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MATROID BASE POLYTOPE DECOMPOSITION II : SEQUENCES OF
HYPERPLANE SPLITS

VANESSA CHATELAIN AND JORGE LUIS RAMÍREZ ALFONSÍN

Abstract. This is a continuation of an early paper [Adv. Appl. Math. 47(2011), 158-
172] about matroid base polytope decomposition. We will present sufficient conditions
on a matroid M so its base polytope P (M) has a sequence of hyperplane splits. These
yield to decompositions of P (M) with two or more pieces for infinitely many matroids
M . We also present necessary conditions on the Euclidean representation of rank three
matroids M for the existence of decompositions of P (M) into 2 or 3 pieces. Finally, we
prove that P (M1 ⊕ M2) has a sequence of hyperplane splits if either P (M1) or P (M2)

also has a sequence of hyperplane splits.
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1. Introduction

This paper is a continuation of the paper [3] by the two present authors. For general
background in matroid theory we refer the reader to [12, 15]. A matroidM = (E,B) of rank
r = r(M) is a finite set E = {1, . . . , n} together with a nonempty collection B = B(M) of
r-subsets of E (called the bases of M) satisfying the following basis exchange axiom:

if B1, B2 ∈ B and e ∈ B1 \B2, then there exists f ∈ B2 \B1 such that (B1 − e) + f ∈ B.

We denote by I(M) the family of independent sets of M (consisting of all subsets of bases
of M). For a matroid M = (E,B), the matroid base polytope P (M) of M is defined as the
convex hull of the incidence vectors of bases of M , that is,

P (M) := conv

{∑
i∈B

ei : B a base of M

}
,

where ei is the ith standard basis vector in Rn. P (M) is a polytope of dimension at most
n− 1.

A matroid base polytope decomposition of P (M) is a decomposition

P (M) =
t⋃
i=1

P (Mi)

The second author was supported by the ANR TEOMATRO grant ANR-10-BLAN 0207.
1



2 VANESSA CHATELAIN AND JORGE LUIS RAMÍREZ ALFONSÍN

where each P (Mi) is a matroid base polytope for some matroid Mi and, for each 1 ≤
i 6= j ≤ t, the intersection P (Mi) ∩ P (Mj) is a face of both P (Mi) and P (Mj). It
is known that nonempty faces of matroid base polytope are matroid base polytopes [5,
Theorem 2]. So, the common face P (Mi)∩P (Mj) (whose vertices correspond to elements
of B(Mi)∩B(Mj)) must also be a matroid base polytope. P (M) is said to be decomposable if
it admits a matroid base polytope decomposition with t ≥ 2 and indecomposable otherwise.
A decomposition is called hyperplane split when t = 2.

Matroid base polytope decomposition were introduced by Lafforgue [9, 10] and have ap-
peared in many different contexts : quasisymmetric functions [1, 2, 4, 11], compactification
of the moduli space of hyperplane arrangements [6, 8], tropical linear spaces [13, 14], etc. In
[3], we have studied the existence (and nonexistence) of such decompositions. Among other
results, we presented sufficient conditions on a matroid M so P (M) admits a hyperplane
split. This yielded us to different hyperplane splits for infinitely many matroids. A natural
question is the following one: given a matroid base polytope P (M), is it possible to find a
sequence of hyperplane splits providing a decomposition of P (M)? In other words, is there
a hyperplane split of P (M) such that one of the two obtained pieces has a hyperplane split
such that, in turn, one of the two new obtained pieces has a hyperplane split, and so on,
giving a decomposition of P (M)?

In [7, Section 1.3], Kapranov showed that all decompositions of a (appropriately parametrized)
rank-2 matroid can be achieved by a sequence of hyperplane splits. However, this is
not the case in general. Billera, Jia and Reiner [2] provided a decomposition into three
indecomposable pieces of P (W ) where W is the rank three matroid on {1, . . . , 6} with
B(W ) =

(
[6]
3

)
\ {{1, 2, 3}, {1, 4, 5}, {3, 5, 6}}. They proved that this decomposition cannot

be obtained via hyperplane splits. However, we notice that P (W ) may admits other de-
compositions into three pieces that can be obtained via hyperplane splits; this is illustrated
in Example 3.

