume that either s > 0, or that
{s=0,n>4 and v > 0}. We assume that

1
v >y (RF+F) - 1 that is n < My j;.

We assume that the operator —A — (vy|z|=2 + a(x)) is coercive and has a mass
my,a(Q) (see Definition [3), and that m. () > 0. Then there are extremals for
firy.5.a(Q2). In particular, there exists u € C*9(2) N DV23(Q) such that

—Au — (# + a(sc)) u= “2‘*;2,71 in Q,
(4) u >0 n Q,
u=0 on 0N2.

In the second part of this paper, we consider the perturbative Hardy-Schrodinger
equation. Given a,h € C%?(Q) for some 6 € (0,1) and q € (1,2*—1), we investigate
the existence of solutions u € C?(Q) N D12(Q) to

—Au — (‘L% + a(x)) u= 7“2‘*i|)_1 + h(z)u? in Q,
(5) u >0 in Q,
u=0 on ON).

We refer to Brezis-Nirenberg [2] (v = 0 and s = 0 on a smooth domain ),
Ghoussoub-Yuan [10] (v = 0, s > 0 and 0 € ), Ghoussoub-Kang [9] and Jaber
[12] (y =0, s> 0and 0 € 99). In the Riemannian context with no boundary, still
for v = 0, we refer to Djadli [5] when s = 0, and to Jaber [11] for s > 0 and h = 0.

The case a, h = 0 was tackled in [4] for n > n, j for nonsmooth domains. We prove
the following;:

Theorem 1.3. Let Q be a bounded domain in R™, n > 3, such that 0 € 0
is a singularity of type (k,n — k) for some k € {1,...,n}. Let a,h € C*%(Q)
(0 € (0,1)) such that —A — (y|x|=2 + a) is coercive and h > 0. Consider s € [0,2)
and v < v (R¥+"=F) Assume that either s > 0, or that {s = 0,n > 4 and v >
0}. We fix ¢ € (1,2 —1). Then, there exists a positive mountain pass solution
u € DY2(Q) to the perturbative Hardy-Schridinger equation under one of the
following conditions:

e 0<y< 'YH(Rk*"n*k) 1 and
GHy,s(©2) <0 ifg+1< 22,

chH’Y,s(Q) —ch(0) <0 ifgq+1= 2n—22’

h(O) >0 ifg+1> 2::22’
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o 0 <y =ryy(RF+n=k) %, and
GH,(Q) <0 ifq+1<2=2
h(0) > 0 if g+ 1> 2n=2

n—2"

o v > vy (RF+m=F) i, and

2n—2(ay—a_)

m%a(Q)>0 qu+1<T’
csmy a(Q) + e2h(0) >0 if g+ 1 = 22w —a )
h(0) >0 if g+ 1> 2o ma)

where ay — a_ = 2y/yg(RF+7=F) — 5 (see (@) below), c1,c2,c3 > 0 are defined in
and my () is the mass of 2 at 0.

This result shows how the subcritical nonlinearity has an impact on the existence
of solutions. When the subcritical nonlinearity is close to being linear, only the

geometry of 2 commands the existence. Conversely, when it is close to being critical,
the subcritical nonlinearity commands the existence, whatever the geometry is.

Notation: In the sequel, C' denotes a positive constant. The value of the might
change from a page to another, and even from one line to another.

2. DEFINITION OF THE GENERALIZED CURVATURE AND THE MASS

Generalized curvature.

Definition 2.
Q; :=o(UnNn{x; >0}) foralli=1,..,k,
where (¢,U) is a chart as in Definition[], We have that:
e Foralli=1,.. k, Q; is smooth around 0 € 9%;.
e Up to permutation, the ;s are locally independent of the chart ¢.
o The Q;’s define locally Q: there exists 6 > 0 such that
k
QN Bs(0) = (1) 2 N Bs(0).
i=1
We set ¥ := NF_,0Q; where k € {1,...,n}. The vector HZ denotes the mean-
curvature vector at 0 of the (n — k)—submanifold ¥. For any m = 1,..., k, II(?Q"*
denotes the second fundamental form at 0 of the oriented (n — 1)—submanifold
0. The generalized mean curvature of  is defined by:

k k
(6) GH,o(Q) = & > (HY im)+c, > I (0, 0)
m=1 i,m=1,i#m
k
SCTEED DR ¥ A

p,q;m=1, [{p,g;m}|=3

where for any m = 1,....k, U, is the outward normal vector at 0 of 09, and
c£75,6375,0213 are positive explicit constants. We refer to [4] for details on this

curvature.

The mass. Let o € R be a real number and fix v < vz (R*+"~%). Then

<A 7) Se =0 ac{a_,ay},

|z[?
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where:
k
(7) S :=|z|727* Hmi and ay = ag(y,n, k) =

i=1

n—2
2

+ \/WH(R’”’”"“) -

The functions S,_,S., are prototypes of solution to vanishing on gRF+ "k,

Definition 3. Let Q) be a bounded domain in R™, n > 3. such that 0 € 90 is
a singularity of type (k,n — k) for some k € {1,...,n}. We fir v < yg(Q2) and
a€C%(Q) 0 e (0,1)). We say that a coercive operator —A — (y|z|~2 + a) has a
mass if there exists G € C2(Q) N D)2 (Q) such that

loc,0

e (ﬁ + a(:c)) G=0 nQ,
(8) G>0 in Q,
G=0 on 0Q\{0},

and there exists ¢ € R such that
k
(9) G(x)= Hd(a:,aﬂi) (|:17|7o‘+7]c + clz|72 7k 4 0(|17|7a*7k)) as z — 0.
i=1

Then the function G is unique, and we define m~ o(Q) := ¢ as the boundary mass
of the operator —A — (y|x|~2 + a).

Examples of domains with positive of negative mass are in Section [5] below.

3. SOME BACKGROUND RESULTS
We start with the following classical result:

Theorem 3.1. [see Cheikh-Ali [4]] Let Q be a bounded domain in R™, n > 3, such
that 0 € 09 is a singularity of type (k,n — k) for some k € {1,...,n}. Assume
that v < yg (RF+77F) 0 < s <2, et piy.5,a(Q) < oy 5,0(R¥"7F). Then there are
extremals for piy s .a(S2).

