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Abstract

In this work we prove the nonlinear instability of inhomogeneous steady states
solutions to the Hamiltonian Mean Field (HMF) model. We first study the linear
instability of this model under a simple criterion by adapting the techniques
developed in [19]. In a second part, we extend to the inhomogeneous case some
techniques developed in [14, 17, 18] and prove a nonlinear instability result under
the same criterion.

1 Introduction

In this paper, we are interested in the nonlinear instability of inhomogeneous steady
states of the Hamiltonian Mean Field (HMF) system. The HMF system is a kinetic
model describing particles moving on a unit circle interacting via an infinite range
attractive cosine potential. This 1D model holds many qualitative properties of more
realistic long-range interacting systems as the Vlasov-Poisson model. The HMF model
has been the subject of many works in the physical community, for the study of non
equilibrium phase transitions [11, 26, 2, 24], of travelling clusters [6, 27] or of relaxation
processes [28, 3, 12]. The long-time validity of the N-particle approximation for the
HMF model has been investigated in [8, 9] and the Landau-damping phenomenon near
a spatially homogeneous state has been studied recently in [13]. The formal linear
stability of inhomogeneous steady states has been studied in [10, 23, 7]. In particular,
a simple criterion of linear stability has been derived in [23]. In [22], the authors of the
present paper have proved that, under the same criterion ko < 1 (see below for a precise
formulation), the inhomogeneous steady states of HMF that are nonincreasing functions
of the microscopic energy are nonlinearly stable. The aim of the present paper is to
show, in a certain sense, that this criterion is sharp: we show that if kg > 1, the HMF
model can develop instabilities, from both the linear and the nonlinear points of view.



In [15], Guo and Lin have derived a sufficient criterion for linear instability to 3D
Vlasov-Poisson by extending an approach developped in [19] for BGK waves. Let us also
mention that both works have adapted some techniques presented in [16] to prove the
nonlinear instability of the 3D Vlasov-Poisson system. In the first part of this article
we adapt these techniques and prove the linear instability of nonhomogeneous steady
states to the HMF system. In [17], a nonlinear instability result for 1D Vlasov-Poisson
equation was obtained for an initial data close to stationary homogeneous profiles that
satisfy a Penrose instability criterion by using an approach developed in [14]. In [18],
starting with the N- particles version of the HMF model, a nonlinear instability result
is obtained for the corresponding Vlasov approximation by also considering a Penrose
instability condition for stationary homogeneous profiles. In the second part of this
article our aim is to prove the nonlinear instability of non-homogeneous steady states of
HMF by adapting the techniques developed in [14, 17, 18].

In the HMF model, the distribution function of particles f(t,6,v) solves the initial-
valued problem

Of +vinf — dobsduf =0,  (,0,0)eRy x T x R, (1.1)
f(0707v) = finit(aav) = 07

where T is the flat torus [0,27] and where the self-consistent potential ¢; associated
with a distribution function f is defined by

r(0) = — f;ﬂ pr(0') cos(0 —6")db’, pr(0) = jR f(0,v)dv. (1.2)
Introducing the so-called magnetization vector defined by
m:f@wwm with  u(f) = (cos@,sin6)” (1.3)
we have
or(0) = =My - u(8). (1.4)

In this work will consider steady states of (1.1) of the form

fO(a’v) = F(eO(eav))’ (15)

where F is a given nonnegative function and where the microscopic energy eo(6,v) is

given by
2

v .
60(950) = E + ¢0(9) with ¢o = ¢fo (16)
Without loss of generality, we assume that ¢(6) = —mg cos 6 with mg > 0. Here myg is

the magnetization of the stationary state fy defined by mg = § py, cos 6d6.
It is shown in [22] that (essentially) if F' is decreasing then fy is nonlinearly stable
by the HMF flow (1.1) provided that the criterion ko < 1 is satisfied, where kg is given



by

2
f (cos B — cos 0')(eg(0,v) + mg cos ') /2de’
DEO(Q,U)

21 ~+00
Ko = —f F'(eo(6,v)) dfdv,
0 J-oo

f (eo(0,v) + mq cos 0')~Y2de’
Deo(e,v)

(1.7)
with
D, = {9' eT : mgcosb > fe}.

In this paper, we explore situations where this criterion is not satisfied, i.e when
kg > 1. Let us now state our two main results. The first one concerns the linearized
HMF equation given by

ouf = Lf, (1.8)
where

Lf = —vogf + 0gpo0y [ + 89¢f61,f0. (1.9)

Theorem 1.1 (Linear instability). Let fo € L'(T,R) be a stationary solution of (1.1) of
the form (1.5), where F is a nonnegative C* function on R such that F’(eq(0,v)) belongs
to LY(T,R). Assume that ko > 1, where ko is given by (1.7). Then there exists A > 0
and a non-zero f € L' (T x R) such that e\ f is a nontrivial growing mode weak solution
to the linearized HMF' equation (1.8).

Our second result is the following nonlinear instability theorem.

