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ABSTRACT

To robustly estimate the pose, classical methods assume some ge-
ometrical and temporal assumptions (SfM: Structure from Mo-
tion, SLAM: Simultaneous Localization and mapping). These ap-
proaches take a pair of images as input and establish correspon-
dences based on global strategy (using the whole image informa-
tion) or sparse strategy (using key-points features). These corre-
spondences allow solving a set of linear equations related to the
3D information and camera pose in that environment. These past
years, machine learning has been considered as an efficient way to
tackle different problems in image processing and computer vision
fields. To handle the task in hand, we propose to learn directly the
mapping function between the acquired information from the cam-
era and its pose using sparse decision forest. We achieved state-of
the-art results on public and on our databases.

Index Terms: Camera relocalization, pose estimation, Random
Forest, SLAM.

1 INTRODUCTION

Camera pose estimation is the process of determining the position
and the orientation of the camera in a given scene using the ac-
quired information (rgb-image, depth-image, rgb-d image, infrared-
image,point cloud..). Knowing the pose information is crucial in
various fields such Augmented Reality, indeed, to add additional
synthetic objects on the environment in a realistic way, the camera
pose is required to render optimally these objects.

Common approaches use global or sparse features matching be-
tween two images to estimate the camera continuous pose. With
sparse strategy, a set of key-points are detected such as SIFT [17],
SURF [1] or ORB [22]. Using the descriptors of these 2D key
points, a matching can be established across key-frames descrip-
tors corresponding to different poses to retrieve the optimal one as
performed in [4].

In [15], the 2D-2D correspondences are robustly learned using
randomized trees. [15] exploits directly the key-points to establish
2D-3D correspondences and to optimize the camera pose calcula-
tion. In [5, 18, 19, 27], key-points are used as a primordial compo-
nent in a global relocalization system based on visual SLAM. One
of the most important limitation of sparse camera pose estimation is
related to the key-points detection and matching efficiency. Indeed,
in unconstrained of textureless environments, matching key-points
yields outliers which impacts considerably the accuracy and robust-
ness of the pose estimation. To ensure sparsity without keypoint
detection [6] samples directly pixel intensities to establish corre-
spondences.

Unlike sparse strategy, global matching uses the whole im-
age information to perform a geometrically dense mapping as
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Figure 1: Automatic camera pose estimation performed by our
method.

in [7, 21, 26]. Some methods define the global matching as a learn-
ing task. [10] uses a global regression over a set of synthetic views
based on Nadaraya-Watson estimator [20]. [13] traines a convolu-
tional neural network to regress the camera pose from a single rgb
image. These methods perform a robust camera pose estimation but
present a considerable training and testing complexity.

The work from [23] and [3] presents the closest work to our ap-
proach. Indeed, to regress the camera pose, we train a decision
forest on labeled training rgb-d patches. Unlike these approaches
which use dense prediction from the image pixels, we extract a set
patches based on a highly sparse key-points extraction. Our ap-
proach considerably reduces training complexity and enhances dis-
crimination during trees learning. Figure 1 shows an example of an
automatic camera pose estimation using our approach.

2 SPARSE CAMERA RELOCALIZATION LEARNING

In this section we explain in details our approach. In 2.1 and 2.2,
we describe our camera pose estimation forest training and testing
steps respectively.

2.1 Training
Random forest is a powerful technique to map highly dimensional
input spaces into discrete or continuous output spaces. Introduced
in [2], Random forest is a collection of randomly trained trees
with high ability of generalization compared to the standard ver-
sion. They have been successfully used for classification prob-
lems [16, 24] and regression [8, 9, 12]. Figure. 2 gives an illustrative
example of a decision forest applied for an automatic camera pose
estimation.

To train our decision forest T = {χk} to automatically estimate
camera pose from input rgb-d images, each tree χk is learned in a



Figure 2: A visual example of a decision forest used in this work.
Each tree processes a testing sample. By performing a simple
learned binary test, each splitting node (white nodes) directs the
sample until reaching the leaves (yellow nodes) which store a multi-
variate distribution of the camera pose (the green frustum represents
the camera pose mean). The forest returns a combination of all the
outputs.

supervised way on a set of annotated training samples.
Concretely, in every rgb-d sample, we extract a set of fixed size

patches {Pi = (Ici , yi)} centred on the detected SURF key-points.
Ici defines the appearance channel (ie., c = 0 corresponds to the
grayscale intensities and c = 1 to the depth). yi represents the label
which is the camera pose ground truth encapsulated as quaternion
and translation as (Qi, Ti) = (qw, qx, qy, qz, tx, ty, tz).

We provide, for each tree χk, 50% of the total training set. We
train the trees in a greedy way, at each node, a simple binary test
t is performed. According to the result of the test, a data sample
is directed towards the left or the right child node. The tests are
selected to achieve an optimal clustering. The terminal nodes of the
tree called leaves, store the estimation models which approximate
the best the desired output.

