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Nonlinear instability of inhomogeneous steady states solutions to the HMF Model

 and prove a nonlinear instability result under the same criterion.

Introduction

In this paper, we are interested in the nonlinear instability of inhomogeneous steady states of the Hamiltonian Mean Field (HMF) system. The HMF system is a kinetic model describing particles moving on a unit circle interacting via an infinite range attractive cosine potential. This 1D model holds many qualitative properties of more realistic long-range interacting systems as the Vlasov-Poisson model. The HMF model has been the subject of many works in the physical community, for the study of non equilibrium phase transitions [START_REF] Chavanis | Lynden-Bell and Tsallis distributions for the HMF model[END_REF][START_REF] Staniscia | Out-of-equilibrium phase transitions in the HMF model : a closer look[END_REF][START_REF] Antoniazzi | Nonequilibrium tricritical point in a system with long-range interactions[END_REF][START_REF] Ogawa | Precise determination of the nonequilibrium tricritical point based on Lynden-Bell theory in the Hamiltonian mean-field model[END_REF], of travelling clusters [START_REF] Barré | Small traveling clusters in attractive and repulsive Hamiltonian mean-field models[END_REF][START_REF] Yamaguchi | Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves[END_REF] or of relaxation processes [START_REF] Yamaguchi | Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model[END_REF][START_REF] Barré | The Vlasov equation and the Hamiltonian mean-field model[END_REF][START_REF] Chavanis | Dynamics and thermodynamics of a simple model similar to self-gravitating systems : the HMF model[END_REF]. The long-time validity of the N-particle approximation for the HMF model has been investigated in [START_REF] Caglioti | Long time estimates in the mean field limit[END_REF][START_REF] Caglioti | Quasi-stationary states for particle systems in the mean-field limit[END_REF] and the Landau-damping phenomenon near a spatially homogeneous state has been studied recently in [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF]. The formal linear stability of inhomogeneous steady states has been studied in [START_REF] Campa | Inhomogeneous Tsallis distributions in the HMF model[END_REF][START_REF] Ogawa | Spectral and formal stability criteria of spatially inhomogeneous solutions to the Vlasov equation for the Hamiltonian mean-field model[END_REF][START_REF] Barré | On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation -Case of an attractive cosine potential[END_REF]. In particular, a simple criterion of linear stability has been derived in [START_REF] Ogawa | Spectral and formal stability criteria of spatially inhomogeneous solutions to the Vlasov equation for the Hamiltonian mean-field model[END_REF]. In [START_REF] Lemou | Nonlinear stability criteria for the HMF Model[END_REF], the authors of the present paper have proved that, under the same criterion κ 0 ă 1 (see below for a precise formulation), the inhomogeneous steady states of HMF that are nonincreasing functions of the microscopic energy are nonlinearly stable. The aim of the present paper is to show, in a certain sense, that this criterion is sharp: we show that if κ 0 ą 1, the HMF model can develop instabilities, from both the linear and the nonlinear points of view.

In [START_REF] Guo | Unstable and stable Galaxy models[END_REF], Guo and Lin have derived a sufficient criterion for linear instability to 3D Vlasov-Poisson by extending an approach developped in [START_REF] Lin | Instability of periodic BGK waves[END_REF] for BGK waves. Let us also mention that both works have adapted some techniques presented in [START_REF] Guo | Nonlinear instability of double-humped equilibria[END_REF] to prove the nonlinear instability of the 3D Vlasov-Poisson system. In the first part of this article we adapt these techniques and prove the linear instability of nonhomogeneous steady states to the HMF system. In [START_REF] Han-Kwan | Stability issues in the quasineutral limit of the onedimensional Vlasov-Poisson equation[END_REF], a nonlinear instability result for 1D Vlasov-Poisson equation was obtained for an initial data close to stationary homogeneous profiles that satisfy a Penrose instability criterion by using an approach developed in [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF]. In [START_REF] Han-Kwan | Instabilities in the mean field limit[END_REF], starting with the N-particles version of the HMF model, a nonlinear instability result is obtained for the corresponding Vlasov approximation by also considering a Penrose instability condition for stationary homogeneous profiles. In the second part of this article our aim is to prove the nonlinear instability of non-homogeneous steady states of HMF by adapting the techniques developed in [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF][START_REF] Han-Kwan | Stability issues in the quasineutral limit of the onedimensional Vlasov-Poisson equation[END_REF][START_REF] Han-Kwan | Instabilities in the mean field limit[END_REF].

In the HMF model, the distribution function of particles f pt, θ, vq solves the initialvalued problem

B t f `vB θ f ´Bθ φ f B v f " 0, pt, θ, vq P R `ˆT ˆR, (1.1) 
f p0, θ, vq " f init pθ, vq ě 0, where T is the flat torus r0, 2πs and where the self-consistent potential φ f associated with a distribution function f is defined by

φ f pθq " ´ż 2π 0 ρ f pθ 1 q cospθ ´θ1 qdθ 1 , ρ f pθq " ż R f pθ, vqdv. (1.2) 
Introducing the so-called magnetization vector defined by

M f " ż 2π 0 ρ f pθqupθqdθ, with upθq " pcos θ, sin θq T (1.3)
we have φ f pθq " ´Mf ¨upθq.

(1.4)

In this work will consider steady states of (1.1) of the form

f 0 pθ, vq " F pe 0 pθ, vqq, (1.5) 
where F is a given nonnegative function and where the microscopic energy e 0 pθ, vq is given by

e 0 pθ, vq " v 2 2 `φ0 pθq with φ 0 " φ f 0 . (1.6)
Without loss of generality, we assume that φ 0 pθq " ´m0 cos θ with m 0 ą 0. Here m 0 is the magnetization of the stationary state f 0 defined by m 0 " ş ρ f 0 cos θdθ. It is shown in [START_REF] Lemou | Nonlinear stability criteria for the HMF Model[END_REF] that (essentially) if F is decreasing then f 0 is nonlinearly stable by the HMF flow (1.1) provided that the criterion κ 0 ă 1 is satisfied, where κ 0 is given by

κ 0 " ´ż 2π 0 ż `8
´8 F 1 pe 0 pθ, vqq ¨żD e 0 pθ,vq pcos θ ´cos θ 1 qpe 0 pθ, vq `m0 cos θ 1 q ´1{2 dθ 1

ż

D e 0 pθ,vq pe 0 pθ, vq `m0 cos θ 1 q ´1{2 dθ 1 ‹ ‹ ‹ ' 2 dθdv,
(1.7) with D e " θ 1 P T : m 0 cos θ 1 ą ´e( .

