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A deeper understanding of parameters affecting Magic Angle Spinning Dynamic Nuclear Polar-8

ization (MAS-DNP), an emerging nuclear magnetic resonance hyperpolarization method, is crucial9

for the development of new polarizing agents and the successful implementation of the technique at10

higher magnetic fields (> 10 T). Such progress is currently impeded by computational limitation11

which prevents the simulation of large spin ensembles (electron as well as nuclear spins) and to12

accurately describe the interplay between all the multiple key parameters at play.13

In this work, we present an alternative approach to existing Cross-Effect and Solid-Effect MAS-14

DNP codes that yields fast and accurate simulations. More specifically we describe the model, the15

associated Liouville-based formalism (Bloch-type derivation and/or Landau-Zener approximations)16

and the linear time algorithm that allows computing MAS-DNP mechanisms with unprecedented17

time savings. As a result, one can easily scan through multiple parameters and disentangle their18

mutual influences. In addition, the simulation code is able to handle multiple electrons and protons,19

which allows probing the effect of (hyper)polarizing agents concentration, as well as fully revealing20

the interplay between the polarizing agent structure and the hyperfine couplings, nuclear dipolar21

couplings, nuclear relaxation times, both in terms of depolarization effect, but also of polarization22

gain and buildup times.23

24

The combination of Dynamic Nuclear Polarization25

(DNP) and Magic Angle Spinning (MAS) is currently26

deeply impacting high-field solid-state Nuclear Mag-27

netic Resonance (NMR). Although DNP is not a recent28

phenomenon,[1, 2] the potential of the technique for29

high magnetic fields was only recently demonstrated30

thanks to the pioneering work carried out in the Grif-31

fin laboratory [3–6]. Following this effort and the intro-32

duction of commercial systems [7], DNP experiments33

are currently carried out in an increasing number of34

laboratories, continuously expanding the scope of the35

technique.[8–13] The interest stems from the huge gain36

in NMR sensitivity obtainable though DNP, where the37

large intrinsic polarization of electrons is transferred38

to nuclei, using appropriate microwave (µw) irradia-39

tion. So far, most DNP experiments are conducted40

successfully at 10-20 T at around 100 K using high41

power continuous wave (CW) µw sources often com-42

bined with the use of binitroxide radicals as sources43

of free electrons, as introduced in the Griffin group44

[3, 14, 15]. Current on-going effort include improved45

polarizing agents and optimized sample preparation46

protocols [16–33], while challenging instrumental de-47

velopments are also under progress in several labora-48

tories, such as the design of more flexible high power49

µw sources, probe-heads with smaller diameter sample50

holders (rotors) and optimized µw coupling, the access51

to helium sample spinning and ultra-low temperature52

MAS-DNP experiments [34–42].53

In addition, the field of MAS-DNP has also strongly54

benefited from recent improvements in theoretical un-55

derstanding. Several groups have contributed from the56

experimental side by reporting DNP studies related to57

the effect of polarizing agents’ concentration, sample58

spinning frequency, temperature, partial deuteration,59

electron spin relaxation times, and radical structure60

[7, 21, 22, 24, 26, 31, 43–49]. Despite these attempts to61

experimentally rationalize the performance of nitroxide62

biradicals, a clear picture has still not emerged, mostly63

because the DNP enhancement factor (defined as the64

ratio of signal with and without µw, εon/off = Son/Soff)65

can lead to a misleading picture of the DNP perfor-66

mance while overestimating the true DNP gain signif-67

icantly [50].68

Previously, the most efficient and commonly used69

DNP mechanism, the Cross Effect (CE) was crudely70

described using arguments based on static (i.e. with-71

out sample spinning) experiments, which fails to pro-72

vide valuable insights such as the dependency with re-73

spect to the magnetic field, the polarizing agent geom-74

etry, the µw power, electron/nuclei relaxation times,75

etc. Things have improved with the recent theoretical76

developments by Tycko and Thurber, as well as Vega et77

al. [50–54]. These contributions have not only brought78

valuable insights into the DNP mechanism, but also il-79

lustrated the complexity of high magnetic field exper-80

iments and proven the necessity to rely on numerical81

simulations to understand precisely the mechanisms at82

play in MAS-DNP experiments. The mechanism has83

been understood through numerical simulation tools84

able to describe a series of discrete events that occur85

periodically within one rotor period (rotor events) [50–86
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53]. In the case of binitroxides, modeled by 2 electrons87

and a nucleus, four types of rotor events need to be88

considered:89

• the µw rotor events, that induce a change in the90

electron polarization,91

• the electron Dipolar - J (exchange) rotor events92

that tend to swap the electron polarization,93

• the Cross-Effect rotor event (CE) that exchanges94

part of the electron polarization difference to the95

nuclear polarization of the hyperfine coupled nu-96

clei,97

• and the Solid-Effect rotor event (SE), that ex-98

changes part of the electron polarization to the99

nuclear polarization of the hyperfine coupled nu-100

clei.101

The nuclear polarization under MAS-DNP conditions102

is typically computed through the use of advanced103

quantum mechanical simulations able to account for104

relaxation. More specifically the evolution operator105

was computed either in the Hilbert space by Thurber106

and Tycko [51] or in the Liouville space in the work107

of Mentink-Vigier et al. [50, 52, 54] and Mance et al.108

[55]. These computations are largely in agreement and109

were successfully used to simulate hyperpolarization as110

well as depolarization effects for various systems and111

experimental conditions, [50–55] and clearly highlight112

the complexity of this multi-parameter problem. The113

order and duration of the rotor events are directly re-114

lated to the structure of the polarizing agent but also to115

the position and strength of the µw irradiation. For a116

given crystallite orientation, each rotor event type can117

typically occur 0, 2 or 4 per rotor period. When the118

nuclear polarization has reached a steady-state value,119

the electrons and nuclei still see periodic changes in120

their polarization due to the rotor events and the elec-121

tron and nuclear relaxation (T e1 , Tn1 ). Ultimately it122

is important to note that the nuclear polarization can123

only be equal to or lower than the maximum electron124

polarization difference observed during the course of a125

rotor period at steady state [50, 54].126

Based on these initial results, we now seek to further127

develop this computational approach towards its usage128

as a predictive tool. Challenges along this direction129

are numerous but offer the perspectives to perform in130

silico rational design of polarizing agents. This consti-131

tutes an important research direction since polarizing132

agent design has so far relied on empirical approach.133

The main hindrance in this approach is associated with134

the duration of MAS-DNP simulations, especially for135

large spin systems (> 4 spins) and the number of in-136

put parameters that needs to be accounted for such as137

the spin relaxation times, the biradical geometry, the138

µw power, the nuclear Larmor frequency, etc. So far139

full quantum calculations (Hilbert- or Liouville-based)140

have been limited to 3 or 4 spins because extension to141

larger spin system requires the introduction of approxi-142

mations. For instance, size restrictions have been used143

and developed by Karbanov et al. in the static case144

[56, 57] while Thurber and Tycko [53] have recently re-145

ported a MAS-DNP simulation code able to compute146

the population changes of a 1000 × 3 spins system (2147

electrons and 1 nucleus) randomly dispersed in a box148

using the Landau-Zener (LZ) approximation. [58] This149

last model allows describing the effect of biradical con-150

centration and was used to simulate a depolarization151

mechanism in the absence of µw irradiation.152

In this work we present another approach based on153

Liouville-type calculations that yields fast and accu-154

rate simulations compared to exact Liouville calcula-155

tions. Since the goal is to build a tool that can possibly156

be used in a quasi-predictive fashion, the code needs:157

• to be as fast as possible by building a periodic158

propagator,159

• to be able to increase both the number of electron160

and nuclear spins while keeping a moderate sized161

problem (linear scaling),162

• to be accurate in predicting the electron polar-163

ization difference at steady-state, i.e. account164

for electron T e1 and T e2 relaxation during rotor165

events.166

The code presented is fast and flexible (as detailed be-167

low) and constitutes the first step towards predictive168

MAS-DNP simulations. For the 3 spins case (2 elec-169

trons and 1 nucleus), a 30-point CE field sweep profile170

can be computed in only 20 to 30 minutes (on a desktop171

computer) while keeping an excellent agreement with172

the previous code (based on full-Liouville calculations173

which take 6 - 8 hours). This represents a significant174

improvement in time-savings, about a factor 15 for a175

3-spin system, which allows checking efficiently the ef-176

fects of changing different parameters, such as the po-177

larizing agent geometry, the external magnetic field B0,178

the MAS rotation frequency, the relaxation rates and179

the spin-spin interaction strengths. In this model, each180

type of rotor event is treated separately using a simpli-181

fied subspace (spanned by reduced Liouvillian opera-182

tors). The relevant spin dynamics during a rotor event183

are computed either by relying on Bloch-type equa-184

tions accounting for electronic and nuclear relaxation185

or using the LZ formula. The former are particularly186

important for rotor events that act on timescales of the187

order of the relaxation times, which therefore cannot188

be ignored. As demonstrated in the following, each189

rotor event is thus described with a set of first-order190

linear equations. The overall evolution is then com-191

puted assuming that every rotor event is independent192

and that the superposition principle can be applied.193
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Importantly, we also show that the number of elec-194