Theorem 1.2 (Nonlinear instability). Let fy be a stationary solution of (1.1) of the
form (1.5), where F is a C* function on R, such that F(e) > 0 for e < e,, F(e) =0
for e = ey, with e, < mgy and |F'(e)] < Clex —e|”"*F(e) in the neighborhood of ey, for
some a = 1. Assume that kg > 1, where kg is given by (1.7). Then fy is nonlinearly
unstable in L'(T x R), namely, there exists 69 > 0 such that for any 6 > 0 there exists
a nonnegative solution f(t) of (1.1) satisfying | f(0) — follzr <6 and

1f(ts) = foll L1 = do,
with ts = O(]logd]) as 6 — 0.

Remark 1.3. Note that in these two theorems we do not assume that the profile F' is
a decreasing function. Besides, the set of steady states satisfying the assumptions of
these theorems is not empty, as proved in the Appendix (see Lemma A.1). Note also
that the instability of Theorem 1.2 is not due to the usual orbital instability. Indeed the
functional space of the pertubation can be restricted to the space of even functions in

(0,v).

The outline of the paper is as follows: Sections 2 and 3 are respectively devoted to
the proofs of Theorem 1.1 and Theorem 1.2.



2 A linear instability result: proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1. This proof will be done following
the framework used by Lin for the study of periodic BGK waves in [19], which was
generalized to the analysis of instabilities for the 3D Vlasov-Poisson system by Guo and
Lin in [15]. We divide this proof into the three Lemmas 2.1, 2.2 and 2.3, respectively
proved in Subsections 2.1, Subsection 2.2 and Subsection 2.3.

A growing mode of (1.8) is a solution of the form e f, where f € L'(T,R) is an
unstable eigenfunction of L, i.e. a nonzero function satisfying Lf = Af in the sense
of distributions, with A € R¥ and with L defined by (1.9). Note that the equation
Lf — Af = 0 is invariant by translation: if f(#,v) is an eigenfunction, then for all 6,
f(0 4 0y,v) is also an eigenfunction. Since for all f € L' we can find a 6y € T such
that §ps(0 4 6p) sinfdf = 0, we can assume that our eigenfunction of L always satisfy
§prsinddd = 0, i.e. ¢y = —mcos with m = § py cos 6db.

Let us first define (O(s,0,v),V (s,0,v)) as the solution of the characteristics problem

M — V(s,@,v)
o ds@ | (2.1)
% — —0po (O(s,0,v))

with initial data ©(0,6,v) = 6, V(0,0,v) = v. When there is no ambiguity, we
denote simply O(s) = O(s,0,v) and V(s) = V(s,0,v). Since ¢o(f) = —mgcos @, the
solution (0,V) is globally defined and belongs to C*(R x T x R). Note that the energy
eo (©(s),V(s)) = %8)2 + ¢0(O(s)) does not depend on s.

We shall reduce the existence of a growing mode of (1.8) to the existence of a zero
of the following function, defined for all A € R%:

27 2
G(A) =1+ J f F (U— — My cos 9> cos? Odfdv
0o Jr 2

2m 2 0
- f f F <v_ — Mg Cos 9) (f Ae? cos @(s,ﬂ,v)ds) cosfdfdv. (2.2)
o Jr 2 —o

Lemma 2.1. Let fo € L*(T,R) be a stationary solution of (1.1) of the form (1.5), where
F is a C' function on R such that F'(eo(6,v)) belongs to L'(T,R). Then the function G
defined by (2.2) is well-defined and continuous on R¥. Moreover, there exists a growing
mode e f solution to (1.8) associated with the eigenvalue X > 0 if and only if G(\) = 0.
An unstable eigenfunction f of L is defined by

0
f(0,v) = —F'(eg(6,v)) cos 0 + F'(eo(6,v)) f_oo e cos (O(s,0,v)) ds. (2.3)

Lemma 2.2. Under the assumptions of Lemma 2.1, the function G defined by (2.2)
satisfies

lim G(A) =1~ o, (2.4)



where kg is defined by (1.7).

Lemma 2.3. Under the assumptions of Lemma 2.1, the function G defined by (2.2)
satisfies
lim G(\) = 1. (2.5)
A—+00
Proof of Theorem 1.1. From these three lemmas, it is clear that if k9 > 1, we have
/\limJr G(N\) < 0 and )\lim G(\) > 0 so by continuity of G, there exists A > 0 such
—0 —+00
that G(A\) = 0. This means that there exists a growing mode to (1.8) and this proves
Theorem 1.1. U

2.1 First properties of the function G()\): proof of Lemma 2.1

In this subsection, we prove Lemma 2.1. Let A € R% . Since, by assumption, the function
F'(eo(#,v)) belongs to L' (T x R), and since

0 0
V(6,v) U e cos(O(s))ds| < f AeMds = 1,
—o0 —0

both functions

0
F'(eg(6,v))cos @ and F'(eo(ﬁ,v))f Ae? cos (O(s,0,v)) ds

—0

belong to L!(T x R), so the function f defined by (2.3) also belongs to L!(T x R). Hence,
by integrating with respect to cos#dfdv, we deduce that G()) is well-defined by (2.2).
The continuity of G on R stems from dominated convergence.

Consider now a (nonzero) growing mode e f of (1.8) associated to an eigenvalue
A > 0. Let us prove that G(\) = 0. From Lf = Af and (2.1), we get, in the sense of
distributions,

4

S (M (005), V() = €46 (8() V(5)F(e0(6, V).