In this paper, we explore situations where this criterion is not satisfied, i.e when κ 0 ą 1. Let us now state our two main results. The first one concerns the linearized HMF equation given by

B t f " Lf, (1.8) 
where

Lf :" ´vB θ f `Bθ φ 0 B v f `Bθ φ f B v f 0 .
(1.9)

Theorem 1.1 (Linear instability). Let f 0 P L 1 pT, Rq be a stationary solution of (1.1) of the form (1.5), where F is a nonnegative C 1 function on R such that F 1 pe 0 pθ, vqq belongs to L 1 pT, Rq. Assume that κ 0 ą 1, where κ 0 is given by (1.7). Then there exists λ ą 0 and a non-zero f P L 1 pT ˆRq such that e λt f is a nontrivial growing mode weak solution to the linearized HMF equation (1.8).

Our second result is the following nonlinear instability theorem.

Theorem 1.2 (Nonlinear instability). Let f 0 be a stationary solution of (1.1) of the form (1.5), where F is a C 8 function on R, such that F peq ą 0 for e ă e ˚, F peq " 0 for e ě e ˚, with e ˚ă m 0 and |F 1 peq| ď C|e ˚´e| ´αF peq in the neighborhood of e ˚, for some α ě 1. Assume that κ 0 ą 1, where κ 0 is given by (1.7). Then f 0 is nonlinearly unstable in L 1 pT ˆRq, namely, there exists δ 0 ą 0 such that for any δ ą 0 there exists a nonnegative solution f ptq of (1.1) satisfying }f p0q ´f0 } L 1 ď δ and }f pt δ q ´f0 } L 1 ě δ 0 , with t δ " Op| log δ|q as δ Ñ 0.

Remark 1.3. Note that in these two theorems we do not assume that the profile F is a decreasing function. Besides, the set of steady states satisfying the assumptions of these theorems is not empty, as proved in the Appendix (see Lemma A.1). Note also that the instability of Theorem 1.2 is not due to the usual orbital instability. Indeed the functional space of the pertubation can be restricted to the space of even functions in pθ, vq.

The outline of the paper is as follows: Sections 2 and 3 are respectively devoted to the proofs of Theorem 1.1 and Theorem 1.2.

A linear instability result: proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1. This proof will be done following the framework used by Lin for the study of periodic BGK waves in [START_REF] Lin | Instability of periodic BGK waves[END_REF], which was generalized to the analysis of instabilities for the 3D Vlasov-Poisson system by Guo and Lin in [START_REF] Guo | Unstable and stable Galaxy models[END_REF]. We divide this proof into the three Lemmas 2.1, 2.2 and 2.3, respectively proved in Subsections 2.1, Subsection 2.2 and Subsection 2.3.

A growing mode of (1.8) is a solution of the form e λt f , where f P L 1 pT, Rq is an unstable eigenfunction of L, i.e. a nonzero function satisfying Lf " λf in the sense of distributions, with λ P R ˚and with L defined by (1.9). Note that the equation Lf ´λf " 0 is invariant by translation: if f pθ, vq is an eigenfunction, then for all θ 0 , f pθ `θ0 , vq is also an eigenfunction. Since for all f P L 1 we can find a θ 0 P T such that ş ρ f pθ `θ0 q sin θdθ " 0, we can assume that our eigenfunction of L always satisfy ş ρ f sin θdθ " 0, i.e. 

with initial data Θp0, θ, vq " θ, V p0, θ, vq " v. When there is no ambiguity, we denote simply Θpsq " Θps, θ, vq and V psq " V ps, θ, vq. Since φ 0 pθq " ´m0 cos θ, the solution pΘ, V q is globally defined and belongs to C 8 pR ˆT ˆRq. Note that the energy e 0 pΘpsq, V psqq " V psq 2 2 `φ0 pΘpsqq does not depend on s. We shall reduce the existence of a growing mode of (1.8) to the existence of a zero of the following function, defined for all λ P R ˚: Gpλq " 1.

Gpλq "1 `ż 2π 0 ż R F 1 ˆv2 2 ´m0 cos θ ˙cos 2 θdθdv ´ż 2π 0 ż R F 1 ˆv2 2 
(2.5)

Proof of Theorem 1.1. From these three lemmas, it is clear that if κ 0 ą 1, we have lim Gpλq ą 0 so by continuity of G, there exists λ ą 0 such that Gpλq " 0. This means that there exists a growing mode to (1.8) and this proves Theorem 1.1.

2.1 First properties of the function Gpλq: proof of Lemma 2.1

In this subsection, we prove Lemma 2.1. Let λ P R ˚. Since, by assumption, the function F 1 pe 0 pθ, vqq belongs to L 1 pT ˆRq, and since @pθ, vq ˇˇˇż 0 ´8 λe λs cospΘpsqqds ˇˇˇď ż 0 ´8 λe λs ds " 1, both functions F 1 pe 0 pθ, vqq cos θ and F 1 pe 0 pθ, vqq ż 0 ´8 λe λs cos pΘps, θ, vqq ds belong to L 1 pT ˆRq, so the function f defined by (2.3) also belongs to L 1 pT ˆRq. Hence, by integrating with respect to cos θdθdv, we deduce that Gpλq is well-defined by (2.2). The continuity of G on R ˚stems from dominated convergence.

Consider now a (nonzero) growing mode e λt f of (1.8) associated to an eigenvalue λ ą 0. Let us prove that Gpλq " 0. From Lf " λf and (2.1), we get, in the sense of distributions,

d ds ´eλs f pΘpsq, V psqq ¯" e λs φ 1 f pΘpsqq V psqF 1 pe 0 pΘ, V qq.
Integrating this equation from ´R to 0, we get, for almost all pθ, vq and all R,

f pθ, vq " e ´λR f pΘp´Rq, V p´Rqq `F 1 pe 0 q ż 0 ´R e λs φ 1 f pΘpsqq V psqds,
where we recall that e 0 pΘ, V q " e 0 pθ, vq. We multiply by a test function ψpθ, vq P C 8 0 pT ˆRq and integrate with respect to pθ, vq,

ż 2π 0 ż R f pθ, vqψpθ, vqdθdv " e ´λR ż 2π 0 ż R f pθ, vq ψ pΘpRq, V pRqq dθdv `ż 0 ´R ż 2π 0 ż R e λs F 1 pe 0 qφ 1 f pΘpsqq V psqψ pθ, vq dsdθdv.
In the first integral of the right-hand side, we have performed the change of variable pθ, vq " pΘpR, θ 1 , v 1 q, V pR, θ 1 , v 1 qq. In the second integral, we remark that |φ 1 f pΘpsqq | ď }f } L 1 and, the support of ψ being compact, v is bounded. Hence, by v 2 2 ´m0 cos θ "