Indeed, Theorem was proved in [4] when a = 0. The proof extends to the
general case with no effort. Recall now an optimal regularity theorem.

Theorem 3.2. [See Felli-Ferrero [6] and [4]] Let Q be a bounded domain in R™,

n > 3, such that 0 € 99 is a singularity of type (k,n — k) for some k € {1,...,n}.
We fiz v < vy (RF+"=k). Let f: Q x R — R be a Caratheodory function such that

|U|2*(s)72
(10) |f(z,v)] < Cvl (1+|:1:|5> for allz € Qv eR.
Let u € DY2(Q)j0c,0, be a weak solution to
—Au — 7+|O(2|x|)u = f(z,u) in Dl’g(Q)loc,o
T

for some T > 0. Then there exists K € R such that

k
[Ti, @

|

uniformly in C as A = 0, where ¢ is a chart as in Definition .

A u(Ap(z)) — Kla| in By (0) NRF+"7F,

In section 4] we will need the following lemma:
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Lemma 3.1. [See |4]] Assume the u € DV2(RF+"=k),,. o is a weak solution of

{ —Au — %u =0 mn D1’2(Rk+’n_k)loc,07

u=0 on Bas(0) N ORF+—k,
for some 7> 0 and a € {a_,at}. Assume there exists ¢ > 0 such that
lu(x)| < clz| = for x — 0,2 € RF"7F,
e Then, there exists c; > 0 such that
|Vu(z)| < ci|z| =t as 2 — 0,z € RF+"F,

o Iflim, o |z|%u(x) = 0, then limg_o|x|*T|Vu(x)| = 0.

4. TEST-FUNCTIONS ESTIMATES FOR THE MASS: PROOF OF THEOREM [1.2]
Let U € DV2(RF+m=F) be a positive extremal for ji, 5 o(R*+"~*). Then
S Jgrsm—n (IVU> = y|z|2U?) da
~,s,0 (U) = 2

(Jarsms ]~ |U 2 d) =
Therefore, there exists £ > 0 such that

—AU — 4]z 72U = ¢z 2 0% )71 in REwn=k,
(11) U>0 in RF+n=k,
U=0 on ORk+n—k,

=1 O(Rk+’7l_k).

S,

For r > 0, we define
(12) B, := B,(0) and B, := B,(0) NRF+"~F,
Therefore, with 6 > 0 small, the chart ¢ of Definition [I] yields
¢(Bss NR¥"7F) = ¢(Bss) N Q and ¢(Bss N ORM ") = ¢(Bss) N .
We fix n € C°(R™) such that

| 1 forxze Bs,
(13) n(x) = { 0 for x ¢ Bas.
Define also for convenience,
k k
(14) p(z):= Hd(x, 08;) for all z € Q and v(z) := Hml for all 2 € R*+"~F,
i=1 i=1

Equation @ allows us to define © € (2 — R such that
G(z) = (pu|z|~**+ %) o ¢~ (z) + O(x) for any = € Q,
where ¢ as in Definition [Il We then get that © € D12(Q2) and
(15)  O(x) = mya(Qp(@)lz| = 7F + o(p(x)|z] 7> 7F) as z — 0.
Note that that
(16) {7>7H(Ri XR"_k)—i} s {ay—a_ <1} & {n<nyi}.

Since U satisfies , Theorem yields K7 > 0 such that
(17) lim A*-U(Ax) = Kio(z)|z|~* % in By (0) nRF+"—k,
A—0t
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The regularity applied to the Kelvin transform z — U(z) := |22~ "U (1) yields
(18) lim )\a+U()\x) = ng(f)‘x|_a+_k in B1(0) lemr,n—k,

A—+oo

for some K5 > 0. Up to multiplying U by a positive constant, we assume that
K5 = 1. Equation , the Kelvin transform and Lemma yield

(19) |U(x)| < Clz|~+ and |VU (z)| < Clz|~'7%* for any = € RF"7F,
For € > 0, we define

(20) U.(z) = e "= U(e ') for all z € RF+"—k
and
(21) uc(x) := (nU.) 0 ¢~ () for x € Q and @ := u, + e

The main result of this paper is the following:

Proposition 4.1. Let Q be a bounded domain in R™, n > 3 such that 0 € 9Q is a
singularity of type (k,n — k) for some k € {1,...,n}. We fir 0 <s <2, v <~vg(Q)
and a € C*%(Q) (6 € (0,1)). Assume that there are extremals for i s o(RE+"7F).
We assume that

1
v >y (RF+7F) - 1 that is n < .y 1,

and that the operator —A — (y|x| =2 + a(x)) is coercive with a mass m~ ,(Q). We
let (@c)e € DV2(Q) as in (21)). Then

J,Sy%s,a(ﬂe) = u%s,o(R’”’"*k) (1 — 37Sm%a(§2)60‘+7°‘* + 0(6“*70‘*)) as € — 0,
where
. 72 -1
(22) Gy s = (ay —a_)Cran (f /Rk#n_k T dm) > 0,

where Cy, ,, is defined in .

As one checks, Theorem [I.2]is a direct consequence of the combination of Propo-
sition [4.1] and Theorem B.1}

This section is devoted to the proof of Proposition [4.1]
Proof of Proposition : It follows from the uniform convergence in C! of the
equation , the definitions of @, and G, we denote that

(23 lim 5 = G dans Clo(@) N D}2o(0).
€ 2

Define the constant

k 2
24 Crn ::/ z; | do.
(24) e (1] )

In the sequel, 7, will denote a quantity such

lim lim ¥¢ = 0.
p—0e—0 P

For convenience, we define

Ny o(w) := |[Vw* = (v]z]~? + a) w*.
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Step 4.1. For any p > 0, we claim that
/ N, o(te) dx = e+~ (04+Ck7np”*20‘+*2 + My o (Q)(n—2)Chpn + 19;) ,
Q\¢(Bp,+)

as € — 0 with the constant Cy, ,, is defined in .
Proof of Step[4.1 From the equation (23], we observe that

lirr(l)ef(ﬂ‘**a*)/ Nyolte)de = / N, .o(G)dz.
- N\ (Bp,+) Q\¢(Bp,+)

Since G satisfies (§)) and vanishes on 0Q\{0}, integrations by parts yield

/ N, o(G)dz = / (=AG = (y|z]* + a(2))G) da
Q\é(Bp.+) N\G(By,+)

— / GO,G do
»(0(Bp,+))

(25) = (G0 ¢)0s.,(Go¢)d(¢*0),

- /(aBp(O))ﬂRk+’"k
where v(x) is the outer normal vector of B,(0) at z € 0B,(0). We will now find
the value of (G o ¢)0y.,(G o ¢). The defintions of v and G yields,
(26)

(G o )(z) =v(z)|z| % 4 my o (Q)v(2)|z|~* % + o(v(z)|z|~* %) as = — 0.

