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ABSTRACT

Camera relocalization is a common problem in several applications
such as augmented reality or robot navigation. Especially, aug-
mented reality requires fast, accurate and robust camera localization.
However, it is still challenging to have a both real-time and accu-
rate method. In this paper, we present our hybrid method combing
machine learning approach and geometric approach for real-time
camera relocalization from a single RGB image. We propose a light
Convolutional Neural Network (CNN) called xyzNet to efficiently
and robustly regress 3D world coordinates of key-points in an im-
age. Then, the geometric information about 2D-3D correspondences
allows the removal of ambiguous predictions and the calculation of
more accurate camera pose. Moreover, we show favorable results
compared to previous machine learning based approaches about the
accuracy and the performance of our method on different datasets
as well as the capacity to address challenges concerning dynamic
scene.

Index Terms: Real-time RGB Camera Relocalization; Deep Learn-
ing Regression;

1 INTRODUCTION

In recent years, Augmented Reality (AR), robotics, autonomous
(self-driving) vehicles have become increasingly trendy. In Aug-
mented Reality applications, the real environment is annotated or
extended with computer-generated contents. These augmentations
must be exactly registered with the real space, which requires an
accurate and real-time camera localization. Most of the existing
solutions (e.g. Tango, Hololens) to camera pose estimation problem
employ multiple sensors such as camera, GPS, LIDAR or IMU [19].
Among these sensors, RGB sensor is used in the main solution of
camera pose estimation for commercial systems: Simultaneously
Localization And Mapping (SLAM): direct SLAM [7, 26]; indirect
SLAM [6, 18, 20]. SLAM methods process an ordered sequence of
images acquired from a set-up of one or more cameras potentially
associated with an inertial measurement unit. SLAM methods first
match features amongst the current and previous image, then they
can both reconstruct a 3D scene model and estimate camera pose.
Unfortunately, in the case of fast camera motion or sudden change
of viewpoint such as in a hand-held camera, tracking failure inter-
rupted camera pose estimation. Camera relocalization is then needed.
SLAM methods solutions to camera relocalization use a large set of
key-points [22, 23] or key-frames [10, 20]. Consequently, memory
usage as well as processing time increase linearly with respect to the
size of the tracking area. In this paper, we focus on an augmented
reality solution based on camera relocalization only.
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In recent years, machine learning approaches have become
widespread in computer vision and provide excellent results for
many applications. Last year, [9, 25] succeeded in estimating 6-DoF
(degrees of freedom) object pose in real-time by using a random
forest and deep learning on depth images. Camera relocalization
also aims to estimate 6-DoF camera pose except that it addresses
a large-scale problem. For machine learning approaches, handling
camera relocalization is as a regression problem solved by a super-
vised learning based on the informations known in advance about
each scene. The training phase uses labeled images (images and their
corresponding camera poses), then the testing phase uses that trained
model to relocalize the camera from each unseen image. Although
machine learning-based methods are only capable of performing
on known scenes, they do not require any initial estimation pose
and can handle individual frames independently contrary to SLAM
methods. In particular, these methods [5, 15, 17, 28] can estimate
camera pose in real-time from each whole RGB image. However,
limitations of these methods lie in their accuracy, their jitter, and the
lack of confidence score for each pose estimation.

Besides, [2–4,11,24,27] presented hybrid approaches which com-
bine both geometric approach and machine learning approach for
camera relocalization with high accuracy. Machine learning ap-
proaches are applied to learn and predict 3D position of each pixel
in world coordinates. From these correspondences, geometric-based
methods infer camera pose. The hybrid methods are known as vot-
ing methods, which have been successfully used in [8] for object
detection. Though, in order to obtain a final 6-DoF camera pose,
each pixel does not vote directly for a global quantized 6-DoF. In-
deed, the high dimensionality of the research space is likely to result
in a poor estimation. Instead, each pixel makes a 3D continuous
prediction about its own 3D position in the world coordinates system.
The camera pose is then calculated by minimizing a re-projection
error function based on these correspondences. The first hybrid
methods [11, 24, 27] are limited by the use of RGB-D sensors in the
testing phase. As an extension of SCoRe Forest [24], [3] uses an
auto-context regression forest from only RGB image patches. [2]
instead uses a VGG style architecture to predict scene coordinates
and proposes a differentiable RANSAC, so that a matching func-
tion that optimizes pose quality can be learned. Although these
methods achieve high accuracy, they need thousands of predictions
about scene coordinates, so that time increases a lot to infer optimal
camera pose by RANSAC.