V 2
2 ´m0 cos Θ, V psq is bounded. Therefore, by dominated convergence (using that F 1 pe 0 q P L 1 ), as R Ñ 8, we get

ż 2π 0 ż R f pθ, vqψpθ, vqdθdv " ż 0 ´8 ż 2π 0 ż R e λs F 1 pe 0 qφ 1 f pΘpsqq V psqψ pθ, vq dsdθdv i.e. f pθ, vq " F 1 pe 0 q ż 0 ´8 e λs φ 1 f pΘpsqq V psqds " F 1 pe 0 q ż 0 ´8 e λs d ds pφ f pΘpsqqq ds " F 1 pe 0 qφ f pθq ´F 1 pe 0 q ż 0 ´8 λe λs φ f pΘpsqqds
almost everywhere. Recall that φ f pθq " ´m cos θ, with m " ş 2π 0 ρ f pθq cos θdθ. Then we can rewrite this expression of f as f pθ, vq " ´mF 1 pe 0 q cos θ ´mF 1 pe 0 q ż 0 ´8 λe λs cos Θpsqds.

Integrating both sides of this equation with respect to cos θdθdv we get m "

ż 2π 0 ρ f pθq cos θdθ " ´m ż 2π 0 ż R F 1 pe 0 q cos 2 θdθdv `m ż 2π 0 ż R F 1 pe 0 q ˆż 0
´8 λe λs cos Θpsqds ˙cos θdθdv, i.e. mGpλq " 0. It is clear that m ‰ 0, otherwise f " 0 a.e.. Finally, we get Gpλq " 0.

Reciprocally, assume that Gpλq " 0 for some λ ą 0. Let f be given by (2.3). We have proved above that this function belongs to L 1 pT ˆRq. Moreover, since Θps, ´θ, ´vq " Θps, θ, vq, we have ş ρ f sin θdθ " 0. Multiplying (2.3) by cos θ and integrating with respect to θ and v, and using that Gpλq " 0, we get ş ρ f cos θdθ " 1, so f is not the zero function and we have φ f pθq " ´cos θ.

We now check that the function f given by (2.3) is an eigenfunction of L associated with λ. From (2.3), we get

f pΘptq, V ptqq " ´F 1 pe 0 qφ f pΘptqq `F 1 pe 0 q ż 0 ´8 λe λs φ f pΘps, Θptq, V ptqqq ds.
Note that Θps, Θptq, V ptqq " Θ ps `t, θ, vq. Therefore f pΘptq, V ptqq " ´F 1 pe 0 qφ f pΘptqq `F 1 pe 0 q ż 0 ´8 λe λs φ f pΘps `tqq ds

" ´F 1 pe 0 qφ f pΘptqq `F 1 pe 0 qe ´λt ż t ´8 λe λs φ f pΘpsqq ds " F 1 pe 0 qe ´λt ż t ´8 e λs φ 1 f pΘpsqq V psqds,
where we integrated by parts. Then

e λt f pΘptq, V ptqq " F 1 pe 0 q ż t ´8 e λs φ 1 f pΘpsqq V psqds " ż t ´8 e λs φ 1 f pΘpsqq B v f 0 pΘpsq, V psqqds.
Differentiating both sides with respect to t, we obtain in the sense of distributions that for all t P R,

e λt `λf pΘptq, V ptqq `V ptqB θ f pΘptq, V ptqq ´φ1 0 pΘptqqB v f pΘptq, V ptqq " e λt φ 1 f pΘptqq B v f 0 pΘptq, V ptqq.
By writing this equation at t " 0, we get Lf " λf : f is an unstable eigenfunction of L. This ends the proof of Lemma 2.1.

2.2

Limiting behavior of Gpλq near λ " 0: proof of Lemma 2.2

To study lim λÑ0

`Gpλq we need to analyze the limit of the function

g λ pθ, vq " ż 0 ´8 λe λs cos Θps, θ, vqds (2.6) 
as λ Ñ 0. We provide this result in the next lemma, where we also recall some wellknown facts on the solution of the characteristics equations (2.1), which are nothing but the pendulum equations.

Lemma 2.4. Let pθ, vq P T ˆR and e 0 " v 2 2 ´m0 cos θ. Consider the solution pΘps, θ, vq, V ps, θ, vqq to the characteristics equations (2.1). Then the following holds true.

(i) If e 0 ą m 0 then, for all s P R, we have

Θps `Te 0 q " Θpsq `2π, V ps `Te 0 q " V psq, (2.7) 
with

T e 0 " ż 2π 0 dθ 1 a 2 pe 0 `m0 cos θ 1 q ą 0. (2.8)
(ii) If ´m0 ă e 0 ă m 0 then Θ and V are periodic with period given by T e 0 " 4

ż θm 0 0 dθ a 2 pe 0 `m0 cos θq " 4 ? m 0 ż π{2 0 dθ b 1 ´m0 `e0 2m 0 sin 2 θ ą 0, (2.9) 
where θ m 0 " arccosp´e 0 m 0 q.

(iii) We have

lim λÑ0 `gλ pθ, vq " $ ' ' ' ' & ' ' ' ' % 1 T e 0 ż 2π 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 if e 0 ą m 0 , 4 T e 0 ż θm 0 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 if ´m0 ă e 0 ă m 0 .
(2.10)

Proof. (i) Let e 0 ą m 0 . Without loss of generality, since Θps, ´θ, ´vq " Θps, θ, vq and V ps, ´θ, ´vq " V ps, θ, vq, we can only treat the case v ą 0. As we have V psq 2 2 " e 0 `m0 cos Θpsq ě e 0 ´m0 ą 0, V psq does not vanish and remains positive. Hence Θpsq is the solution of the following autonomous equation

9 Θpsq " V psq " a 2pe 0 `m0 cos Θpsqq (2.11)
and is strictly increasing with Θpsq Ñ `8 as s Ñ `8. Let T e 0 be the unique time such that ΘpT e 0 q " θ `2π. By Cauchy-Lipschitz's theorem, we have Θps `Te 0 q ´2π " Θpsq and (2.7) holds. Defining

P pτ q " ż τ 0 dθ 1 a 2pe 0 `m0 cos θ 1 q ,
the solution of (2.11) satisfies P pΘpsqq ´P pθq " s. Therefore, we have T e 0 " P pθ 2πq ´P pθq, from which we get (2.8).

