
HAL Id: hal-02048419
https://hal.science/hal-02048419

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and security analysis of two robust keyed hash
functions based on chaotic neural networks

Nabil Abdoun, Safwan El Assad, Olivier Déforges, Rima Assaf, Mohamad
Khalil

To cite this version:
Nabil Abdoun, Safwan El Assad, Olivier Déforges, Rima Assaf, Mohamad Khalil. Design and security
analysis of two robust keyed hash functions based on chaotic neural networks. Journal of Ambient
Intelligence and Humanized Computing, 2020, 11 (5), pp.2137-2161. �10.1007/s12652-019-01244-y�.
�hal-02048419�

https://hal.science/hal-02048419
https://hal.archives-ouvertes.fr

Design and security analysis of two robust keyed hash
functions based on chaotic neural networks

Nabil Abdoun · Safwan El Assad · Olivier
Deforges · Rima Assaf · Mohamad Khalil

Abstract In this paper, we designed, implemented, and analyzed the perfor-
mance, in terms of security and speed, of two proposed keyed Chaotic Neural Net-
work (CNN) hash functions based on Merkle-Dåmgard (MD) construction with
three output schemes: CNN-Matyas-Meyer-Oseas, Modified CNN-Matyas-Meyer-
Oseas, and CNN-Miyaguchi-Preneel. The first hash function’s structure is com-
posed of two-layer chaotic neural network while the structure of the second hash
function is formed of one-layer chaotic neural network followed by non-linear layer
functions. The obtained results of several statistical tests and cryptanalytic anal-
ysis highlight the robustness of the proposed keyed CNN hash functions, which is
fundamentally due to the strong non-linearity of both the chaotic systems and the
neural networks. The comparison of the performance analysis with some chaos-
based hash functions of the literature and with standard hash functions make the
proposed hash functions suitable for data integrity, message authentication, and
digital signature applications.

Nabil Abdoun - corresponding author
Institut d’Électronique et de Télécommunications de Rennes, UMR CNRS 6164 / site Polytech
Nantes
Tel.: +33669417198
E-mail: nabil.abdoun@etu.univ-nantes.fr

Safwan El Assad
Institut d’Électronique et de Télécommunications de Rennes, UMR CNRS 6164 / site Polytech
Nantes
Tel.: +33676322836
E-mail: safwan.elassad@univ-nantes.fr

Olivier Deforges
Institut d’Électronique et de Télécommunications de Rennes / site INSA Rennes
E-mail: olivier.deforges@insa-rennes.fr

Rima Assaf
Lebanese University
E-mail: rima.assaf@ul.edu.lb

Mohamad Khalil
Lebanese University
E-mail: mohamad.khalil@ul.edu.lb

2 Nabil Abdoun et al.

Keywords Keyed hash functions · Chaotic Neural Networks · Chaotic activation
function ·Merkle-Dåmgard · Statistical tests · Brute force attacks · Cryptanalytical
attacks · Speed analysis

