HAL
open science

Matroid base polytope decomposition II: sequences of hyperplane splits

Vanessa Chatelain, Jorge Luis Ramírez Alfonsín

To cite this version:

Vanessa Chatelain, Jorge Luis Ramírez Alfonsín. Matroid base polytope decomposition II: sequences of hyperplane splits. Advances in Applied Mathematics, 2014, 54, pp.121-136. 10.1016/j.aam.2013.11.003 . hal-02048536

HAL Id: hal-02048536
https://hal.science/hal-02048536
Submitted on 25 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MATROID BASE POLYTOPE DECOMPOSITION II : SEQUENCES OF HYPERPLANE SPLITS

VANESSA CHATELAIN AND JORGE LUIS RAMÍREZ ALFONSÍN

Abstract

This is a continuation of an early paper [Adv. Appl. Math. 47(2011), 158172] about matroid base polytope decomposition. We will present sufficient conditions on a matroid M so its base polytope $P(M)$ has a sequence of hyperplane splits. These yield to decompositions of $P(M)$ with two or more pieces for infinitely many matroids M. We also present necessary conditions on the Euclidean representation of rank three matroids M for the existence of decompositions of $P(M)$ into 2 or 3 pieces. Finally, we prove that $P\left(M_{1} \oplus M_{2}\right)$ has a sequence of hyperplane splits if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ also has a sequence of hyperplane splits.

Keywords: Matroid base polytope, polytope decomposition
MSC 2010: 05B35,52B40

1. Introduction

This paper is a continuation of the paper [3] by the two present authors. For general background in matroid theory we refer the reader to [12, 15]. A matroid $M=(E, \mathcal{B})$ of rank $r=r(M)$ is a finite set $E=\{1, \ldots, n\}$ together with a nonempty collection $\mathcal{B}=\mathcal{B}(M)$ of r-subsets of E (called the bases of M) satisfying the following basis exchange axiom:
if $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1} \backslash B_{2}$, then there exists $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$.
We denote by $\mathcal{I}(M)$ the family of independent sets of M (consisting of all subsets of bases of $M)$. For a matroid $M=(E, \mathcal{B})$, the matroid base polytope $P(M)$ of M is defined as the convex hull of the incidence vectors of bases of M, that is,

$$
P(M):=\operatorname{conv}\left\{\sum_{i \in B} e_{i}: B \text { a base of } M\right\}
$$

where e_{i} is the $i^{t h}$ standard basis vector in $\mathbb{R}^{n} . P(M)$ is a polytope of dimension at most $n-1$.

A matroid base polytope decomposition of $P(M)$ is a decomposition

$$
P(M)=\bigcup_{i=1}^{t} P\left(M_{i}\right)
$$

[^0]where each $P\left(M_{i}\right)$ is a matroid base polytope for some matroid M_{i} and, for each $1 \leq$ $i \neq j \leq t$, the intersection $P\left(M_{i}\right) \cap P\left(M_{j}\right)$ is a face of both $P\left(M_{i}\right)$ and $P\left(M_{j}\right)$. It is known that nonempty faces of matroid base polytope are matroid base polytopes [5, Theorem 2]. So, the common face $P\left(M_{i}\right) \cap P\left(M_{j}\right)$ (whose vertices correspond to elements of $\left.\mathcal{B}\left(M_{i}\right) \cap \mathcal{B}\left(M_{j}\right)\right)$ must also be a matroid base polytope. $P(M)$ is said to be decomposable if it admits a matroid base polytope decomposition with $t \geq 2$ and indecomposable otherwise. A decomposition is called hyperplane split when $t=2$.

Matroid base polytope decomposition were introduced by Lafforgue [9, 10] and have appeared in many different contexts : quasisymmetric functions $[1,2,4,11]$, compactification of the moduli space of hyperplane arrangements [6, 8], tropical linear spaces [13, 14], etc. In [3], we have studied the existence (and nonexistence) of such decompositions. Among other results, we presented sufficient conditions on a matroid M so $P(M)$ admits a hyperplane split. This yielded us to different hyperplane splits for infinitely many matroids. A natural question is the following one: given a matroid base polytope $P(M)$, is it possible to find a sequence of hyperplane splits providing a decomposition of $P(M)$? In other words, is there a hyperplane split of $P(M)$ such that one of the two obtained pieces has a hyperplane split such that, in turn, one of the two new obtained pieces has a hyperplane split, and so on, giving a decomposition of $P(M)$?

In [7, Section 1.3], Kapranov showed that all decompositions of a (appropriately parametrized) rank-2 matroid can be achieved by a sequence of hyperplane splits. However, this is not the case in general. Billera, Jia and Reiner [2] provided a decomposition into three indecomposable pieces of $P(W)$ where W is the rank three matroid on $\{1, \ldots, 6\}$ with $\mathcal{B}(W)=\binom{[6]}{3} \backslash\{\{1,2,3\},\{1,4,5\},\{3,5,6\}\}$. They proved that this decomposition cannot be obtained via hyperplane splits. However, we notice that $P(W)$ may admits other decompositions into three pieces that can be obtained via hyperplane splits; this is illustrated in Example 3.

A difficulty arising when we apply successive hyperplane splits is that the intersection $P\left(M_{i}\right) \cap P\left(M_{j}\right)$ also must be a matroid base polytope. For instance, consider a first hyperplane split $P(M)=P\left(M_{1}\right) \cup P\left(M_{1}^{\prime}\right)$ and suppose that $P\left(M_{1}^{\prime}\right)$ admits a hyperplane splits, say $P\left(M_{1}^{\prime}\right)=P\left(M_{2}\right) \cup P\left(M_{2}^{\prime}\right)$. This sequence of 2 hyperplane splits would give the decomposition $P(M)=P\left(M_{1}\right) \cup P\left(M_{2}\right) \cup P\left(M_{2}^{\prime}\right)$ if $P\left(M_{1}\right) \cap P\left(M_{2}\right), P\left(M_{1}\right) \cap$ $P\left(M_{2}^{\prime}\right)$, and $P\left(M_{2}\right) \cap P\left(M_{2}^{\prime}\right)$ were matroid base polytopes. By definition of hyperplane split, $P\left(M_{2}\right) \cap P\left(M_{2}^{\prime}\right)$ is the base polytope of a matroid, however the other two intersections might not be matroid base polytopes. Recall that the intersection of two matroids is not necessarily a matroid (for instance, $\mathcal{B}\left(M_{1}\right)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ and $\mathcal{B}\left(M_{2}\right)=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\}$ are matroids while $\mathcal{B}\left(M_{1}\right) \cap \mathcal{B}\left(M_{2}\right)=$ $\{\{1,3\},\{2,3\},\{2,4\}\}$ is not).