A difficulty arising when we apply successive hyperplane splits is that the intersec-
tion P (Mi) ∩ P (Mj) also must be a matroid base polytope. For instance, consider a
first hyperplane split P (M) = P (M1) ∪ P (M ′1) and suppose that P (M ′1) admits a hyper-
plane splits, say P (M ′1) = P (M2) ∪ P (M ′2). This sequence of 2 hyperplane splits would
give the decomposition P (M) = P (M1) ∪ P (M2) ∪ P (M ′2) if P (M1) ∩ P (M2), P (M1) ∩
P (M ′2), and P (M2) ∩ P (M ′2) were matroid base polytopes. By definition of hyperplane
split, P (M2) ∩ P (M ′2) is the base polytope of a matroid, however the other two inter-
sections might not be matroid base polytopes. Recall that the intersection of two ma-
troids is not necessarily a matroid (for instance, B(M1) = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}
and B(M2) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}} are matroids while B(M1) ∩ B(M2) =

{{1, 3}, {2, 3}, {2, 4}} is not).
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In the next section, we give sufficient conditions on M so that P (M) admits a sequence
of t ≥ 2 hyperplane splits. This allows us to provide decompositions of P (M) with t + 1

pieces for infinitely many matroids. We say that two decompositions P (M) =
t⋃
i=1

P (Mi)

and P (M) =
t⋃
i=1

P (M ′i) are equivalent if there exists a permutation σ of {1, . . . , t} such

that P (Mi) is combinatorially equivalent to P (M ′σ(i)). They are different otherwise. We
present a lower bound for the number of different decompositions of P (Un,r) into t pieces.
In Section 3, we present necessary geometric conditions (on the Euclidean representation)
of rank three matroids M for the existence of decompositions of P (M) into 2 or 3 pieces.
Finally, in Section 4, we show that the direct sum P (M1⊕M2) has a sequence of hyperplane
splits if either P (M1) or P (M2) also has a sequence of hyperplane splits.

2. Sequence of hyperplane splits

Let M = (E,B) be a matroid of rank r and let A ⊆ E. We recall that the independent
sets of the restriction of matroid M to A, denoted by M |A, are given by I(M |A) = {I ⊆
A : I ∈ I(M)}.

Let t ≥ 2 be an integer with r ≥ t. Let E =
t⋃
i=1

Ei be a t-partition of E = {1, . . . , n}

and let ri = r(M |Ei) > 1, i = 1, . . . , t. We say that
t⋃
i=1

Ei is a good t-partition if there

exist integers 0 < ai < ri with the following properties :

(P1) r =
t∑
i=1

ai,

(P2) (a) For any j with 1 ≤ j ≤ t− 1

if X ∈ I(M |E1∪···∪Ej ) with |X| ≤ a1 and Y ∈ I(M |Ej+1∪···∪Et) with |Y | ≤ a2,
then X ∪ Y ∈ I(M).

(b) For any pair j, k with 1 ≤ j < k ≤ t− 1

if X ∈ I(M |E1∪···∪Ej ) with |X| ≤
j∑
i=1

ai,

Y ∈ I(M |Ej+1∪···∪Ek
) with |Y | ≤

k∑
i=j+1

ai,

Z ∈ I(M |Ek+1∪···∪Et) with |Z| ≤
t∑

i=k+1

ai,

then X ∪ Y ∪ Z ∈ I(M).

Notice that the good 2-partitions provided by (P2) case (a) with t = 2 are the good
partitions defined in [3]. Good partitions were used to give sufficient conditions for the
existence of hyperplane splits. The latter was a consequence of the following two results:
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Lemma 1. [3, Lemma 1] Let M = (E,B) be a matroid of rank r and let E = E1 ∪ E2 be
a good 2-partition with integers 0 < ai < r(M |Ei), i = 1, 2. Then,
B(M1) = {B ∈ B(M) : |B ∩ E1| ≤ a1} and B(M2) = {B ∈ B(M) : |B ∩ E2| ≤ a2}

are the collections of bases of matroids.

Theorem 1. [3, Theorem 1] Let M = (E,B) be a matroid of rank r and let E = E1∪E2 be
a good 2-partition with integers 0 < ai < r(M |Ei), i = 1, 2. Then, P (M) = P (M1)∪P (M2)

is a hyperplane split, where M1 and M2 are the matroids given by Lemma 1.

We shall use these two results as the initial step in our construction of a sequence of
t ≥ 2 hyperplane splits.

Lemma 2. Let t ≥ 2 be an integer and let E =
t⋃
i=1

Ei be a good t-partition with integers

0 < ai < r(M |Ei), i=1,. . . ,t. Let

B(M1) = {B ∈ B(M) : |B ∩ E1| ≤ a1}

and, for each j = 1, . . . , t, let

B(Mj) = {B ∈ B(M) : |B ∩ E1| ≥ a1, . . . , |B ∩
j−1⋃
i=1

Ei| ≥
j−1∑
i=1

ai, |B ∩
j⋃
i=1

Ei| ≤
j∑
i=1

ai

}
.