In this paper, to help overcome the previous limitations, we pro-
pose a hybrid method based on both deep learning approach and
geometric approach for real-time camera relocalization. Our method
can balance between accuracy and run-time. We present a light con-
volutional neural network regression for scene coordinate prediction
from local patches. The originality of our method is to only use
patches extracted based on key-point detection. The patch extraction
based on key-point provides appearance more discriminant. There-
fore, our network predicts efficiently scene coordinates even for
blurry images or texture-less scenes. This allows balance between
run-time and accuracy of our method. Furthermore, thanks to the
use of patches instead of a whole image, our method is robust to
occlusion. From 2D-3D point correspondences are established by
our network, we implement Perspective-n-Point (PnP) and Random



sample consensus (RANSAC) to estimate camera pose. The final
camera pose is attached with a confidence score which is presented
as the number of inliers.

In the following sections, we present our method including
xyzNet’s architecture, means of training and predicting 3D points
in world coordinates system, as well as camera pose calculation
in the section 2. Section 3 shows and discusses our results on dif-
ferent datasets. Finally, section 4 provides some conclusions and
perspectives.

2 PROPOSED METHOD

2.1 Overview

In this section, we present our hybrid method merging both deep
learning approach and geometric approach for robust camera relo-
calization. Figure 1 illustrates our pipeline. That can be summarized
in two principal steps: 3D points location of pixels in the world
coordinates system based on local patches to define 2D-3D point
correspondences; camera pose calculation from these correspon-
dences.

2.2 Deep learning for 3D points localization based on
local patches

The deep learning based methods in [5, 15, 17, 28] estimate directly
camera pose from whole images. Inspired by success of deep learn-
ing with local patches for object detection and segmentation [14],
we propose a light convolutional neural network for inferring 3D
positions of pixels into the world coordinates system based on ap-
pearance of RGB patches around them. We extract local patches of
RGB image which contain significant information. Homogeneous
patches such as on the sky or on road do not provide distinctive in-
formation about camera pose in the scene. The use of these patches
is not recommended since it produces some noise. A problem with
deep learning regression for camera relocalization lies in the lack
of confidence score. Therefore, predictions are uncertain. To solve
this problem, [5, 15] create a probabilistic model of results by using
dropout layer after every convolutional layer as a means of sampling
the model weights. In our method instead, we use a set of patches to
generate a set of probabilistic results from data.

Patches extraction and labeling
From each RGB image, we extract a set of patches for camera

relocalization. Instead of randomly choosing them, we deliberately
get patches around key-points to target only geometrically relevant
regions. Thus each chosen patch is an image region around a key-
point with a fixed size. We use SURF (Speed Up Robust Features)
detector [1] to detect some sparse points which are scale and rotation
invariant points, as repetitive representatives in a scene. This en-
hances the ability to locate 3D positions from patches. The Hessian
minimum threshold is is appropriately chosen to ensure detection
of hundreds of key-points even on blurry or texture-less images. So
from every image, we have a set of patches P = {Pi} centered on
the SURF key-points p = {pi = (ui,vi)}, with pi defines an image
coordinates.

For the training phase of xyzNet, we need to label each train-
ing data with the correspondent 3D world coordinates, Pw

i =
(Xw

i ,Y w
i ,Zw

i ). A possible solution for labeling would be the exe-
cution of SfM once on all the training dataset to carry out a mapping
between key-points and point cloud. However, our experiments
in the section 3 is performed on RGB-D datasets. So we can use
RGB-D images from the calibrated camera with their corresponding
camera poses to define labels for the training phase. Note that in
the testing phase, we only use RGB images and we do not need any
depth information. From the position pi = (ui,vi) of each key-point
detected in RGB image and the corresponding depth value Di in
the depth image, a 3D position Pc

i = (Xc
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c
i ,Z

c
i ) of the key-point

in camera coordinates system is calculated by using the standard

pinhole camera model as follows:

Pc
i = DiK−1

[
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1

]
Where K is a matrix of camera intrinsic parameters. The camera pose
T = [R|t] including rotation matrix R and translation vector t for each
frame is supposed to be known in advance. The world coordinates
Pw

i = (Xw
i ,Y w

i ,Zw
i ) corresponding pixel pi are defined based on the

transformation equation in the homogeneous coordinates system:[
Pw

i
1

]
=

[
R t
0 1

][
Pc

i
1

]
xyzNet
We designed a novel regression network to directly predict from

2D pixels the 3D correspondences in the world coordinates system.
It takes RGB-image patches with a fixed size of 49×49 pixels as
inputs. The most common networks used in deep learning are not
suitable for processing multiple patches in terms of calculation time.
We make a light ConvNet dedicated to efficient and robust camera
relocalization. xyzNet consists of five layers that perform convolution
of the input with a set of filters of 3×3 kernels, max-pooling and sub-
sampling over a 3×3 area and a rectified linear (ReLU) activation
function. In the first stage, a local response normalization (LRN) is
used to normalize patches with different light condition. These five
layers are followed by two fully connected layers to regress 3D world
coordinates. A dropout layer is added after every fully connected
layer to deal with over-fitting. xyzNet is illustrated in Figure 2. The
use of patches based on key-points instead of random-points or grid-
points reduces noise of training data as well as search space. This
does not require a complex network and our light network, xyzNet,
can perform efficiently and robustly.

In the training phase, the weights of xyzNet are learned by min-
imizing an Euclidean objective loss function with an optimization
algorithm that is a stochastic gradient descent. The loss function is
defined as follows:

l(p) = ∑
pi∈p
‖Pw

i − P̂w
i ‖

2
2

Where Pw
i and P̂w

i are ground truth and prediction respectively about
3D coordinates of pixel pi in the world coordinate system.

Each patch predicts a 3D continuous prediction about its own
position in world coordinates instead of camera pose (6-DOF) as in
[17]. This reduces considerably the complexity of the loss function
producing more efficient optimization.

2.3 Camera pose calculation
In this section, we will show how to estimate camera pose from
predictions of xyzNet. From each RGB image, we extract a set of
patches centered on keypoints. Each patch passes through xyzNet to
generate a prediction about the 3D position in the world coordinates
system. When all patches have passed through xyzNet, we obtain
a set of 2D-3D correspondences. Just three pixel exact predictions
are theoretically required to infer the camera pose. Nevertheless, a
well-known computer vision method can solve this problem, namely
Perspective-n-Points (PnP) algorithm. But as the xyzNet can make
some noisy predictions, we do not consider directly all 2D-3D points
correspondences to calculate the camera pose. Instead, we first use
PnP and Ransac to remove noise (outliers) and keep exact predictions
(inliers). Ransac generates a set of hypothetical poses T = {Ti} by
performing PnP on random subsets of 2D-3D point correspondences.
The best inliers are defined by maximizing the number of inliers
corresponding to each hypothesis based on re-projection error.

max
∀Ti∈T

∑
p j∈p

ρ(αi j)



Patches extraction 3D world coordinates predictions Camera pose calculation

Figure 1: xyzNet Camera Relocalization Pipeline: From a set of patches (blue squares) extracted on each RGB image, we put them through
xyzNet to predict a set of 3D positions (blue points) in the world coordinate system. Next PnP and Ransac algorithms are used to filter inliers
(green points) and eliminate outliers (red points). Finally, camera pose is computed by re-running PnP once on all inliers.

World 
coordinates

49 × 49 × 3

Figure 2: xyzNet : A CNN regression for predicting world coordinates
from RGB patches

ρ(αi j) =

{
1, if αi j < τ

0, otherwise

Where αi j = ‖p j−KT−1
i P̂w

j ‖
2 and τ is the maximum threshold of

re-projection error that defines inliers. Then pixel j is considered as
an inlier of hypothesis Ti if ρ(αi j) = 1. Let I be the set of indices
of the inliers associated with the best solution.