To achieve robustness, we formulate a differential binary test as
performed in [24] as follows:

fθ(P) = Pci (x, y)− Pci (x′, y′) (1)

Where θ = ((x, y), (x′, y′), c) represents the parameters encap-
sulating the two 2D pixels locations and the appearance channel in
the processed patch Pi respectively. Supervising the training con-
sists in finding at each non-leaf node the optimal separation which
maximizes the purity of the data clustering. We performed the train-
ing following the standard Random forest pipeline:

1. Generate a set of binary test parameters Θ = (θ, τ)

2. For each Θ, split the parent set of patches P into two child
subsets PL and PR as follows:

PL(Θ) = {P|fθ ≤ τ} (2)

PR(Θ) = {P\PL(Θ)} (3)

3. Evaluate the discrimination qualityE for each splitting as fol-
lows:

(a)

(b)

Figure 3: (a) shows the estimation space H learned by the tree,
which represents all the possible votes than can be cast by the forest
(The more the vote is red, the less is confident). (b) illustrates, in
red, the votes for a griven testing sample, in green the camera pose
ground truth and in blue the final estimation calculated using mean-
shift clustering.

E(Θ) =
∑
i∈PL

||yi − ȳL||22 +
∑
i∈PR

||yi − ȳR||22 (4)

ȳ =

∑
i∈P yi

|P| (5)

E defines the global euclidean distance between all the ele-
ments yi to the centrod ȳ in each cluster.

4. Select the optimal splitting binary test which minimizes E:

Θ∗ = arg min
Θ
E(Θ). (6)

The learning process finishes when the data reach a predefined
maximum depth value of the tree or the number of patches let down
a threshold value yielding the creation of the leaves. Each leaf l
stores multivariate Gaussian distribution of all the reached poses as
p(y) = N (y, ȳl,Σ

y
l ).

2.2 Testing
To estimate camera pose from an unseen rgb-d sample, we extract,
following the same strategy as in training, a set of patches. Each
patch is passed through all the learned trees in the forest. Using
the optimal stored binary test, each tree processes the patch until
reaching a leaf. The estimation according to a single tree is given
by the reached leaf l in terms of the stored distribution p(y). The
pose estimation for a given patch Pj over all the trees is calculated
as follows:

p(y|Pci ) =
1

NT

∑
j

p(y|lj(Pci )) (7)
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Figure 4: (a) reports the translation errors of our approach on CoRBS, RGBDscene.v2 and our database respectively. (b) indicates the rotation
errors on the same databases.

.

All the estimations corresponding to the extracted patches are re-
grouped as votes. Before performing the clustering of these votes,
we discard the estimations from the leaves with high variance con-
sidered as non-informative. To locate the centroid of the cluster of
the votes, we perform five mean-shift iterations using a Gaussian
kernel. Figure. 3a illustrates the knowledgeH of the learned forest.
It represents all the estimations stored by the leaves. Visualizing
H can help in predicting ahead some bad estimation. Figure. 3b
shows the non-parametric clustering by mean-shift. For a given
sample, the forest casts a set of votes (in red), we can notice the gap
between the estimates which is directly linked to the decorrelation
(bagging) introduced during learning. Performing mean-shift with
some iterations allows to determine more accurate estimation than
a simple statistical mean (the green sphere represents the ground
truth and the blue one is the final estimation).

3 EXPERIMENTS

In this section, we report the results of our estimations according
to different experimentations. Firstly, in 3.1 we describe the data
used in our experiments, then we report our decision forest accuracy
in 3.2. In 3.3, we compare our method to state-of-the-art methods
and evaluate the robustness of the approach on unfavorable scenar-
ios in 3.4.

3.1 Datasets
To provide our forest with sufficient annotated training rgb-d sam-
ples and evaluate our camera pose accuracy, we used two public
datasets RGBDscene.v2 [14] and CoRBS [25]. The first dataset
uses the method from [11], which is based on an ICP rigid align-
ment, to accurately annotate the rgb-d samples. The acquisition is
performed using Kinect.v1. For the second dataset, the acquisition
is performed with Kinect.v2, the annotation is achieved thanks to a
motion capture system. In total, 14 and 4 scenes are reconstructed
for the first and second dataset respectively. We also build our own
dataset by using Kinect.v2 for the acquisition. To annotate our rgb-
d samples, we used the method from [21] which is a real-time 3D
dense reconstruction technique following a dense SLAM pipeline
as in [23]. We build a total of 17 RGB-D scenes. We trained a
specific forest for each scene on half of the global samples number.