Then B(Mi) is the collection of bases of a matroid for each i = 1, . . . , t.

Proof. By properties (P1) and (P2) we have that

if X ∈ I(M |E1) with |X| ≤ a1 and Y ∈ I(M |E2∪···∪Et) with |Y | ≤
t∑
i=2

ai,

then X ∪ Y ∈ I(M). So, by Lemma 1, B(M1) is the collection of bases of a matroid.
Now, notice that B(M1) = {B ∈ B(M) : |B ∩E1| ≥ a1} is also the collection of bases of a
matroid on E. We claim that P (M1) = P (M2) ∪ P (M2) is a hyperplane split where

B(M2) = {B ∈ B(M) : |B ∩ E1| ≥ a1 and |B ∩ (E1 ∪ E2)| ≤ a1 + a2}

and

B(M2) = {B ∈ B(M) : |B ∩ E1| ≥ a1 and |B ∩ (E1 ∪ E2)| ≥ a1 + a2}.

Indeed, since B(M1) is the collection of bases of a matroid on E, then, by properties
(P1) and (P2) (a),

if X ∈ I(M |E1∪E2) with |X| ≤ a1 + a2 and Y ∈ I(M |E3∪···∪Et) with |Y | ≤
t∑
i=3

ai,

then X ∪ Y ∈ I(M). So, by Lemma 1, B(M2) is the collection of bases of a matroid
(and thus B(M2) also is). Inductively applying the above argument to M j , it can be easily
checked that for all j B(Mj) is the collection of bases of a matroid. �



MATROID BASE POLYTOPE DECOMPOSITION II : SEQUENCES OF HYPERPLANE SPLITS 5

Theorem 2. Let t ≥ 2 be an integer and let M = (E,B) be a matroid of rank r. Let

E =
t⋃
i=1

Ei be a good t-partition with integers 0 < ai < r(M |Ei), i = 1, . . . , t. Then P (M)

has a sequence of t hyperplane splits yielding the decomposition

P (M) =

t⋃
i=1

P (Mi),

where Mi, 1 ≤ i ≤ t, are the matroids defined in Lemma 2.

Proof. By Theorem 1, the result holds for t = 2. Moreover, by the inductive construction of

Lemma 2, we clearly have that P (M) =
t⋃
i=1

P (Mi) with B(M) =
t⋃
i=1
B(Mi). We only need

to show that B(Mj) ∩ B(Mk) is the collection of bases of a matroid for any 1 ≤ j < k ≤ t.
For, by definition of B(Mi), we have

B(Mj) ∩ B(Mk) = {B ∈ B(M) : the condition Ch(B) is satisfied for all 1 ≤ h ≤ k}

where for A ⊆ E :

• Ch(A) is satisfied if |A ∩
h⋃
i=1

Ei| ≥
h∑
i=1

ai and 1 ≤ h ≤ k, h 6= j, k,

• Cj(A) is satisfied if |A ∩
j⋃
i=1

Ei| =
j∑
i=1

ai,

and

• Ck(A) is satisfied if |A ∩
k⋃
i=1

Ei| ≤
k∑
i=1

ai.

We will check the exchange axiom for any X,Y ∈ B(Mj) ∩ B(Mk). Since X,Y ∈ B(M)

for any e ∈ X \ Y there exists f ∈ Y \ X such that X − e + f ∈ B(M). We will verify
that X − e + f ∈ B(Mj) ∩ B(Mk). We distinguish three cases (depending which of the
conditions Ci(X − e) is satisfied).

Case 1. There exists 1 ≤ l ≤ j such that Cl(X − e) is not satisfied. We suppose that l
is minimal with this property. Since, by definition of B(Mj) ∩ B(Mk), l ≤ j ≤ k, Cl(X) is
satisfied, and Cl(X − e) is not satisfied, we obtain

(a)
∣∣∣∣X ∩ l⋃

i=1
Ei

∣∣∣∣ = l∑
i=1

ai,

(b) e ∈
l⋃

i=1
Ei,

(c) | (X − e) ∩
l⋃

i=1

Ei︸ ︷︷ ︸
I1

| =
l∑

i=1
ai − 1.
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Since Y ∈ B(Mj) ∩ B(Mk), then |Y ∩
l⋃

i=1

Ei︸ ︷︷ ︸
I2

| ≥
l∑

i=1
ai.