From © and the uniform convergence in C' of G, we have for all [ = 1,...,n that

(27) (©0¢) = 0 (myo(Qulz|~* %) +o(|z[~* 1) as z — 0.
Moreover, the definition of G yields,
0(Gog) = 0w (|x|7a+7k + m%a(Q)\mra**k)

—2y0 (g + k)| 72772+ (o + k)my o (Q)]z] 7= F2) + of|x| =1,
In view of,

puv(z) = % +O(lz]) asx — 0 and ay < a— + 1,

we obtain as x — 0 that,
(28) Op.(Gog)=—v (Oz+\x|7o‘+7k71 + m%a(Q)a,|x\*°‘**k*1) + oz~ D).

We combine the equations , and since ap +a_ =n—2, —2a_—1>1—n,
ay —a_ <1, we get

—(G09) 0.0 (Gog) = v* (aup || 2+ 7271 - my o (Q)(n — 2) 2| 7" 7) Fo(|2]'7T).

Moreover, using again the definition of v,
_/ (G0 )ds.(Gog)d(¢*o) = ayChup" >+ 72 +my0(Q)(n—2)Crpn + 0y,
9B, +

where lim,_,o ¥, = 0 and C}, ,, is defined in . Plugging the last equation in
yields Step O

Step 4.2. We claim that, as ¢ — 0,

/ Noalfie) dv =& 2|7 U ) datme o(Q) (n=2) Crne® ™ +o(e™777).
Q RE+:m—k
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Proof of Step : With the definition of i, for any z € RF+"=F we get

(29) Ue 0 p(x) = Ue(x )—l—e GOQS( ) for all x € Bs 4.
Fix p €]0,d] that we will eventually let go to 0. We define

I, ::/ (|Vﬂ€|2 ('y\m| 2+a) )dac
¢(BP>+)

Let ¢* Eucl be the pullback of the Euclidean metric. With , we get

= (1900008t~ iy + 06 G0 ) et o
/Bp’+ <|VU6 i*Eucl - <¢( I +ao¢) U2) | Jac($)| d

ay —a

b= [ (170 9(© 0 0ot = (5 + 000 (© 0610 ) ac(o)

v [ (1900 (g + 00 0) @008 ) Macto)l e

Since dypg = Idgn, ¢* Eucl = Eucl + O(|z|). Since © € D12(Q), we get that

g
I@P = / <|VU€|2E'u,cl - (| ‘2 —|—aoq§> > dx
B+

0 ( [ 1ol (90 + fal202) dx>
B+

g —a

+ 2z /B <<VU63V(®O¢)>EUCI - <|7|2 +ao¢> (@°¢)Ue> dx

_|_

+ o( el (VUL V(@0 6)| + [a] @0 0)U) dx)+ea+-a—ﬂ;
Pt

as € = 0. The explicit expression of U, and n > 2ay yield

p
/ Uldr = O <ea+a / pr2a+—l dr>
Bps 0

(30) = T 9L
The definition of ©® and ay + a_ =n — 2 give

aop(@od)Ucdr = O+ prdr
J, . o000°9 (e )

(31) = g,

We combine the equations , , 7 and ,
IE’P = / <|VU6|2Eucl ’YQU ) dx
By |z

oy —a

+ 2 7/ ((VUE,V(@O¢)>Eucl z ‘2(90@ )dm+e“+_°‘19; as € — 0.
Bo,+
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Using again the integrations by parts and since U, and ©o¢ vanish on OR*+" =%\ {0},
we have as € — 0 that

I, = / U, (—AUE — ’y|x\_2U€) dx +/ U.0,U.do
Byt R¥+"*N9 B, (0)

oy —a_

(32) + 2 (/B (©0¢) (—AU. — y|z|?U.) dz

+ / (@0 ¢)0,U. da) + T
R*+"=*N3B,(0)

We claim as € — 0 that

oy —a_ —a_

(33) / (©0¢)0,Ucdo =—are 2 myo(Q)Crpn + o(ea+2 ),
RF+""*N5 B, (0)

and
(34)

/ UeayUe do = *Q+Ck7n€a+7a7pn72a+72 + O(€a+fa,pn7272oc+)'
RF+""*NaB,(0)

We prove the claim. It follows from the uniform convergence in C' of the equation
, we have forall [ =1,....n

K
i @ -4 — v\T)x
(35) ,\ETOO)‘ toU ) = [a| 7 [ aer ] $j_(a++k)|1‘|>2[ ;
J=15 A

where v is defined in . The definition of U, and yield

k
cpzan g x v
U, =€ 2 |z| 7 k di<k H zj — (g + k)ﬁv + o(|z| 7+ 1)
J=15#
Since v(z) = |z|~ !z is the outer normal vector of B,(0), we then get
OC+7

(36) 0,U. = e 7 (—apola| ™+ 4 o(a] ),

as € — 0 uniformly on compact subsets of C R¥+7=k\{0}. From © and a4 +a_ =
n — 2, and , we obtain as € — 0 that

(©00)0,U. =€ 7 <—a+mv,a(9)€¥v2|x|_"+1_2k + o(|x|1_")) }
Therefore, we get . The definition of U, and the equations and yield
UedyUe = —apet 0oz 720072870 4 g 7 [g 7247,
as € — 0 uniformly locally in C W\{O} This yields and proves the claim.