In the next section, we give sufficient conditions on M so that $P(M)$ admits a sequence of $t \geq 2$ hyperplane splits. This allows us to provide decompositions of $P(M)$ with $t+1$ pieces for infinitely many matroids. We say that two decompositions $P(M)=\bigcup_{i=1}^{t} P\left(M_{i}\right)$ and $P(M)=\bigcup_{i=1}^{t} P\left(M_{i}^{\prime}\right)$ are equivalent if there exists a permutation σ of $\{1, \ldots, t\}$ such that $P\left(M_{i}\right)$ is combinatorially equivalent to $P\left(M_{\sigma(i)}^{\prime}\right)$. They are different otherwise. We present a lower bound for the number of different decompositions of $P\left(U_{n, r}\right)$ into t pieces. In Section 3, we present necessary geometric conditions (on the Euclidean representation) of rank three matroids M for the existence of decompositions of $P(M)$ into 2 or 3 pieces. Finally, in Section 4, we show that the direct $\operatorname{sum} P\left(M_{1} \oplus M_{2}\right)$ has a sequence of hyperplane splits if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ also has a sequence of hyperplane splits.

2. SEquence of hyperplane splits

Let $M=(E, \mathcal{B})$ be a matroid of rank r and let $A \subseteq E$. We recall that the independent sets of the restriction of matroid M to A, denoted by $\left.M\right|_{A}$, are given by $\mathcal{I}\left(\left.M\right|_{A}\right)=\{I \subseteq$ $A: I \in \mathcal{I}(M)\}$.

Let $t \geq 2$ be an integer with $r \geq t$. Let $E=\bigcup_{i=1}^{t} E_{i}$ be a t-partition of $E=\{1, \ldots, n\}$ and let $r_{i}=r\left(\left.M\right|_{E_{i}}\right)>1, i=1, \ldots, t$. We say that $\bigcup_{i=1}^{t} E_{i}$ is a good t-partition if there exist integers $0<a_{i}<r_{i}$ with the following properties :
(P1) $r=\sum_{i=1}^{t} a_{i}$,
(P2) (a) For any j with $1 \leq j \leq t-1$
if $X \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{j}}\right)$ with $|X| \leq a_{1}$ and $Y \in \mathcal{I}\left(\left.M\right|_{E_{j+1} \cup \cdots \cup E_{t}}\right)$ with $|Y| \leq a_{2}$, then $X \cup Y \in \mathcal{I}(M)$.
(b) For any pair j, k with $1 \leq j<k \leq t-1$

$$
\begin{array}{ll}
\text { if } X \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{j}}\right) & \text { with }|X| \leq \sum_{i=1}^{j} a_{i}, \\
Y \in \mathcal{I}\left(\left.M\right|_{E_{j+1} \cup \cdots \cup E_{k}}\right) & \text { with }|Y| \leq \sum_{i=j+1}^{k} a_{i}, \\
Z \in \mathcal{I}\left(\left.M\right|_{E_{k+1} \cup \cdots \cup E_{t}}\right) & \text { with }|Z| \leq \sum_{i=k+1}^{t} a_{i}, \\
\text { then } X \cup Y \cup Z \in \mathcal{I}(M) . &
\end{array}
$$

Notice that the good 2-partitions provided by (P2) case (a) with $t=2$ are the good partitions defined in [3]. Good partitions were used to give sufficient conditions for the existence of hyperplane splits. The latter was a consequence of the following two results:

Lemma 1. [3, Lemma 1] Let $M=(E, \mathcal{B})$ be a matroid of rank r and let $E=E_{1} \cup E_{2}$ be a good 2-partition with integers $0<a_{i}<r\left(\left.M\right|_{E_{i}}\right), i=1,2$. Then,

$$
\mathcal{B}\left(M_{1}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \leq a_{1}\right\} \text { and } \mathcal{B}\left(M_{2}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{2}\right| \leq a_{2}\right\}
$$

are the collections of bases of matroids.
Theorem 1. [3, Theorem 1] Let $M=(E, \mathcal{B})$ be a matroid of rank r and let $E=E_{1} \cup E_{2}$ be a good 2-partition with integers $0<a_{i}<r\left(\left.M\right|_{E_{i}}\right), i=1,2$. Then, $P(M)=P\left(M_{1}\right) \cup P\left(M_{2}\right)$ is a hyperplane split, where M_{1} and M_{2} are the matroids given by Lemma 1.

We shall use these two results as the initial step in our construction of a sequence of $t \geq 2$ hyperplane splits.

Lemma 2. Let $t \geq 2$ be an integer and let $E=\bigcup_{i=1}^{t} E_{i}$ be a good t-partition with integers $0<a_{i}<r\left(\left.M\right|_{E_{i}}\right), i=1, \ldots, t$. Let

$$
\mathcal{B}\left(M_{1}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \leq a_{1}\right\}
$$

and, for each $j=1, \ldots, t$, let

$$
\mathcal{B}\left(M_{j}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \geq a_{1}, \ldots,\left|B \cap \bigcup_{i=1}^{j-1} E_{i}\right| \geq \sum_{i=1}^{j-1} a_{i},\left|B \cap \bigcup_{i=1}^{j} E_{i}\right| \leq \sum_{i=1}^{j} a_{i}\right\} .
$$

Then $\mathcal{B}\left(M_{i}\right)$ is the collection of bases of a matroid for each $i=1, \ldots, t$.
Proof. By properties ($P 1$) and ($P 2$) we have that
if $X \in \mathcal{I}\left(\left.M\right|_{E_{1}}\right)$ with $|X| \leq a_{1}$ and $Y \in \mathcal{I}\left(\left.M\right|_{E_{2} \cup \cdots \cup E_{t}}\right)$ with $|Y| \leq \sum_{i=2}^{t} a_{i}$,
then $X \cup Y \in \mathcal{I}(M)$. So, by Lemma 1, $\mathcal{B}\left(M_{1}\right)$ is the collection of bases of a matroid. Now, notice that $\mathcal{B}\left(\overline{M_{1}}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \geq a_{1}\right\}$ is also the collection of bases of a matroid on E. We claim that $P\left(\overline{M_{1}}\right)=P\left(M_{2}\right) \cup P\left(\overline{M_{2}}\right)$ is a hyperplane split where

$$
\mathcal{B}\left(M_{2}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \geq a_{1} \text { and }\left|B \cap\left(E_{1} \cup E_{2}\right)\right| \leq a_{1}+a_{2}\right\}
$$

and

$$
\mathcal{B}\left(\overline{M_{2}}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \geq a_{1} \text { and }\left|B \cap\left(E_{1} \cup E_{2}\right)\right| \geq a_{1}+a_{2}\right\} .
$$