1 Introduction

During the last decade, information security has become a hot issue. Developers
are usually concerned about five main services regarding information exchange
over non-secure channels (e.g., Internet): confidentiality, authenticity, integrity,
non-repudiate, and availability. Hash functions are one of the most useful prim-
itives in cryptography that play an important role in data security. They can
achieve data integrity, message authentication [1], and digital signature [2]. Hash
function is a one-way function that maps an arbitrary finite large message data
into a fixed-length hash value. It should achieve some security properties, such as
message sensitivity, key sensitivity, confusion-diffusion, preimage, second preim-
age, and collision resistance. Also, it should be immune against brute force and
cryptanalytical attacks. Nowadays, the most popular standard secure hash func-
tions are unkeyed Secure Hash Algorithms SHA-2 [3] and SHA-3 [4], commonly
used by many SSL certificate authorities, whereas keyed hash functions include:
Very fast Message Authentication Code-VMAC, Keyed-Hash MAC -HMAC, Galios
/ Counter Mode-GCM, Cipher-based MAC -CMAC, Destination MAC -DMAC, Ci-
pher Block Chaining Message Authentication Code-CBC-MAC and BLAKE 2.
Alternatively, a new direction in the construction of chaos-based hash functions
appeared in 2002. Due to the strong non-linearity of chaotic systems and neural
network structures, some designers usually combine these two systems to build
robust hash functions. Indeed, a chaotic system is characterized by important se-
curity features, such as sensitivity to initial conditions, random-like behavior, and
unstable periodic orbits. Also, a neural network is characterized by its
confusion-diffusion and compression properties that are required to design secure
hash functions.
However, many researchers developed hashing schemes based on simple chaotic
maps, such as logistic map, high-dimensional discrete map, piecewise linear chaotic
map, tent map, and Lorenz map or on 2D coupled map lattices [5–18]. In 2007,
Zhang et al., [19] proposed a novel chaotic keyed hash algorithm using a feed
forward-feedback nonlinear filter. Other researchers proposed combined hashing
and encryption schemes based on chaotic neural network [20–32].
Since 2010, there has been a real turning point in building new secure hash al-
gorithms based on chaotic maps and neural network. Huang [33] proposed an
enhancement of Xiao’s parallel keyed hash function based on chaotic neural net-
work [24]. Indeed, in Xiao’s scheme, the secret keys are not nonce numbers, which
might produce a potential security flaw. Jiteurtragool et al. [34], proposed a topo-
logically simple keyed hash function based on circular chaotic sinusoidal map net-
work that uses more complex map, i.e., the Sine map. In 2014, Teh et al., [35]
introduced a parallel chaotic hash function based on the shuffle-exchange network
that runs in parallel to improve hashing speed. In 2015, Abdoun et al., [36, 37]
proposed a new efficient structure that consists of two parts: an efficient chaotic
generator and a three or two-layer neural network. Chenaghlu et al., [38] pub-
lished a new keyed parallel hashing scheme based on a new hyper sensitive chaotic

Title Suppressed Due to Excessive Length 3

system with compression ability. High-dimensional chaotic maps have also been
used in hash functions for higher complexity and better mixing [39–41]. Xiao et
al., [42] designed a parallel keyed chaos-based hash function, where a mechanism
of both changeable-parameter and self-synchronization is used to establish a close
relation of the keystream with the algorithm key, the content, and the order of
each message block.
This paper proposes two robust keyed CNN hash functions based on Merkle-
Dåmgard construction, that having better hash throughput as compared to the
other chaos-based hash functions in literature. Indeed, the structures of the pro-
posed CNN hash functions are based on neural network layer(s) and non-linear
layer functions. Each neuron uses a chaotic activation function based on an effi-
cient chaotic generator using Discrete Skew Tent map (DSTmap) and a Discrete
Piecewise Linear Chaotic map (DPWLCmap) [43,44].
The rest of this paper is organized as follows: Sect. 2 presents the generalities,
properties, and classification of cryptographic hash functions. The section also
introduces the general model of Merkle-Dåmgard construction formed by prepro-
cessing and compression phases. Sect. 3 introduces in detail the structures of the
two proposed keyed CNN hash functions based on MD with their components
i.e., chaotic generator, output schemes, neural network, and non-linear functions.
Sect. 4 presents the obtained results, in terms of security and computational per-
formance, of the proposed hash functions and compares their performance with
other hash functions found in literature. Sect. 5 concludes our contribution and
outlines the direction of future work.

2 Preliminaries

2.1 Generalities of cryptographic hash functions

Cryptographic hash functions play a fundamental role in modern cryptography.
The basic idea of cryptographic hash functions is that a hash-value h serves as
a compact representative image (sometimes called an imprint, digital fingerprint,
or message digest) of an input message M and is used as an uniquely identifiable
element (Fig. 1) [45–49]. Precisely, a cryptographic hash function H, that requires
to be a deterministic process, maps bit-strings of arbitrary finite length |M| to
strings of fixed length (u bits), where |M| > u. So, every time if the same input
message M is hashed by H, the same hash value h is obtained. H is many-to-one
relationship that implies the existence of unavoidable collisions (pairs of input
message with identical output hash value) with very small probabilities.
A cryptographic hash function H aims to guarantee a number of properties, which
makes it very useful for information security. H must verify at least the following
two implementation properties:

1. Compression: H maps an input message M of arbitrary finite bit-length to a
hash value h of fixed bit-length u bits.

2. Ease of computation: given H and an input message M, H(M) is easy to com-
pute.

Nevertheless, two important requirements are needed to realize the cryptographic
hash functions: the hardness to find collisions and the appearance of randomness.
Also, H has the following three security properties (Fig. 2):

4 Nabil Abdoun et al.

H

Hash value h

Message
M

Fig. 1: Hash function

1. Preimage resistance (one-way): for all the pre-specified hash values h, it is
computationally infeasible to find any message input that is hashed to the
chosen hash value.