trons and nuclei can easily be increased so as to account195

for multi electron effects as well as nuclear spin diffu-196

sion. This new feature can be used to compute DNP197

enhancement factors and polarization build-up times198

for the various protons present in large spin assemblies199

of tens to thousands of spins. This provides great in-200

sight into many key parameters, such as the electron201

concentration, the magnetic field dependency, polar-202

izing agent geometries, and nuclear relaxation times203

of bulk versus local protons, explaining physically ob-204

served phenomena.205

I. MATERIALS AND METHODS206

The simulation codes have been written in Mat-207

lab (MATLAB and Statistics Toolbox Release 2013a,208

The MathWorks, Inc., Natick, Massachusetts, United209

States.) and optimized to minimize computational210

time. In particular we made use of the Suite Sparse211

Matlab toolbox when considering large spin system212

[59]. The simulations have been run on a Dell Pre-213

cision T5500, using 2 Intel Xeon(R) CPU X5650 @214

2.67GHz (24 logical cores), using Ubuntu 15.10 as the215

OS.216

Except when specified otherwise we performed cal-217

culations assuming a temperature of 100 K, either on a218

biradical geometry close to bTbK [60] using [gz, gy, gx]219

= [2.0024, 2.0063, 2.0097] for the g-tensor values, or220

close to TOTAPOL using [gz, gy, gx] = [2.0094, 2.006,221

2.0017] as used in previous work [52, 54, 61]. The ni-222

trogen hyperfine couplings, when included, had the fol-223

lowing principal values [98, 16, 17] MHz expressed in224

the principal axis system (PAS) of the closeby electron225

g-tensor.226

As introduced in Mentink-Vigier et al. [50, 54], we227

define the polarization gain εB as the ratio between the228

nuclear polarization with µw (µw) irradiation and the229

nuclear Boltzmann Polarization230

εB =
Pn(µw on)

Pn(Boltzmann)

the nuclear depolarization factor εDepo as the ratio be-231

tween the nuclear polarization without µw irradiation232

and the nuclear Boltzmann Polarization233

εDepo =
Pn(µw off)

Pn(Boltzmann)

and the classical “DNP enhancement factor” εOn/Off as234

the ratio of nuclear polarization with and without µw235

irradiation236

εOn/Off =
Pn(µw on)

Pn(µw off)

One should note that εOn/Off does not represent the237

true polarization gain induced by biradicals [53, 54],238

which is given by εB .239

Finally we define the DNP build-up time TB as the240

time-constant obtained by fitting the nuclear polariza-241

tion build-up curves with a single exponential function.242

II. FAST SIMULATION CODE:243

SUPERPOSITION OF REDUCED244

LIOUVILLIAN SUBSPACE SPIN DYNAMICS245

High magnetic field MAS-DNP simulations can be246

efficiently computed in the µw rotating frame as de-247

scribed in refs [50–55]. The corresponding Hamilto-248

nian for Ne electrons (with indices i, i′ = J1, NeK) and249

N nuclei (with indices n, n′ = J1, NK) can be written:250

Ĥ(t) = Ĥ0(t) + Ĥµw

Ĥ0(t) = ĤZ(t) + ĤHF(t) + ĤJ + ĤDip(t) + Ĥd(t),
(1)

with

ĤZ(t) =
∑
i

(gi(t)βeB0 − ωµw)Ŝi,z −
∑
n

ωnÎn,z

ĤHF(t) =
∑
i,n

Azi,n(t)Ŝi,z În,z +
1

2
(A+

i,n(t)Ŝi,z Î
+
n +A−i,n(t)Ŝi,z Î

−
n )

ĤJ =
∑
i<i′

−2Ji,i′(Ŝi,zŜi′,z +
1

2
(Ŝ+
i Ŝ
−
i′ + Ŝ−i Ŝ

+
i′ ))

ĤDip(t) =
∑
i<i′

Di,i′(t)(2Ŝi,zŜi′,z −
1

2
(Ŝ+
i Ŝ
−
i′ + Ŝ−i Ŝ

+
i′ ))

Ĥd(t) =
∑
n<n′

dn,n′(t)(2În,z În′,z −
1

2
(Î+
n Î
−
n′ + Î−n Î

+
n′))

Ĥµw = ω1

∑
i

Ŝi,x. (2)

where ĤZ(t) stands for the Zeeman interaction of the251

spins, ĤHF(t) for the secular and pseudo-secular part252

of the hyperfine coupling between the electrons and253

the nuclei, ĤJ for the exchange interaction between254

two electrons, ĤDip(t) for both the secular and flip-255

flop parts of the electron-electron dipolar interactions,256

Ĥd(t) for the homonuclear nuclear dipolar interaction,257

and Ĥµw for the µw irradiation. Using the notation258

ωi = giβeB0, we can describe the 4 rotor events in-259

duced by the sample spinning [51, 52, 54]:260

• the µw rotor events, active when ωi − ωµw = 0,261

which induce changes in the electron polarization262

through the effect of Ĥµw,263

• the electron or nuclear dipolar rotor events, ac-264

tive when ωi/n − ωi′/n′ = 0, which induce265
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exchanges of electron or nuclear polarizations266

through the action of the flip-flop of the dipolar267

coupling and exchange interaction when present,268

• the CE rotor events, active when ωi−ωi′ ≈ ±ωn,269

which induce a exchange between the electron270

polarization difference and the proton polariza-271

tion, through the combined effect of the flip-flop272

dipolar and pseudo-secular hyperfine couplings.273

• the SE rotor events, active when ωi−ωµw ≈ ±ωn,274

which induce a transfer of polarization between275

the electron and the proton, through the com-276

bined effect of the pseudo-secular hyperfine in-277

teraction and µw irradiation.278

For a simplified three spin system ea - eb - n, equation279

2 can be rewritten as:280

ĤZ(t) = (ωa(t)− ωµw)Ŝa,z + (ωb(t)− ωµw)Ŝb,z

−ωnÎn,z
ĤHF(t) = Az(t)Ŝa,z În,z,

+
1

2
(A+(t)Ŝa,z Î

+
n +A−(t)Ŝa,z Î

−
n )

Ĥµw = ω1(Ŝx,a + Ŝx,b)

ĤJ = −2Ja,b(Ŝa,zŜb,z +
1

2
(Ŝ+
a Ŝ
−
b + Ŝ−a Ŝ

+
b ))

ĤDip(t) = Da,b(t)(2Ŝa,zŜb,z −
1

2
(Ŝ+
a Ŝ
−
b + Ŝ−a Ŝ

+
b ))(3)

Note that in this simplified case, the nucleus is only281

coupled to electron a.282

A schematic illustration of the rotor events is pro-283

vided in figure 1. We can observe the evolution of the284

electron and proton polarizations for the three main285

rotor events (µw, dipolar and CE). The effect of the286

µw and electron dipolar rotor events can be seen on287

the electron polarization curves whereas the effect of288

the CE rotor event appears too small to be seen on289

that scale. On the other hand the presence of CE ro-290

tor events is observed on the proton polarization curve.291

Note that the SE rotor events can not be observed in292

this simulation.293

As described in previous work, the calculation of the294

spin evolution involves solving the time dependent (due295

to the sample spinning) master equation, including all296

necessary interactions and relaxation processes. This297

requires the computation of the propagator superoper-298

ator of a rotor period, using small stepwise integration299

and calculating this propagator superoperator ̂̂Uκ for300

every (κth) rotor-step[52, 54]. For the three-spin sys-301

tem of two electrons and one nucleus the spin density302

matrix, representing the state of the system at any303

time ρ̂(t) has a dimension of 23 × 23 = 64 and is thus304

defined by 64 independent parameters. Thus in ear-305

lier work we presented the Liouville-von Neumann rate306

FIG. 1. Evolution of the electron and nuclear polarizations
during a rotor period at quasi periodic steady-state for a
single crystallite orientation. The black, blue (dashed) and
red lines correspond to electron a, electron b and the nu-
cleus respectively. Note that the nuclear polarization dif-
ference with respect to Boltzmann is normalized to observe
the CE rotor events. The rotor events are labeled with
different colors, grey corresponds to a µw rotor event on
electron a, blue to a µw rotor event on electron b, green
to an electron dipolar rotor event and red to a CE rotor
event. On the right hand-side, the corresponding opera-
tors involved in the rotor events are displayed.