Therefore, by using (c), I1, I2 ∈ I(M |E1∪···∪El
) ⊆ I(M) with |I1| < |I2|. So, there exists

f ∈ I2 \ I1 ⊂ Y \X with I1 ∪ f ∈ I(M |E1∪···∪El
). Thus, f ∈

l⋃
i=1

Ei and

|I1 ∪ f ∩
l⋃

i=1

Ei| =
l∑

i=1

ai − 1. (1)

Moreover, since X is a base, |X| = r =
t∑
i=1

ai and, by (a), we have

| (X − e+ f) ∩
t⋃

i=l+1

Ei︸ ︷︷ ︸
I3

| (b)= |X ∩
t⋃

i=l+1

Ei| =
t∑
i=1

ai −
l∑

i=1

ai =
t∑

i=l+1

ai.

We also have I3 ∈ I(M |El+1∪···∪Et), thus, by (P2) (b),

I1 ∪ f ∪ I3 ∈ I(M) with |I1 ∪ f ∪ I3| =
l∑

i=1
ai − 1 + 1 +

t∑
i=l+1

ai = r

and so I1 ∪ f ∪ I3 = X − e+ f ∈ B(M).
Finally we need to show that X − e+ f ∈ Bj ∩Bk, that is Ch(X − e+ f) holds for each

1 ≤ h ≤ k.
(i) h < l: Since l is the minimum for which Cl(X − e) is not verified, Ch(X − e) is

satisfied for each 1 ≤ h < l and thus Ch(X − e+ f) is also satisfied (we just added a new
element).

(ii) h = l: By equation (1), Cl(X − e+ f) is satisfied.

(iii) h > l: Since e, f ∈
l⋃

i=1
Ei,

|X − e+ f ∩
h⋃
i=1

Ei| = |X ∩
h⋃
i=1

Ei|,

thus Ch(X − e+ f) is satisfied if and only if Ch(X) is satisfied, which is the case since
h > l.

Case 2. Cl′(X − e) is satisfied for all 1 ≤ l′ ≤ j and there exists j + 1 ≤ l ≤ k− 1 such
that Cl(X − e) is not satisfied. We suppose that l is minimal with this property. Since
Cl(X) is satisfied and Cl(X − e) is not,

(a)
∣∣∣∣X ∩ l⋃

i=1
Ei

∣∣∣∣ = l∑
i=1

ai,

(b) e ∈
l⋃

i=j+1
Ei (since Cj(X − e) is satisfied),
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(c) | (X − e) ∩
l⋃

i=1

Ei︸ ︷︷ ︸
I1

| =
l∑

i=1
ai − 1.

Since Cj(X − e) is satisfied,

| (X − e) ∩
l⋃

i=j+1

Ei︸ ︷︷ ︸
I1

| = |(X − e) ∩
l⋃

i=1
Ei| − |(X − e) ∩

j⋃
i=1

Ei|

(c)
=

l∑
i=1

ai − 1−
j∑
i=1

ai =
l∑

i=j+1
ai − 1. (2)

Let Y ∈ B(Mj) ∩ B(Mk). Since Cj(Y ) and Cl(Y ) are satisfied,

|Y ∩
l⋃

i=j+1

Ei︸ ︷︷ ︸
I2

| = |Y ∩
l⋃

i=1
Ei| − |Y ∩

j⋃
i=1

Ei|

≥
l∑

i=1
ai −

j∑
i=1

ai =
l∑

i=j+1
ai.

Since |I1| < |I2|, there exists f ∈ I2 \ I1 such that I1 + f ∈ I(M |Ej+1∪···∪El
). So,

f ∈
l⋃

i=j+1
Ei and, by (b), we have

(X − e+ f) ∩
j⋃
i=1

Ei = X ∩
j⋃
i=1

Ei.

Since X is a base, X − e+ f ∩
j⋃
i=1

Ei ∈ I(M |E1∪···∪Ej ) (also notice that (X − e+ f) ∩
t⋃

i=l+1

Ei ∈ I(M |El+1∪···∪Et)). Moreover, since X ∈ Bj ∩ Bk, Cj(X) is satisfied and thus

|(X − e+ f) ∩
j⋃
i=1

Ei| =
j∑
i=1

ai (3)

and, by equation (2), we have

|(X − e+ f) ∩
l⋃

i=j+1

Ei| =
l∑

i=j+1

ai (4)

obtaining that

|(X − e+ f) ∩
t⋃

i=l+1

Ei| = r −
j∑
i=1

ai −
l∑

i=j+1

ai =
t∑

i=l+1

ai.
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Now, by (P2) (b), we have(
(X − e+ f) ∩

j⋃
i=1

Ei

)
∪

(X − e+ f) ∩
l⋃

i=j+1

Ei

∪((X − e+ f) ∩
t⋃

i=l+1

Ei

)
= X−e+f ∈ I(M).