2. Second preimage resistance (weak collision resistance): it is computationally
infeasible to find any second input that has the same hash value as a specified
input message M.

3. Collision resistance (strong collision resistance): it is computationally infeasi-

ble to find any two distinct message inputs (M, M
′
) hashed to the same hash

value, such that H(M) = H(M
′
). It should be noted that, the users are free to

choose both input messages.

We should mention that the notion of computationally infeasible depends on the
relationship between the amount of work the designer has to do to secure the sys-
tem in comparison to the amount of work that the attacker has to do to break it.
At the highest level, cryptographic hash functions are classified into two classes:
Unkeyed and Keyed hash functions that are presented in Fig. 3. In this paper, our
work is restricted to keyed cryptographic hash functions (simply called hash func-
tions in the rest of this paper) that are originally proposed to generate the inputs
of Digital Signature (DS) application. Later, these hash functions are designed
to achieve certain security properties, such as message authentication useful for
building cryptosystems. In general, a keyed hash function [50] uses a secret key K.
The Merkle-Dåmgard structure, which is unkeyed hash function that uses initial
values IV, can be transformed to a keyed hash function by appending a secret
key K to the input message M to produce the hash value h. Table 1 presents the
two primary types of keyed hash functions (MAC, DS) with their realized security
goals and the kind of their used keys.

Title Suppressed Due to Excessive Length 5

H

Hash value h

Message
?

Message
?

H

Hash value h

Message
M

Message
M

H

Message
?

Message
?

H

Message
?

Message
?

H

Message
?

Message
?

Hash value h

Preimage resistance Second Preimage resistance Collision resistance

Fig. 2: Security properties of hash functions

Hash functions security goal MAC Digital Signature
Integrity Yes Yes

Authentication Yes Yes
Non-repudiation No Yes
Kind of keys Symmetric keys Asymmetric keys

Table 1: Two primary types of keyed hash functions

2.2 Structures of hash functions

In cryptography, many structures are used to construct different hash functions
[51], such as Merkle-Dåmgard [52,53], Wide Pipe [54], Fast Wide Pipe [55], HAIFA
[56], and Sponge construction [57]. The Merkle-Dåmgard construction was used
in the design of many popular hash algorithms, such as MD5 [58], SHA-1 [59],
and SHA-2 [3]. The Sponge construction was used in the design of SHA-3 [4].
This paper proposes novel hash functions based on Chaotic System and Neural
Network. The proposal uses the structure of Merkle-Dåmgard with a proposed
compression function based on Chaotic Neural Network (CNN). To understand
the proposed hash functions, it is necessary to introduce the Merkle-Dåmgard
construction (Fig.4) and the model of Strengthened Merkle-Dåmgard (Fig. 5).

Merkle-Dåmgard construction: preprocessing and compression : Fig. 4 shows the
structure of Merkle-Dåmgard construction where the compression function is de-
fined by C : {0, 1}l × {0, 1}|Mi| → {0, 1}l. C takes as inputs a chaining or state
variable hi(i = 0, ..., q − 1) of size l bits and a message block Mi(i = 1, ..., q) of
size |Mi| bits, to produce the updated chaining variable hi(i = 1, ..., q) of size l
bits. Thus, to allow the usage of input messages of arbitrary length, the Merkle-
Dåmgard structure needs a padding, which transforms the input message into a
padded message M of length multiple of |Mi| bits. Indeed, a simple padding is in-
sufficient because, in this case, the generated hash value is vulnerable to different

6 Nabil Abdoun et al.

Unkeyed
MD, SHA, RIPEMD ..

Keyed
VMAC, UMAC, CNN ..