We combine equations , and to get
I, = /B Ue (AU, — ~|z|2U,) dz — a4 Cp ™t~ pn =20+ 72
o+

ay -«

+ 2z / (©0¢) (AU, — ~|z|?U,) dz
BpHr

— 204 €T My o (Q)Cpp + €TI0
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Since U satisfies the equation and by the definition of U,, we have
—AU, =] U, = €la| U2 !

Therefore, we get as € — 0 that

Ie,p = 5/
By, +

2 (s)
n—2o4 —2

— a1 Cp e % p

2 (s)—

(37) d:zc

el
p+
=200 €7 my o (Q)Chp + €447 -,

The definition of U, and yield

(s)
f/ © —dx
REm (B, ) 1]

Therefore, with 2*(s) > 2, we get

2% (s)
< (Ce 2

(ay—a-)

2 (s) U2 (s
38 dr = dx + o(e*t %) as e — 0.
(38) g/p + ¢ RE+m—k || ( )

The definition (14 7 and the control yield

62*(5)71 ay—a_ 400 2% (5)
/ Vg de = O (6 2 / p== (e —a)-1 d7~>
RE+mR\(B,, ) [T p

2% (s)—1
= e 2 (wmolye

Therefore, with the definition of © we get as € — 0 that

*(s)—1 U (s)—1
g/ @Ogﬁdl‘ = fm%a(Q)/ ’Um dr
Bp,+ Bp,+ |$| -

p2 -1
0 v—————dzx
</Bp,+ |x|s+o¢_+k
LY+*‘17

(39) = S (mw<ﬂ>s

_|_

U2*(s)—1

S v|x‘s+a,+k

11

dx-l—ﬁf) .

Since (—A — y|z|72) (v|z[~*=~*) = 0, using integrations by parts and since U

vanishes on 9N\{0}, we obtain that

U2 s)—1
5/ v—————dx = lim vlz| " "F (=AU — v]z| ?U) dz
Rk+ n—k

|z|sto-+h R=+o0 JBp

R—4o0

(40) - / A, Uvlz|=*"*do| .
R¥+""*N9BR

Arguing as for , it follows from , that, as R — 400

= lim [/B U(—A=~lz|7?) (v|z|~*7F) dz

U = —agvlz| 7 F1 4 o(jz| 7% ~1) uniformly for x € dBR(0) N Rk,
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Moreover, since a4 + a— =n — 2 we get
B, Uvlz|~=~F = —a v?|e|"" 2D 4 o(|z|t).

The last equation yields,

lim A, Uv|z| "% do = —a; Cy. .
R—+oc0 RF+ "R 9B (0)

Then, by

U2 (s)—1
4D 5~/]Rk+,n—k UW dz = a;Cgn.
Combining and ([4]] @, we get
2 (s)—

(42) §/ P @o¢dx=67‘”z”“ (04 1y () Cl +07) a5 € = 0.
By +

Next, the equations (37), and yields,
U2*(S)

— € _ ap—a_ n—2a4—2 oy —o
I, é-Rk_*_,nfk BE dr — a; Cy ne p +o(e ).

In the other hand, using Step the definition of I , and the last equation, we
get Step O

Step 4.3. We claim as ¢ — 0 that,

ﬂZ (s) U2 (s)
/ ~—dr = / dz + 2%(8) a4y o (Q)E T Chne® = + o(e+ 7).
Q ]Rk_'_.nfk'

j]° |]°

Proof of Step : We fix p > 0. The definitions of %, and ©, and 2*(s) > 2 yield

ﬂf*(s)
(43) / — dz = ofe+ o),
#(B2s,+\Bs,+) ]
with the definition . Equations (15| , m, @ ) and yield
22(3) 5 (009) ’
/ © —dr = / . (14 O(Jz|)| dx + o(e*+~~),
o |7 Bs. 1 2|

as € — 0.

a2 ® 2(s) oo g2 -1
/Tdm:/ — +2%(s)e” T ————(0o09) | dx
o |zl Bay \ l2° |z

. Ue ()2 2 2%(s) —a_) 2% (s) _
[ ofe Eree g e S 000 ) ) dr o)
B(5+

It follows he definitions of © and U.,

2%(s)=-2 eto . .
/ Y (T (009t = O 62<a+—a—>/ el gy
B(51+ |fE| 0

(44) = e gr,




HARDY-SOBOLEV INEQUALITIES WITH NON SMOOTH BOUNDARY, II 13

And,
oy —a_ « * (s P * (g
/ (€ 0o 0)? (s)\$|_s dr = O (6(0‘*_0‘)2 3 / TQT()(‘“_“*)_l dr)
Bs.y 0
(45) = XYL
The equations et yield as € — 0 that,
(46)
~2%(s) U2*(s) ot o U2*(s)71
/ueisdx:/ 6754—2*(5)6 = 678(60@ dx + X+~ 9P.
o |7l Bsy \ |2l ||
Therefore, for all £ > 0 the equations , and yield the result. O

Step 4.4. We are now in position to prove Proposition [{.1]
Proof of Step[{-4} By Step [£.3] we have that

2 2
~2%(s) 2% () U2*(s) 2% (5)
/ Ue dx = / < dx
o |zl RE+m—k |z

* =1
UEZ (s) 2% (3)
(47) + 200 m o ()ET O et T (/ dx)
R

ki,n—k |$|S

+ o(e*t 7).

We go back to the definition of Jﬁa,s, Step equation and since U satisfies
, we get as € — 0 that

~ kyon—k ap—a_ ay—a_
J’?,s,a(uﬁ) = J']\I},sjr() (U) (]' - m"/,a(Q) 2,56 * + 0(6 * )) )
where (2’8 is defined in . This ends the proof of Proposition O

Combining Proposition and Theorem yields Theorem .

5. EXAMPLES OF MASS

In this section, we discuss the existence and the sign of the mass. An example
of existence of mass is as follows:

Proposition 5.1. Let Q be a bounded domain in R™, n > 3 such that 0 € 99
is a singularity of type (k,n — k) for some k € {1,...,n}. We assume that v >
v (RF"=F) —1/4 and that

(48) QN B;(0) = R¥"=* 1 B5(0) for some § > 0.