Since |X − e+ f | = r, X − e+ f ∈ B(M).

Finally we need to show that X− e+ f ∈ Bj ∩Bk, that is, that Ch(X− e+ f) is verified
for each 1 ≤ h ≤ k.

(i) h < l and h 6= j: Since Ch(X − e) is satisfied, by the minimality of l, Ch(X − e+ f)

is also satisfied.

(ii) h = j: By equation (3), Cj(X − e+ f) is satisfied.

(iii) h = l: By equations (3) and (4), Cl(X − e+ f) is satisfied.

(iv) h > l: Since e, f ∈
l⋃

i=j+1
Ei, |X − e+ f ∩

h⋃
i=1

Ei| = |X ∩
h⋃
i=1

Ei|, thus Ch(X − e+ f)

is satisfied if and only if Ch(X) is satisfied, which is the case because h > l.

Case 3. Ci(X − e) is satisfied for every 1 ≤ i ≤ k.

Subcase (a) |(X − e) ∩
k⋃
i=1

Ei| =
k∑
i=1

ai. We first notice that e ∈
t⋃

i=k+1

Ei (otherwise

|X − e ∩
k⋃
i=1

Ei| < |X ∩
k⋃
i=1

Ei| which is impossible since Ck(X) holds). Now,

| (X − e) ∩
t⋃

i=k+1

Ei︸ ︷︷ ︸
I1

| = r − 1−
k∑
i=1

ai =

t∑
i=k+1

ai − 1. (5)

Let Y ∈ B(Mj)∩B(Mk). Since Cj(Y ) and Cl(Y ) are satisfied, |Y ∩
k⋃
i=1

Ei| ≤
k∑
i=1

ai, and

so |Y ∩
t⋃

i=k+1

Ei︸ ︷︷ ︸
I2

| ≥
t∑

i=k+1

ai.

Since |I1| < |I2|, there exists f ∈ I2 \ I1 such that I1 + f ∈ I(M |Ek+1∪···∪Et). So,

f ∈
t⋃

i=k+1

Ei and since e ∈
t⋃

i=k+1

Ei,

(X − e+ f) ∩
k⋃
i=1

Ei = X ∩
k⋃
i=1

Ei ∈ I(M |E1∪···∪Ek
).

Also, since (X − e+ f) ∩
t⋃

i=k+1

Ei ∈ I(M |Ek+1∪···∪Et), by (P2)(b) we have

X − e+ f =

(
X − e+ f ∩

k⋃
i=1

Ei

)
∪

(
X − e+ f ∩

t⋃
i=k+1

Ei

)
∈ I(M).
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Moreover, by using equation (5) and the fact that f ∈
t⋃

i=k+1

Ei we obtain that

|(X − e+ f) ∩
t⋃

i=k+1

Ei| =
t∑

i=k+1

ai.

Since |(X − e) ∩
k⋃
i=1

Ei| =
k∑
i=1

ai,

|(X − e+ f) ∩
k⋃
i=1

Ei| =
k∑
i=1

ai.

Therefore,

|(X − e+ f) ∩
t⋃
i=1

Ei| = |(X − e+ f) ∩
k⋃
i=1

Ei|+ |(X − e+ f) ∩
t⋃

i=k+1

Ei| =
t∑
i=1

ai = r

and so X − e+ f ∈ B(M).

Finally we need to show that X− e+ f ∈ Bj ∩Bk, that is, that Ch(X− e+ f) is verified

for each 1 ≤ h ≤ k. Since e, f ∈
t⋃

i=k+1

Ei, Ch(X− e+ f) becomes Ch(X) for all 1 ≤ h ≤ k,

which is satisfied.

Subcase (b) If |(X−e)∩
k⋃
i=1

Ei| <
k∑
i=1

ai, then e ∈
t⋃

i=j+1
Ei (otherwise |(X−e)∩

j⋃
i=1

Ei| <

|X ∩
j⋃
i=1

Ei| which is impossible since Cj(X) holds). Now, since Cj(X − e) is satisfied,

|(X − e) ∩
j⋃
i=1

Ei| =
j∑
i=1

ai,

and thus

| (X − e) ∩
t⋃

i=j+1

Ei︸ ︷︷ ︸
I1

| =
t∑

i=j+1
ai − 1.

Let Y ∈ B(Mj) ∩ B(Mk). Since Cj(Y ) and Cl(Y ) are satisfied,

|Y ∩
j⋃
i=1

Ei| =
j∑
i=1

ai,

and thus

|Y ∩
t⋃

i=j+1

Ei︸ ︷︷ ︸
I2

| =
t∑

i=j+1
ai.