Indeed, since $\mathcal{B}\left(\overline{M_{1}}\right)$ is the collection of bases of a matroid on E, then, by properties $(P 1)$ and (P2) (a),
if $X \in \mathcal{I}\left(\left.\bar{M}\right|_{E_{1} \cup E_{2}}\right)$ with $|X| \leq a_{1}+a_{2}$ and $Y \in \mathcal{I}\left(\left.\bar{M}\right|_{E_{3} \cup \ldots \cup E_{t}}\right)$ with $|Y| \leq \sum_{i=3}^{t} a_{i}$,
then $X \cup Y \in \mathcal{I}(\bar{M})$. So, by Lemma $1, \mathcal{B}\left(M_{2}\right)$ is the collection of bases of a matroid (and thus $\mathcal{B}\left(\overline{M_{2}}\right)$ also is). Inductively applying the above argument to \bar{M}_{j}, it can be easily checked that for all $j \mathcal{B}\left(M_{j}\right)$ is the collection of bases of a matroid.

Theorem 2. Let $t \geq 2$ be an integer and let $M=(E, \mathcal{B})$ be a matroid of rank r. Let $E=\bigcup_{i=1}^{t} E_{i}$ be a good t-partition with integers $0<a_{i}<r\left(\left.M\right|_{E_{i}}\right), i=1, \ldots, t$. Then $P(M)$ has a sequence of t hyperplane splits yielding the decomposition

$$
P(M)=\bigcup_{i=1}^{t} P\left(M_{i}\right)
$$

where $M_{i}, 1 \leq i \leq t$, are the matroids defined in Lemma 2.
Proof. By Theorem 1, the result holds for $t=2$. Moreover, by the inductive construction of Lemma 2, we clearly have that $P(M)=\bigcup_{i=1}^{t} P\left(M_{i}\right)$ with $\mathcal{B}(M)=\bigcup_{i=1}^{t} \mathcal{B}\left(M_{i}\right)$. We only need to show that $\mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$ is the collection of bases of a matroid for any $1 \leq j<k \leq t$. For, by definition of $\mathcal{B}\left(M_{i}\right)$, we have

$$
\mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)=\left\{B \in \mathcal{B}(M): \text { the condition } C_{h}(B) \text { is satisfied for all } 1 \leq h \leq k\right\}
$$

where for $A \subseteq E$:

- $C_{h}(A)$ is satisfied if $\left|A \cap \bigcup_{i=1}^{h} E_{i}\right| \geq \sum_{i=1}^{h} a_{i}$ and $1 \leq h \leq k, h \neq j, k$,
- $C_{j}(A)$ is satisfied if $\left|A \cap \bigcup_{i=1}^{j} E_{i}\right|=\sum_{i=1}^{j} a_{i}$,
and
- $C_{k}(A)$ is satisfied if $\left|A \cap \bigcup_{i=1}^{k} E_{i}\right| \leq \sum_{i=1}^{k} a_{i}$.

We will check the exchange axiom for any $X, Y \in \mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$. Since $X, Y \in \mathcal{B}(M)$ for any $e \in X \backslash Y$ there exists $f \in Y \backslash X$ such that $X-e+f \in \mathcal{B}(M)$. We will verify that $X-e+f \in \mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$. We distinguish three cases (depending which of the conditions $C_{i}(X-e)$ is satisfied).

Case 1. There exists $1 \leq l \leq j$ such that $C_{l}(X-e)$ is not satisfied. We suppose that l is minimal with this property. Since, by definition of $\mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right), l \leq j \leq k, C_{l}(X)$ is satisfied, and $C_{l}(X-e)$ is not satisfied, we obtain
(a) $\left|X \cap \bigcup_{i=1}^{l} E_{i}\right|=\sum_{i=1}^{l} a_{i}$,
(b) $e \in \bigcup_{i=1}^{l} E_{i}$,
(c) $\mid \underbrace{(X-e) \cap \bigcup_{i=1}^{l} E_{i} \mid}_{I_{1}}=\sum_{i=1}^{l} a_{i}-1$.

Since $Y \in \mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$, then $\left|Y \cap \bigcup_{i=1}^{l} E_{i}\right| \geq \sum_{i=1}^{l} a_{i}$.
Therefore, by using $(\mathrm{c}), I_{1}, I_{2} \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{l}}\right) \subseteq \mathcal{I}(M)$ with $\left|I_{1}\right|<\left|I_{2}\right|$. So, there exists $f \in I_{2} \backslash I_{1} \subset Y \backslash X$ with $I_{1} \cup f \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{l}}\right)$. Thus, $f \in \bigcup_{i=1}^{l} E_{i}$ and

$$
\begin{equation*}
\left|I_{1} \cup f \cap \bigcup_{i=1}^{l} E_{i}\right|=\sum_{i=1}^{l} a_{i}-1 \tag{1}
\end{equation*}
$$

Moreover, since X is a base, $|X|=r=\sum_{i=1}^{t} a_{i}$ and, by (a), we have

$$
|\underbrace{(X-e+f) \cap \bigcup_{i=l+1}^{t} E_{i}}_{I_{3}} \stackrel{((b)}{=}| X \cap \bigcup_{i=l+1}^{t} E_{i} \mid=\sum_{i=1}^{t} a_{i}-\sum_{i=1}^{l} a_{i}=\sum_{i=l+1}^{t} a_{i}
$$

We also have $I_{3} \in \mathcal{I}\left(\left.M\right|_{E_{l+1} \cup \ldots \cup E_{t}}\right)$, thus, by $(P 2)(b)$,
$I_{1} \cup f \cup I_{3} \in \mathcal{I}(M)$ with $\left|I_{1} \cup f \cup I_{3}\right|=\sum_{i=1}^{l} a_{i}-1+1+\sum_{i=l+1}^{t} a_{i}=r$
and so $I_{1} \cup f \cup I_{3}=X-e+f \in \mathcal{B}(M)$.
Finally we need to show that $X-e+f \in \mathcal{B}_{j} \cap \mathcal{B}_{k}$, that is $C_{h}(X-e+f)$ holds for each $1 \leq h \leq k$.
(i) $h<l$: Since l is the minimum for which $C_{l}(X-e)$ is not verified, $C_{h}(X-e)$ is satisfied for each $1 \leq h<l$ and thus $C_{h}(X-e+f)$ is also satisfied (we just added a new element).
(ii) $h=l$: By equation (1), $C_{l}(X-e+f)$ is satisfied.
(iii) $h>l$: Since $e, f \in \bigcup_{i=1}^{l} E_{i}$,

$$
\left|X-e+f \cap \bigcup_{i=1}^{h} E_{i}\right|=\left|X \cap \bigcup_{i=1}^{h} E_{i}\right|
$$

thus $C_{h}(X-e+f)$ is satisfied if and only if $C_{h}(X)$ is satisfied, which is the case since $h>l$.