equation as a Liouville superoperator acting in the vec-307

tor composed of all elements of ρ̂(t). For the present308

study we replace this superoperator by a Liouville op-309

erator acting on the vector σ(t) built of the coefficients310

s(m)(t) (m ∈ J1, 64K) of a set of 64 independent opera-311

tors Ŝ(m) composing the spin density operator:312

ρ̂(t) = s(1)(t)Ê +

64∑
m=2

2s(m)(t)Ŝ(m) (4)

where Ê is the identity operator. In this expansion we313

choose operators with Tr((Ŝ(m))2) = 1/2 and there-314

fore the elements of σ(t) are the expectation values315

σ(m) = Tr(ρ̂Ŝ(m)) = 1/2. The large dimension, and316

the time dependence of the evolution operator are the317

main cause of the long time necessary to solve the mas-318

ter equation. Typically, using a full Liouville calcula-319

tion, and a 3 spin system, a powder-averaged 30 points320

field-sweep was simulated in 6 to 8 hours. Therefore321

larger spin systems are not currently accessible: a 5322

spin simulation takes about 1 day per crystallite ori-323

entation. The duration of such simulations prohibits324

in-depth analysis (that would require scanning through325

multiple parameters) or the extension to much larger326

and therefore realistic spin systems.327

In this work, we achieve a drastic reduction of the328

vector size σ to shorten significantly the computational329

time. To that purpose, we assume that the spin dy-330
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namics are well described by a series of successive rotor331

events, with each corresponding to a two-level anti-332

crossing problem,along with spin-lattice relaxation to-333

wards Boltzmann equilibrium. As discussed in the fol-334

lowing section, each rotor event is treated/computed335

using either Bloch-type derivation in a reduced Liou-336

villian subspace for which relaxation can be simply in-337

troduced or with the LZ formalism (accounting for the338

variation in polarization operator). In between rotors-339

events, the spin dynamics are well described by the340

secular part of the full Hamiltonian (see Eq. 3) and341

correspond to a return to Boltzmann equilibrium. In342

the following, section A describes the general approach343

to treat and approximate the spin dynamics in between344

rotor events and during each individual rotor event.345

Section B and C describe the computation of a propa-346

gator superoperator over a rotor period when all rotor347

events are treated with the LZ formalism or using a348

combination of the LZ and Bloch-type formalisms, re-349

spectively. Finally section D describes the extension to350

large spin assemblies (multiple electrons and protons).351

A. Independent diabatic rotor events - The352

Bloch-type approach and rotor synchronized353

propagation354

Every rotor event previously described involves only355

two energy levels. Therefore in the following we as-356

sume that rotor events, which correspond to diabatic357

passages, are well separated and independent. For a358

given rotor event involving the two levels |1〉 and |2〉,359

one can derive an effective Hamiltonian of the form:360

Ĥ12(t) = ∆ω12(t)Ŝ12
z + ξ12

x (t)Ŝ12
x + ξ12

y (t)Ŝ12
y ,

=
1

2

(
∆ω12(t) ξ12(t)
ξ∗12(t) −∆ω12(t)

)
(5)

Where ξ12(t) = (1/2)(ξ12
x − iξ12

y ) and Ŝ12
x , Ŝ

12
y , Ŝ

12
z are361

the fictitious spin-1/2 operators corresponding to the362

transition |1〉 − |2〉. ∆ω12 and ξ12 are the time de-363

pendent energy difference between the two states |1〉364

and |2〉 and the magnitude of matrix element con-365

necting them, respectively. In the absence of relax-366

ation we can derive a Liouville superoperator oper-367

ating on the σ vector composed of the coefficients368

{s12
z (t), s12

y (t), s12
x (t)} of the spin density operator ex-369

pansion370

ρ̂(t) = s0(t)Ê +
∑

p=x,y,z

2s12
p (t)Ŝ(12

p (6)

resulting in the Liouville-von Neumann equation:371

dσ

dt
=
̂̂
L

1,2

H (t)σ (7)

with372

̂̂
L

1,2

H (t) =

 0 −ξ12
x (t) ξ12

y (t)
ξ12
x (t) 0 −∆ω12(t)
−ξ12

y (t) ∆ω12(t) 0

 (8)

which corresponds to homogeneous linear first-order373

differential equations (also known as the Bloch equa-374

tions) for which the density matrix can easily be com-375

puted. The relaxation can also be efficiently intro-376

duced while keeping a homogeneous set of equations377

[62, 63] by increasing the matrix dimension by one378

unit. In this case, the vector vectorσ is extended to379

{1, s12
z (t), s12

y (t), s12
x (t)} and the 4×4 Liouvillian takes380

the form of a homogeneous Bloch operator:381

̂̂
L

1,2

B (t) =


0 0 0 0

s1,2,eq
z /T1 −1/T1 −ξ12

x (t) ξ12
y (t)

0 ξ12
x (t) −1/T2 −∆ω12(t)

0 −ξ12
y (t) ∆ω12(t) −1/T2


(9)

from which the propagator of a short time inter-382

val [κδt, (κ+ 1)δt] can be obtained via ̂̂
U

1,2

B,κ =383

exp(
̂̂
L

12

B (κt)δt).384

Following this approach, the complete derivation for385

each type of rotor event can be obtained (see Support-386

ing Information). The full Liouvillian superoperator –387

accounting for all types of rotor events – can then be388

obtained by applying the superposition principle since389

the rotor events are assumed to be independent. In the390

end, the spin dynamics can be described by the evolu-391

tion of a σ vector with dimension 18 and thus by a 18392

× 18 Liouvillian superoperator. The elements of σ(t)393

in this case become the 18 prefactors of the operators394

{Ê, Ŝa,z, Ŝa,y, Ŝa,x, Ŝb,z, Ŝb,y, Ŝb,x, ŜDJ
ZQ,y, Ŝ

DJ
ZQ,x În,z,395

ŜCE+
y , ŜCE+

x , ŜCE−
y , ŜCE−

x ,ŜDQa
y , ŜDQa

x , ŜZQa
y , ŜZQa

x } ,396

(see Supporting Information for the derivation details).397

This constitute a drastic size reduction compared to398

64 x 64 in the full Liouville approach that results in399

massive time savings with minimal compromise on the400

accuracy (as demonstrated in the rest of the paper).401

As described previously,[52, 54] the rotor synchronized402

propagator is simply obtained by step integration over403

one rotor period:404

̂̂
U rotor =

Ns∏
κ=1

̂̂
Uκ (10)

where Ns stands for the number of integration points,405

and ̂̂Uκ = exp(
̂̂
Lκ × δt) with δt = 1/(Nsνr) and ̂̂Lκ =406 ̂̂

LB(κδt).407

Note that in previous MAS-DNP calculations, the408

relaxation times T1 and T2 were determined after diag-409

onalization of the Hamiltonian (without the µw term).410
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As a result the T1 and T2 relaxation values were not411

constant during sample rotation because of the strong412

state mixing that occurs during the D-J and CE ro-413

tor events. On the contrary, with the Bloch-type ap-414

proach presented in this work, we assume such relax-415

ation times to be constant in order to optimize the416

computational performance. Such an approximation417

can be justified by the fact that the duration of state418

mixing is shorter than the electron T2 in most cases419

and that the coherences created during the events de-420

cay after the mixing period. As shown below, this is421

further validated by the very good agreement with full422

Liouville calculations. More details can be found in423

the SI.424

Accounting for relaxation effects is especially impor-425

tant when probing cases with large ω1 and/or short426

electronic T2. This is notably also the case for strong427

µw irradiation strength, large dipolar and/or J inter-428

actions, radicals with narrow EPR lines such as Trityl,429

and short electron relaxation times. In all other cases,430

the Bloch type treatment can be simplified using the431

LZ approximation.432

B. Independent diabatic rotor events -433

Combining Landau-Zener approximation and434

rotor synchronized propagation435

Coming back to the two level system as defined by436

the Hamiltonian in eq. 5 we can follow Vitanov [64]437

and define a scaled dimensionless coupling parame-438

ter derived from ξ12(t), ω12(t×) = ξ12(t×)/β12 and439

β12 =

√(
d∆ω12(t)

dt

)
tx

and a time parameter τ12 = β12t.440

For rotor events where ω2
12 � 1, the LZ approxima-441

tion, which gives the variation of population across a442

resonant condition (diabatic passage), can be safely ap-443

plied and the transition jump time τjump [64] is about444

constant and equal to
√

2π, [64] which translates to a445

jump time of ∼ 1 µs or smaller, as compared to the446

rotor period which is typically about 10-1000 µs. In447

this case, assuming that levels |1〉 and |2〉 cross at time448

t×, the LZ formula, expressing the changes in popula-449

tions, can be formulated as the change in the coefficient450

of the the Ŝ1,2
z ) operator in the spin density operator451

expansion in eq. 6. This translates onto s1,2
z as:452

s1,2
z (t+×) =

[
1− 2ε12

]
s1,2
z (t×) (11)

with453

ε12 = 1− exp

[
−π|ξ12(t×)|2

2| d
dt∆ω12|t×

]
. (12)

Here t+× is the time just after the crossings. As the454

calculation are performed by step integration, we as-455

sume that t× and t+× are within a time step interval456

[tκ,tκ + δt]. When a crossing occurs we then assume457

that tκ ∼= t× and that the propagator for the time458

interval [tκ, tκ+1] can be written in the reduced basis459

{1, s12
z } as follows:460

̂̂
Uk = exp(

̂̂
R1δt)×

̂̂
ULZ,κ =

[
0 0

[s12,eq
z (1− e−δt/T1)] [e−δt/T1(1− 2ε12

κ )]