Since |I1| < |I2|, there exists f ∈ I2 \ I1 such that I1 + f ∈ I(M |Ej+1∪···∪Et). So,

f ∈
t⋃

i=j+1
Ei. Since e ∈

t⋃
i=j+1

Ei,

(X − e+ f) ∩
j⋃
i=1

Ei = X ∩
j⋃
i=1

Ei ∈ I(M |E1∪···∪Ej ) (6)
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and, by (P2) (b), we have(
X − e+ f ∩

j⋃
i=1

Ei

)
∪

X − e+ f ∩
t⋃

i=j+1

Ei

 ∈ I(M)

Therefore, X − e+ f ∈ B(M).
Finally, we need to show that X − e+ f ∈ Bj ∩Bk, that is, Ch(X − e+ f) is verified for

each 1 ≤ h ≤ k.

(i) h < j: Since Ch(X − e) is satisfied, Ch(X − e+ f) is also satisfied.

(ii) h = j: Cj(X − e+ f) is satisfied by equation (6).

(iii) j+1 ≤ h ≤ k− 1: Since Ch(X − e) is satisfied then Ch(X − e+ f) is also satisfied.

(iv) h = k: Since |X − e ∩
k⋃
i=1

Ei| <
k∑
i=1

ai then |X − e + f ∩
k⋃
i=1

Ei| ≤
k∑
i=1

ai and thus

Ch(X − e+ f) is satisfied. �

2.1. Uniform matroids.

Corollary 1. Let n, r, t ≥ 2 be integers with n ≥ r+ t and r ≥ t. Let pt(n) be the number

of different decompositions of the integer n of the form n =
t∑
i=1

pi with pi ≥ 2 and let

ht(Un,r) be the number of decompositions of P (Un,r) into t pieces. Then,

ht(Un,r) ≥ pt(n).

Proof. We consider the partition E = {1, . . . , n} =
t⋃
i=1

Ei, where

E1 = {1, . . . , p1},
E2 = {p1 + 1, . . . , p1 + p2},

...

Et = {
t−1∑
i=1

pi + 1, . . . ,
t∑
i=1

pi}.

We claim that
t⋃
i=1

Ei is a good t-partition. For, we first notice that M |Ei is isomorphic

to Upi,min{pi,r} for each i = 1, . . . , t. Let ri = r(M |Ei) = min{pi, r}. We now show that

t∑
i=1

ri ≥ r + t. (7)

For, we note that

t∑
i=1

ri =

t∑
i=1

r(M |Ei) =
∑

i∈T⊆{1,...,t}

pi + (t− |T |)r.
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We distinguish three cases.

1) If t = |T |, then
t∑
i=1

ri =
t∑
i=1

pi = n ≥ r + t.

2) If t = |T |+ 1, then
t∑
i=1

ri =
t−1∑
i=1

pi + r ≥ 2(t− 1) + r ≥ t+ t− 2 + r ≥ t+ r.

3) If t = |T |+ k, with k ≥ 2, then
t∑
i=1

ri ≥ kr ≥ 2r ≥ r + t.

So, by equation (7), we can find integers a′i ≥ 1 such that
t∑
i=1

ri = r +
t∑
i=1

a′i. Therefore,

there exist integers ai = r(M |Ei)−a′i with 0 < ai < r(M |Ei) such that r =
t∑
i=1

ai. Moreover,

if X ∈ I(M |E1∪···∪Ej ) with |X| ≤
j∑
i=1

ai, Y ∈ I(M |Ej+1∪···∪Ek
) with |Y | ≤

k∑
i=j+1

ai, and

Z ∈ I(M |Ek+1∪···∪Et) with |Z| ≤
t∑

i=k+1

ai for 1 ≤ j < k ≤ t−1, then |X∪Y ∪Z| ≤
t∑
i=1

ai = r

and so X ∪Y ∪Z is always a subset of one of the bases of Un,r. Thus, X ∪Y ∪Z ∈ I(Un,r)
and (P2) is also verified. �

Notice that there might be several choices for the values of ai (each providing a good
t-partition). However, it is not clear if these choices give different sequences of t hyperplane
splits.