Case 2. $C_{l^{\prime}}(X-e)$ is satisfied for all $1 \leq l^{\prime} \leq j$ and there exists $j+1 \leq l \leq k-1$ such that $C_{l}(X-e)$ is not satisfied. We suppose that l is minimal with this property. Since $C_{l}(X)$ is satisfied and $C_{l}(X-e)$ is not,
(a) $\left|X \cap \bigcup_{i=1}^{l} E_{i}\right|=\sum_{i=1}^{l} a_{i}$,
(b) $e \in \bigcup_{i=j+1}^{l} E_{i}\left(\right.$ since $C_{j}(X-e)$ is satisfied $)$,
(c) $\mid \underbrace{(X-e) \cap \bigcup_{i=1}^{l} E_{i} \mid}_{I_{1}}=\sum_{i=1}^{l} a_{i}-1$.

Since $C_{j}(X-e)$ is satisfied,

$$
\begin{align*}
\underbrace{(X-e) \cap \bigcup_{i=j+1}^{l} E_{i}}_{I_{1}} \mid= & \left|(X-e) \cap \bigcup_{i=1}^{l} E_{i}\right|-\left|(X-e) \cap \bigcup_{i=1}^{j} E_{i}\right| \\
& \stackrel{(c)}{=} \sum_{i=1}^{l} a_{i}-1-\sum_{i=1}^{j} a_{i}=\sum_{i=j+1}^{l} a_{i}-1 . \tag{2}
\end{align*}
$$

Let $Y \in \mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$. Since $C_{j}(Y)$ and $C_{l}(Y)$ are satisfied,

$$
\begin{aligned}
|\underbrace{Y \cap \bigcup_{i=j+1}^{l} E_{i}}_{I_{2}}| & =\left|Y \cap \bigcup_{i=1}^{l} E_{i}\right|-\left|Y \cap \bigcup_{i=1}^{j} E_{i}\right| \\
& \geq \sum_{i=1}^{l} a_{i}-\sum_{i=1}^{j} a_{i}=\sum_{i=j+1}^{l} a_{i}
\end{aligned}
$$

Since $\left|I_{1}\right|<\left|I_{2}\right|$, there exists $f \in I_{2} \backslash I_{1}$ such that $I_{1}+f \in \mathcal{I}\left(\left.M\right|_{E_{j+1} \cup \ldots \cup E_{l}}\right)$. So, $f \in \bigcup_{i=j+1}^{l} E_{i}$ and, by (b), we have

$$
(X-e+f) \cap \bigcup_{i=1}^{j} E_{i}=X \cap \bigcup_{i=1}^{j} E_{i}
$$

Since X is a base, $X-e+f \cap \bigcup_{i=1}^{j} E_{i} \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \ldots \cup E_{j}}\right)$ (also notice that $(X-e+f) \cap$ $\left.\bigcup_{i=l+1}^{t} E_{i} \in \mathcal{I}\left(\left.M\right|_{E_{l+1} \cup \cdots \cup E_{t}}\right)\right)$. Moreover, since $X \in \mathcal{B}_{j} \cap \mathcal{B}_{k}, C_{j}(X)$ is satisfied and thus

$$
\begin{equation*}
\left|(X-e+f) \cap \bigcup_{i=1}^{j} E_{i}\right|=\sum_{i=1}^{j} a_{i} \tag{3}
\end{equation*}
$$

and, by equation (2), we have

$$
\begin{equation*}
\left|(X-e+f) \cap \bigcup_{i=j+1}^{l} E_{i}\right|=\sum_{i=j+1}^{l} a_{i} \tag{4}
\end{equation*}
$$

obtaining that

$$
\left|(X-e+f) \cap \bigcup_{i=l+1}^{t} E_{i}\right|=r-\sum_{i=1}^{j} a_{i}-\sum_{i=j+1}^{l} a_{i}=\sum_{i=l+1}^{t} a_{i}
$$

Now, by (P2) (b), we have

$$
\left((X-e+f) \cap \bigcup_{i=1}^{j} E_{i}\right) \cup\left((X-e+f) \cap \bigcup_{i=j+1}^{l} E_{i}\right) \cup\left((X-e+f) \cap \bigcup_{i=l+1}^{t} E_{i}\right)=X-e+f \in \mathcal{I}(M)
$$

Since $|X-e+f|=r, X-e+f \in \mathcal{B}(M)$.
Finally we need to show that $X-e+f \in \mathcal{B}_{j} \cap \mathcal{B}_{k}$, that is, that $C_{h}(X-e+f)$ is verified for each $1 \leq h \leq k$.
(i) $h<l$ and $h \neq j$: Since $C_{h}(X-e)$ is satisfied, by the minimality of $l, C_{h}(X-e+f)$ is also satisfied.
(ii) $h=j$: By equation (3), $C_{j}(X-e+f)$ is satisfied.
(iii) $h=l$: By equations (3) and (4), $C_{l}(X-e+f)$ is satisfied.
(iv) $h>l$: Since $e, f \in \bigcup_{i=j+1}^{l} E_{i},\left|X-e+f \cap \bigcup_{i=1}^{h} E_{i}\right|=\left|X \cap \bigcup_{i=1}^{h} E_{i}\right|$, thus $C_{h}(X-e+f)$ is satisfied if and only if $C_{h}(X)$ is satisfied, which is the case because $h>l$.

Case 3. $C_{i}(X-e)$ is satisfied for every $1 \leq i \leq k$.
Subcase (a) $\left|(X-e) \cap \bigcup_{i=1}^{k} E_{i}\right|=\sum_{i=1}^{k} a_{i}$. We first notice that $e \in \bigcup_{i=k+1}^{t} E_{i}$ (otherwise $\left|X-e \cap \bigcup_{i=1}^{k} E_{i}\right|<\left|X \cap \bigcup_{i=1}^{k} E_{i}\right|$ which is impossible since $C_{k}(X)$ holds $)$. Now,

$$
\begin{equation*}
\underbrace{(X-e) \cap \bigcup_{i=k+1}^{t} E_{i} \mid}_{I_{1}}=r-1-\sum_{i=1}^{k} a_{i}=\sum_{i=k+1}^{t} a_{i}-1 \tag{5}
\end{equation*}
$$

Let $Y \in \mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$. Since $C_{j}(Y)$ and $C_{l}(Y)$ are satisfied, $\left|Y \cap \bigcup_{i=1}^{k} E_{i}\right| \leq \sum_{i=1}^{k} a_{i}$, and so $|\underbrace{Y \cap \bigcup_{i=k+1}^{t} E_{i}}_{I_{2}}| \geq \sum_{i=k+1}^{t} a_{i}$.