We assume that yg (R¥"7F) — 2 < v < 45 (Q), that a € C*(Q) vanishes around
0 and that —A — (y|z|~2 + a(z)) is coercive. Then the mass is defined.

Proof of Proposition . We fix n as in . For a € C%%(Q) that vanishes around
0, define on 2 the function

9= <—A - # - a(f)) (nSa) .

where S, is defined in such that —AS,, — ’y|a:\_2506+ = 0 on RF+"=*_ Note
that this definition makes sense when the support of 7 is small enough due to
and a vanishes around 0. In particular g(z) = 0 around 0. Therefore, we have
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g € L%(Q) = (Lz* (Q))/ C (Dl’z(ﬂ))/. Since the operator —A — (y|z|~2 + a) is
coercive, there exists w € D%?(Q) such that

(—A—#—a(x))w:g in Q,
w=0 on 0f.

Since g vanishes around 0, Theorem and the change of variable y = Az that
there exists K € R such that

v(z) v(z)

w(z) = K|x|a7+k +o (|xa+k> as ¢ — 0,

where v is as in (I4)). For all z € Q\{0}, we define the function Go := 17Sa, — w.
The definition of w yields

(—A - ﬁ - a(a?)) Go=0 1inQ,
Go=0 on 0Q\{0}.

For 09 > 0 small enough, the definitions of S,,, w and o < ay yield
Go(x) = v(x)|z| 77 (1 4+ o(1)) in RF+""*n By, |

with o(1) — 0 as  — 0. Therefore, Gy > 0 in R¥+"~% 0 By . Then coercivity and
the comparison principle yield Gy > 0 in 2. Moreover, we have that

Go(w) = v(z) (|| =+ 7+ = Kla| ==~ + o(|af *=~))

as x — 0. Then the mass at 0 of —A— (y|z|"2+a(z)) is defined and m., () = —K.
This proves Proposition 5.1

We now discuss briefly examples of negative and positive mass. Here, the refer-
ence is Section 9 of Ghoussoub-Robert [§]. We still assume and that v >
v (RF+"=F) —1/4, so that the mass m., o({) is defined. When Q C R*+"=*due
to the comparison principle, we get that G < S, , and m., o(€2) < 0. Arguing as in
8], we are able to define the mass of a domain Q D RF+7~%_for which m, o(Q) > 0:
then, defining Qp := QN Bgr(0), we get that limp_, 4o m%O(QR) = m%O(Q) > 0.
So for R > 0 large, we get examples of bounded domains with a singularity of type
(k,n — k) at 0 and with positive mass.

6. PROOF OF THEOREM [[.3t FUNCTIONAL BACKGROUND FOR THE PERTURBED
EQUATION

In this section, we proceed as in Jaber [11]. A Palais-Smale sequence for G :
E — R is a sequence (U, )men € E such that there exists 8 € R such that

G(up) — B for all m € N and G’ (uy,) — 0 in E',

as m — +o0o. Here, we say that the Palais-Smale sequence is at level 5. The main
tool is the Mountain Pass Lemma of Ambrosetti-Rabinowitz [1]:

Theorem 6.1 (Mountain-Pass Lemma [1]). Let G € C*(E,R) where (E,|.||) is a
Banach space. We assume that G(0) =0 and that

e There exists A\, > 0 such that G(u) > X for all u € E such that ||u|| =,
o There exists ug in E such that lim sup;—, 1 oG (tug) < 0.
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We consider to > 0 large such that ||toug|| > r and G(toup) < 0, and
B = égf‘ sup G(c(t)),

where

I'={c:[0,1] = E s.t. ¢(0) =0, ¢(1) = touo}.
Then, there exists a Palais-Smale sequence at level 3 for G. Moreover, we have
that 3 < sup;q G(tug).

Weak solutions of are to the nonzero critical points of the functional

2*(s) q+1
1 ¥ U hu
Ey(u) = Vu|? - +a)u2)d;v—/+dac—/ t da,
o) 2/g(| | <ﬂﬂl2 o 2*(s)lz[* Q¢+l

for any v € DY2(Q) and where u; = max{u,0}. In the sequel, we assume that the

operator —A — (# + a(z) ) is coercive that there exists ¢y > 0 such that

(49) / (|Vw|2 - <|::|2 + a) w2> dx > Co/ |Vw|? dz for all w € DV2(0Q).
Q Q

Proposition 6.1. Fiz ug € DY?(Q) such that ug > 0, ug # 0. Then there exists
a sequence (Um)men € DV2(Q) that is a Palais-Smale sequence for E, at level j3
such that 0 < B < sup;>q Eq(tuo)-

Proof of Proposition [6.1 Clearly E, € C*(D'?(Q)). Note that E,(0) = 0. It
follows from and the Sobolev and Hardy-Sobolev embeddings that there exist
cp, c1,co > 0 such that

(50) Ey(u) > collul|? = er|lul>® — ea||ul|4? for all u € DV2(Q).

Define f(r) =r? [co — e (5)=2 cor?™1] :=r%g(r) and since 2*(s),q + 1 > 2 we
have g(r) — ¢op as r — 0. Then there exists ro > 0 such that r < rg, we have
g(r) > <. Therefore, for all u € D"?(Q2) such that |[ul = 2 and by (50), we have

By(u) > %% = \. We fix ug € DV2(Q), ug # 0. We have that

g =
E,(tug) = t2/ [Vu |2—(l-i-a)u2 dx
olto) =g J Vol = (G e

t2*(s) 2% (s) tatl

- o [uol dx — /h\u0|q+1dx
2%(s) Jo  |xl* q+1Jg
t2 t2*(s) tq+1 . t272*(s)

_ Y p _ _ < $27(s) _
9 Rl 2*(8) R2 q+ 1R3 > ( Rl R2> )

where R1, R2 > 0 and R3 > 0. Since 2*(s) > 2, we have E,(tug) — —o0 as t — +00.
Then limsup,_, | o, £,(tug) < 0. We consider ¢y > 0 large such that ||toug|| > r and
E,(toug) < 0. For ¢t € [0,1], we have Ey(c(t)) > X and then there exists

B = 1r€11t: sup E,(c(t)) > X > 0.