]
(13)

If there is no crossing during this interval, then ̂̂ULZ,κ461

is identity.462

On the three-spin system the rotor events usually463

occur at different time-steps, and in the following we464

assume that they can be successively treated. This465

allows to rely on a LZ formulae for each rotor event466

separately. For each type of event one can identify the467

two levels involved in the diabatic passage and define468

the coefficient s(m)
z of the z-operator Ŝ(m)

z that changes469

at this passage. As is shown in the SI, the changes in470

all of these coefficients can be transferred to changes471

in only the coefficients {sa,z, sb,z, sn,z} of the operators472

{Ŝz,a, Ŝz,b, Îz,n}. Adding relaxation, the Liouville su-473

peroperator representing all events while relying on LZ474

formula, operates on the vector {1, sa,z, sb,z, sn,z} and475

the propagator at step κ can be written in the basis Ê,476

Ŝz,a, Ŝz,b, Îz,n as follows:477

̂̂
Uκ = exp(

̂̂
R1(κδt)× δt) ̂̂Uµw

LZ,κ
̂̂
U
D-J

LZ,κ
̂̂
U
CE

LZ,κ
̂̂
U
SE

LZ,κ (14)

where ̂̂R1 represents the longitudinal relaxation dur-478

ing the time interval [tκ, tκ + δt] and its 4×4 evolution479

operator has the form:480

̂̂
R1 =

 1 0 0 0
seqa,z/T e

1,a
−1/T e

1,a 0 0
seqb,z/T e

1,b 0 −1/T e
1,b 0

seqn,z/Tn
1 0 0 −1/Tn

1

 .
The explicit forms of the Liouvillians in Eq. 14 are481

given in the SI. As above, the rotor synchronized prop-482

agator is obtained by step integration over one rotor483
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period:484

̂̂
U rotor =

Ns∏
κ=1

̂̂
Uκ (15)

The novelty here relies on the fact that the LZ for-485

mula are applied to the z-coefficients of the spin den-486

sity operator expansion and not on the populations487

of the spin system, which allows deriving a rotor-488

synchronized evolution operator while accounting for489

relaxation. As discussed in the previous section, the490

simulation code is much faster than the full Liouville491

calculation thanks to the reduced matrix dimensions.492

This LZ treatment is appropriate when the rotor events493

can be considered infinitely sharp. When the diabatic494

passages at the rotor events cannot be described ac-495

curately enough by the LZ formalism, because their496

corresponding ωRE (RE = DJ, CE, SE) parameters497

are greater than 1, then their Liouville superoperators498 ̂̂
U
RE

LZ,κ must be replaced by the Bloch-type of operators499 ̂̂
U
RE

B,κ.500

C. Combining Bloch-type and Landau-Zener501

formalism with rotor synchronized propagation502

For diabatic passage where ω2
12 � 1, it is impor-503

tant to stress that the LZ formula only gives a crude504

approximation of the variation in population. This is505

potentially the case for µw and electron dipolar rotor506

events when dealing with strong µw irradiation, large507

electron dipolar interactions, or radicals with narrow508

EPR lines. In such cases, the dimensionless jump time509

can be approximated by τjump = 2ω12, which trans-510

lates to a jump time greater than 1µs , [64] i.e. much511

larger than the integration step δt and potentially even512

larger than the corresponding electron/nuclei relax-513

ation times. In such cases the Bloch-type formalism, as514

described above, should be preferred since it allows ac-515

counting for longitudinal but also transverse relaxation516

effects during rotor events. Furthermore, for very short517

T e2 (∼ µs) values, possibly leading to off-resonance and518

saturation effects when ω1/2π and 1/T e2 are in the MHz519

range or larger, we must also turn to the Bloch ap-520

proach.521

On the other hand, the LZ treatment can be safely522

applied for SE and CE rotor events (as well as inter-523

molecular electron dipolar rotor events, see section D)524

for which ωCE/SE is always much smaller than 1 and525

the associated jump time is much smaller than the µs526

timescale. In addition Tn2 and T e2 are usually long527

enough to be safely neglected during the SE and CE528

crossings.529

Here we propose to combine both approaches: i.e.530

to treat SE and CE rotor events with the LZ approach531

and the µw and D-J rotor events using “Bloch-type”532

derivations. For a two electrons and one nucleus spin533

system, this can be done resulting in a Liouville super-534

operator of dimension 10 × 10 operating on the vec-535

tor {1, sz,a, sy,a, sx,a, sz,b, sy,b, sx,b,, sD−J
y,ZQ, s

D−J
z,ZQ, sz,n}536

where the LZ part of the CE and SE events has matrix537

elements only between {sz,a, sz,b, sz,n} and the Bloch538

part of the µw and D-J events has the form539

̂̂
LB(t) =



0 0 0 0 0 0 0 0 0 0
seqa,z(t)/T e

1 −1/T e
1 ω1 0 0 0 0 DJab(t) 0 0

0 −ω1 −1/T e
2 −∆ωa(t) 0 0 0 0 0 0

0 0 −∆ωa(t) −1/T e
2 0 0 0 0 0 0

seqb,z(t)/T e
1 0 0 0 −1/T e

1 ω1 0 −DJab(t) 0 0

0 0 0 0 −ω1 −1/T e
2 −∆ωb(t) 0 0 0

0 0 0 0 0 −∆ωb(t) −1/T e
2 0 0 0

0 −DJab(t)/2 0 0 DJab(t)/2 0 0 −1/T e
2,ZQ −∆ωD(t) 0

0 0 0 0 0 0 0 ∆ωD(t) 0 0
seqn,z/T

n
1 0 0 0 0 0 0 0 0 −1/Tn

1



where we defined a transverse relaxation time for the540

D-J rotor events T e2,ZQ = T e2 /2 and DJab = (Da,b +541

2Ja,b) (See SI for details). The time-step integration is542

still used to obtain the periodic propagator543

̂̂
U rotor =

Ns∏
κ=1

̂̂
Uκ (16)

and at each time-step κ, the propagator is the product544

between the Bloch and LZ part545 ̂̂
Uκ =

̂̂
UB,κ

̂̂
ULZ,κ (17)

where ̂̂UB,κ = exp(
̂̂
LB(κδt)×δt), and ̂̂UZL,κ =

̂̂
USE,κ×546 ̂̂

UCE,κ. This (Hybrid) approach ensures accurate sim-547

ulations even for short electron T e2 (i.e < 2 µs for ni-548

troxides at 9 T), for large ωRE interactions (e.g strong549

µw fields) or narrow EPR line widths (e.g in the case550

of Trityl).551
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D. MAS-DNP simulation of large spin ensembles552

(tens to thousands of spins): extension to multiple553

electrons and nuclei554

Here we extend our three-spin system by adding555

many electrons and nuclei with the aim to gener-556

ate more realistic simulations able to reproduce the557

electron concentration and nuclear spin diffusion ef-558

fects found in contemporary experiments. The pres-559

ence of intermolecular electron-electron dipolar inter-560

actions generates a MAS-induced spectral diffusion561

phenomenon which tends to equilibrate the polariza-562

tion throughout the EPR line,[53] and directly impacts563

the intramolecular polarization difference and thus the564

overall nuclear polarization enhancement. Moreover,565

the presence of additional nuclei induces new CE rotor566

events and tends to equilibrate the polarization among567

the nuclei. In order to meet both challenges, two mod-568

els and codes were developed and are described below.569

1. Increasing the number of electron spins: accounting570

for the electron concentration effect (the box model)571

We simulate N biradicals (each modeled by 2 elec-572

trons and 1 proton) randomly distributed in a box so573

as to meet a given biradical concentration. In this574

model, referred as the box model in this work, interac-575

tions between biradicals are restricted to nearest neigh-576

bors. This approximation allows keeping an efficient577

computational code while accounting for intermolec-578

ular dipolar rotor events, i.e. electron spectral spin579

diffusion, in a similar fashion as nuclear spin diffusion580

process [65, 66]. A similar approach was previously de-581

scribed by Thurber et al. [53]. During standard DNP582

experiments, the biradical concentration is ∼ 5 - 30583

mM which translates to ∼ 0.3 - 1.5 MHz and 0.45 - 2584

kHz of intermolecular dipolar and hyperfine couplings585

respectively. These additional interactions induce in-586

termolecular rotor events (dipolar, CE, SE) that can587

efficiently be computed using the LZ computational588

approach. More precisely, the code generates N copies589

of a 3 spin system (2 electrons and one nucleus) with a590

fixed configuration, which are randomly dispersed and591

oriented in a box.592

In order to allow the use of the LZ approach, some593

constraints must be applied:594

• Two identical crystallite orientations cannot co-595

exist within the same box (in order to avoid fre-596

quency degeneracy).597

• The intermolecular electron-electron distance598

(dmin) is always larger than 1.7 nm (∼ 10 MHz599

dipolar coupling) so that LZ can be applied ac-600

curately.601

• For simplicity, the effects on the spin system of602

the dipolar rotor events between electrons that603

are more than dmax = 6.4 nm (∼ 0.2 MHz dipolar604

coupling) are ignored.605

The calculation is then modified in order to account606

for intermolecular rotor events. For a given integration607

step, the propagator is now written:608

̂̂
Uκ =

̂̂
UB,κ ×

̂̂
ULZ,κ (18)

where where ̂̂UB,κ is obtained from the previous sec-609

tion, and ̂̂ULZ,κ =
̂̂
U

SE,inter

LZ,κ × ̂̂UCE,inter

LZ,κ × ̂̂USE,intra

LZ,κ ×610 ̂̂
U

CE,intra

LZ,κ . Thus the overall ̂̂Uκ has a dimension of611

10N×10N , scaling linearly with N .612

-5

0

-5

×10
-9

z 
(m

)

5

5

x (m)

×10
-9 0

y (m)

×10
-90

5 -5

FIG. 2. Example of a spin system used in the box model
corresponding here to a random distribution of N = 40
biradicals (15 mM concentration). In blue electron of
type “a”, yellow, electron of type “b”, orange, nucleus.
The black dotted lines correspond to the intermolecular
electron-electron dipolar couplings active during the simu-
lation.