Since $\left|I_{1}\right|<\left|I_{2}\right|$, there exists $f \in I_{2} \backslash I_{1}$ such that $I_{1}+f \in \mathcal{I}\left(\left.M\right|_{E_{k+1} \cup \ldots \cup E_{t}}\right)$. So, $f \in \bigcup_{i=k+1}^{t} E_{i}$ and since $e \in \bigcup_{i=k+1}^{t} E_{i}$,

$$
(X-e+f) \cap \bigcup_{i=1}^{k} E_{i}=X \cap \bigcup_{i=1}^{k} E_{i} \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{k}}\right)
$$

Also, since $(X-e+f) \cap \bigcup_{i=k+1}^{t} E_{i} \in \mathcal{I}\left(\left.M\right|_{E_{k+1} \cup \cdots \cup E_{t}}\right)$, by $(P 2)(b)$ we have

$$
X-e+f=\left(X-e+f \cap \bigcup_{i=1}^{k} E_{i}\right) \cup\left(X-e+f \cap \bigcup_{i=k+1}^{t} E_{i}\right) \in \mathcal{I}(M)
$$

Moreover, by using equation (5) and the fact that $f \in \bigcup_{i=k+1}^{t} E_{i}$ we obtain that

$$
\left|(X-e+f) \cap \bigcup_{i=k+1}^{t} E_{i}\right|=\sum_{i=k+1}^{t} a_{i}
$$

Since $\left|(X-e) \cap \bigcup_{i=1}^{k} E_{i}\right|=\sum_{i=1}^{k} a_{i}$,

$$
\left|(X-e+f) \cap \bigcup_{i=1}^{k} E_{i}\right|=\sum_{i=1}^{k} a_{i}
$$

Therefore,

$$
\left|(X-e+f) \cap \bigcup_{i=1}^{t} E_{i}\right|=\left|(X-e+f) \cap \bigcup_{i=1}^{k} E_{i}\right|+\left|(X-e+f) \cap \bigcup_{i=k+1}^{t} E_{i}\right|=\sum_{i=1}^{t} a_{i}=r
$$

and so $X-e+f \in \mathcal{B}(M)$.
Finally we need to show that $X-e+f \in \mathcal{B}_{j} \cap \mathcal{B}_{k}$, that is, that $C_{h}(X-e+f)$ is verified for each $1 \leq h \leq k$. Since $e, f \in \bigcup_{i=k+1}^{t} E_{i}, C_{h}(X-e+f)$ becomes $C_{h}(X)$ for all $1 \leq h \leq k$, which is satisfied.

Subcase (b) If $\left|(X-e) \cap \bigcup_{i=1}^{k} E_{i}\right|<\sum_{i=1}^{k} a_{i}$, then $e \in \bigcup_{i=j+1}^{t} E_{i}$ (otherwise $\left|(X-e) \cap \bigcup_{i=1}^{j} E_{i}\right|<$ $\left|X \cap \bigcup_{i=1}^{j} E_{i}\right|$ which is impossible since $C_{j}(X)$ holds). Now, since $C_{j}(X-e)$ is satisfied,

$$
\left|(X-e) \cap \bigcup_{i=1}^{j} E_{i}\right|=\sum_{i=1}^{j} a_{i}
$$

and thus

$$
|\underbrace{(X-e) \cap \bigcup_{i=j+1}^{t} E_{i}}_{I_{1}}|=\sum_{i=j+1}^{t} a_{i}-1
$$

Let $Y \in \mathcal{B}\left(M_{j}\right) \cap \mathcal{B}\left(M_{k}\right)$. Since $C_{j}(Y)$ and $C_{l}(Y)$ are satisfied,

$$
\left|Y \cap \bigcup_{i=1}^{j} E_{i}\right|=\sum_{i=1}^{j} a_{i}
$$

and thus

$$
|\underbrace{Y \cap \bigcup_{i=j+1}^{t} E_{i}}_{I_{2}}|=\sum_{i=j+1}^{t} a_{i}
$$

Since $\left|I_{1}\right|<\left|I_{2}\right|$, there exists $f \in I_{2} \backslash I_{1}$ such that $I_{1}+f \in \mathcal{I}\left(\left.M\right|_{E_{j+1} \cup \cdots \cup E_{t}}\right)$. So, $f \in \bigcup_{i=j+1}^{t} E_{i}$. Since $e \in \bigcup_{i=j+1}^{t} E_{i}$,

$$
\begin{equation*}
(X-e+f) \cap \bigcup_{i=1}^{j} E_{i}=X \cap \bigcup_{i=1}^{j} E_{i} \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{j}}\right) \tag{6}
\end{equation*}
$$

and, by $(P 2)(b)$, we have

$$
\left(X-e+f \cap \bigcup_{i=1}^{j} E_{i}\right) \cup\left(X-e+f \cap \bigcup_{i=j+1}^{t} E_{i}\right) \in \mathcal{I}(M)
$$

Therefore, $X-e+f \in \mathcal{B}(M)$.
Finally, we need to show that $X-e+f \in \mathcal{B}_{j} \cap \mathcal{B}_{k}$, that is, $C_{h}(X-e+f)$ is verified for each $1 \leq h \leq k$.
(i) $h<j$: Since $C_{h}(X-e)$ is satisfied, $C_{h}(X-e+f)$ is also satisfied.
(ii) $h=j: C_{j}(X-e+f)$ is satisfied by equation (6).
(iii) $j+1 \leq h \leq k-1$: Since $C_{h}(X-e)$ is satisfied then $C_{h}(X-e+f)$ is also satisfied.
(iv) $h=k$: Since $\left|X-e \cap \bigcup_{i=1}^{k} E_{i}\right|<\sum_{i=1}^{k} a_{i}$ then $\left|X-e+f \cap \bigcup_{i=1}^{k} E_{i}\right| \leq \sum_{i=1}^{k} a_{i}$ and thus $C_{h}(X-e+f)$ is satisfied.