Proposition [6.1] then follows from Theorem O
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Proposition 6.2. Let Q be a bounded domain in R™, n > 3 such that 0 € 9N
is a singularity of type (k,n — k) for some k € {1,...,n}. We fix a,h € C*?(Q),
0 € (0,1). We assume that h > 0 and that holds. We fix v < g (RF+m=F)
and B € R such that

(51) B < 2=

L5
2(n —s)
Then, for any Palais-Smale sequence (um)men € DV2(Q) for E, at level B3, there

exists u € DY2(Q) such that E,(u) = B and we have u,, converges strongly in
DY2(Q) up to a subsequence. Moreover, we have E}(u) = 0.

n—s

l‘%S,O(RkJﬂnik) 2me

Proof of Proposition .' Take (U, )men € D12(2) a Palais-Smale sequence for E,
such that

Eq(up) — B and E)(um,) — 0 in D?(2)'.
Step 6.1. We claim that u,, is bounded in DV2((2).
Proof of Step : The coercivity and the definition of E, yield

62 Nl < 2657 (Eun) + 5o [0V dos [ )t ae).

Since B/ (um) — 0 in DV2(Q)’, we observe that

[ (o= (T eyt ) dr= [ O [t e ol

The definition of the energy E, and the last equation yield
(53)

2E,(um) = <1 - 2*?5)) /Q (UT@?E(S) dx+ (1 - qj_1> /Qh(um)‘fl dz+o(||um]|)-

Moreover, since Eq(u,,) — 8 as m — 400, h > 0 and ¢ + 1 > 2, we obtain that

2*(8) . |x|s q\Um q + 1 7” m
< 2684 of[luml)),

therefore,
9 (um)i*(s)
54 1-— / dx = O(1) + o(||um]])-
(54) (1= 57 ) [ 0 (1) + ol )
Similar and but 2*(s) > 2, we have
(59 (1= 27) [ )tz = 001 + o)
and give
(u )2 (s)
(56) lum | < 5t /‘ T‘ de+ | h(un)i de |+ of[[uml).
Q Q

The equations , and (56) yields,
lum|* = O1) + o[|uml)),
as m — +oo. This proves Step O
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Therefore, up to a subsequence, there exists u € D*2(2) such that

(57) Um — u  weakly in DL2(Q),
Um — u  strongly in LP(Q2) for all 1 < p < 2*.

Moreover, we have FE(u) = 0.

Step 6.2. We claim that, as m — 400

(58) /Q<V(um _ ) —7W> di = /Q de—ko(l),

and,
) g [ (90— =22 s < o)
Proof of Step[6.3: We denote that

(Eq(um), #) =/ ((Vum,w) — (7 +a) umgo) dzx

0 ||
2*(s)—1
—/ M)Jrsgodx—/h(um)igodx,
Q |z| Q

for all ¢ € DY2(Q). We observe that
o(l) = (Eg(um) — Eg(u), um — u)

/Q (IV(um — w2 - (# + ) (1 — u)z) "

||®
— / h ((um)d — ul) (um — u) dz.
Q

Since u,, — u weakly in D12(Q), integration theory yields

(60)

2*(s)—1 2% (s) 2*(s)—1
(61) lim Wudx:/ Y gr= lim qu7umdx.
m—rtoo Jq || o |z* m—=too Jo o |zl

The equation yields,
(62) / Bt — ) ()t — ) do = / Bt — )" da + (1) = o(1),
Q Q

as m — +o0o. Combining , and , we get as m — 400 that
(63)

/Q <|V(um —u)|* - (ZIQ + a) (tn — u)2> dz = /Q ()@ ') |iTs Lo(l),

Since 2*(s) > 1, we get that
2% (s 2% 2% (s
’(Um)_;_( ) u’ (s) (U — u)+( )

for some C > 0 independent of m. Therefore, but we have
2% (s)

(64) /Q((um)i*(s)—(um—u)%:(s)) dr :/Qu+ dx + o(1).

|z[* |z[*

< € (= O+ Oy ).
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Since u,, — u strongly in L?*(2) as m — +oo and by (63)), (64), we obtain (58).
With we have that

Byfun) = i) = 5 [ (190 — 0P =22 g

>

1 / 2% (s) 2% (s) dx
— Um — U + o0 1).

With (58], we get
By () — By (u) = (; - 21(s)> /Q <|V(um —u)P - y(“mu)z) dz + o(1).

|z[?
Since u is a solution of then E,(u) > 0, and Eq(u,,) — 8 as m — +oo. We

then get (59). This proves Step O
Step 6.3. We claim that

. _ . 1,2
(65) leIEOO Um = u in D2(Q).

Proof of Step : Let v < vy (R*¥+"=F) for all k € {1,...,n} and by the Proposition
2.1 in Cheikh-Ali [4], then for all € > 0 there exists ¢c > 0 such that for all
v e DV2(Q),

|U|2*(S) o) k ky—1 2 T2 2
dx < (Hy, 5,0 (REFTH) ™ +e)/ Vo] — —=v da:—!—ce/ v*dx.
Q Q Q

jz]? ]2

Take 6,, = U, — u. Since u,, converges to u in L?(Q) taking v = 6, yields
(66)

S-SR :
/ %daz < (fy, 5,0 (RFER) 71 —1—6)/ (|Vt9m|2 - 2972,1) dx+o(1).
o |z Q ||

We write N(0,) := [, (|V9m\2 - #9%) dx. By and (66]), we get that
N5 (1= (1,50 (RE") 4 ) N(0,)7F) < o(1),

With and the last inequation, we get that, as ¢ — 0,

(67)

2% (s)—2

79
> +o(1) | <o(1).