(ii) Let ´m0 ă e 0 ă m 0 . In this case, Θpsq will oscillate between the two values θ m 0 " arccosp´e 0 m 0 q and ´θm 0 with a period T e 0 given by (2.9). On the half-periods where Θ is increasing, we also have (2.11). We skip the details of the proof, which is classical.

(iii) We remark that cos Θps `kT e 0 q " cos Θpsq for all s P R and k P Z. Indeed, by (i), for e 0 ą m 0 we have Θps `kT e 0 q " Θpsq `2πk and, by (ii), for ´m0 ă e 0 ă m 0 we have Θps `kT e 0 q " Θpsq. Hence, we compute from (2.6) If e 0 ą m 0 , we perform the change of variable θ 1 " Θpsq which is strictly increasing from r0, T e 0 s to rθ, θ `2πs. Using (2.11), we obtain lim λÑ0 `gλ pθ, vq "

g λ pθ, vq " `8 ÿ k"0 ż pk`
1 T e 0 ż θ`2π θ cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 " 1 T e 0 ż 2π 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 .
If ´m0 ă e 0 ă m 0 , we can always choose a time t 0 such that Θpt 0 q " ´θm 0 , Θpt 0 Te 0 {2q " θ m 0 , Θpsq is strictly increasing on rt 0 , t 0 `Te 0 {2s and such that Θpsq " Θp2t 0 Te 0 ´sq for s P rt 0 `Te 0 {2, t 0 `Te 0 s. We have lim λÑ0 `gλ pθ, vq "

1 T e 0 ż t 0 `Te 0 {2 t 0 cos Θpsqds `1 T e 0 ż t 0 `Te 0 t 0 `Te 0 {2 cos Θpsqds " 1 T e 0 ż t 0 `Te 0 {2 t 0 cos Θpsqds `1 T e 0 ż t 0 `Te 0 t 0 `Te 0 {2 cos Θp2t 0 `Te 0 ´sqds " 2 T e 0 ż t 0 `Te 0 {2 t 0 cos Θpsqds " 2 T e 0 ż θm 0 ´θm 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 " 4 T e 0 ż θm 0 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 ,
where, on the time interval rt 0 , t 0 `Te 0 {2s, we performed the change of variable θ 1 " Θpsq.

Proof of Lemma 2.2. Now we come back to the definition (2.2) of G λ , which reads

Gpλq "1 `ż 2π 0 ż R F 1 ˆv2 2 ´m0 cos θ ˙cos 2 θdθdv ´ż 2π 0 ż R F 1 ˆv2 2 
´m0 cos θ ˙gλ pθ, vq cos θdθdv.

(2.12)

We remark that |g λ pθ, vq| ď 1 and recall that the function F 1 ´v2 2 ´m0 cos θ ¯belongs to L 1 pT ˆRq. Therefore, we can pass to the limit in the second integral by dominated convergence and deduce from Lemma 2.4 (iii) (note that the set tpθ, vq : e 0 pθ, vq ď ´m0 u is of measure zero) that lim Here the operator Π m 0 is a variant of the operator Π given by (3.8) in [START_REF] Lemou | Orbital stability of spherical galactic models[END_REF], this operator should be understood as the "projector"onto the functions which depend only on the microscopic energy e 0 pθ, vq. A projector of this type is also mentioned in the work by Guo and Lin [START_REF] Guo | Unstable and stable Galaxy models[END_REF]. Now we remark that straightforward calculations give

λÑ0 `Gpλq " 1 `ż 2π 0 ż R F 1 pe 0 q cos 2 θdθdv ´ij e 0 pθ,vqąm 0 F 1 pe 0 q ˜1 T e ż 2π 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 ¸cos θdθdv ´ij ´m0 ăe 0 pθ,vqăm 0 F 1 pe 0 q ˜4 T e ż θm 0 0 cos θ 1 a 2pe 0 `m0 cos θ 1 q dθ 1 ¸cos θdθdv "1 `ż 2π 0 ż R F 1 pe 0 q cos 2 θdθdv ´ż 2π 0 ż R F 1 pe 0 q ¨żDe 0 cos θ 1 pe 0 `m0 cos θ 1 q ´1{2 dθ 1 ż De 0 pe 0 `m0 cos θ 1 q ´1{2 dθ 1 ‹ ‹ ‹ ' cos θdθdv "1 `ż 2π 0 ż R F 1 pe 0 q cospθq 2 dvdθ ´ż 2π 0 ż R F 1 pe 0 q pΠ m 0 pcos θqq 2 dθdv,
1 ´κ0 " 1 `ż 2π 0 ż R F 1 pe 0 q ´cos 2 θ ´2 cos θΠ m 0 pcos θq `pΠ m 0 pcos θqq 2 ¯dθdv, " 1 `ż 2π 0 ż R
F 1 pe 0 q cos 2 θdθdv ´ij F 1 pe 0 q pΠ m 0 pcos θqq 2 dθdv, where ´κ0 : "

ż 2π 0 ż R F 1 pe 0 q ¨żDe pcos θ ´cos θ 1 qpe 0 `m0 cos θ 1 q ´1{2 dθ 1 ż De pe 0 `m0 cos θ 1 q ´1{2 dθ 1 ‹ ‹ ' 2 dθdv.
This calculation uses that Π m 0 is a projector. We finally get (2.4) and the proof of Lemma 2.2 is complete. g λ pθ, vq " cos θ.

Limiting behavior of

Using again that |g λ pθ, vq| ď 1 and that F 1 pe 0 pθ, vqq belongs to L 1 , we deduce directly (2.5) from (2.12) and from dominated convergence. The proof of Lemma 2.3 is complete.

3 A nonlinear instability result: proof of Theorem 1.2

We start by an analysis of the linearized HMF operator L around the inhomogeneous equilibrium state f 0 , where L is given by (1.9). We write

L " L 0 `K, (3.1) 
where

L 0 f " ´vB θ f ´Ef 0 B v f, Kf " ´Ef B v f 0 , E f " ´Bθ φ f . (3.2)

Estimates on the semigroup e tL

Let us state some useful properties of the operator L 0 given by (3.2). Since φ 0 pθq " ´m0 cos θ is smooth, the characteristics equations (2.1) admit a unique solution Θps, θ, vq, V ps, θ, vq, which is globally defined and C 8 in the variables ps, θ, vq. Moreover, this solution has bounded derivatives with respect to θ and v, locally in time. Let k P N.