Integrating this equation from —R to 0, we get, for almost all (,v) and all R,

0
f(8,v) = e M f(O(=R),V(~R)) + F'(eo) jR ¥ (O(s)) V(s)ds,

where we recall that ey(©,V) = eg(f,v). We multiply by a test function ¥ (6,v) €
CF(T x R) and integrate with respect to (6, v),

f;ﬂ fRf(G,v)w(H,v)dﬁdv — ¢ R f;ﬂ fRf (0,v)v¢ (O(R), V(R)) didv
" J_O R fw fR e F'(e0)d; (O(s)) V(s)¢ (6, v) dsdfd.
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In the first integral of the right-hand side, we have performed the change of variable
(0,v) = (O(R,0',v"), V(R,0',v')). In the second integral, we remark that [¢, (©(s)) | <

|f|z1 and, the support of ¥ being compact, v is bounded. Hence, by % — mopcos =

VTQ — mpcos©, V(s) is bounded. Therefore, by dominated convergence (using that

F'(eg) € L), as R — o0, we get

jo% Jo s0-00000. a0 = fooo fo | P (s @) Vi (0.0) dsdvao

0 0
F6.0) = Feo) | 0@ V(s)ds = Fleo) [ (6 (0()) ds

0
= F(ea)dy ()~ Flleo) | AMos(@()ds

almost everywhere. Recall that ¢;(6) = —mcos @, with m = SSF p(0)cosfdf. Then we
can rewrite this expression of f as

0
f(0,v) = —mF'(eg) cos§ — mF’(eg) f e cos O(s)ds.
—00
Integrating both sides of this equation with respect to cos 8dfdv we get
2m 21
m = f p(0)cosfdf = — mf f F'(eq) cos® Bdfdv
0 0 R
21 0
+ mf f F'(ep) <j e cos @(5)d8> cos fdfdv,
0 R —0
i.e. mG(\) = 0. It is clear that m # 0, otherwise f = 0 a.e.. Finally, we get G(\) = 0.
Reciprocally, assume that G(\) = 0 for some A > 0. Let f be given by (2.3). We have
proved above that this function belongs to L'(T x R). Moreover, since (s, —0, —v) =
O(s,0,v), we have §prsinfdfd = 0. Multiplying (2.3) by cos@ and integrating with
respect to 6 and v, and using that G(X) = 0, we get § pycosfdf = 1, so f is not the zero
function and we have ¢¢(f) = —cos 6.

We now check that the function f given by (2.3) is an eigenfunction of L associated
with A. From (2.3), we get

0
FOU.V () = =F(ca)dy (O0) + Flle) | ANy (6(s,0(0). V(1) ds.



Note that ©(s,0(t),V(t)) = © (s + t,0,v). Therefore
0
FO.V (1) = ~Fleayor (O + Feo) [ 3oy (05 +1)) s
:_Fﬁm¢ﬂe@»+F%%p*ﬁ£wM%¢Ne@»@

:p@pﬂfw&wﬂmmV@@,

where we integrated by parts. Then

FO.V() = Flea) | 0] (O(5) V()i

- foo M ¢} (0(s)) 0ufo(O(s), V(s))ds.

Differentiating both sides with respect to ¢, we obtain in the sense of distributions that
for all t € R,

M (AF(O@), V(1) + V(D) f(O), V(1) — ¢6(0(1)0: (1), V(1))
= Ny (0(1) 2, fo(O(1), V (1)).

By writing this equation at t = 0, we get Lf = Af: f is an unstable eigenfunction of L.
This ends the proof of Lemma 2.1. O

2.2 Limiting behavior of G(\) near A = 0: proof of Lemma 2.2

To study /\lim+ G(\) we need to analyze the limit of the function
—0

0
gr(0,v) = J e cos O(s, 0,v)ds (2.6)
— 00

as A — 0. We provide this result in the next lemma, where we also recall some well-
known facts on the solution of the characteristics equations (2.1), which are nothing but
the pendulum equations.

Lemma 2.4. Let (,v) € T xR and e = % — mgcosf. Consider the solution

(O(s,0,v),V(s,0,v)) to the characteristics equations (2.1). Then the following holds
true.

(i) If e > my then, for all s € R, we have
O(s+ T.) = O(s) + 2m, V(s+Te) =V(s), (2.7)

with ) )
g db
T, = > 0. (2.8)

0 4/2(e+mgcosd)

7



(ii) If —mgy < e < mg then © and V are periodic with period given by

fmo dg’
T, =4 _ >0, (2.9)
0 /2(e+mocost)
where O, = arccos(—=-).
(i1i) We have
1 cos ' /
— do if e > mg,
) Te Jo /2(e +mgcos®) d °
lim gx(0,v) = (2.10)
A—0F 4 (Omo cos 6’ , _
— df if —mp<e<my.
Te Jo  +/2(e +mgcos®)

Proof. (i) Let e > mg. Without loss of generality, since O(s, —0,—v) = ©(s,6,v) and
V(s,—0,—v) =V (s,0,v), we can only treat the case v > 0. As we have

V(s)®
2

=e+mpcosO(s) =e—mg >0,

V(s) does not vanish and remains positive. Hence ©(s) is the solution of the following
autonomous equation

O(s) = V(s) = /2(e + mg cos O(s)) (2.11)

and is strictly increasing with ©(s) — +00 as s — +00. Let T, be the unique time such
that ©(T.) = 6 + 2m. By Cauchy-Lipschitz’s theorem, we have ©(s + T.) — 27 = O(s)
and (2.7) holds. Defining

Py = [ =2
T = )
0 v/2(e +mgcos?)

the solution of (2.11) satisfies P(O(s)) — P(f) = s. Therefore, we have T, = P(6+27) —
P(#), from which we get (2.8).