2.1. Uniform matroids.

Corollary 1. Let $n, r, t \geq 2$ be integers with $n \geq r+t$ and $r \geq t$. Let $p_{t}(n)$ be the number of different decompositions of the integer n of the form $n=\sum_{i=1}^{t} p_{i}$ with $p_{i} \geq 2$ and let $h_{t}\left(U_{n, r}\right)$ be the number of decompositions of $P\left(U_{n, r}\right)$ into t pieces. Then,

$$
h_{t}\left(U_{n, r}\right) \geq p_{t}(n)
$$

Proof. We consider the partition $E=\{1, \ldots, n\}=\bigcup_{i=1}^{t} E_{i}$, where

$$
\begin{aligned}
E_{1} & =\left\{1, \ldots, p_{1}\right\} \\
E_{2} & =\left\{p_{1}+1, \ldots, p_{1}+p_{2}\right\} \\
& \vdots \\
E_{t} & =\left\{\sum_{i=1}^{t-1} p_{i}+1, \ldots, \sum_{i=1}^{t} p_{i}\right\} .
\end{aligned}
$$

We claim that $\bigcup_{i=1}^{t} E_{i}$ is a good t-partition. For, we first notice that $\left.M\right|_{E_{i}}$ is isomorphic to $U_{p_{i}, \min \left\{p_{i}, r\right\}}$ for each $i=1, \ldots, t$. Let $r_{i}=r\left(\left.M\right|_{E_{i}}\right)=\min \left\{p_{i}, r\right\}$. We now show that

$$
\begin{equation*}
\sum_{i=1}^{t} r_{i} \geq r+t \tag{7}
\end{equation*}
$$

For, we note that

$$
\sum_{i=1}^{t} r_{i}=\sum_{i=1}^{t} r\left(\left.M\right|_{E_{i}}\right)=\sum_{i \in T \subseteq\{1, \ldots, t\}} p_{i}+(t-|T|) r
$$

We distinguish three cases.

1) If $t=|T|$, then $\sum_{i=1}^{t} r_{i}=\sum_{i=1}^{t} p_{i}=n \geq r+t$.
2) If $t=|T|+1$, then $\sum_{i=1}^{t} r_{i}=\sum_{i=1}^{t-1} p_{i}+r \geq 2(t-1)+r \geq t+t-2+r \geq t+r$.
3) If $t=|T|+k$, with $k \geq 2$, then $\sum_{i=1}^{t} r_{i} \geq k r \geq 2 r \geq r+t$.

So, by equation (7), we can find integers $a_{i}^{\prime} \geq 1$ such that $\sum_{i=1}^{t} r_{i}=r+\sum_{i=1}^{t} a_{i}^{\prime}$. Therefore, there exist integers $a_{i}=r\left(\left.M\right|_{E_{i}}\right)-a_{i}^{\prime}$ with $0<a_{i}<r\left(\left.M\right|_{E_{i}}\right)$ such that $r=\sum_{i=1}^{t} a_{i}$. Moreover, if $X \in \mathcal{I}\left(\left.M\right|_{E_{1} \cup \cdots \cup E_{j}}\right)$ with $|X| \leq \sum_{i=1}^{j} a_{i}, Y \in \mathcal{I}\left(\left.M\right|_{E_{j+1} \cup \cdots \cup E_{k}}\right)$ with $|Y| \leq \sum_{i=j+1}^{k} a_{i}$, and $Z \in \mathcal{I}\left(\left.M\right|_{E_{k+1} \cup \cdots \cup E_{t}}\right)$ with $|Z| \leq \sum_{i=k+1}^{t} a_{i}$ for $1 \leq j<k \leq t-1$, then $|X \cup Y \cup Z| \leq \sum_{i=1}^{t} a_{i}=r$ and so $X \cup Y \cup Z$ is always a subset of one of the bases of $U_{n, r}$. Thus, $X \cup Y \cup Z \in \mathcal{I}\left(U_{n, r}\right)$ and $(P 2)$ is also verified.

Notice that there might be several choices for the values of a_{i} (each providing a good t-partition). However, it is not clear if these choices give different sequences of t hyperplane splits.

Example 1: Let us consider the uniform matroid $U_{8,4}$. We take the partition $E_{1}=$ $\{1,2\}, E_{2}=\{3,4\}, E_{3}=\{5,6\}$, and $E_{4}=\{7,8\}$. Then $r\left(\left.M\right|_{E_{i}}\right)=2, i=1, \ldots, 4$. It is easy to check that if we set $a_{i}=1$ for each i then $E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$ is a good 4-partition and thus $P\left(U_{8,3}\right)=P\left(M_{1}\right) \cup P\left(M_{2}\right) \cup P\left(M_{3}\right) \cup P\left(M_{4}\right)$ is a decomposition where

$$
\begin{aligned}
& \mathcal{B}\left(M_{1}\right)=\left\{B \in \mathcal{B}\left(U_{8,4}\right):|B \cap\{1,2\}| \leq 1\right\} \\
& \mathcal{B}\left(M_{2}\right)=\left\{B \in \mathcal{B}\left(U_{8,4}\right):|B \cap\{1,2\}| \geq 1,|B \cap\{3,4\}| \leq 1\right\} \\
& \mathcal{B}\left(M_{3}\right)=\left\{B \in \mathcal{B}\left(U_{8,4}\right):|B \cap\{1,2\}| \geq 1,|B \cap\{3,4\}| \geq 1,|B \cap\{5,6\}| \leq 1\right\} \\
& \mathcal{B}\left(M_{4}\right)=\left\{B \in \mathcal{B}\left(U_{8,4}\right):|B \cap\{1,2\}| \geq 1,|B \cap\{3,4\}| \geq 1,|B \cap\{5,6\}| \geq 1\right\} .
\end{aligned}
$$

2.2. Relaxations. Let $M=(E, \mathcal{B})$ be a matroid of rank r and let $X \subset E$ be both a circuit and a hyperplane of M (recall that a hyperplane is a flat, that is $X=\operatorname{cl}(X)=$ $\{e \in E \mid r(X \cup e)=r(X)\}$, of rank $r-1$). It is known [12, Proposition 1.5.13] that $\mathcal{B}\left(M^{\prime}\right)=\mathcal{B}(M) \cup\{X\}$ is the collection of bases of a matroid M^{\prime} (called, relaxation of $\left.M\right)$.

Corollary 2. Let $M=(E, \mathcal{B})$ be a matroid and let $E=\bigcup_{i=1}^{t} E_{i}$ be a good t-partition. Then, $P\left(M^{\prime}\right)$ has a sequence of t hyperplane splits where M^{\prime} is a relaxation of M.

Proof. It can be checked that the desired sequence of t hyperplane splits of $P\left(M^{\prime}\right)$ can be obtained by using the same given good t partition $E=\bigcup_{i=1}^{t} E_{i}$.