For any f in the Sobolev space W k,1 pT ˆRq, the function e tL 0 f pt, θ, vq :" f pΘp´t, θ, vq, V p´t, θ, vqq , @t ě 0, (

belongs to C 0 pR, W k,1 pT ˆRqq and is clearly a solution to B t g " L 0 g with initial data f . This means that the semigroup e tL 0 generated by the operator L 0 is strongly continuous on W k,1 pT ˆRq.

Our aim is to apply the abstract results in [START_REF] Shizuta | On the classical solutions of the Boltzmann equation[END_REF] concerning perturbation theory of linear operators. Hence, we need to prove the following estimate. For all β ą 0, there exists a positive constant M β,k such that

}e tL 0 f } W k,1 ď M β,k e tβ }f } W k,1 @f P W k,1 pT ˆRq, @t ě 0, (3.4) 
where M β,k depends on β and k. In fact this estimate will be proved for a subclass of functions f . From the assumptions of Theorem 1.2 on F , there exists e ˚ă m 0 such that support of F is p´8, e ˚s. This means that the support of f 0 is contained in Ω 0 , where Ω 0 is the smooth open set

Ω 0 " " pθ, vq : v 2 2 ´m0 cos θ ă e ˚* .
We then introduce the functional space

E k " ! f P W k,1 pT ˆRq : Supppf q Ă Ω 0 ) ,
and claim that for all f P E k , we have e tL 0 f P E k and, for all β ą 0,

}e tL 0 f } W k,1 ď M β,k e tβ }f } W k,1 , @f P E k , @t ě 0, (3.5) 
M β,k being a positive constant depending on β and k.

Assume for the moment that estimate (3.5) holds true. From the assumptions of Theorem 1.2, one deduces that B v f 0 P E k . It is then easy to check that e tL 0 K is a compact operator on E k , for all t P R, and the map t Þ Ñ e tL 0 K P L pE k q is continuous on R. Hence, K is L 0 -smoothing in the sense of [START_REF] Shizuta | On the classical solutions of the Boltzmann equation[END_REF] (page 707). Assumptions of Theorem 1.1 in [START_REF] Shizuta | On the classical solutions of the Boltzmann equation[END_REF] are therefore satisfied, which implies that L generates a strongly continuous semigroup e tL . Now, from Theorem 1.2 in [START_REF] Shizuta | On the classical solutions of the Boltzmann equation[END_REF], for all β ą 0, any point of the spectrum σpLq lying in the half plane Re z ą β is an isolated eigenvalue with finite algebraic multiplicity. Furthermore, the set σpLq X tRe z ą βu is finite.

The assumptions of Theorem 1.2 clearly imply those of Theorem 1.1. Hence L admits at least one eigenvalue λ P R ˚associated with an eigenfunction r f P L 1 pT ˆRq. We claim that, in fact, r f P E k which will be proved below. This means that the set of eigenvalues of L on E k with positive real part is not empty, and we therefore can choose an eigenvalue γ with positive maximal real part. Finally, we apply Theorem 1.3 in [START_REF] Shizuta | On the classical solutions of the Boltzmann equation[END_REF] and get that, for all β ą Re γ, there exists a positive constant M β,k such that

}e tL f } W k,1 ď M β,k e tβ }f } W k,1 @f P E k , @t ě 0. (3.6)
Proof of (3.5) and of the claim r f P E k . Let f P E k . From (3.3), we clearly have

}e tL 0 f } L 1 " }f } L 1 , @f P L 1 , @t ě 0.
Moreover, we know from the analysis of the characteristics problem (2.1) performed in Section 2, that by conservation of the energy, for all pθ, vq P Ω 0 , we have pΘpt, θ, vq, V pt, θ, vqq P Ω 0 . Thus Supppe tL 0 f q Ă Ω 0 .

Let k ě 1. By (3.3), to get an estimate of e tL 0 f in W k,1 pT ˆRq, it is sufficient to estimate Θ and V in W k,8 pT ˆRq for pθ, vq P Ω 0 . Recall that, since e ˚ă m 0 , Θ and V are periodic functions with period T e 0 . Moreover, (2.9) shows that T e 0 is a C 8 function of e 0 on r´m 0 , e ˚s, which means that it is also a C 8 function of pθ, vq. Note also that 2π ? m 0 ď T e 0 ď T e˚. Define now the following 1-periodic functions r Θps, θ, vq " Θ psT e 0 , θ, vq , r V ps, θ, vq " V psT e 0 , θ, vq

satisfying d r Θ ds " T e 0 r V , d r V ds " ´m0 T e 0 sin r Θ.
Applying Gronwall Lemma, one gets

|B r s B j θ B ℓ v r Θ| `|B r s B j θ B ℓ v r V | ď C k e C k s
, @s ě 0, @pθ, vq P Ω 0 , for r `j `ℓ ď k.

The period of r Θ and r V being independent of pθ, vq, the functions B j θ B ℓ v r Θ and B j θ B ℓ v r V are also 1-periodic and therefore

|B r s B j θ B ℓ v r Θ| `|B r s B j θ B ℓ v r V | ď C 1 k " C k e C k ,
@s ě 0, @pθ, vq P Ω 0 , for r `j `ℓ ď k.

Coming back to Θ and V , we deduce

|B j θ B ℓ v Θ| `|B j θ B ℓ v V | ď C k p1 `sk q, @s ě 0, @pθ, vq P Ω 0 , for j `ℓ ď k. (3.7)
Using this estimate and (3.3), we finally get (3.5).

Let us finally prove that r f P E k . By Lemma 2.1, the function r f is given by r f pθ, vq " ´F 1 pe 0 pθ, vqq cos θ `F 1 pe 0 pθ, vqq ż 0 ´8 λe λs cos pΘps, θ, vqq ds.

Hence, the support of F 1 pe 0 pθ, vqq being in Ω 0 , the support on r f will also be contained in Ω 0 . Moreover, by using (3.7), we obtain that, for some C k ą 0, we have @j `ℓ ď k, @pθ, vq P T ˆR, ˇˇˇB j θ B ℓ v ż 0 ´8 λe λs cos pΘps, θ, vqq ds ˇˇˇď C k .

This is sufficient to deduce from F P C 8 that r f P E k .