Example 1: Let us consider the uniform matroid U8,4. We take the partition E1 =

{1, 2}, E2 = {3, 4}, E3 = {5, 6}, and E4 = {7, 8}. Then r(M |Ei) = 2, i = 1, . . . , 4. It is
easy to check that if we set ai = 1 for each i then E1 ∪E2 ∪E3 ∪E4 is a good 4-partition
and thus P (U8,3) = P (M1) ∪ P (M2) ∪ P (M3) ∪ P (M4) is a decomposition where

B(M1) = {B ∈ B(U8,4) : |B ∩ {1, 2}| ≤ 1},
B(M2) = {B ∈ B(U8,4) : |B ∩ {1, 2}| ≥ 1, |B ∩ {3, 4}| ≤ 1},
B(M3) = {B ∈ B(U8,4) : |B ∩ {1, 2}| ≥ 1, |B ∩ {3, 4}| ≥ 1, |B ∩ {5, 6}| ≤ 1},
B(M4) = {B ∈ B(U8,4) : |B ∩ {1, 2}| ≥ 1, |B ∩ {3, 4}| ≥ 1, |B ∩ {5, 6}| ≥ 1}.

2.2. Relaxations. Let M = (E,B) be a matroid of rank r and let X ⊂ E be both a
circuit and a hyperplane of M (recall that a hyperplane is a flat, that is X = cl(X) =

{e ∈ E|r(X ∪ e) = r(X)}, of rank r − 1). It is known [12, Proposition 1.5.13] that
B(M ′) = B(M)∪ {X} is the collection of bases of a matroid M ′ (called, relaxation of M).

Corollary 2. Let M = (E,B) be a matroid and let E =
t⋃
i=1

Ei be a good t-partition. Then,

P (M ′) has a sequence of t hyperplane splits where M ′ is a relaxation of M .
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Proof. It can be checked that the desired sequence of t hyperplane splits of P (M ′) can be

obtained by using the same given good t partition E =
t⋃
i=1

Ei. �

We notice that the above result is not the only way to define a sequence of hyperplane
splits for relaxations. Indeed it is proved in [3] that binary matroids (and thus graphic
matroids) do not have hyperplane splits, however there is a sequence of hyperplane splits
for relaxations of graphic matroids as it is shown in Example 3 below.

3. Rank-three matroids: geometric point of view

We recall that a matroid of rank three on n elements can be represented geometrically
by placing n points on the plane such that if three elements form a circuit, then the
corresponding points are collinear (in such diagram the lines need not be straight). Then
the bases ofM are all subsets of points of cardinal 3 which are not collinear in this diagram.
Conversely, any diagram of points and lines in the plane in which a pair of lines meet in
at most one point represents a unique matroid whose bases are those 3-subsets of points
which are not collinear in this diagram.

The combinatorial conditions (P1) and (P2) can be translated into geometric conditions
when M is of rank three. The latter is given by the following two corollaries.

Corollary 3. Let M be a matroid of rank 3 on E and let E = E1 ∪ E2 be a partition of
the points of the geometric representation of M such that

1) r(M |E1) ≥ 2 and r(M |E2) = 3;
2) for each line l of M , if |l ∩ E1| 6= ∅, then |l ∩ E2| ≤ 1.

Then, E = E1 ∪ E2 is a 2-good partition.

Proof. (P2)(a) can be easily checked with a1 = 1 and a2 = 2. �

Example 2. Let M be the rank-3 matroid arising from the configuration of points
given in Figure 1. It can be easily checked that E1 = {1, 2} and E2 = {3, 4, 5, 6} verify the
conditions of Corollary 3. Thus, E1 ∪ E2 is a 2-good partition.

Corollary 4. Let M be a matroid of rank 3 on E and let E = E1 ∪E2 ∪E3 be a partition
of the points of the geometric representation of M such that

1) r(M |Ei) ≥ 2 for each i = 1, 2, 3,
2) for each line l with at least 3 points of M ,
a) if |l ∩ E1| 6= ∅ then |l ∩ (E2 ∪ E3)| ≤ 1,
b) if |l ∩ E3| 6= ∅ then |l ∩ (E1 ∪ E2)| ≤ 1.

Then, E = E1 ∪ E2 ∪ E3 is a 3-good partition.

Proof. (P2) can be easily checked with a1 = a2 = a3 = 1. �
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Figure 1. Set of points in the plane

Example 3. Let W 3 be the 3-whirl on E = {1, . . . , 6} shown in Figure 2. W 3 is the
example given by Billera et al. [2] that we mentioned by the end of the introduction. W 3

is a relaxation of M(K4) (by relaxing circuit {2, 4, 6}) and it is not graphic.
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Figure 2. Euclidean representation of W 3

It can be checked that E1 = {1, 6}, E2 = {2, 5}, and E3 = {1, 4} verify the conditions
of Corollary 4. Thus, E1 ∪ E2 ∪ E3 is a good 3-partition.