Cryptographic
Hash functions

Modification
Detection Code

MDCs

Message
Authentication

Code MACs

OWHF CRHF

Other
Applications

Other
Applications

Collision
Resistance

2nd Pre-
image

Resistant

Pre-image
Resistance

Digital
Signature

Data
Integrity

HMAC

Hashing
passwords

Software
protection

Encryption
algorithms

Time
Stamping

UOWHF

OWHF: One Way Hash Function
CRHF: Collision Resistant Hash Function
UOWHF: Universal One Way Hash Function

Fig. 3: Classification of cryptographic hash functions

Message
M

C C C O Hash value h IV

Output
function

P: Padding, L: Length of the message M, C: Message compression function

M1 M2 Mq

h1 h2 hq-1 hqh0

P, L

HM1 HM2 HMq-1 HMq

2048 bits

Fig. 4: Strengthened Merkle-Dåmgard construction

Title Suppressed Due to Excessive Length 7

C

O

Hash value h

Message
M

Divide M into q blocks

Padding + length

Message
compression

function

Output
function

IV

Mi

hi

Preprocessing

Fig. 5: Model of Strengthened Merkle-Dåmgard construction

attacks due to collision between the latest blocks. We will consider the Strengthened
Merkle-Dåmgard padding with length strengthening (Figures 5 and 6). It uses a
padding function named ”is-pad”, which appends the binary value of the message
length L at the end of the message to generate the padded message. Additionally,
the Strengthened Merkle-Dåmgard construction employs a predefined initializa-
tion vector IV used as the first state value of the structure. The Strengthened
Merkle-Dåmgard hash function SMDC(M) is defined as follow:

M1 ‖M2 ‖ ... ‖Mq ← ”is-pad(M)”

h0 ← IV

for i = 1, ..., q do hi ← C(hi−1,Mi)

h← O(hq)

return h.

M is padded with the bit pattern 00...0 of length v bits, as shown in equation (1).
The remaining 64 bits is used by ”is-pad” function to denote L.

v = |Mi|−mod[(L + 64), |Mi|] (1)

It should be noted that, if L exceeds 264, then L mod 264 is taken as the message
length instead of L [46].

8 Nabil Abdoun et al.

Last Message Part
Padding

Length of the
message M

2048

v 64 bits

Last Message Part

2048

Length of the
message M

64 bits

Padding

2048

v

Last Message Part

2048

Length of the
message M

64 bits

Padding

2048

v

Padding

a) mod(|M|, 2048) < 1984

b) mod(|M|, 2048) = 0

c) mod(|M|, 2048) > 1984

Block message Mq-1 Block message Mq

Block message Mq

Block message Mq-1 Block message Mq

Fig. 6: The padding of input message in the proposed hash functions

In general, we have 3 cases of padding:

case a : mod(|M |, |Mi|) < |Mi|−64.

case b : mod(|M |, |Mi|) = 0.

case c : mod(|M |, |Mi|) > |Mi|−64.

Now, let’s take a look at the three cases of padding where |Mi|= 2048 bits (Fig.
6), which is as follows:

case a : if L = 6066 bits :

v = 2048−mod[(6066 + 64), 2048] = 14 bits.

case b : if L = 6144 bits :

v = 2048−mod[(6144 + 64), 2048] = 1984 bits.

case c : if L = 6086 bits :

v = 2048−mod[(6086 + 64), 2048] = 2042 bits.

Then, the padded message is processed as a sequence of message blocks M1 ‖M2 ‖
... ‖Mq.

Title Suppressed Due to Excessive Length 9

CNN

Mi

KMi-1CNNKMi-1

KMi

Mi

CNN

Mi

b) Modified CNN-Matyas-Meyer-Oseasa) CNN-Matyas-Meyer-Oseas c) CNN-Miyaguchi-Preneel

Chaotic
System

Chaotic
System

Chaotic
System

HMi

O

HMi

KMi

O

KMi

O

HMi

KMi-1

Block i Block i Block i

Fig. 7: The proposed Merkle-Dåmgard compression functions based on CNN with
output schemes

3 Chaotic Neural Network structure of the proposed keyed hash
functions

This paper proposes two keyed hash functions based on Chaotic Neural Network
(CNN), and for each one, three output schemes are suggested as presented in Fig.
7. The first CNN hash function uses two-layer neural network structure (named
Structure 1), whereas the second hash function uses one-layer neural network fol-
lowed by a combination of Non-Linear (NL) functions (named Structure 2). The
next sub-section describes the three suggested output schemes based on Matyas-
Meyer-Oseas [60–62] and Miyaguchi-Preneel [63–66].