2(n—s)B

NBm) T [ 1= (0 0(RE™F)"1 4 ¢) ( -

With the assumption and , taking € > 0 small enough, we get that

N(0,,) — 0 as m — 400 and by coercivity, we obtain . a
With Step and since Eq(u,,) — 8 as m — +oo, we get that E,(u) = 8. This
ends the proof of Proposition [6.2} O

Theorem 6.2. Let Q be a bounded domain in R™, n > 3, such that 0 € 99 is a
singularity of type (k,n — k) for some k € {1,....n}. We fix v < yg(RF+"=%). We
fix a € C%9(Q) such that —A — (v|z|~2 + a(z)) is coercive, and h € C*?(Q) such
that h > 0. We fir 0 < s <2 andl < q < 2" —1. We assume that there exists
ug € DY2(Q), ug £ 0, such that

n—s

M%&O(Rlﬁmn*k) 2—s |

2—s
68 sup F,(tug) < ——
(68) up q(tuo) 30n —s)
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Then equation has a non-vanishing solution in D*2(12).

Proof of Theorem [6.2: By Proposition there exists a Palais-Smale sequence
(wm)men € DV2(Q) for E; at level 8 > 0 such that 8 < sup;~q E,(tug). It then
follows from Proposition that, up to a subsequence, (um)_converges strongly
to w in DY?(2). Then E,(u) = 8 > 0, so u # 0, and Ej(u) = 0. Coercivity
and Ej(u)[u_] = 0 yield u > 0. Regularity theory and Hopf’s principle yield
u e C*%(Q) and u > 0. Then u is a solution of (5)). This proves Theorem O

7. PrRoOF OF THEOREM [L.3} TEST-FUNCTIONS ESTIMATES

The main result of this section is the following:

Proposition 7.1. For v < yg(R¥+"=k) and fiz 0 < s < 2. We assume that there
are extremals for iy s o(R*"7F) we let U as in be such an extremal. We let
(ue)e and (ie)e as in (21)). Then,

(a) For 0 <~ < yg(RFm=%) — 1 we have

4

c1GH, (e + o(e) if g+1 <22,

sup Eg(tue) := o +{  (1GH45(Q2) — c2h(0)) € + o(€) if g +1 =232,
1)(n—2 1)(n—2

>0 _CQh(O)Gn_(q+ no) 0(€n_(q+ X >) ifa+1> 2::22.
(b) For 0 <y =g (RF+"F) — 1 we have

c1GH, (Q)eln (l) + o(eln (l)) ifq+1< %,
sup F, (tue) == By + D)l 1) (n— ) "
tzg q(tue) = Bo { —eph(0)en— TR | e Dy 202
(c) For v > yu(RF"=F) — 1 we have

— 3y (Q)e¥+ =% 4 o€+~ if g+ 1< 2n2lonsan)
Sup E, (t1.) 1= o] — (camy (D) + cah(0)) e+ 4 o(ens o) ifq+ 1= 2lacal)
> D) (n— g+ 1) (n— _ _
t=0 _CQh(O)EnJ F1(n2) +o(e”’( 1) 2)) fails 2 2£La_+2 o)
where By = %M%S,O(Rk*’"_k)g%j,

cp = = 3 (5 ka+,n—k W dl’) y

O] 1

(69) Cy = qu kaJr,n—k Uq+ dl‘, ,
2% (s) —a Lo f_ z;) do
c3 = ﬂ%s,O(Rk%nik)Z*(s ok 7 Joncrogts. kSJI;{(_S)l dw)

A
Theorem and Proposition yield Theorem
Proof of Proposition : We define the test-function sequence (Z;)eso by
ze={ 5 &S L
where u. and 4, are as in the definition . We have:
+2 £2°(5) pa+1

Eq(tZe) = 5Re - 2*7(3)B6 - mch,m
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:/ <|VZ > - <|2+a( )) Zf) dx

:/ da: and Cp, ¢ 1= / th+1 dx.
|z[® Q

Step 7.1. We fiz f € C%9(Q), 6 € (0,1), and p € [1,2*). We claim that

when € — 0 where:

£(0)en—"z> (P+D) Jgri - UPTHdz + 0 (6“*"%2(P+1)> ifn<(p+1)ag,
/Qf|Z€|p+1 dz =14 O (e (er—a)y (%)) ifn=(p+ Day,
O (™ (o —an >) ifn> (p+a
Moreover, we have
(70) /Qf|Z5\”+1 dr — 0 as € — 0.

Proof of Step : Note that it follows from ([19)) that

(71) 0 < Ucz) < Ce 7 \a:| “+ for all z € R¥+"~ % and € > 0.

We first prove Step [7.1] for u., postponing the case of @, and then Z, to the end
of the proof. We distinguish three cases:

Case 1: We assume that n > (p + 1)ay. It follows from that

‘/ flucPt da
Q

as € — 0. This proves Step for u. when n > (p+ 1)a.
Case 2: We assume that n = (p + 1)ay.. With (71), we get that

< CEPTH(W+—Q—) / |x|—(17+1)04+ dx < CGPTH(aJr—Ot—)
Q

n—2
lue[Pide| < CeTF D L luc|PT da
B57+
< Ce”fnT_Q(pH)—i—C’e"*nT&(pH)/ Ut dg
Bafl,+

—1

€0
< Qe ED) 4 genm R () / r~tdr
1

Cer (o) (1>
€

Case 3: We assume that n < (p+ 1)ay. It follows from that

/ f|ue|p+1dﬂc:O(6pT+l(a+_a*)) as € — 0.
O\ $(Bs,+)

Independently, since f € C%?(Q), we have that

/ fluPtrde= [ fog U Jac ¢|de
¢(Bé+) B51+

UPtldz + O / |z|?|U|PT da
B(;d,

IA

) e Penp) [
B

se—1 4+
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Since n < (p + 1)a, it follows from that U € LPFTL(R*+"~F) and that

[ v - Ummo(/
B ]Rk_*_,nfk Rk+,n—k\B

se—1,+

yr+t d:c)

se—1,4

= / UPtldz + 0 (/00 pr(prl)as—1 dr>
RF4mF e16

— p+1 (p+l)atr—n
(73) /R Lty o (¢ )
We claim that

(74) / |z[°|U Pt do = o (6"7%2(”“)) as € — 0.
Bs, 4

Indeed, when 0 +n > (p+ 1)y, we argue as in Case 1. When 6 +n = (p+ 1)ay,
we argue as in Case 2. When 6 +n < (p + 1)ay, we make a change of variable

y = ez and we argue as in . This yields . Putting and in
yields Step [7.1] for u. in Case 2.