We finally notice that given the 2-good partition E1 ∪E2 of the matroid M in Example
2, we can apply a hyperplane split to the matroid M |E2 induced by the set of points in
E2 = {3, 4, 5, 6}. Indeed, it can be checked that E1

2 = {3, 4} and E2
2 = {5, 6} verify

conditions in Corollary 3 and thus it is a good 2-partition of M |E2 . Moreover, it can be
checked that E1 = {1, 2}, E1

2 = {3, 4}, and E2
2 = {5, 6} verify the conditions of Corollary

4. and thus E1 ∪ E2 ∪ E3 is a good 3-partition for M .
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4. Direct sum

Let M1 = (E1,B) and M2 = (E2,B) be matroids of rank r1 and r2 respectively where
E1 ∩E2 = ∅. The direct sum, denoted by M1⊕M2, of matroids M1 and M2 has as ground
set the disjoint union E(M1 ⊕M2) = E(M1) ∪ E(M2) and as set of bases B(M1 ⊕M2) =

{B1 ∪B2|B1 ∈ B(M1), B2 ∈ B(M2)}. Further, the rank of M1 ⊕M2 is r1 + r2.
In [3], we proved the following result.

Theorem 3. [3] Let M1 = (E1,B) and M2 = (E2,B) be matroids of rank r1 and r2

respectively where E1 ∩ E2 = ∅. Then, P (M1 ⊕M2) has a hyperplane split if and only if
either P (M1) or P (M2) has a hyperplane split.

Our main result in this section is the following.

Theorem 4. LetM1 = (E1,B) andM2 = (E2,B) be matroids of rank r1 and r2 respectively
where E1 ∩ E2 = ∅. Then, P (M1 ⊕M2) admits a sequence of hyperplane splits if either
P (M1) or P (M2) admits a sequence of hyperplane splits.

Proof. Without loss of generality, we suppose that P (M1) has a sequence of hyperplane

splits yielding to the decomposition P (M1) =
t⋃
i=1

P (Ni). For each i = 1, . . . , t, we let

Li = {X ∪ Y : X ∈ B(Ni), Y ∈ B(M2)}.
Since Ni and M2 are matroids, Li is also the matroid given by Ni ⊕M2.

Now for all 1 ≤ i, j ≤ t, i 6= j we have
Li ∩ Lj = {X ∪ Y : X ∈ B(Ni) ∩ B(Nj), Y ∈ B(M2)}

Since B(Ni)∩B(Nj) = B(Ni ∩Nj) and M2 are matroids, Li ∩Lj is also a matroid given

by (Ni ∩Nj)⊕M2. Moreover, P (M1) =
t⋃
i=1

P (Ni) so B(M1) =
t⋃
i=1
B(Ni) and thus

t⋃
i=1

Li = {X ∪ Y : X ∈
t⋃
i=1
B(Ni), Y ∈ B(M2)}

= {X ∪ Y : X ∈ B(M1), Y ∈ B(M2)}
= B(M1 ⊕M2).

We now show that this matroid base decomposition induces a t-decomposition of P (M1⊕

M2). Indeed, we claim that P (M1 ⊕M2) =
t⋃
i=1

P (Li). For, we proceed by induction on t.

The case t = 2 is true since, in the proof of Theorem 3, was showed that P (M1 ⊕M2) =

P (L1) ∪ P (L2). We suppose that the result is true for t and let

P (M1) =
t−1⋃
i=1

P (Ni) ∪ P (N1
t ) ∪ P (N2

t ), (8)
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where Ni, i = 1, . . . t − 1, N1
t , N

2
t are matroids. Moreover, we suppose that throughout

the sequence of hyperplane splits of P (M1) we had P (M1) =
t⋃
i=1

P (Ni) and that the last

hyperplane split was applied to P (Nt) (obtaining P (Nt) = P (N1
t ) ∪ P (N2

t )) and yielding
to equation (8).

Now, by the inductive hypothesis, the decomposition P (M1) =
t⋃
i=1

P (Ni) implies the

decomposition P (M1⊕M2) =
t⋃
i=1

P (Li). But, by the case t = 2, P (Nt) = P (N1
t )∪P (N2

t )

implying the decomposition P (Nt ⊕M2) = P (L1
t ) ∪ P (L2

t ) where

L1
t = {X ∪ Y : X ∈ B(N1

t ), Y ∈ B(M2)} and L2
t = {X ∪ Y : X ∈ B(N2

t ), Y ∈ B(M2)}

Therefore,

P (M1 ⊕M2) =
t⋃
i=1

P (Li) =
t−1⋃
i=1

P (Li) ∪ P (L1
t ) ∪ P (L2

t ).

�
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