3.1 Suggested output schemes

Matyas-Meyer-Oseas (MMO) output scheme: In this output scheme, the message
block Mi is xored with the chaining variable HMi, which is the output of the CNN
that takes as inputs Mi and the output of the Chaotic System (Fig. 7-a). The state
value KMi−1 is the key of the Chaotic System. Due to the possible different bit-
length, an output function O precedes the generation of the final output KMi,
which represents the key of the next block, which is as follows:

KMi = O(HMi ⊕Mi) (2)

where i : the block index; 1 ≤ i ≤ q.
for i = 1 : KM0 = K: the secret key.
for i = q : KMq = h: the final hash value.

Modified Matyas-Meyer-Oseas (MMMO) output scheme: This output scheme is
similar to MMO output scheme except for the xor operation. Indeed in this case,
HMi is xored with KMi−1 (Fig. 7-b), where the final output KMi is defined by:

KMi = O(HMi ⊕KMi−1) (3)

10 Nabil Abdoun et al.

where i : the block index; 1 ≤ i ≤ q.
for i = 1 : KM0 = K: the secret key.
for i = q : KMq = h: the final hash value.

Miyaguchi-Preneel (MP) output scheme: This output scheme can be considered
as an extension of the MMO output scheme, where KMi−1 is also added to the
xor operation between Mi and HMi (Fig. 7-c). The final output KMi is defined
by:

KMi = O(HMi ⊕Mi ⊕KMi−1) (4)

where i : the block index; 1 ≤ i ≤ q.
for i = 1 : KM0 = K: the secret key.
for i = q : KMq = h: the final hash value.

3.2 Chaotic System

The proposed Chaotic System is used to generate the parameters concerning the
CNN compression function (Fig. 7). It comprises the DSTmap with one recursive
cell (delay equal to 1) (Fig. 8). Its outputs are defined as follows:

KSs(n) = DSTmap(KSs(n− 1), Q1)

=


2N × KSs(n−1)

Q1 if 0 < KSs(n− 1) < Q1

2N − 1 if KSs(n− 1) = Q1

2N × 2N−KSs(n−1)
2N−Q1

if Q1 < KSs(n− 1) < 2N

(5)

where Q1, the control parameter, and KSs(n) range from 1 to 2N − 1. N is
the finite precision and is equal to 32 bits. The secret key K, used for the first
block M1, is composed of the necessary parameters and initial conditions of the
simplified version of the Chaotic Generator patent [43] and it is given by the
following equation:

K = {KSs(0),Ks,KSs(−1), Us, Q1} (6)

where KSs(0) and KSs(0) are the initial values, Us is an additional initial value
used only to generate the first sample, Ks is the coefficient, and Q1 is the control
parameter of the Chaotic System. The components of K are samples of 32 bits
length and its size is given as follows:

|K| = |KSs(0)|+|Ks|+|KSs(−1)|+|Us|+|Q1|
= 160 bits

(7)

Title Suppressed Due to Excessive Length 11

DSTmap

Z-1X

KSsi(n)

Ks1

kSsi(n-1)

Us Q1

Fig. 8: The structure of the Chaotic System

3.3 Keyed hash functions based on two-layer CNN structure (Structure 1)

The general architecture of the proposed keyed hash function is composed of the
defined Chaotic System and two-layer CNN (Fig. 9) [37]. Each layer is composed
of 8 neurons, where each one uses a chaotic activation function (Figures 10 and 11).
The chaotic activation function consists of two xored chaotic maps: a Discrete Skew
Tent map (DSTmap) and a Discrete Piecewise Linear Chaotic map (DPWLCmap)
[43,44,67]. Each map is iterated T times (by experiment, we choose the transient
phase tr = 30 for Structure 1 and tr = 20 for Structure 2), before generating
the first useful sample for maintaining the randomness of the output. The outputs
of the DPWLCmap are defined as follows:

KSp(n) = DPWLCmap(KSp(n− 1), Q2)

=



2N × KSp(n−1)
Q2 if 0 < KSp(n− 1) ≤ Q2

2N × KSp(n−1)−Q2
2N−1−Q2

if Q2 < KSp(n− 1) ≤ 2N−1

2N × 2N−KSp(n−1)−Q2
2N−1−Q2

if 2N−1 < KSp(n− 1) ≤ 2N −Q2

2N × 2N−KSp(n−1)
Q2 if 2N −Q2 < KSp(n− 1) ≤ 2N − 1

2N − 1−Q2 otherwise

(8)

where Q2 is the control parameter of DPWLCmap and ranges from 1 to 2N−1

(N=32 bits).
It should be noted that in the proposed structures, the padded message M is
divided into q blocks, where Mi (1 ≤ i ≤ q) is the ieme input block of the message
M , KMi (0 ≤ i ≤ q − 1) is the ieme key, and HMi (1 ≤ i ≤ q) is the ieme hash
value of block Mi (1 ≤ i ≤ q). For the first block M1, K = KM0 is the secret
key [44]. For the final block Mq, h is the final hash value of the entire message M
(Fig. 12).