An iterative scheme

In this part, we prove Theorem 1.2 by following the strategy developed by Grenier in [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF], which has been also used in [START_REF] Han-Kwan | Stability issues in the quasineutral limit of the onedimensional Vlasov-Poisson equation[END_REF][START_REF] Han-Kwan | Instabilities in the mean field limit[END_REF] to analyse instabilities for homogeneous steady states of Vlasov-Poisson models. Let N ě 1 be an integer to be fixed later. According to the previous subsection, we can consider an eigenvalue γ of L on E N with maximal real part, Re γ ą 0. Let g P E N be an associated eigenfunction. With no loss of generality, we may assume that } Re g} L 1 " 1. Let

f 1 pt, θ, vq " Re `eγt gpθ, vq ˘χδ pe 0 pθ, vqq, (3.8) 
with e 0 pθ, vq " v 2 2 `φ0 pθq and where 0 ď χ δ peq ď 1 is a smooth real-valued truncation function to be defined further, in order to ensure the positivity of f 0 `δf 1 p0q. Note that f 1 is almost a growing mode solution to the linearized HMF model (1.8) since we have

pB t ´Lqf 1 " Repe γt r R δ q,
where r R δ " `´E p1´χ δ qg `p1 ´χδ qE g ˘Bv f 0 (3.9) will be small. We now construct an approximate solution f N app to the HMF model (1.1) of the form

f N app " f 0 `N ÿ k"1 δ k f k , (3.10) 
for sufficiently small δ ą 0, in which f k (k ě 2) solves inductively the linear problem

pB t ´Lqf k `k´1 ÿ j"1 E f j B v f k´j " 0 (3.11) 
with f k p0q " 0. Then f N app approximately solves the HMF model (1.1) in the sense that

B t f N app `vB θ f N app ´Bθ φ f N app B v f N app " R N `δ Repe γt r Rq, (3.12) 
where the remainder term R N is given by

R N " ÿ 1ďj,ℓďN ;j`ℓěN `1 δ j`ℓ E f j B v f ℓ . (3.13) 
Step 1. Estimate of f k . We claim that f k P E N ´k`1 and, for all 1 ď k ď N ,

}f k } W N´k`1,1 ď C k e kt Re γ . (3.14) 
We proceed by induction. From (3.8), this estimate is a consequence, for k " 1, of

}gχ δ } W N,1 ď C 1 , (3.15) 
which is proved below in Step 5. Let k ě 2. We have

f k ptq " ´ż t 0 e Lpt´sq k´1 ÿ j"1 E f j psqB v f k´j psqds.
Therefore, for Re γ ă β ă 2 Re γ,

}f k } W N´k`1,1 ď k´1 ÿ j"1 ż t 0 › › ›e Lpt´sq `Ef j psqB v f k´j psq ˘› › › W N´k`1,1 ds ď M β,N ´k`1 k´1 ÿ j"1 ż t 0 e βpt´sq › › E f j psq › › W N´k`1,8 }B v f k´j psq} W N´k`1,1 ds ď M β,N ´k`1 k´1 ÿ j"1 ż t 0 e βpt´sq }f j psq} L 1 }f k´j psq} W N´k`2,1 ds since k ´j ď k ´1, ď M β,N ´k`1 ˜k´1 ÿ j"1 C j C k´j ¸ż t 0 e βpt´sq e ks Re γ ds ď M β,N ´k`1 k Re γ ´β ˜k´1 ÿ j"1 C j C k´j ¸ekt Re γ ,
where we used (3.6) and the recursive assumption. This ends the proof of (3.14).

Step 2. Estimates of f N app ´f0 and R N . The parameter δ and the time t will be such that

δe t Re γ ď min ˆ1 2 , 1 2K N ˙, K N " max 1ďkďN C k . (3.16) 
Hence, from (3.14) we obtain

}f N app ´f0 } W 1,1 ď N ÿ k"1 δ k C k e kt Re γ ď K N δe t Re γ 1 ´δe t Re γ ď 1 and }R N } L 1 ď `8 ÿ k"N `1 δ k e kt Re γ ÿ 1ďj,ℓďN ;j`ℓ"k C j C ℓ ď r C N `δe t Re γ ˘N`1 .
Step 3. Estimate of f ´f N app . Let f ptq be the solution of (1.1) with initial data f 0 δ Re gχ δ and let h " f ´f N app . Note that the positivity of f ptq is ensured by f 0 `δ Re gχ δ ě 0 and that we have }f p0q ´f0 } L 1 ď δ.

The function h satisfies the following equation

B t h `vB θ h `Ef B v h " ´Ef N app ´Ef ¯Bv f N app ´RN ´δ Repe γt r R δ q
with hp0q " 0. To get a L 1 -estimate of h, we multiply this equation by signphq and integrate in pθ, vq. We get

d dt }h} L 1 ď › › ›E f N app ´Ef › › › L 8 › › B v f N app › › L 1 `}R N } L 1 `δe t Re γ } r R δ } L 1 ď }h} L 1 › › B v f N app › › L 1 `}R N } L 1 `δe t Re γ } r R δ } L 1 .
From Step 2 we have

› › B v f N app › › L 1 ď }B v f 0 } L 1 `1, which implies that }hptq} L 1 ď ż t 0 e pt´sqp}Bvf 0 } L 1 `1q ´}R N psq} L 1 `δe s Re γ } r R δ } L 1 ¯ds.

Again from

Step 2, we then get

}hptq} L 1 ď ż t 0 e pt´sqp}Bv f 0 } L 1 `1q ´r C N `δe s Re γ ˘N`1 `δe s Re γ } r R δ } L 1 ¯ds
We now fix N as follows (with the notation t¨u for the integer function)

N :" Z }B v f 0 } L 1 `1 Re γ ^`1 ě 1
and claim that χ may be chosen such that

} r R δ } L 1 ď `δe s Re γ ˘N , (3.17) 
see Step 5 for the proof. This yields

}f ´f N app } L 1 ptq ď q C N `δe t Re γ ˘N`1 (3.18)
with q C N " We have We conclude from these inequalities that }f ´f0 } L 1 ě δ 0 and that (3.16) is satisfied.

ij pf N app ´f0 qϕdθdv `ij pf ´f N app qϕdθdv ě δ ij f 1 ϕdθdv ´N ÿ k"2 δ k }f k } L 1 ´q C N `δe t Re γ ˘N`1 ě δ ij f 1 ϕdθdv ´N ÿ k"2 C k `δe t Re γ ˘k ´q C N `δe t Re γ ˘N`1 ě δ ij f 1 ϕdθdv ´2K N `δe
}f ´f0 } L 1 ě δe t Re γ Re z g 2 ˜1 ´2}p1 ´χδ qg} L 1 Re z g ´4K N δe t Re γ Re z g ´2 q C N `δe t Re γ ˘N Re z g Ļet δ 0 ą 0 be such that 32K N pRe z g q 2 δ 0 `2 q C N 8 N pRe z g q N `1 δ N 0 ď 1 
To end the proof, it remains to fix the time t δ and to choose the truncation function χ δ . Let us show that, for δ small enough, there exists a time t δ satisfying both (3.20) and (3.21). If Im γ " 0, then (3.20) is clearly satisfied since Re z g ą 0: a suitable t δ is then

t δ " 1 Re γ log ˆ6δ 0 δ Re z g ˙.
Assume now that Im γ ‰ 0. For δ small enough, the size of the interval of times t satisfying (3.21) becomes larger than 2π | Im γ| . This means that it is possible to find a time t δ in this interval satisfying (3.20).