(ii) Let —mp < e < myp. In this case, ©(s) will oscillate between the two values 6,,, =
arccos(—3=) and —0p, with a period e given by (2.9). On the half-periods where © is
increasing, we also have (2.11). We skip the details of the proof, which is classical.

(i7i) We remark that cos O(s + kT,) = cos ©(s) for all s € R and k € Z. Indeed, by (i),
for e > mg we have O(s + kT.) = O(s) + 2wk and, by (i), for —mgy < e < mgy we have



O©(s + kT.) = ©(s). Hence, we compute from (2.6)

H00 (k4 1)Te
ga(0,v) = Z J e ¥ cos O(—5)ds
k=0"HkTe

+00 AT
= Z f e A TRATe o5 O (—5)ds
k=0+"0

+00 T,
- (Z e_kATff) f Ae ™% cos ©(—s)ds
k=0

0

A Te
= " cos O(—s)ds.
T T fo e ¥ cos O(—s)ds

Therefore, clearly,
1 (T 1 (T
/\li_rerlJr gr(0,v) = T fo cos O(—s)ds = T fo cos O(s)ds.

If e > mg, we perform the change of variable #’ = ©(s) which is strictly increasing from
[0,T¢] to [0,60 + 27]. Using (2.11), we obtain

1 04271 o 1 27 o’
lim gy(0,0) = — cos o' = — cos o',
A—0+ Te Jo v/2(e + mgcos ) Te Jo  +/2(e + mgcos®)
If —mg < e < myp, we can always choose a time ¢y such that O(tg) = —0,, O(to+71e/2) =

Omy, O(s) is strictly increasing on [to, to + 1./2] and such that O(s) = ©(2tyg + T, — s)
for s € [to + Te/2,to + T.]. We have

| p 1 to+Te/2 o p 1 to+Te o g
1m , V) = — cosB(s)as + - cos B(s)as
tm oa.0) = 7 | (s + 7 | om0l
1 to+Te/2 1 to+Te
= — cos O(s)ds + — cos ©(2tg + T, — s)ds
Te to Te to+Te/2
2 to+Te/2 o
= — cos O(s)ds
= (¥
2 (%m0 cos ¢ 4 (Pmo cos ¢
= — dy’ = — ay’,
Te Jp,,, +/2(e + mgcos6') Te Jo  +/2(e +mgcost)

where, on the time interval [tg,tg + T./2], we performed the change of variable 6’ =
O(s). O

Proof of Lemma 2.2. Now we come back to the definition (2.2) of G, which reads
2m ’1)2
G(\) =1+ f f F <— — Mg cos 9) cos? @dfdv
o Jr 2

21 2
- J J F' (% — M COS 9) ga(0,v) cos Odbdv. (2.12)
0 R



We remark that |gy(6,v)| < 1 and recall that the function F” (% — mg cos (9) belongs

to L}(T x R). Therefore, we can pass to the limit in the second integral by dominated
convergence and deduce from Lemma 2.4 (i) (note that the set {(6,v) : eg(0,v) < —mg}
is of measure zero) that

27
lim G(\) =1 +f f F'(eq) cos® Odfdv
0 R

A—0t
12 ’ ,
- fj Fl'(eo) | = cos —df | cos Odfdv
Te Jo \/Q(eo—i—mocose)

eo(0,v)>mg

4 (Om ' )
- f Fleo) =" €S9 ') cos fdbdu
Te Jo  +/2(eg + mqcos®)

—mo<eg(6,v)<mo

27
=1+ f f F'(eg) cos® Odfdv
o Jr

[ fre

14 L T fR F(ey) cos(0)2dvdd — fw fR F(ey) (T, (cos 0))? dbdo,

j cos 0 (eg + mq cos 0')"V/2dp’
De,

cos 0dfdv
f (eg + mg cos ') ~Y2dp’
D

€0

with
f (e + mg cos 0) ~Y2n(0)do
(Mo h)(e) = == , (2.13)
f (e + mg cos 0) " Y/2dg

e

for all function h(#) and
De={0'€T : mgcost > —e}.

Here the operator II,,, is a variant of the operator II given by (3.8) in [21], this operator
should be understood as the “projector”onto the functions which depend only on the
microscopic energy eg(6,v). A projector of this type is also mentioned in the work by
Guo and Lin [15].