The final camera pose is carried out by running PnP once on all
inliers to minimize the re-projection error function:

E(T ) = ∑
i∈I
‖pi−KT−1P̂w

i ‖
2

Inferring camera pose from multiple patches with filtering method
based on PnP and Ransac algorithms allows to eliminate outliers
on moving objects in the scene, in order to address the challenge
of scenes with partial occlusion. Moreover, the number of inliers
can be used as a confidence score of the final estimation which is
not provided by the previous deep learning based methods. With
this confidence score, we determine which frames can be used for
the augmented reality. Frames with high confidence are considered
as key-frames to infer camera pose for next frames when camera
motion is not too great. Our results will be shown in the next section.

3 EXPERIMENTS

All experiments are implemented on a NVIDIA GTX 1080 GPU
using Caffe framework [12]. For the training phase, we extract up to
500 patches with fixed size from every image. We experiment many
different configurations on a scene of [24] to optimize parameters
that are used for other scenes. Our configuration includes: 500
epochs with a batch size of 2048; training begins at a learning rate

of 10−2; then the learning rate is dropped by multiplying it with a
factor gamma of 0.8 after every 50 epochs; dropout probability is 0.5
for all fully connected layers; xyzNet is trained by using Stochastic
Gradient Descent with a momentum of 0.9 and a weight decay of
10−5.

3.1 Datasets
We evaluate our method on 7 scenes dataset [24] and CoRBS dataset
[29], presented in Figure 3 and 4 respectively. All datasets are indoor
scenes. Each one provides thousands of RGB-D images at 640 480
resolution, intrinsic matrix of camera and annotations (camera pose
for every frame).

7 scenes dataset is introduced by [24]. This dataset contains
seven scenes in room-scale. Each scene includes some sequences
which are captured around a single room and annotated by using
Kinect Fusion [21]. The data is extremely challenging with pure
rotation or fast movement of camera that provides many blurry
images.

CoRBS dataset [29] is also an indoor dataset. However, it con-
tains scenes that are more texture-less. This dataset is more accurate
than 7 scenes thanks to the use of multiple sensors. Visual data is
achieved by using a Kinect v2. The ground truth are obtained by
an external motion capture system. Each scene contains a 3D dense
scene model which is created via an external 3D scanner.

3.2 Evaluation of patch extraction based on key-points
To evaluate benefits of patch extraction based on key-points, we
compare it with patch extraction based on a grid-points 40×40 as
proposed in [2], shown in Figure 5.

Firstly, in training phase, uses of patch extraction based on a grid
of points generates a lot of training patches that includes much noisy
data from homogeneous patches. Therefore, xyzNet training takes
more time and converge with more difficulty. Figure 6 shows time
of training convergence. Key-point based method is two times faster
than grid-point based method.

Secondly, in testing phase, grid-point based method takes a lot
of time to predict thousands patches even homogeneous patches
that does not provide any information about translation and rotation
of camera. So, processing these patches is redundant. As shown
in Figure 5, almost patches extracted on wall or floor are outliers,
since these patches did not contain enough individual feature to
discriminate each other. High accurate predictions (inliers) belong
to textured patches. In addition, if having too many predictions,



Figure 3: 7 scenes dataset: from left to right, this dataset consists of chess, fire, heads, office, pumpkin, red kitchen, stairs.

Figure 4: CoRBS dataset: three scenes of human, desk, electrical
cabinet with flat surface.

Figure 5: Detected inliers from patches extraction based grid-points
(left) and key-points (right) on an image of the fire scene.

PnP Ransac need more and more time to define the best solution
of camera pose. Figure 7 shows that for same computational time
per image, key-point based is more accurate than grid-point based.
So our method using patches extraction from key-points can reduce
run-time as well as achieve high accuracy.

3.3 xyzNet accuracy

xyzNet is the core of our pipeline and has a powerful influence on
the precision of camera pose. We consider the xyzNet’s accuracy
through the distance error between predictions and ground truth. We
give some results to clarify efficiency and robustness of xyzNet.

In table 1, we show an average of location error on the testing
data of 7 scenes dataset. We calculate two distance errors on all
predictions and all inliers which are 0.33m and 0.13m respectively.
For the scenes office, red kitchen, stairs, we did not achieve good
results, what could be explained by the repetitiveness of the scenes.
That makes patches extraction on similar object ambiguous. How-
ever, filtering with Ransac and PnP algorithms greatly improve the
accuracy of the estimation by decreasing the ambiguous predictions.