We notice that the above result is not the only way to define a sequence of hyperplane splits for relaxations. Indeed it is proved in [3] that binary matroids (and thus graphic matroids) do not have hyperplane splits, however there is a sequence of hyperplane splits for relaxations of graphic matroids as it is shown in Example 3 below.

3. Rank-three matroids: geometric point of view

We recall that a matroid of rank three on n elements can be represented geometrically by placing n points on the plane such that if three elements form a circuit, then the corresponding points are collinear (in such diagram the lines need not be straight). Then the bases of M are all subsets of points of cardinal 3 which are not collinear in this diagram. Conversely, any diagram of points and lines in the plane in which a pair of lines meet in at most one point represents a unique matroid whose bases are those 3 -subsets of points which are not collinear in this diagram.

The combinatorial conditions $(P 1)$ and $(P 2)$ can be translated into geometric conditions when M is of rank three. The latter is given by the following two corollaries.

Corollary 3. Let M be a matroid of rank 3 on E and let $E=E_{1} \cup E_{2}$ be a partition of the points of the geometric representation of M such that

1) $r\left(\left.M\right|_{E_{1}}\right) \geq 2$ and $r\left(\left.M\right|_{E_{2}}\right)=3$;
2) for each line l of M, if $\left|l \cap E_{1}\right| \neq \emptyset$, then $\left|l \cap E_{2}\right| \leq 1$.

Then, $E=E_{1} \cup E_{2}$ is a 2-good partition.
Proof. (P2)(a) can be easily checked with $a_{1}=1$ and $a_{2}=2$.
Example 2. Let M be the rank-3 matroid arising from the configuration of points given in Figure 1. It can be easily checked that $E_{1}=\{1,2\}$ and $E_{2}=\{3,4,5,6\}$ verify the conditions of Corollary 3. Thus, $E_{1} \cup E_{2}$ is a 2-good partition.

Corollary 4. Let M be a matroid of rank 3 on E and let $E=E_{1} \cup E_{2} \cup E_{3}$ be a partition of the points of the geometric representation of M such that

1) $r\left(\left.M\right|_{E_{i}}\right) \geq 2$ for each $i=1,2,3$,
2) for each line l with at least 3 points of M,
a) if $\left|l \cap E_{1}\right| \neq \emptyset$ then $\left|l \cap\left(E_{2} \cup E_{3}\right)\right| \leq 1$,
b) if $\left|l \cap E_{3}\right| \neq \emptyset$ then $\left|l \cap\left(E_{1} \cup E_{2}\right)\right| \leq 1$.

Then, $E=E_{1} \cup E_{2} \cup E_{3}$ is a 3-good partition.
Proof. (P2) can be easily checked with $a_{1}=a_{2}=a_{3}=1$.

Figure 1. Set of points in the plane

Example 3. Let W^{3} be the 3 -whirl on $E=\{1, \ldots, 6\}$ shown in Figure 2. W^{3} is the example given by Billera et al. [2] that we mentioned by the end of the introduction. W^{3} is a relaxation of $M\left(K_{4}\right)$ (by relaxing circuit $\{2,4,6\}$) and it is not graphic.

Figure 2. Euclidean representation of W^{3}

It can be checked that $E_{1}=\{1,6\}, E_{2}=\{2,5\}$, and $E_{3}=\{1,4\}$ verify the conditions of Corollary 4. Thus, $E_{1} \cup E_{2} \cup E_{3}$ is a good 3-partition.

We finally notice that given the 2 -good partition $E_{1} \cup E_{2}$ of the matroid M in Example 2, we can apply a hyperplane split to the matroid $\left.M\right|_{E_{2}}$ induced by the set of points in $E_{2}=\{3,4,5,6\}$. Indeed, it can be checked that $E_{2}^{1}=\{3,4\}$ and $E_{2}^{2}=\{5,6\}$ verify conditions in Corollary 3 and thus it is a good 2-partition of $\left.M\right|_{E_{2}}$. Moreover, it can be checked that $E_{1}=\{1,2\}, E_{2}^{1}=\{3,4\}$, and $E_{2}^{2}=\{5,6\}$ verify the conditions of Corollary 4. and thus $E_{1} \cup E_{2} \cup E_{3}$ is a good 3-partition for M.

4. Direct sum

Let $M_{1}=\left(E_{1}, \mathcal{B}\right)$ and $M_{2}=\left(E_{2}, \mathcal{B}\right)$ be matroids of rank r_{1} and r_{2} respectively where $E_{1} \cap E_{2}=\emptyset$. The direct sum, denoted by $M_{1} \oplus M_{2}$, of matroids M_{1} and M_{2} has as ground set the disjoint union $E\left(M_{1} \oplus M_{2}\right)=E\left(M_{1}\right) \cup E\left(M_{2}\right)$ and as set of bases $\mathcal{B}\left(M_{1} \oplus M_{2}\right)=$ $\left\{B_{1} \cup B_{2} \mid B_{1} \in \mathcal{B}\left(M_{1}\right), B_{2} \in \mathcal{B}\left(M_{2}\right)\right\}$. Further, the rank of $M_{1} \oplus M_{2}$ is $r_{1}+r_{2}$.

In [3], we proved the following result.
Theorem 3. [3] Let $M_{1}=\left(E_{1}, \mathcal{B}\right)$ and $M_{2}=\left(E_{2}, \mathcal{B}\right)$ be matroids of rank r_{1} and r_{2} respectively where $E_{1} \cap E_{2}=\emptyset$. Then, $P\left(M_{1} \oplus M_{2}\right)$ has a hyperplane split if and only if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ has a hyperplane split.

Our main result in this section is the following.
Theorem 4. Let $M_{1}=\left(E_{1}, \mathcal{B}\right)$ and $M_{2}=\left(E_{2}, \mathcal{B}\right)$ be matroids of rank r_{1} and r_{2} respectively where $E_{1} \cap E_{2}=\emptyset$. Then, $P\left(M_{1} \oplus M_{2}\right)$ admits a sequence of hyperplane splits if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ admits a sequence of hyperplane splits.