3.2 Forest accuracy
Some empirical analysis, based on computational cost and accu-
racy criteria, allowed us to fix some parameters to their optimal
value according to our task. The number of the extracted patches
by sample is fixed to 20 with a size of (30 × 30). The forest size

is fixed to 15, each tree is learned with a depth of 15. In Figure. 4a
and 4b, we report the mean quadratic errors related to translation
and rotation respectively on the datasets CoRBS, RGBDscene.v2
and ours. We reported a mean error of 0.047m and 2.46◦ for the ro-
tation and translation respectively on CoRBS. On RGBDscene.v2,
we achieved best results with errors of 0.029m in terms of transla-
tion and 1.34◦ for the rotation. This difference in terms of accuracy
is directly linked to the nature of the camera trajectory, indeed, in
RGBDscene.v2, the camera presents small motions in both trans-
lation and rotations (translation according to x and z, rotation only
around y) which makes the splitting process inside the trees nodes
easier, while CoRBS gives more complicated camera trajectory giv-
ing complex camera manifold. On our RGB-D scene, the forest
performed a mean error of 0.0501m and 1.95◦ for translation and
rotation respectively. Figure. 6 gives more visual illustrations of our
estimations on different scenes.

3.3 Comparison to baseline

Table. 1 reports a comparison of our approach to two methods for
camera relocalization, PoseNet [13] and ORB-SLAM [18] respec-
tively on RGBDscene.v2. [13] performed the most important errors,
0.062cm and 4.66◦ for translation and rotation respectively. This
method uses a convolutional neural network (CNN) learned on the
whole image appearance producing a highly smoothy camera pose
output. This result can be explained by the provided training set
(400 images) producing a suboptimal network weights optimiza-
tion. In contrast, by extracting a set of patches, our method explic-
itly extends the training set size which considerably enhance the
ability of discrimination of our forest. In addition, by geometri-
cally targeting relevant regions, our method achieves more robust-
ness under noisy scenarios. [18] achieves better results compared
to the first approach, 0.052cm and 1.94◦ respectively. By learning
a set of key-frames (on the same training set provided previously),
this method optimizes the camera pose trajectory based on sparse
key-points matching. Instead of establishing correspondences be-
tween successive frame features matching which produces increas-
ing output uncertainty, our approach implicitly reduces consider-
ably temporal uncertainty by processing each patch independently
giving more accurate and robust camera relocalization estimation.
Our work achieves 0.029cm and 1.34◦ for translation and rotation
errors respectively.
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Figure 5: (a) reports translation and rotation errors of our method on original and unfavorably illuminated RGBDscene.v2. (c) gives a visual
illustration of some under-illuminated frames and the correspondent estimation. (b) gives translation and rotation errors on original and occluded
RGBDscene.v2. (d) gives an example of some occluded frames and the correspondent estimation.

Method Translation error (cm) Rotation error (◦)
PoseNet [13] 0.062 4.66

ORB-SLAM [18] 0.052 1.94

Our method 0.029 1.34

Table 1: Comparison of our approach to the methods in [13] and [18].

3.4 Robustness to occlusions and illumination varia-
tion

One of the most challenging problem in camera relocalization con-
sists in dealing with important image appearance variation. Un-
fortunately, this problem is frequently present in rgb-d scenarios.
In this section, we evaluate the robustness of our approach with
respect to illumination condition variation and strong occlusion in
the rgb image. Concretely, we underexpose/overexpose the testing
samples to synthetically produce unfavorable lightning conditions.
To model occlusion, we randomly render a dark square with a fixed
size of (120 × 120) in the rgb images. We report the results of
these experiments in Figure. 5. Figure 5a illustrates the transla-
tion and rotation errors with and without illumination variation on
RGBDscene.v2 database. The mean error goes from 0.0292m to
0.0570m and 1.34◦ to 3.38◦ for translation and rotation respec-
tively. These results demonstrate the robustness and the high abil-
ity of generalization of our approach on such condition. Figure. 5c
gives a visual illustration of the final estimation compared to the
ground truth camera trajectory (red and green paths respectively)
and typical lightning condition generated on testing samples. Fig-
ure. 5b describes the mean errors with respect to occlusions. We
notice that errors go from 0.0292m to 0.0502m and 1.34◦ to 3.95◦

for translation and rotation respectively. Again, this result proves
the efficiency of our approach under occlusion presence. Figure. 5d
shows the results of our estimation and gives typical examples of
the generated occlusions on the testing samples.

According to our forest parameters defined previously, our esti-
mation runs in real-time on an Intel Core i7 @2.70GHZ with 8GB
of RAM machine.

4 CONCLUSION

In this paper, we have proposed an approach based on regression
decision forest to handle unconstrained camera pose estimation in
rgb-d scenarios. Unlike similar approaches, we trained our forest
on sparse data represented by a set of extracted patches. Based
on SURF key-points detection, we demonstrated that targeting geo-
metrically relevant regions in images increases forest accuracy and
generalization. By establishing translation and rotation errors on
challenging databases, we validate our approach by achieving state-
of-the-art performance.
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