Figure 2 shows a typical random distribution gener-613

ated by the code: 40 biradicals with 15 mM concentra-614

tion, with dmin = 1.7 nm and dmax = 6.4 nm. Note that615

the box model presented here excludes the possibility616

of having two coupled biradicals with exactly the same617

orientation since it would complicate exact simulations618

and that this possibility is highly improbable.619

Numerical stability of the output can be improved620

by increasing the number of biradicals and/or averag-621

ing the results over several randomly generated boxes.622

40 to 50 biradicals, averaged over 10 different boxes,623

is sufficient to achieve < 5 % stability. Typically, the624

computation of the propagator (eq. 18) for 40 biradi-625

cals takes about 100 to 170 seconds (on a single CPU626
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thread) for the full LZ or the Hybrid approach respec-627

tively. In the end, a 30 point field sweep profile can be628

computed in 20 minutes for quick tests (averaging over629

4 boxes) or in about 1 hour for an accurate computa-630

tion (averaging over 10 boxes).631

2. Including additional nuclei632

The introduction of additional (hyperfine coupled)633

nuclei leads to more CE/SE rotor events but also to634

a new type of event, the nuclear-nuclear dipolar rotor635

event,[51, 54] which occurs when two nuclei with dif-636

ferent hyperfine couplings have the same instantaneous637

resonant frequency. These rotor events allow hyperpo-638

larized nuclei close to the unpaired electrons to prop-639

agate their polarizations to more distant spins. This640

MAS-dependent effect has been accounted for theo-641

retically [see ref [54] for details] to predict a reduc-642

tion/removal of the so-called diffusion barrier present643

in the static case [67–71]. As in the electron spins’644

case, the nuclear dipolar rotor events induce a partial645

exchange of the nuclear polarization which can be accu-646

rately computed using the LZ derivation. Such a treat-647

ment is applied to “local nuclei” (also called closeby648

or ENDOR nuclei) for which hyperfine couplings are649

larger than the mean nuclei-nuclei dipolar interaction.650

In addition we can refine our model and add additional651

“bulk” nuclei, which are not directly coupled to the652

electrons but are in contact with some of the “local nu-653

clei”. The nuclear spin diffusion among the bulk nuclei654

is simulated using rate equations that equilibrates the655

polarization between two connected nuclei [66, 72, 73]656

and for nucleus j is given by657

dsz,j
dt

=
∑
j′

−rSDj,j′(sz,j − sz,j′) +
seqz,j
T1,j

where j′ corresponds to the index of the neighboring658

nucleus, and rSDj,j′ = d2
j,j′T

n
2 /4. Hence the assump-659

tion used to build our model containing two electrons660

(ea, eb) and Nn nuclei can be listed as follows:661

• CE rotor events involving “local” nuclei occur662

when |ωa − ωb| ≈ ωn. Each CE rotor event, in-663

volving a given nucleus, can be a priori treated664

using the derivation provided in the SI for a 3665

spin case. In addition this CE rotor event condi-666

tion is a priori also influenced by the presence of667

other hyperfine coupled nuclei which induce split-668

tings of the effective electron resonance, lead-669

ing to a quasi-continuum of CE sub-conditions.670

Overall these additional splittings can be safely671

ignored since they all contribute identically to672

the CE polarization transfer and it simplifies the673

treatment.674

• The local nuclei are connected among themselves675

via nuclear dipolar rotor events. The LZ ap-676

proach can be used safely here to describe the677

energy crossing with ∆ω0 = (Az,1 −Az,2)/2.678

• Couplings among “bulk” nuclei are introduced679

through a semi-classical spin-diffusion treatment.680

• The last shell of the Local nuclei are connected681

to bulk nuclei via nuclear dipolar rotor events.682

• The evolution operator at each step can thus be683

written as684

̂̂
Uκ =

̂̂
UB,κ ×

̂̂
ULZ,κ (19)

where685

̂̂
ULZ,κ =

NL∏
j=1

̂̂
U

CE,j

LZ,κ ×
NL∏
j=1

̂̂
U

SE,j

LZ,κ ×
NL∏
j=1

NL∏
j′=n

̂̂
U
dip,j,j′

ZL,κ

and where the Bloch part accounts for electrons’ dy-686

namic (dipolar and µw rotor events), relaxation and687

the semi-classical spin diffusion among the Bulk nu-688

clei. To perform the simulations, the code generates689

a partially random distribution of nuclei. The local690

nuclei NL are only connected to the electron a, and691

distributed within a cone shape of variable solid angle.692

Within this cone, the nuclei are arranged in layers and693

the nuclei are spaced by a mean distance that corre-694

sponds to a given nuclei concentration. The choice of695

the cone geometry was driven by computational trade-696

off and simplicity. In particular the cone angle chosen697

allows computing a large number of local nuclei while698

keeping the computational time reasonable. The nu-699

clei in the cone are only coupled to one electron here700

which allows relating their positioning (i.e. distance to701

electron) to the polarization transfer efficiency. Nev-702

ertheless, the code could easily be modified to account703

for couplings to both electrons, since only CE rotor704

events are impacted.[74–76] This would provide more705

accurate simulations but is beyond the scope of the706

current article.707

Figure 3 shows a typical cone distribution. The po-708

sitions of “bulk” nuclei are not computed, instead the709

dipolar couplings between nearest neighbors are con-710

sidered equal to an average value. More precisely, each711

nucleus is connected to six partners with a correspond-712

ing semi-classical rate defined by the mean nuclear-713

nuclear dipolar coupling and the Tn2 . This geome-714

try is basically the same for all the simulations pre-715

sented in this manuscript where we probed the influ-716

ence of changes in parameters such as nuclear relax-717

ation times, electron-electron dipolar interactions, and718

hyperfine coupling to the closest nuclei. The interplay719

between the geometry of the local and bulk nuclei and720

the DNP efficiency will be investigated in future work.721
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FIG. 3. Example of spin system used in the bulk model:
here NL = 182 local nuclei were randomly generated. The
blue sphere corresponds to electron of type “a”, the yellow
sphere to electron of type “b”, and the dark blue spheres to
local nuclei.

In the simulations presented below, the two closest722

local protons have a hyperfine coupling in frequency723

units that ranges between 1 and 4 MHz, whereas the724

farthest local nuclei have a hyperfine coupling of about725

16 - 20 kHz. The mean nuclear dipolar coupling be-726

tween all protons was equal to 1.7 kHz (considering a727

20 M proton concentration). The two electrons used in728

the model have geometries and interactions similar to729

the biradical TOTAPOL [50, 52, 54]. The system’s {bi-730

radical+nuclei} orientation with respect to the mag-731

netic field has been averaged using 144 ZCW crystal732

orientations, and to account for the electron T e2 the Hy-733

brid approach has been used. The nuclear Tn2 is only734

added to account for the the spin diffusion. In all the735

simulations, Tn2 was set to 10 ms and it’s worth not-736

ing that an increase up to 200 ms did not significantly737

change the results.738

III. ON THE ACCURACY OF THE NEW739

CODE COMPARED TO FULL LIOUVILLE740

SIMULATIONS741

A. Comparison between Liouville, LZ and the742

Hybrid approaches743

To assess the relevance of the approximations pre-744

sented above, the full Liouville, Hybrid and LZ meth-745

ods were compared in the 3 spin case. The spin sys-746

tem was built around a TOTAPOL-like geometry, and747

the calculations performed using standard spin relax-748

ation properties along with powder averaging over 144749

ZCW orientations. The temperature was fixed at 100750

K (defining the thermal equilibrium), B0 = 9.394 T,751

ωµw/2π = 263.45 GHz, and ω1/2π = 0.85 MHz, and752

except where otherwise specified the MAS frequency753

was ωr/2π = 8 kHz.754

εB at steady-state has been calculated as a function755

of the MAS frequency. Several electron dipolar cou-756

pling strength were tested for all three methods.757

FIG. 4. (Three spins (e-e-n) simulations) (a) MAS depen-
dence of εB for full Liouville calculations (full lines) and the
Hybrid model (dashed lines) after powder averaging, (b) for
full Liouville calculations (full lines) and LZ model (dashed
lines) after powder averaging, computed for different dipo-
lar interaction strength: Da,b/2π = 12 MHz (black circles),
Da,b/2π = 23 MHz (blue squares), Da,b/2π = 50 MHz (red
diamond). For all the simulations, T e1 = 0.3 ms, Tn1 = 4
s, A1,a/2π = 1.5 MHz and T e2 = 1 µs (full Liouville and
Hybrid model), Tn2 = 0.2 ms (full Liouville model).