Now we remark that straightforward calculations give

2m
1 — ko 1+ fo JR F'(eo) <COS2 0 — 2 cos 011, (cos 0) + (IL,,, (cos 9))2> dfdv,
21
= 1+ f f F'(eq) cos? 0dfdv — ff F'(eg) (I, (cos 0))* dfdv,
o Jr

10



where

2
(cos 6 — cos 0')(eq + mg cos 0')~V/2de’

21
—KQ: = f f F'(eg) | 22 dfdv.
¢ JR J (eg + mg cos 9')71/2d9/

e

This calculation uses that II,,, is a projector. We finally get (2.4) and the proof of
Lemma 2.2 is complete. O

2.3 Limiting behavior of G(\) as A — o0: proof of Lemma 2.3

In this subsection, we prove Lemma 2.3. An integration by parts in (2.6) yields
0
ga(0,v) = cosf + J eV (s,0,v)sin O(s, 0, v)ds.
— 00

The velocity can be bounded independently of s thanks to the conservation of the energy,
[V (s)| = (1)2 + 2myg cos 6 — 2my cos @(s))1/2 < (1)2 4 4m0)1/2 .

Thus

; 0 214 1/2
U s sin@(s,@,v)V(8797v)dS < (1)2 + 4m0)1/2f eMds = %

and, for all (6,v),
lim g¢x(0,v) = cos#.

A—+00
Using again that |g)(6,v)| < 1 and that F'(eq(6,v)) belongs to L', we deduce directly
(2.5) from (2.12) and from dominated convergence. The proof of Lemma 2.3 is complete.
O
3 A nonlinear instability result: proof of Theorem 1.2

We start by an analysis of the linearized HMF operator L around the inhomogeneous
equilibrium state fy, where L is given by (1.9). We write

L=1ILy+K, (3.1)

where

Lof = —voof — Egduf,  Kf=—Esoufo,  Ef=—0pdys. (3:2)

11



3.1 Estimates on the semigroup e"

Let us state some useful properties of the operator Ly given by (3.2). Since ¢g(6) =
—mgcos @ is smooth, the characteristics equations (2.1) admit a unique solution
O(s,0,v),V(s,0,v), which is globally defined and C* in the variables (s, 8,v). Moreover,
this solution has bounded derivatives with respect to 6 and v, locally in time. Let k£ € N.
For any f in the Sobolev space W#1(T, R), the function

etbof(t,0,v) := f(O(—t,0,v),V(—t,0,v)), Vt=0, (3.3)

belongs to C°(R, W*1(T,R)) and is clearly a solution to d;g = Log with initial data f.
This means that the semigroup e*“0 generated by the operator Ly is strongly continuous
on WFL(T,R).

Our aim is to apply the abstract results in [25] concerning perturbation theory of
linear operators. Hence, we need to prove the following estimate. For all 5 > 0, there
exists a positive constant Mg such that

et Flwns < Mae®|fluns S € WRTR), Ve 0, (34)

where Mg depends on k. In fact a stronger estimate will be proved but for a subclass
of functions f. From the assumptions of Theorem 1.2 on F', there exists e, < mg such
that support of F is (—o0,es]. This means that the support of fy is contained in Qq,
where €2 is the smooth open set

Qo = {(9,1}) : %2 —mpcosf < e*}.
We then introduce the functional space
G ={fe W (T.R): Supp(f) = W},
and claim that for all f € &, we have '™ f € &, and

HetLOfHWk,l < MkaHW}cl, Vfedy, Vit=0, (3.5)

My, being a positive constant.

Assume for the moment that estimate (3.5) holds true. From the assumptions of
Theorem 1.2, one deduces that ,fy € &. It is then easy to check that ef0K is a
compact operator on &, for all t € R, and the map t +— €0 K € £(&,) is continuous on
R. Hence, K is Lyp-smoothing in the sense of [25] (page 707). Assumptions of Theorem
1.1 in [25] are therefore satisfied, which implies that L generates a strongly continuous
semigroup e'*. Now, from Theorem 1.2 in [25], for all 3 > 0, any point of the spectrum
o(L) lying in the half plane Rez > [ is an isolated eigenvalue with finite algebraic
multiplicity. Furthermore, the set o(L) n {Re z > } is finite.

The assumptions of Theorem 1.2 clearly imply those of Theorem 1.1. Hence L admits
at least one eigenvalue A € R* associated with an eigenfunction fe LY (T xR). We claim
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that, in fact, fe &% which will be proved below. This means that the set of eigenvalues
of L on &), with positive real part is not empty, and we therefore can choose an eigenvalue
~ with positive maximal real part. Finally, we apply Theorem 1.3 in [25] and get that,
for all 8 > Rey, there exists a positive constant Mg ;, such that

HethHWk,l < Mg,k etﬁ Hwakl Vfedy, Vt=0. (3.6)

Proof of (3.5) and of the claim fe 8. Let f € &. From (3.3), we clearly have
le 0 flpr = [ flp, VFeL', vt=o0.

Moreover, we know from the analysis of the characteristics problem (2.1) performed
in Section 2, that by conservation of the energy, for all (6,v) € g, we have
(O(t,0,v),V(t,0,v)) € Q. Thus

Supp(e™® f) = 0.