Scene Chess Fire Heads Office Pumpkin RedKitchen Stairs
ErrP 0.25m 0.19m 0.14m 0.65m 0.27m 0.44m 0.34m
ErrI 0.13m 0.11m 0.06m 0.26m 0.11m 0.14m 0.13m

Table 1: xyzNet ’s error: The mean of distance error between predic-
tions and ground truths on the set of all predictions (ErrP) and the set
of inliers (ErrI ).
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Figure 6: Training performance from patches extracted from key-points
and grid-points on the chess scene.
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Figure 7: Relation of computational time per image and mean of
accuracy by changing number of Ransac iteration for key-point based
and grid-point based methods on the chess scene.

3.4 In terms of run-time and accuracy of camera relocal-
ization

In this section, we evaluate our method on the 7 scene dataset to
compare it with the state-of-the-art methods. We consider only RGB
image based methods.

Baselines
We compare our method to three methods [2, 16, 23] which re-

spectively belong to three different approaches: sparse feature based,
machine learning based and hybrid based. In [23], a 3D point cloud
with attached descriptors is built in the off-line phase using the
training images. To accelerate feature matching, [23] uses a visual
vocabulary. PoseNet 2 [16] takes a whole RGB image as an input to
directly predict a camera pose. [2] presented an improvement of [3]
using a CNN instead of a random forest and proposed a differen-
tiable RANSAC so that a matching function that optimizes pose
quality can be learned.

Computational time



7 scenes Active
Search [23]

PoseNet2
[16] DSAC [2] Ours

Chess 0.04m,2.0◦ 0.13m,4.5◦ 0.02m,1.2◦ 0.06m,2.4◦
Fire 0.03m,1.5◦ 0.27m,11.3◦ 0.04m,1.5◦ 0.06m,2.2◦
Heads 0.02m,1.5◦ 0.17m,13.0◦ 0.03m,2.7◦ 0.08m,4.8◦
Office 0.09m,3.6◦ 0.19m,5.6◦ 0.04m,1.6◦ 0.13m,5.5◦
Pumpkin 0.08m,3.1◦ 0.26m,4.8◦ 0.05m,2.0◦ 0.06m,2.0◦
Kitchen 0.07m,3.4◦ 0.23m,5.4◦ 0.05m,2.0◦ 0.05m,1.8◦
Stairs 0.03m,2.2◦ 0.35m,12.4◦ 1.17m,33.1◦ 0.21m,6.0◦

Average 0.05m,2.5◦ 0.23m,8.1◦ 0.20m,6.3◦ 0.09m,3.5◦

Time 100ms 5ms 1500ms 60ms
Table 2: Comparison of our methods with the state-of-the-art meth-
ods on 7 scenes dataset by measuring the median pose errors and
computational time per frame on comparable configurations.

Figure 8: The camera pose error according to number of inliers: For
each scene, we calculate the median of translation error (in the left)
and rotation error (in the right) on the frames which have at least x
inliers corresponding values x on the vertical axis.

We measure the time processing of our experiment. This takes
about 60ms for each frame with 10ms for SURF feature detection,
25ms for time prediction of 500 patches on GPU and 25ms for 500
iterations of Ransac and PnP. Run-time depends on the number of
iterations of Ransac to calculate camera pose. However, we fix
the number of iteration at 500 being enough to balance between
computational time and accuracy.

Accuracy
In Table 2, we compare our results on 7 scenes dataset to the

baseline methods. To compare with PoseNet 2 [16], our method
clearly outperforms all scenes in both translation and rotation error.
Although PoseNet 2 [16] is very fast to relocalize camera with 5ms
in the testing, its results are still moderately accurate. Our method is
2 times as accurate as theirs. Regarding the testing time, our method
still performs in real-time, even if it is more time-consuming than
PoseNet 2.