Proof. Without loss of generality, we suppose that $P\left(M_{1}\right)$ has a sequence of hyperplane splits yielding to the decomposition $P\left(M_{1}\right)=\bigcup_{i=1}^{t} P\left(N_{i}\right)$. For each $i=1, \ldots, t$, we let

$$
L_{i}=\left\{X \cup Y: X \in \mathcal{B}\left(N_{i}\right), Y \in \mathcal{B}\left(M_{2}\right)\right\}
$$

Since N_{i} and M_{2} are matroids, L_{i} is also the matroid given by $N_{i} \oplus M_{2}$.
Now for all $1 \leq i, j \leq t, i \neq j$ we have

$$
L_{i} \cap L_{j}=\left\{X \cup Y: X \in \mathcal{B}\left(N_{i}\right) \cap \mathcal{B}\left(N_{j}\right), Y \in \mathcal{B}\left(M_{2}\right)\right\}
$$

Since $\mathcal{B}\left(N_{i}\right) \cap \mathcal{B}\left(N_{j}\right)=\mathcal{B}\left(N_{i} \cap N_{j}\right)$ and M_{2} are matroids, $L_{i} \cap L_{j}$ is also a matroid given by $\left(N_{i} \cap N_{j}\right) \oplus M_{2}$. Moreover, $P\left(M_{1}\right)=\bigcup_{i=1}^{t} P\left(N_{i}\right)$ so $\mathcal{B}\left(M_{1}\right)=\bigcup_{i=1}^{t} \mathcal{B}\left(N_{i}\right)$ and thus

$$
\begin{aligned}
\bigcup_{i=1}^{t} L_{i} & =\left\{X \cup Y: X \in \bigcup_{i=1}^{t} \mathcal{B}\left(N_{i}\right), Y \in \mathcal{B}\left(M_{2}\right)\right\} \\
& =\left\{X \cup Y: X \in \mathcal{B}\left(M_{1}\right), Y \in \mathcal{B}\left(M_{2}\right)\right\} \\
& =\mathcal{B}\left(M_{1} \oplus M_{2}\right)
\end{aligned}
$$

We now show that this matroid base decomposition induces a t-decomposition of $P\left(M_{1} \oplus\right.$ M_{2}). Indeed, we claim that $P\left(M_{1} \oplus M_{2}\right)=\bigcup_{i=1}^{t} P\left(L_{i}\right)$. For, we proceed by induction on t. The case $t=2$ is true since, in the proof of Theorem 3, was showed that $P\left(M_{1} \oplus M_{2}\right)=$ $P\left(L_{1}\right) \cup P\left(L_{2}\right)$. We suppose that the result is true for t and let

$$
\begin{equation*}
P\left(M_{1}\right)=\bigcup_{i=1}^{t-1} P\left(N_{i}\right) \cup P\left(N_{t}^{1}\right) \cup P\left(N_{t}^{2}\right) \tag{8}
\end{equation*}
$$

where $N_{i}, i=1, \ldots t-1, N_{t}^{1}, N_{t}^{2}$ are matroids. Moreover, we suppose that throughout the sequence of hyperplane splits of $P\left(M_{1}\right)$ we had $P\left(M_{1}\right)=\bigcup_{i=1}^{t} P\left(N_{i}\right)$ and that the last hyperplane split was applied to $P\left(N_{t}\right)$ (obtaining $P\left(N_{t}\right)=P\left(N_{t}^{1}\right) \cup P\left(N_{t}^{2}\right)$) and yielding to equation (8).

Now, by the inductive hypothesis, the decomposition $P\left(M_{1}\right)=\bigcup_{i=1}^{t} P\left(N_{i}\right)$ implies the decomposition $P\left(M_{1} \oplus M_{2}\right)=\bigcup_{i=1}^{t} P\left(L_{i}\right)$. But, by the case $t=2, P\left(N_{t}\right)=P\left(N_{t}^{1}\right) \cup P\left(N_{t}^{2}\right)$ implying the decomposition $P\left(N_{t} \oplus M_{2}\right)=P\left(L_{t}^{1}\right) \cup P\left(L_{t}^{2}\right)$ where

$$
L_{t}^{1}=\left\{X \cup Y: X \in \mathcal{B}\left(N_{t}^{1}\right), Y \in \mathcal{B}\left(M_{2}\right)\right\} \text { and } L_{t}^{2}=\left\{X \cup Y: X \in \mathcal{B}\left(N_{t}^{2}\right), Y \in \mathcal{B}\left(M_{2}\right)\right\}
$$

Therefore,

$$
P\left(M_{1} \oplus M_{2}\right)=\bigcup_{i=1}^{t} P\left(L_{i}\right)=\bigcup_{i=1}^{t-1} P\left(L_{i}\right) \cup P\left(L_{t}^{1}\right) \cup P\left(L_{t}^{2}\right)
$$

Acknowledgement

We would like to thank the referee for many valuable remarks.

References

[1] F. Ardila, A. Fink, F. Rincon, Valuations for matroid polytope subdivisions, Canad. J. Math. 62 (2010), 1228-1245.
[2] L.J. Billera, N. Jia, V. Reiner, A quasisymmetric function for matroids, European J. Combin. 30 (2009) 1727-1757.
[3] V. Chatelain, J.L. Ramírez Alfonsín, Matroid base polytope decomposition, Adv. Appl. Math. 47(2011), 158-172.
[4] H. Derksen, Symmetric and quasi-symmetric functions associated to polymatroids, J. Algebraic Combin. 30 (2010), 29-33 pp.
[5] I.M. Gel'fand, V.V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Russian Math. Surveys 42 (1987) 133-168.
[6] P. Hacking, S. Keel, J. Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom. 15 (2006) 657-680.
[7] M. Kapranov, Chow quotients of Grassmannians I, Soviet Math. 16 (1993) 29-110.
[8] S. Keel, J. Tevelev, Chow quotients of Grassmannians II, ArXiv:math/0401159 (2004).
[9] L. Lafforgue, Pavages des simplexes, schémas de graphes recollés et compactification des $\mathrm{PGL}_{r}^{n+1} / \mathrm{PGL}_{r}$, Invent. Math. 136 (1999) 233-271.
[10] L. Lafforgue, Chirurgie des grassmanniennes, CRM Monograph Series 19 American Mathematical Society, Providence, RI 2003.
[11] K.W. Luoto, A matroid-friendly basis for the quasisymmetric functions, J. Combin. Theory Ser. A 115 (2008) 777-798.
[12] J.G. Oxley, Matroid theory, Oxford University Press, New York, 1992.
[13] D.E. Speyer, Tropical linear spaces, SIAM J. Disc. Math. 22 (2008) 1527-1558.
[14] D.E. Speyer, A matroid invariant via K-theory of the Grassmannian, Adv. Math., 221 (2009) 882-913.
[15] D.J.A. Welsh, Matroid Theory, Academic Press, London-New York, 1976.

Institut Galilée, Université Villetaneuse (Paris XIII)
E-mail address: vanessa_chatelain@hotmail.fr

Institut De Mathématiques et de Modélisation de Montpellier, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier
E-mail address: jramirez@math.univ-montp2.fr
$U R L:$ http://www.math.univ-montp2.fr/~ramirez/

[^0]: The second author was supported by the ANR TEOMATRO grant ANR-10-BLAN 0207.