Step 5. Choice of χ δ . For all δ ą 0, we have to fix the function χ δ P C 8 pRq such that (3.15), (3.17), (3.19) are satisfied and such that f 0 `δf 1 p0q ě 0. First of all, proceeding as in the proof of Lemma 2.1, we obtain that g takes the form gpθ, vq " ´mF 1 pe 0 q cos θ ´mF 1 pe 0 q ż 0 ´8 γe γs cos Θpsqds, ( " Cδ 1{2 f 0 pθ, vq, so for δ small enough, we have f 0 `δf 1 p0q ě 0. By differentiating (3.22) and using (3.7), we get

@j `ℓ ď N, |B j θ B ℓ v gpθ, vq| ď C max kďN `1 F pkq pe 0 q ď C|e ˚´e 0 | N ´1,
where we used Taylor formulas and the fact that F P C 8 with F peq " 0 for e ě e ˚.

Besides, from (3.25), we obtain (if δ ď 1)

@ 1 ď j `ℓ ď N, |B j θ B ℓ v χ δ pe 0 pθ, vqq| ď Cδ ´N {p2αq ½ e˚´δ 1{p2αq ăe 0 pθ,vqăe˚.
Therefore

}gχ δ } W N,1 ď }g} L 1 `Cδ ´N {p2αq ż 2π 0 ż R |e ˚´e 0 pθ, vq| N ´1½ e˚´δ 1{p2αq ăe 0 pθ,vqăe˚d θdv ď }g} L 1 `Cδ ´N {p2αq ż ee ˚´δ 1{p2αq pe ˚´eq N ´1 ˜4 ż θm 0 0 dθ a 2 pe `m0 cos θq ¸de " }g} L 1 `Cδ ´N {p2αq ż ee ˚´δ 1{p2αq pe ˚´eq N ´1 T e de,
where θ m 0 " arccosp´e m 0 q and T e is given by (2.9). Now we recall that for e ď e ˚we have T e ď T e˚. This yields

}gχ δ } W N,1 ď }g} L 1 `CT e˚δ ´N {p2αq ż ee ˚´δ 1{p2αq pe ˚´eq N ´1 de " }g} L 1 `CT eN .
We have proved (3.15). By (3.9), we have

} r R δ } L 1 ď C p}p1 ´χδ qg} L 1 `}p1 ´χδ qB v f 0 } L 1 q ď C ´}g½ e˚´δ 1{p2αq ăe 0 pθ,vqăe˚}L 1 `}B v f 0 ½ e˚´δ 1{p2αq ăe 0 pθ,vqăe˚}L 1 ¯, so by dominated convergence, lim δÑ0 } r R δ } L 1 " 0.
We now choose δ small enough such that

}R δ } L 1 ď ˆ4δ 0 Re z g ˙N .
From (3.21), we obtain (3.17), which ends the proof of Theorem 1.2.

A Appendix. Existence of unstable steady states

In this section, we prove that the set of steady states satisfying the assumptions of Theorems 1.1 and 1.2 is not empty. More precisely, we prove the following Lemma A.1. Let m ą 0. There exist m ą 0, e ˚ă m and there exists a nonincreasing function F , C 8 on R, such that F peq ą 0 for e ă e ˚, F peq " 0 for e ě e ˚and |F 1 peq| ď C|e ˚´e| ´αF peq in the neighborhood of e ˚, for some α ě 1, and such that the function f pθ, vq " F p v 2 2 ´m cos θq is a steady state solution to the HMF model (1.1) and such that κpm, F q ą 1, where κpm, F q is given by κpm, F q " Proof. Let m ą 0 and F a nonincreasing C 8 function on R supported in p´8, mq, which is not identically zero on p´m, mq. We first observe that f pθ, vq " F p v 2 2 ´m cos θq is a steady state solution to the HMF model (1.1) if and only if m and F satisfy γpm, F q " m with γpm, F q :"

ż 2π 0 ż R F ˆv2 2
´m cos θ ˙cos θdθdv ą 0.

By using the linearity of γ in F we deduce that m γpm,F q F p v 2 2 ´m cos θq is a steady state. We proceed by a contradiction argument. Assume that κ ˆm, m γpm, F q F ˙ď 1 for all m ą 0 and all nonincreasing C 8 function F supported in p´8, mq such that, denoting by p´8, e ˚s the support of F , we have |F 1 peq| ď C|e ˚´e| ´αF peq in the neighborhood of e ˚, for some α ě 1. This is equivalent to κ pm, F q ď γpm, F q m , or, after straightforward calculation and an integration by parts, the parameter ε ą 0 being arbitrary. Since F ε satisfies the assumptions, it satisfies (A.1). Then, letting ε Ñ 0, we get ´ij Ψ 1 pepθ, vqq g m pepθ, vqqdθdv ď 0.

The function Ψ being arbitrary, this is equivalent to g m peq ď 0, @m ą 0, @e P p´m, mq, or, g 1 peq ď 0, @e P p´1, 1q. (A.2)

Let us now prove that the function g 1 peq is in fact positive in the neighborhood of e " 1, which contradicts (A. ´.

This proves the claim.

λÑ0`Gpλq ă 0 and lim λÑ` 8

 8 

with pΠ m 0 hqpeq " ż

 ż De pe `m0 cos θq ´1{2 hpθqdθ ż De pe `m0 cos θq ´1{2 dθ , (2.13) for all function hpθq and D e " θ 1 P T : m 0 cos θ 1 ą ´e( .

ˇˇF 1 2

 12 pepθ, vqq ˇˇ¨żD epθ,vq pcos θ ´cos θ 1 qpepθ, vq `m cos θ 1 q ´1{2 dθ 1 ż D epθ,vqpepθ, vq `m cos θ 1 q ´1{2 dθ 1 ´m cos θ, D e " θ 1 P T : m cos θ 1 ą ´e( .