Let k > 1. By (3.3), to get an estimate of o f in L®(R,, W"!(T,R)), it is sufficient
to estimate © and V in L*(R, W»®(T,R)) for (6,v) € Qo. Since the field Ey,(0) =
—0gdo(0) and all its derivatives are bounded, one can apply Gronwall Lemma to get

05050 + 305V | < Cre®st, Yt =0, Y(0,v)€Qo, forj+l<k.

Now we observe that for (6,v) € Qq, we have e = v2/2 — mgcosf < mg and by Lemma
2.4, the solution (0,V') and its partial derivatives with respect to # and v are periodic
in time, with a period T, given by (2.9). Hence

05050 + 150V < CresTe, Wi =0, Y(0,0) € Qy, forj+ L <k

By Lemma 2.2 (%) in [22] the function e — T¢ is increasing on (—mg, mg). Thus T, < T,
for all (,v) € Q. We conclude that © and V are bounded in L®(R, W**(y)), which
yields the estimate (3.5).

Let us finally prove that fe &%. By Lemma 2.1, the function fis given by

~ 0
f(0,v) = —F'(eg(0,v)) cos O + F'(eg(6,v)) JOO e cos (O(s, 0, v)) ds.

Hence, the support of F’(ey(#,v)) being in Qq, the support on fwill also be contained
in Q9. Moreover, by using that © is bounded in L®(R, W% (Qyg)), we obtain that, for
some C} > 0, we have

) 0
Vi+l<k, VY(0,v)eTxR, agafjf e cos (O(s,0,0)) ds| < Cy.
—00

This is sufficient to deduce from F € C* that fe &%

13



3.2 An iterative scheme

In this part, we prove Theorem 1.2 by following the strategy developed by Grenier in
[14], which has been also used in [17, 18] to analyse instabilities for homogeneous steady
states of Vlasov-Poisson models. Let N > 1 be an integer to be fixed later. According to
the previous subsection, we can consider an eigenvalue v of L on &y with maximal real
part, Rev > 0. Let g € &y be an associated eigenfunction. With no loss of generality,
we may assume that || Reg|z1 = 1. Let

fi(t,0,v) = Re (e“/tg(e,v)) Xs(eo(0,v)), (3.7)

with eg(0,v) = % + ¢0(0) and where 0 < xs(e) < 1 is a smooth real-valued truncation
function to be defined further, in order to ensure the positivity of fo+ Jf1(0). Note that
f1 is almost a growing mode solution to the linearized HMF model (1.8) since we have

(0 — L) f1 = Re(e"* Ry),

where

Rs = (—Eq—yy)g + (1= X5)Ey) 0ufo (3.8)

will be small. We now construct an approximate solution fé\;p to the HMF model (1.1)
of the form

N
o = fo+ X 0% fi, (3.9)
k=1

for sufficiently small 6 > 0, in which fi (k = 2) solves inductively the linear problem

k-1
@ — L) fe+ ), Bp,dufu—j =0 (3.10)
j=1

with f;(0) = 0. Then f2), approximately solves the HMF model (1.1) in the sense that

Otfapp + 000 app — 00B g5 Oufapy = RN + §Re(e"R), (3.11)
where the remainder term Ry is given by

Ry = > 50, fo. (3.12)
1<j0<N;j+E=N+1

Step 1. Estimate of fi.. We claim that fr € &ny_ry1 and, for all 1 < kK < N,
kaHwakJrl,l < CkektReﬂ/. (3.13)
We proceed by induction. From (3.7), this estimate is a consequence, for k = 1, of

lgxslwna < Ch, (3.14)
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which is proved below in Step 5. Let £ > 2. We have

fk(t):f Lie=s) ZEfJ )0 fr—j(s)ds

Therefore, for Rey < 8 < 2Re~,

WN—k+1,1

k—1 ~t
idws-sss < 33 [ e (B, 92-)|
j=1
k—1 st
< Mg N_g+1 Z fo i) HEfj<S)HwN—Ic+l,oo Havfkfj(s)HWN—kﬂ,l ds
j=1

k—1 rt
< Maniir Y fo B 1 £(5) o 1 (5) v ds
j=1

since k —j < k-1,

k—1 ;
< MﬁyN*kﬁ’l <Z C]ij> f eﬁ(t_s)ek‘SRe’yds
0

j—l
MBN k+1 ktR
< c;C e

kRevy—f3 Z k=i | € ’

where we used (3.6) and the recursive assumption. This ends the proof of (3.13).

Step 2. Estimates of fN — fo and Ry. The parameter § and the time ¢ will be such

app
that -
t Re~y < —
de min (2 2KN> Ky = 1I<Ifll€a<XNC (3.15)
Hence, from (3.13) we obtain
N
6etRe’y
|5 = follwrr < Z ke S Ky < 1

and

~ N+1
IR 1 < Z grektRer N 050, < Oy (detRen) T
k=N+1 1< 0<N;j+=k

Step 3. Estimate of f — fN . Let f(t) be the solution of (1.1) with initial data fo +

app
0Regxsandlet h = f— fapp Note that the positivity of f(t) is ensured by fo+0 Re gxs =
0 and that we have