‘We now prove Step When v < vy (RF+7=F) — i, Z. = ue, and we are done.
When v > vz (RF+n=k) — %, Z¢ = .. With the definition , we get that

@) [ fartiac= [ g
Q Q
:/ﬂuC'pdeJrO(e%;/ Iue|pl6|dx> +O(e”¥1<a+—a>/ Elas dm)
Q Q 0

Since © € DY2(Q) and p+ 1 < 2*, we get that © € LPT1(Q). It follows from
that |©(z)| < Clz|~*- for all z € Q. Arguing as in Cases 1, 2, 3 above, we get that
the second term in the right-hand-side of is dominated by [, [uc|P* dz. Then
Step for v > v (RF"=%) —1/4 follows. O

By Cheikh-Ali [4] and Step for the case v < g (RF+"~%) — 1/4 and Steps
and for the case v > vy (RF+"~%) — 1/4, we get that, as e — 0,

U2 (s)

p+1
dx

—o_

ot
U +€ 2 0O

U2 (s)
dz.

(76) R — Ry:=¢

RE4m—k

dx and B, — By ::/
|z[* RF+m—k ||

Step 7.2. We claim that for all € > 0, then there exists a unique t. such that
(77) sup Ey(tZ.) = Eq(teZ).
>0

Moreover, t. verifies

(78) te = Se [1 - C'Ocvh,e + O(Ch,e>] 5
where S¢ 1= (REBgl) 2”;)‘2, Co>0andte —ty ase — 0.

Proof of Step [7.2: We have that 0,E4(tZc) = 0 iff t = 0 or ge(t) = R where
ge(t) = B2 (9)=2 Ch@tq*l. Since Be,Ch, > 0 and g, is a strictly increasing
map i.e g.(t) — Re also, and since R, > 0 we have ¢.(0) — R. < 0 then, there exists
t. > 0 unique verifying g.(t.) = R such that holds. Since g.(t.) = R., we get

te S Se = (ReB;1)2*(sl')f2 .
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We are using (76), and (TI)) to get that S. — (RoBy )2*() 2 = (T2 W
as € — 0. Therefore, t. is bounded and there exists tg such that t. — tg up to
extraction. Since g¢(t.) = R, and Cj, ¢ — 0 as e — 0, we obtain that

te = [RB'—Cy B 't 1]TC 5=
= S [1 — O R 1} O Se[1 — CoCh,e +0(Che)],
Ry a1 1 o
where Cy := 22(5)[2 and tg = £2¥=-2. This yields and Step (]

Step 7.3. We claim that

g+1
2 Q *2*;51 fm
Eq(tEZe):m(J,ysa( ))2()2_ g+ 1

Proof of Step - The expression ([78)) of Step - and (| . 70)) yield

Ch,e +0(Ch.e).

t2 2 (s) tq+1
EoteZe) = 5 Re- 2*( PO RS
_ 53 1= CoChe +o(Cra)l® , _ SE 1= CoChe +o(Cr)l” ™
2 ‘ 2*(s) ¢
S = CoChe + 0(Ch o))" o
qg+1 hye
_ S0 200Che +o(Crd)l S8 (1= Co2*(5)Cne +0(Ch]
2 ‘ 2*(s) ‘
ST — (g4 1)CoChe + 0(Ch.e)]
- ChAev
g+1 ’
then,
52 Sg*(s) Sa+1
E, (t.Z = < B, — =<
q( € 6) R 2*(8) € q+1ch,€
—CoCie [SERe = 829 B, — S0y | +0(Ch).
Since S, = (REBgl)m and Cp,  — 0 as € — 0, this yields Step O

Proof of Proposition when 0 < v < yg(RF+"=F) — i. In this case, we
recall that Z.(z) = uc(x). Note that

{7 < (=)ya (RF+ ) i} & fos —a_ > (D)1

It was proved in Proposition 5.1 in Cheikh-Ali [4] that

e For v < yu(R*"7%) — 1 we have that
(79) I, 0(Ue) = fys,0(REETTFY (14 kG H,, 5 (Q)e + 0(€)) .

e For v = yu(R*"~%) — 1 we have that

(80)  J 0(ue) = py,s0(RFETTHF) <1 + KkGH, o(Qeln (1) +o0 <e In (1))) ,
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*(s -1
where k 1= ({ Jgesm—r Ulii‘() dw) and GH. () is defined in (6]). It follows from

Step that JouZdx =o(e) if oy —a— > 1, and O(e) if ay — a_ = 1. Therefore
and hold unchanged with the potential a.

Case 1: We assume that n < (¢ + 1)ay. It follows from Step that
Che = / hlue| 7! dao = h(0)e"~ "2 (at1) / Ut dz + o (e"—"T”@“))
Q RF+-m—k

as € — 0. Then, When n < (¢ + 1)y, we get Case (a) of Proposition [7.1] follows
by combining Step ., . the estimate of Cj . and studying the relative
positions of n — 2>=(¢ + 1) and 1.

Case 2: We assume that n > (¢ 4+ 1)ay. Since ay —a— > 1 and ¢ > 1, we then
get that

n —
n —

2(q+1)71:(nf(q+1)a+)+i21(a+fa_)fl>O.

Then, for n > (¢ + 1)ay, Cases (a) and (b) of Proposition [7.1] follows by the same
arguments as in Case 1.

This proves Cases (a) and (b) of Proposition O
Proof of Proposition when v > vy (RF+m=k) - i. Proposition yields

(81) Jleal@e) = s 0®*77F) (1= imy a(Q)e 7 +o(e 7))

as € = 0. Here, we compare n — ”T_Q(q + 1) and oy — a_. Note that

"2 ) (s —a)=n— (g + Doy + LN (os —an).

Therefore, since ¢ > 1, when n > (g+1)a, we have that n—252(g+1) > oy —a_.

As for the case v < yg (RF+"7F)— L we get Case (b) of Proposition|7.1{by studying
the relative positions of n — "72((] +1) and ay — «— and using Step and .

This proves Case (c¢) of Proposition O

All these cases prove Proposition As already mentioned, Theorem and
Proposition yield Theorem
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