In figure 4 (a) and (b), solid lines are the complete758

Liouville calculations, dashed lines are respectively the759

Hybrid method in (a), and LZ method in (b). In the760

full Liouville model εB increases as the MAS frequency761

is increased up to 2-3 kHz, then after a maximum, εB762

decreases highlighting a reduction of the DNP mech-763

anism efficiency. This loss is more drastic in the case764
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of weak dipolar couplings compared to larger ones, a765

behavior that was previously explained [54], and could766

be summarized as: the MAS frequency is increased,767

the dipolar rotor events do not succeed in maintaining768

a large polarization difference between the electrons769

|Pa − Pb|max, leading to lower εB .770

The Hybrid method generates almost an identical771

outcome as compared to the Liouville one, with a sur-772

prisingly good numerical accuracy. Similarly, a good773

agreement is achieved using the LZ as it reproduces774

well at a high MAS frequency even if it remains a bit off775

in the slow MAS regime. For a 3 spin system problem,776

the two simplified methods capture the spin physics.777

It highlights the accuracy of the methods at a fraction778

of the time cost, as simulations are 15 times faster for779

the Hybrid, and 20 times for the LZ approach.780

B. Accurate DNP field-sweep profile: the bTbK781

example782

Thanks to the significant time-savings, one can now783

easily account for the presence of 14N spins in the bi-784

nitroxides, which induce hyperfine EPR lineshifts. The785

resonant frequency of electron i can be written as fol-786

lows, assuming that the nuclear state of the 14N is mi,I787

and that the secular hyperfine coupling is AIi,z:788

ωi(mI) = giβB0 +mi,IA
I
i,z.

Note that this approach has already been implemented789

by other groups [51, 53, 55] using other numerical codes790

with the goal to improve the field-sweep accuracy.791

The importance of this feature is illustrated in Fig-792

ure 5 for the bTbK biradical case using a three spin sys-793

tem. Figure 5 (a) shows the simulated DNP field-sweep794

profile in the presence and absence of nitrogen hyper-795

fine couplings. Their presences induce clear edges in796

the gz part of the profile, as well as a slight decrease of797

the positive maximum. In the end, this demonstrates798

that this new simulation tool is able to generate a field799

sweep profile in excellent agreement with previously800

published experimental data.[16]. This is of course of801

prerequisite for future work targeting in silico radical802

design.803

In addition, Figure 5 (b) shows the effect of an in-804

crease of the µw irradiation strength ω1 on the DNP805

field-sweep profile: not only can it change the field-806

sweep profile (e.g. features in the negative part of the807

field sweep) but it can also increase the enhancement808

factor at the optimal field position (about 4.696 T).809

Remarkably, the ratio between the positive and nega-810

tive part of the spectrum is also ω1 dependent. Note811

that simulations performed with multiple biradicals in812

a box gave the same normalized profile (not shown).813

FIG. 5. (Three spins (e-e-n) simulations) Theoretical DNP
Field sweep computed with the bTbK geometry in the three
spin system case. In figure (a), with (red) or without ac-
counting the 14N hyperfine couplings. (b) Effect of the
µw irradiation strength on the DNP Field sweep for 4 ir-
radiation strengths (black circles ω1/2π = 0.1 MHz, blue
squares ω1/2π = 0.4 MHz, green down-pointing triangles
ω1/2π = 0.7 MHz, red diamonds ω1/2π = 1MHz. For all
the simulations, T e1 = 0.3 ms, T e2 = 1 µs, Tn1 = 0.2 s,
A1,a/2π = 1.5 MHz, νµw/2π = 131.725 GHz, νr = 5 kHz
and ω1/2π = 0.7 MHz for figure (a) where the µw irradi-
ation strength has been used to obtain a good agreement
with experimental data published in [16].

C. Insight into multiple electron spin effects.814

Biradical concentration and T e1 effect: The effect815

of the biradical concentration was probed by comput-816

ing the polarization gain εB , the depolarization factor817

εDepo, and the enhancement factor εOn/Off following818

the methodology described in section II D 3 (see Fig-819

ure 6). In all panels, the dotted line represents the820

simulations when the intermolecular interactions are821

zeroed. As clearly seen from Figure 6, the intermolec-822

ular effect is not present for a 1 mM concentration and823
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FIG. 6. (Box model simulation) Effect of the biradical concentration on the polarization gain εB (a and d), depolarization
εDepo (b and e) and εOn/Off (c and f) as a function of electron relaxation time T e1 = 0.1 ms (blue squares), 0.3 ms (green up-
pointing triangles), 0.5 ms (red down pointing triangles), and 1 ms (purple diamonds). In all cases, T e2 = 1 µs, A1,a/2π = 1.5
MHz, ωµw/2π = 263.45 GHz, B0 = 9.394 T, νr = 8 kHz and ω1/2π = 0.7 MHz. For top part figures (a-c) Tn1 = 0.1 s, and for
bottom part figures (d-f) Tn1 = 4 s. Simulations were performed by averaging 12 randomly distributed boxes containing 40
biradicals orientations (picked up among 144 ZCW crystal orientations), and dmin = 2 nm. Dashed and solid lines represent
respectively the isolated and interacting biradical case.

gradually increases with the biradical concentration.824

Figure 6 (a) and (d) show that the polarization gain825

εB decreases with the concentration and that this ef-826

fect is more pronounced for longer nuclear Tn1 (0.1 ver-827

sus 4 s) and electronic (0.1 up to 1 ms) T e1 relaxation828

times. Similarly εDepo (Figure 6 (b) and (e)) decreases829

(which means a greater depolarization effect) with in-830

creased concentrations and/or longer electron T e1 . At831

this point it is worth noting that intermolecular ef-832

fects can account for up to a factor 4 difference in833

terms of εDepo between isolated and coupled 3 spin sys-834

tems at large biradical concentrations (> 10 mM). The835

presence of additional intermolecular electron-electron836

dipolar rotor events leads to a MAS-induced spectral837

diffusion, a mechanism that tends to equilibrate the838

electron polarization through the EPR line [53]. Such839

an effect is stronger at large electron concentration840

and for long T e1 . Even with a simple “TOTAPOL-841

like” 3 spin system where only one nucleus collects the842

electron spin polarization difference, the MAS-induced843

spectral diffusion clearly affects the electron polariza-844

tion difference at steady state leading to a reduced hy-845

perpolarization (i.e. smaller εB) and a stronger depo-846

larization effect (i.e. smaller εDepo) [50, 53, 54]. Note847

that a longer Tn1 for the local nuclei leads to a higher848

εB and lower εDepo in general.849

On the contrary, the enhancement factor εOn/Off850

commonly used, quoted, and relied upon in DNP stud-851

ies has a very different behavior with respect to the852

electron concentration as can be seen in Figure 6 (c)853

and (f), and depends strongly on Tn1 values. With the854

geometry and parameters considered here, εOn/Off de-855

creases with concentration for short Tn1 (0.1 s) while856

it increases for longer values (4 s). Overall, the inter-857

molecular couplings have a less pronounced effect on858

εOn/Off than on εB factors which highlights once more859

the limits of relying only on the former when compar-860

ing biradical efficiency or optimizing biradical geome-861

try. Also, the bias introduced when using εOn/Off is862

illustrated by the fact that values larger than the ratio863
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of electron versus proton gyromagnetic ratio (∼660)864