[£(0) = foll L < 6.
The function h satisfies the following equation

Och + vph + Eydsh = (B, = Ey) 0ufly, = R — 6 Re(e™'Ry)

f app
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with h(0) = 0. To get a L'-estimate of h, we multiply this equation by sign(h) and
integrate in (0,v). We get

d ~
bl < Bry, = Br| oufiyl e + 1Bl + 66 F7| Rl

< Bl 00 fappl o+ IBN ] Lr + e 7| Rl 1

From Step 2 we have H@UféngLl < |0y fol 1 + 1, which implies that

¢
h(t 1 < e(t_s)(Ha”fO”Ll—i_l) Rn(s 1 +565Reﬂ/ E 1) ds.
[h(@)] L L slz
0
Again from Step 2, we then get
' 2 1 (A~ Re~\N+1 Rev| B
a1 gf e(t=5) (10 foll L1 +1) (CN (desRem) + 5ef eVHRzSHLI) ds
0

We now fix N as follows (with the notation |-| for the integer function)

N = {MJﬁ-l)l
Re~

and claim that y may be chosen such that
|5l < (568R6V)N, (3.16)
see Step 5 for the proof. This yields

)y (3.17)

If = £ (t) < Gy (et Re

with Cy = FhHEX.

Step 4. End of the proof. Since Re g is not zero, we can choose a real valued function
©(#,v) in L such that |¢|rc=1 and

27
Rezy >0 with z, = f f gpdidv.
0 R

Denoting

27
29,6 = f f gxsedidv,
0 R

we have

fj fredfdv = e'B°7 Re (eit Im“’zg#;)
etRefy Re (eitlm'yzg) _ etRe'y|Zg _ Zg,6|

=
> etRefy Re (eitlm'yzg) o etRe'y”g(l o X5)||L1
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We claim that
tim (1~ x)gls = 0. (3.18)

which again will be proved in Step 5. In order to end the proof of Theorem 1.2, we
estimate from below, using (3.17) and (3.13),

If = folls = [[ (7 = sorpasao = [[ (13, = seasav + ([ (£ = 535 )odba

N
k=2

N
= 5fj Jipdfdv — Z C (6etRe’Y)k Oy (56tRe7)N+1
k=2
= (5f flgpdadv —2Kpn (5etReﬂ/)2 - éN (6etReq/)N+1
> §elRev <Re (eitImVZg) — (1 = x8)gllz — QKN(SetReV _ éN (6etRey)N)

Assume for a while that
Re z4

Re (emmyzg) > 7 (3.19)
We have
1= ol > SetReTRe 2, - 2[(1 = xa)gllpr  4KndeRer 20N (5etRe“/)N
oLt = 2 Re zg4 Re z, Re z,4

Let 49 > 0 be such that

32Ky 20n8Y v 1 860 (1 1
dy < — d < S
(Re zg)? 0 (Rezg)N+170 = 4 an Re z4 i

(note that N > 1) and consider times ¢ such that

450 < 56t Re'y < 850

— < . 3.20
Re z4 Re z4 ( )

Owing to (3.18), we also choose ¢ small enough such that

21— xa)glr _ 1
Re z4 =

W

We conclude from these inequalities that

If — folLr = do

and that (3.15) is satisfied.
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To end the proof, it remains to fix the time ¢5 and to choose the truncation function
Xs- Let us show that, for 0 small enough, there exists a time t5 satisfying both (3.19)
and (3.20). If Im~y = 0, then (3.19) is clearly satisfied since Rez, > 0: a suitable ¢; is

then
f 1 o 6dg
o Re~ &\ 5Re zg) "

Assume now that Im~ # 0. For ¢ small enough, the size of the interval of times ¢
satisfying (3.20) becomes larger than —2"—. This means that it is possible to find a time

[Im |

ts in this interval satisfying (3.19).

Step 5. Choice of xs. For all § > 0, we have to fix the function x5 € C*(R) such that
(3.14), (3.16), (3.18) are satisfied and such that fo+ df1(0) > 0. First of all, proceeding
as in the proof of Lemma 2.1, we obtain that g takes the form

0
g(0,v) = —mF'(eg) cos § — mF'(eq) f ~v€7% cos O(s)ds, (3.21)
—00
with m = Sg” py(0) cos fdf. Hence,

96,0 < fmf (1+ 325 ) [Feo)l. (3.22)

The assumptions on F' and F’ in Theorem 1.2 imply that
Ve < ey, |F'(e)] < Cex — )" “F(e) (3.23)

with a > 1. Since F(e) > 0 for e < e, the local assumption becomes global. Let x be
a C* function such that 0 < xy <1 and

x(t)=0  fort <0,

x(t) < 2t* fort =0,

x(t)=1 fort>1
and let

X(S(e) =X (51/(204)) : (324)
From

[T =x6)glLr < g1e, —51/20) < 0,0)<es | L1

and dominated convergence, we clearly have (3.18). By (3.22) and (3.23), we have, for
all (0,v) e T x R,

|6* *60|

d|Reg(f,v)xs(eo(8,v))| < 6C|ex — eo| “F(eo) 5z C52 fo(0,v),

so for § small enough, we have fo + df1(0) > 0.
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By differentiating (3.21) and using that © is bounded in L®(R, W*%*(Qq)) (see
Subsection 3.1), we get