´ij F 1

 1 pepθ, vqq g m pepθ, vqqdθdv ď 0 (A.1) with g m peq " pΠ m cos 2 θqpeq ´ppΠ m cos θqpeqq 2 ´pΠ m sin 2 θqpeq and for all function hpθq, pΠ m hqpeq " ż De pe `m cos θq ´1{2 hpθqdθ ż De pe `m cos θq ´1{2 dθ . Now, we choose the functions F as follows. We first pick a nonincreasing C 8 function Ψ on R with support p8, e 7 s Ă p´8, mq, then we set e ˚" e 7 `m 2 and define F ε peq " Ψpeq `ε exp `´pe ˚´eq ´1˘, for e ă e ˚,

  φ f " ´m cos θ with m " ş ρ f cos θdθ. Let us first define pΘps, θ, vq, V ps, θ, vqq as the solution of the characteristics problem

	$ ' & ' %	dΘps, θ, vq ds dV ps, θ, vq ds	" V ps, θ, vq " ´Bθ φ 0 pΘps, θ, vqq

  Let f 0 P L 1 pT, Rq be a stationary solution of (1.1) of the form (1.5), where F is a C 1 function on R such that F 1 pe 0 pθ, vqq belongs to L 1 pT, Rq. Then the function G defined by (2.2) is well-defined and continuous on R ˚. Moreover, there exists a growing mode e λt f solution to (1.8) associated with the eigenvalue λ ą 0 if and only if Gpλq " 0. An unstable eigenfunction f of L is defined by f pθ, vq " ´F 1 pe 0 pθ, vqq cos θ `F 1 pe 0 pθ, vqq

	where κ 0 is defined by (1.7).	
	Lemma 2.3. Under the assumptions of Lemma 2.1, the function G defined by (2.2)
	satisfies	
	lim λÑ`8
	´m0 cos θ	˙ˆż 0 ´8 λe λs cos Θps, θ, vqds ˙cos θdθdv. (2.2)
	Lemma 2.1. ż 0 ´8 λe λs cos pΘps, θ, vqq ds.	(2.3)
	Lemma 2.2. Under the assumptions of Lemma 2.1, the function G defined by (2.2)
	satisfies	
	lim λÑ0 `Gpλq " 1 ´κ0 ,	(2.4)

  Gpλq as λ Ñ 8: proof of Lemma 2.3

	In this subsection, we prove Lemma 2.3. An integration by parts in (2.6) yields
		g ˘1{2	ż 0 ´8 e λs ds "	`v2 `4m 0 λ	˘1{2
	and, for all pθ, vq,	lim λÑ`8		

λ pθ, vq " cos θ `ż 0 ´8 e λs V ps, θ, vq sin Θps, θ, vqds.

The velocity can be bounded independently of s thanks to the conservation of the energy,

|V psq| " `v2 `2m 0 cos θ ´2m 0 cos Θpsq ˘1{2 ď `v2 `4m 0 ˘1{2 .

Thus ˇˇˇż 0 ´8 e λs sin Θps, θ, vqV ps, θ, vqds ˇˇˇď `v2 `4m 0

  1`r C N 3 Re γ . Step 4. End of the proof. Since Re g is not zero, we can choose a real valued function ϕpθ, vq in L 8 such that }ϕ} L 8 =1 and Re z g ą 0 with z g " Re γ Re `eit Im γ z g,δ ě e t Re γ Re `eit Im γ z g ˘´e t Re γ |z g ´zg,δ | ě e t Re γ Re `eit Im γ z g ˘´e t Re γ }gp1 ´χδ q} L 1

	Denoting			ż 2π	ż
		z g,δ "	0	R	gχ δ ϕdθdv,
	we have			
	ij		
	f 1 ϕdθdv " e t We claim that		
		lim δÑ0	}p1 ´χδ qg} L 1 " 0,	(3.19)
	which again will be proved in Step 5. In order to end the proof of Theorem 1.2, we
	estimate from below, using (3.18) and (3.14),
	ij			
	}f ´f0 } L 1 ě	pf ´f0 qϕdθdv "		
					ż 2π	ż
					gϕdθdv.
					0	R

  t Re γ ˘2 ´q C N `δe t Re γ ˘N`1 ě δe t Re γ ´Re `eit Im γ z g ˘´}p1 ´χδ qg} L 1 ´2K N δe t Re γ ´q C N `δe t Re γ

					˘N	Āssume
	for a while that	Re `eit Im γ z g	˘ě Re z g 2	.	(3.20)

  L 1 ď }g½ e˚´δ 1{p2αq ăe 0 pθ,vqăe˚}L 1 and dominated convergence, we clearly have(3.19). By (3.23) and (3.24), we have, for all pθ, vq P T ˆR, δ |Re gpθ, vqχ δ pe 0 pθ, vqq| ď δC|e ˚´e 0 | ´αF pe 0 q |e ˚´e 0 | α δ 1{2

	From				
		}p1 ´χδ qg}			
						3.22)
	with m "	ş 2π 0 ρ f pθq cos θdθ. Hence, |gpθ, vq| ď |m| ˆ1	`|γ| Re γ	˙|F 1 pe 0 q|.	(3.23)
	The assumptions on F and F 1 in Theorem 1.2 imply that
		@e ă e ˚,	|F 1 peq| ď Cpe ˚´eq ´αF peq	(3.24)
	with α ě 1. Since F peq ą 0 for e ă e ˚, the local assumption becomes global. Let χ be a C 8 function such that 0 ď χ ď 1 and $ & % χptq " 0 for t ď 0, χptq ď 2t α for t ě 0, χptq " 1 for t ě 1
	and let	χ δ peq " χ	ˆe˚´e δ 1{p2αq ˙.	(3.25)

  Depe `cos θq ´1{2 sin 2 θdθ.

			2).			
	Indeed, we introduce ż				ż
	αpeq "	De	pe `cos θq ´1{2 dθ,	βpeq "
	We have αpeqg 1 peq " αpeq ´2βpeq	´1 αpeq ˆżDe	˙2 pe `cos θq 1{2 dθ ´eαpeq ż
	" p1 ´e2 qαpeq ´2βpeq `2e		
							´,
	and direct calculations yield ż 2π 0 p1 `cos θq 1{2 dθ " 4 ?	2,	βp1q "	8 ? 3	2	.
	This means that			αpeqg 1 peq Ñ g 1 peq "	8 ? 3 8 ? 2 2 αpeq	´, ą 0 as e Ñ 1 as e Ñ 1

De

pe `cos θq 1{2 dθ ´1 αpeq ˆżDe pe `cos θq 1{2 dθ ˙2 .

From

[START_REF] Lemou | Nonlinear stability criteria for the HMF Model[END_REF]

, we have αpeq " ´?2 logp1 ´eq as e Ñ 1
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