Our method is slightly higher than other methods on the kitchen
scene. For the other scenes, our method is not as good as either
Active Search [23] or DSAC [2]. However, our method is able
to relocalize camera for each frame in 60ms. Whereas, the sparse
feature based method [23] takes over 100ms per frame and the
computational time scales with scene size. DSAC [2] requires more
than a second for each frame, making difficult to use them for
augmented reality systems requiring real-time processing. We obtain
a worse result on office and stairs scenes. As our evaluation of
xyzNet’s accuracy, Ransac can eliminate ambiguities on repetitive
scenes such as office, red kitchen and stairs. Unfortunately, too many
predictions are considered as outliers on the office, stairs scene, and
resulting in too few 2D-3D inliers to achieve good results by the
PnP.

3.5 Confidence score
The confidence score of camera pose is an important issue in camera
relocalization as well as in deep learning regression, which is not pro-
vided in the state-of-the-art methods. In our solution, no confidence
score is given from xyzNet. However, we leverage the number of
inliers to quantify the accuracy of our method. The number of inliers
is not an absolute confidence score, but the accuracy is correlated to
it. Figure 8 shows the increasing accuracy of our method according
to the number of inliers. This allows us to determine which frames
can be used for augmented reality applications.

3.6 Performance on texture-less datasets and robust-
ness to occlusion

Method Translation Error (cm) Rotation Error (◦)
PoseNet 12.0 4.72

Kacete et al. 4.7 2.46
Ours 3.5 0.97

Table 3: Mean of median poses errors on three scenes of CoRBS
dataset.

Scene Translation Error (cm) Rotation Error (◦)
n/o w/o n/o w/o

Human 6.4 6.7 1.18 1.44
Desk 1.2 1.8 0.73 1.18
Cabinet 2.9 3.5 0.99 1.37
Mean 3.5 4.0 0.97 1.33

Table 4: Robustness to occlusion. Evaluation our method on CoRBS
dataset with synthetic occlusion. The accuracy is measured by the
mean poses error. n/o: no occlusion, w/o: with occlusion.

b) Frame #005 d) Frame #100

Figure 9: Capacity of processing partial occlusion and application in
the augmented reality of our method.

In this section, we evaluate our method on CoRBS dataset. With
respect to the scale, the scenes in this data are simpler than those in
7 scenes dataset. CoRBS dataset contains scenes in desktop-scale,
each of which focuses on a small environment such as around a desk
or a cabinet. However, this dataset is challenging due to the presence
of texture-less and many flat surfaces, as illustrated in the Figure 4.
We choose three sequences (each scene contains over 2000 images)
corresponding to three scenes of human, desk, electrical cabinet for
our experiment as performed in [13].

We evaluate our method with this dataset in comparison with
PoseNet [17] and the method proposed in [13] that uses a random
forest to directly predict camera pose from each image patch, final
pose being defined then by running mean-shift on all pose predic-
tions. Table 3 shows that our method outperforms [13, 17] both on
translation and rotation error.

Finally, we present an interesting advantage of our method that
uses patches instead of a whole image. For camera relocalization,



the handling of non-rigid scenes, what mainly occurs in real life, is
more difficult. When objects move through a scene, it makes partial
occlusion on the scene. We randomly synthesize partial occlusion
about 25% surface of each image (Figure 9) on CoRBS dataset.
We extract a set of patches to generate a set of predictions about
3D location, in which we take even patches of occlusion.However,
RANSAC and PnP algorithms eliminate outliers on the moving
object and retains correspondences on rigid objects. Table 4 shows
the average of our results for each scene. We still obtain good result
with partial occlusion.

4 CONCLUSION

In this paper, we proposed a novel hybrid method combining deep
learning and geometric approach for camera relocalization. We
presented our light convolutional neural network to efficiently and
robustly define correspondences of 2D pixels in the world coordi-
nates system. A set of probabilistic results is generated to address
uncertainty of deep learning regression in camera relocalization.
Simultaneously, we exploit geometric information about 2D-3D
correspondences to resolve the challenge of partial occlusion and
calculate camera pose by using Ransac and PnP algorithms. Our
method can perform in real-time. Besides, we also consider the
number of inliers as a confidence score for each frame.

Although, we obtain better results on most of the test scenes
compared to the state-of-the-art methods that can process in real-
time, our method faces difficulties on repetitive scenes where we do
not obtain enough inliers by removing almost ambiguity of unimodal
prediction from our network. For future work, we wish to improve
the prediction by using network of multi-output results.
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