. J A (k) _ _IN—-1
VAL N, o [00g(0,v)] < € max F¥(eo) < Clex —eo "

where we used Taylor formulas and the fact that F' € C* with F(e) = 0 for e > e,.
Besides, from (3.24), we obtain (if § < 1)

VI<j+l<N,  [3dxs(eo(0,0)] < C5 N1, 5o

<eo(f,v)<ex*

Therefore

21
HngSHWN’l < HgHLl + C(S_N/(za)fo fR ‘e* - 60(‘97U)|N_116**51/(20)<eo(€,v)<e*d9dv

€x Omg d6
< gl + c(sN/@a)f (ex —e)N 714 de
ex—01/(20) 0 /2(e+mgcosh)

e

*
— gl + €5 N/ f (es — N1 T, de.,

ey —61/(20)

where 0,,,, = arccos(—;=) and T¢ is given by (2.9). Now we recall that for e < e, we
have T, < T, . This yields

_ € _ CT.
loxalwsa < gl + CTuyd N/@a)j (e — )N de = gl + T
ey —51/(20) N

We have proved (3.14).
By (3.8), we have

IRs|r < C (11 = xs)glLr + (1 = x5)0u foll 1)
<C (Hgle* —01/(20) <ep(0,v)<ex HLI + Havfole*f(gl/@a)<eo(€,v)<e* HL1> )

so by dominated convergence, N
tim | By = 0.

We now choose § small enough such that

From (3.20), we obtain (3.16), which ends the proof of Theorem 1.2. O

A Appendix. Existence of unstable steady states

In this section, we prove that the set of steady states satisfying the assumptions of
Theorems 1.1 and 1.2 is not empty. More precisely, we prove the following

19



Lemma A.1. Let m > 0. There exist m > 0, e, < m and there exists a nonincreasing
function F, C* on R, such that F(e) > 0 for e < ey, F(e) = 0 for e = e, and
|F'(e)] < Clex —e| " “F\(e) in the neighborhood of ey, for some a > 1, and such that the
function f(0,v) = F(% —mecosf) is a steady state solution to the HMF model (1.1) and
such that K(m, F') > 1, where k(m, F) is given by

2
J (cos O — cos 0)(e(0,v) + mcos 6')~V/2dg’
De(@,v)

k(m, F) = L 27T: |F/(e(6,v))] dfdv,

J (e(0,v) +mcos0)~V/2de'
De(Q,v)

with
2

e(G,v)zv—fmcosﬂ, De={0'"eT: mcost > —e}.
2

Proof. Let m > 0 and F a nonincreasing C* function on R supported in (—o0, m), which

is not identically zero on (—m,m). We first observe that f(0,v) = F(% —mecosf) is a

steady state solution to the HMF model (1.1) if and only if m and F satisfy v(m, F') = m
with

21 2
y(m, F) = f f F (v_ - mcosﬂ) cos fdfdv > 0.
0o Jr \2

m

By using the linearity of v in F' we deduce that WF(% —mcosf) is a steady state.
We proceed by a contradiction argument. Assume that

m
kK|lm ——F| <1
( v(m, F) )
for all m > 0 and all nonincreasing C* function F' supported in (—oo,m) such that,

denoting by (—o0,e,] the support of F, we have |F'(e)|] < Clex — €| *F(e) in the
neighborhood of ey, for some « > 1. This is equivalent to

K(m’F) < M’
m

or, after straightforward calculation and an integration by parts,

- fj F' (e(0,v)) gm(e(0,v))dfdv < 0 (A.1)
with
gm(e) = (IL,, cos? B)(e) — ((IL,y, cos B)(e))* — (I, sin? ) (e)
and for all function h(0),

f (e +mcos0)~V2n(0)do

(ILnh)(e) = ==
f (e +mcos0)~V2db

e
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Now, we choose the functions F' as follows. We first pick a nonincreasing C* function ¥

on R with support (o0, es] = (—00,m), then we set e, = e”;m and define

F.(e) = U(e) + cexp (—(e* - e)*l) , fore< ey,

the parameter € > 0 being arbitrary. Since F_ satisfies the assumptions, it satisfies (A.1).
Then, letting e — 0, we get

- ff U (e(0,v)) gm(e(8,v))dfdv < 0.
The function ¥ being arbitrary, this is equivalent to
gm(e) <0, Vm >0, Vee (—m,m),

or,
gi(e) <0, Vee (—1,1). (A.2)

Let us now prove that the function g (e) is in fact positive in the neighborhood of e = 1,
which contradicts (A.2).
Indeed, we introduce

ale) = J (e + cos 0)~2de, Ble) = f (e + cos ) ~V/2 sin? Ado.

e

We have
o(e)ar(e) = a(e) =26(6) ~ == (f e+ cont) a0 - ea(e)>2
=(1- 62)a(e) —28(e) + Qef (e + cos 6)1/2d9 — ﬁ (f (e + cos 9)1/2d0)2 .

From [22], we have
ale) ~ —v2log(l—e€) ase— 17,

and direct calculations yield

f2w(1 +cosO)2do = 4v2,  B(1) = 87*/5
0

This means that

8v2
ale)gi(e) — \Tf >0 ase—17,
8+/2
~ Vs 17,
gi(e) a(e)as e
This proves the claim. U
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