were easily computed with this reduced 3 spin system.865

All in all, these simulations indicate the interest of866

using rather low biradical concentrations (<10 mM)867

and relatively long electron relaxation times (up to868

T e1 ≤ 0.5 ms). At this point, it is important to note869

that the results discussed here were obtained for a870

given biradical geometry (close to TOTAPOL) and a871

selected set of nuclear/electron relaxation times, and872

neglecting the role of the bulk nuclei. We believe that873

such simulations give a good qualitative picture of the874

CE MAS-DNP mechanism but that different results875

could be obtained with other input parameters, and876

when the bulk nuclei are taken into account the be-877

havior of the concentration may be changed.878

Main magnetic field dependency Figure 7 presents879

similar simulations as in Figure 6 but exploring the ef-880

fect of the magnetic field (corresponding to 200 to 800881

MHz 1H Larmor frequencies) on the CE MAS-DNP882

efficiency. The spin system is the same as in the previ-883

ous section and the biradical concentration fixed to 15884

mM. Overall the polarization gain εB (panels (a) and885

(d)) decreases with increasing magnetic field and this886

effect is more pronounced for short nuclear relaxation887

times (0.1 versus 4 s). In-line with the previous sec-888

tion, we observe that the polarization gain εB is hardly889

affected by the presence of MAS induced spectral dif-890

fusion at short electron relaxation times T e1 = 0.1 ms891

(blue squares) but strongly decreased at longer times892

(T e1 > 0.3 ms). For instance, for T e1 = 1 ms, εB is893

reduced from 380 to 200 when taking into account894

intermolecular interactions (15 mM concentration) at895

B0 = 4.7 T. Figure 7 also illustrates that long T e1 are896

especially preferred at high magnetic fields (> 15 - 20897

T) but not necessarily for lower field studies. Once898

more these simulations illustrate the importance of re-899

lying on the polarization gain εB and not the εOn/Off900

enhancement factor since they clearly give two different901

qualitative pictures: longer T e1 always provide higher902

εOn/Off values whereas the situation is more complex903

in terms of real polarization gain. Notably, long T e1 (1904

ms) at low field yield a lower polarization gain. The905

discrepancy between εB and εOn/Off can be explained906

by looking at the depolarization factor εDepo. It is907

worth noting that a significant part of the depolariza-908

tion comes from intermolecular effect and that this con-909

tribution gets smaller at higher fields. This is actually910

consistent with recent experimental findings[50]. The911

depolarization effect (intra and intermolecular contri-912

bution) is larger at low magnetic fields and/or for long913

T e1 values.914

The theoretical results presented here are inline with915

the trends previously observed experimentally and the-916

oretically for εOn/Off , εDepo, and εB [50, 54]. We must917

of course emphasize that the results presented here918

were obtained for 40 biradicals with a TOTAPOL-like919

geometry in a box with a set of interaction and relax-920

ation parameters. Therefore these results should not921

straightforwardly be compared with experimental ob-922

servations from samples that contain different types of923

biradicals and differ in their nuclear conformations.924

D. Accounting for multiple nuclear spins925

In this section we investigate the polarization of a926

large set of protons in a two-electron system as de-927

scribed in section II D 2. The spin system considered928

in this section consists of isolated biradicals coupled929

to a set of 400 protons. These protons are divided in930

Local(or ENDOR) protons directly coupled to the elec-931

trons and bulk protons coupled to the Local/ENDOR932

protons that exchange their polarization via spin diffu-933

sion. A key feature of the model is that one can easily934

introduce non-uniform nuclear relaxation times among935

the local protons in order to account for the fact that936

they are not all located at the same distance from the937

electrons. More precisely the model presented below938

assumes that the electron spin-flips induce through the939

pseudo-secular hyperfine coupling (A±a,n) a field fluc-940

tuation at the proton position that leads to a nuclear941

relaxation mechanism [69] given by Tn1 :942

1

Tn1
∝ |A±a,n|2(S(S + 1))

τ

1 + ω2
nτ

2

where τ is an electron spin-flip correlation time that
can be close to either T e1 or T e2 depending on the con-
centration [69]. The nuclear relaxation is then propor-
tional to the square of the hyperfine coupling (Tn1 ∝
|Aa,n|−2 ∝ r6). Nonetheless, the biradicals are not the
only source of relaxation. Indeed, in an undoped frozen
solution the relaxation time has still a finite value (of
30 - 80 s [19, 30, 50]), which originates from other
relaxation mechanisms such as proton-proton dipolar
relaxation or dissolved paramagnetic oxygen. It is rea-
sonable to assume that these additional mechanisms
are responsible for the relaxation of the bulk nuclei,
while the local protons relax under the influence of the
biradicals. The nuclear relaxation rates can then be
written as the sum of the two contributions

1

Tn1
=

1

Tn1,a−n
+

1

Tn1,Bulk

As the exact values are not known, we assumed that943

the relaxation time of nucleus i is given by944

1

Tn1,i
=

1

Tn1,1

(
Aa,1
Aa,i

)2

+
1

Tn1,Bulk
(20)

where Tn1,1 is the relaxation time of the closest nuclei945
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FIG. 7. (Box model simulation) Dependence of the polarization gain εB (a and d), depolarization εDepo (b and e) and
εOn/Off (c and f) as a function of the main magnetic field and electron relaxation time , T e1 = 0.1 ms (blue squares), 0.3 ms
(green up-pointing triangles), 0.5 ms (red down pointing triangles), and 1 ms (purple diamonds). The biradical structure
used corresponds to TOTAPOL, T e2 = 1 µs, A1,a/2π = 1.5 MHz, ωµw/2π = 263.45 GHz, B0 = 9.394 T, νr = 8 kHz and
ω1/2π = 0.7 MHz. Top figures (a-c) Tn1 = 0.1 s, and bottom figures (d-f) Tn1 = 4 s. Simulations with the Hybrid approach
have been performed by averaging 10 randomly distributed boxes containing 40 biradicals orientations (picked up among 144
ZCW crystal orientations) with a concentration of 15 mM, and dmin = 2 nm. Dotted and solid lines represent respectively
the isolated and interacting biradical case.

and Tn1,Bulk the bulk nuclear relaxation times. This ar-946

bitrary choice allows to have a continuous set of Tn1947

that that can reach very short values. The calcula-948

tion presented in Figure 8 was performed with a spin949

system made of NL = 60 local nuclei spread over a950

4 layers cone. Details about the spin system and the951

calculation can be found in section II D 2. The typical952

simulation time required for a single orientation and953

400 nuclei (60 local, 340 bulk) is about 200 s, about 20954

times faster than a full Liouville calculation with only955

3 nuclear spins. The simulated build-up times TB were956

obtained after fitting the average build-up curve of the957

bulk nuclei with a single exponential.958

Effect of the nuclear dipolar rotor events: absence of959

a spin diffusion barrier Figure 8 presents the polar-960

ization build-up εB(t) of the local nuclei in the absence961

(a) and presence (b) of the nuclear-dipolar couplings.962

The spin system is described in section II D. 2. In963

Figure 8 (a), the build-ups can be classified into four964

groups, each of them corresponding to one of the four965

layers of local nuclei. The two closest nuclei (black966

and blue curves) have a fast build up and reach signif-967

icant polarization while the other nuclei tend to have968

a slower build-up time and reach a lower polarization969

gain. The mean polarization build-up is represented by970

the thick blue line. It corresponds to a stretched ex-971

ponential shape and only reaches up to a polarization972

gain of 5. Note that in this simulation, bulk protons973

were not considered. In Figure 8 (b), only 3 build-974

ups can be observed: the two closest nuclei can still975

be differentiated ((black and blue lines) in terms of976

εB , whereas the rest of the local nuclei now have the977

same polarization build-up. The first two nuclei reach978

a higher polarization compared to the other local nu-979

clei, and have a build-up that is bi-exponential, with980

a fast and a much slower component. The other local981

nuclei have a common build-up time equal to the slow982

component of the first two nuclei.983
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FIG. 8. (Bulk model simulation) Polarization build-up εB
for local nuclei without (a), and (b) with nuclear-dipolar
rotor events (i.e. nuclear spin-diffusion). Black curve cor-
responds to the first proton, blue curve to the second pro-
ton, and the following to the other shells. In (a), the
thick blue curve represents the mean polarization build-
up. Simulation performed for TOTAPOL geometry with
ω1/2π = 0.85 MHz, T e1 = 0.3 ms, T e2 = 1 µs, A1,a/2π = 3
MHz, ωµw/2π = 263.45 GHz, B0 = 9.394 T, νr = 8 kHz.
In (a), the bulk relaxation time was Tn1,Bulk = 10 s, the
closest proton relaxation time was Tn1,1 = 0.15 s.

When the nuclear-nuclear dipolar couplings are ab-984

sent, Figure 8 (a) shows that the polarization among985

the nuclei presents a steep gradient, that the mean986

polarization only reaches a small value, and that long-987

distant nuclei are hardly polarized. In addition, the988

mean polarization curve does not appear to be a simple989

exponential similar to what is observed in certain DNP990

experiments where spin diffusion is inefficient [77–79].991

In contrast, in presence of nuclear-dipolar rotor events,992

even inefficient ones, the polarization is homogeneous993

amongst the nuclei. The polarization of the two closest994

nuclei is heavily reduced and tends to be much closer995

to the polarization of the rest of the local nuclei. The996

mean polarization is higher than in Figure 8 (a). The997

fact, however, that the proton polarization tends to be998

equalized highlights the lack of a “spin diffusion bar-999

rier”. Figure 8 (b) indicates that the first and second1000

nuclei layers, are the polarization “feeding source” of1001

all nuclei as the mean polarization of the local nu-1002

clei is higher in case (b) than in (a). The presence1003

of nuclear spin diffusion (via the nuclear dipolar rotor1004

events) allows more than just averaging the polariza-1005

tion, it allows the high polarization to flow from the1006

very close protons to the distant ones. This confirms1007

preliminary simulations [54] and reveals that even the1008

very close protons (those on the biradical) can be ac-1009

tive members of the DNP process. Note that this last1010

observation can be inferred from experimental results1011

on deuterated biradicals [45, 47, 48], but was lacking1012

theoretical support up to now. It is also interesting to1013

note that increasing the number of protons to more re-1014

alistic values allows predicting polarization gains and1015

build-up times much closer to the experimental values.1016

Effect of the Tn1,1 and Tn1,Bulk The impact of the nu-1017

clear relaxation times on the mean εB and mean polar-1018

ization time TB was probed. The evolution is plotted in1019

Figure 9 (a) for different Tn1,1 and in Figure 9 (b) for dif-1020

ferent Tn1,Bulk. In (a) Tn1,Bulk is constant, Tn1,1 is varied1021

and the relaxation times of local nuclei obey Equation1022

20. εB is larger with increased relaxation time Tn1,1.1023

Remarkably it appears that the polarization time TB1024

and the final enhancement εB vary linearly. This is1025

represented in the insert of Figure 9 (a) (black curve).1026

A similar behavior is observed in Figure 9 (b) where1027

Tn1,1 was kept constant while Tn1,Bulk is varied. Here as1028

well, when the bulk relaxation gets longer the build up1029

times also become longer and the polarizations reach1030

higher values. On the range tested, the relationship1031

between εB and TB seems to obey a very similar law1032

(see blue curve in the insert of figure (a)). This linear1033

behavior is also observed for larger electron-electron1034

dipolar interactions (See SI section C.).1035

In conclusion we observe that for a given geometry1036

(electrons and protons) the DNP efficiency, i.e. the1037

polarization gain and the polarization buildup time,1038

is directly influenced by the local protons’ relaxation1039

properties as long as the bulk proton Tn1 (obtained in1040

absence of radicals) is longer than the build-up times1041

TB.1042

Effect of the number of nuclei Figure 10 reports1043

the effect of the number of bulk protons NBulk on the1044

DNP efficiency (polarization gain εB and build-up time1045

TB). When NBulk increases, the build-up time gets1046

longer while the polarization gain εB is decreased. This1047

observation (that can be intuitively assessed) is valid1048

for the two Tn1,Bulk values tested here (60 and 5 s) and1049

more pronounced for the shorter Tn1,Bulk value.1050

Effect of the electron-electron dipolar and hyper-1051

fine interaction The electron-electron dipolar cou-1052

pling Da,b and the external magnetic field were var-1053
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FIG. 9. (Bulk model simulation) (a) Effect of Tn1,1 on the
polarization gain εB (black curve, left axis) and build-up
time TB (black dashed curve, right axis). (b) Effect of
Tn1,Bulk on the polarization gain εB (blue curve, left axis)
and build-up time TBU (blue dotted curve, right axis) Cal-
culations were performed with the spin system described in
section II D 2 using a “TOTAPOL-like” geometry and the
following input parameters: ω1/2π = 0.85 MHz, T e1 = 0.3
ms, T e2 = 1 µs, A1,a/2π = 3 MHz, ωµw/2π = 263.45 GHz,
B0 = 9.394 T, νr = 8 kHz. In (a), the bulk relaxation time
was Tn1,Bulk = 60 s, while in (b) Tn1,1 = 0.1 s. Insert in (a)
represents εB as a function of TB in both cases.

ied and the simulations are reported in Figure 11. As1054

in the 3 spins system case, the increase in the mag-1055

netic field leads to a significant decrease of the po-1056

larization gain εB while increasing the build-up times1057

TB. The calculations are inline with experimental ob-1058

servations reported for the two water soluble biradi-1059

cals TOTAPOL and AMUPol [21, 50]. The polariza-1060

tion build-up times increase with the magnetic field for1061

both biradicals, whereas the higher dipolar coupling in1062

AMUPol explains why it polarizes better and faster1063

than TOTAPOL.1064

FIG. 10. (Bulk model simulation) Effect of the number of
bulk nuclei NBulk on the final εB (black curve, right axis)
and build-up time TB (black dashed curve, right axis) for
Tn1,Bulk = 60 s, and εB (red curve, left axis) and build-
up time TB (red dashed curve, right axis) for Tn1,Bulk = 5
s. Simulations performed for TOTAPOL geometry with
ω1/2π = 0.85 MHz, T e1 = 0.3 ms, T e2 = 1 µs, A1,a/2π = 3
MHz, ωµw/2π = 263.45 GHz, B0 = 9.394 T, νr = 8 kHz,
the closest proton relaxation time was Tn1,1 = 0.1 s.

Figure 12 shows the dependence of both the polariza-1065

tion gain εB and the build-up time TB when varying the1066

hyperfine couplings to the local protons. In the sim-1067

ulation presented here, all the protons are moved to-1068

gether as a whole and the effect on the DNP efficiency1069

is plotted against the hyperfine coupling to the closest1070

proton. Note that for each cases, all hyperfine cou-1071

plings and Tn1,i relaxation times are changed according1072

to their distance to electron a and the formulae given1073

in equation 20 respectively. Figure 12 presents two sets1074

of curves for whichTn1,1 = 0.1 or 0.5 s respectively for1075

a hyperfine coupling of Aa,1/2π = 3 MHz. A stronger1076

hyperfine coupling generates a higher polarization gain1077

and a faster build-up time. As discussed in a previous1078

paragraph, longer nuclear relaxation times of the clos-1079

est protons Tn1,1 induces larger polarization gain and1080

longer build-up time. It is interesting to note that a1081

given polarization gain can be reached either with a1082

small hyperfine coupling and a long nuclear relaxation1083

time Tn1,1 of the closest nuclei or with a stronger hy-1084

perfine and a shorter nuclear relaxation time. It is also1085

worth noting that reasonably short build-up times are1086

only obtained when the strongest hyperfine coupling1087

are of the order of 1 MHz. This again supports the1088

strong role of nearby nuclei in the MAS-DNP process.1089
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FIG. 11. (Bulk model simulation) Effect of main magnetic
field on the mean εB (full curve, left axis) and build-up time
TB (dashed curve, right axis), for different electron-electron
Da,b/2π = 12 MHz (black circles), 23 MHz, (blue squares),
35 MHz (green diamonds) and 50 MHz (red triangles) per-
formed for TOTAPOL geometry with ω1/2π = 0.85 MHz,
T e1 = 0.3 ms, T e2 = 1 µs, Tn1 = 0.2 s, A1,a/2π = 3 MHz,
νr = 8 kHz. The bulk relaxation times was Tn1,Bulk = 60 s,
the closest proton relaxation time was Tn1,1 = 0.1 s.

IV. CONCLUSION AND PERSPECTIVES1090

In this work, we introduce a new model to com-1091

pute efficiently Cross-Effect and Solid-Effect MAS-1092

DNP mechanisms with the aim to build a predictive1093

tool that can be used not only to understand polariza-1094

tion transfer mechanisms but also to design efficient1095

polarizing agents in the future. The formalism is a1096

combination of Bloch-type derivations and Landau-1097

Zener approximations and is in excellent agreement1098

with full Liouville calculations. Overall, we provide1099

simulations of the DNP efficiency, in terms of polariza-1100

tion gains εB and “enhancement factors” εOn/Off but1101

also build-up times, for various key parameters. As1102

demonstrated in this work, and thanks to the signif-1103

icant time-savings afforded by the approach, one can1104

easily scan through multiple parameters and disentan-1105

gle their mutual influences. In addition, the simula-1106

tion code is able to handle multiple electrons and pro-1107

tons, which allows probing electron concentration ef-1108

fects as well as fully revealing the interplay between1109

nuclear dipolar couplings, hyperfine couplings, nuclear1110

relaxation times, and the important role of the nearby1111

nuclei. It was possible to easily account for the 14N1112

hyperfine couplings so as to provide bTbK field-sweep1113

profiles in very good agreement with experiments. Fi-1114

nally simulations performed with multiple nuclei re-1115

vealed the impact of the close nuclei on the DNP pro-1116

cess, and also allowed discussing the absence of spin-1117

diffusion barrier, and the difference between the appar-1118

FIG. 12. (Bulk model simulation) Effect of the hyperfine
coupling to the closest nuclei on the mean εB (full curve,
left axis) and build-up time TB (dashed curve, right axis),
for two different cases, for which the closest nuclear relax-
ation time was first calibrated to Tn1,1 = 0.1 s (black) and
0.5 s (red) for Aa,1/2π = 3 MHz. The simulations were
performed for a TOTAPOL geometry with ω1/2π = 0.85
MHz, T e1 = 0.3 ms, T e2 = 1 µs, ωµw/2π = 263.45 GHz,
B0 = 9.394 T, νr = 8 kHz, and, the bulk relaxation times
was Tn1,Bulk = 60 s. Details can be found in the text.

ent DNP buildup time TB and the local/Bulk nuclear1119

relaxation times..1120
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