Detailed description of the two-layer CNN hash function: The detailed structure
of the ieme block in the proposed two-layer CNN hash function using Miyaguchi-
Preneel output scheme, as an example, is given in Fig. 10. Each of the input and
output layers has 8 neurons. For each block Mi at the input layer, each neuron has
8 input-data: Pj(j = 0, ..., 7) for neuron 0, Pj(j = 8, ..., 15) for neuron 1 and so on

12 Nabil Abdoun et al.

Chaotic System based on DSTmap

Input Layer Output Layer

KMi-1

Mi

WI QI WO QO

C

HMi

Block i

CNN

BI BO

Mi KMi-1

KMi

O

KMi

O

Fig. 9: The structure of the ieme block in the proposed keyed hash function based
on two-layer CNN with MP output scheme

until reaching Pj(j = 56, ..., 63) for neuron 7. Each Pj(j = 0, ..., 63) is weighted by
WIj(j = 0, ..., 63), where both are the samples (integer values) of 32 bits length.
The Chaotic System generates the necessary samples (Key Stream (KS)) to supply
the CNN of each block i, which is as follows:

KS = {WI,BI,QI,WO,BO,QO} (9)

and its size is written as:

|KS| = |WI|+|BI|+|QI|+|WO|+|BO|+|QO|
= 176 samples

(10)

where |WI| = 64 samples, |BI| = 8 samples, |QI| = 16 samples, |WO| = 64 sam-
ples, |BO| = 8 samples, and |QO| = 16 samples, each of the 32 bits length.
The chaotic activation function of each neuron k(k = 0, ..., 7) for the input layer is
now explained as an example, (the activation function for the output layer has sim-
ilar description). As we can see in Fig. 11, the first four inputs Pj(j = 8k, ..., 8k+3)
are weighted by the WIj(j = 8k, ..., 8k + 3) and then added together with the
bias BIk (weighted by 1) to form the input of DSTmap. The second four inputs
Pj(j = 8k + 4, ..., 8k + 7) are weighted by WIj(j = 8k + 4, ..., 8k + 7) and then
added together with the same bias BIk to form the input of DPWLCmap. QIk,1
and QIk,2 are the control parameters of DSTmap and DPWLCmap, respectively.
The biases BIk are necessary in case the input message is null.
The outputs of the chaotic activation function are denoted Ck for the input layer,
which is given by equation 11, and Hk for the output layer, which is given by

Title Suppressed Due to Excessive Length 13

Discrete Skew Tent Map

Block i

WO0,0

WO7,7

WI,BI,QI WO,BO,QO

HMi

Output

H

H0

H7

Output

H

H0

H7

FI
BI0,QI0

FI
BI7,QI7

Input

C

C0

C7

P0

WI0

P7

WI7

P56

WI56

P63

WI63

FO
BO0,QO0

FO
BO7,QO7

FI
BI1,QI1

FO
BO1,QO1

H1

Mi

KMi-1

Mi

KMi-1

KMi

O

KMi

O

Fig. 10: A detailed structure of the ieme block in the proposed keyed hash function
based on two-layer CNN with MP output scheme

equation 12.

Ck = mod{[F1 + F2], 2N} where

F1 = DSTmap{mod([
8k+3∑
j=8k

(WIj × Pj)] + BIk, 2N),

QIk,1}

F2 = DPWLCmap{mod([
8k+7∑

j=8k+4

(WIj × Pj)] +BIk,

2N), QIk,2}

(11)

14 Nabil Abdoun et al.

DSTmap

DPWLCmap

+

+

QIk,1

QIk,2

P8k WI8k

P8k+1

P8k+4

P8k+7

WI8k+1

WI8k+4

WI8k+7

Ck

P8k+2

P8k+3

WI8k+2

WI8k+3

P8k+5

P8k+6
WI8k+5

WI8k+6

F1

F2

BIi
1

Fig. 11: A detailed structure of the keme neuron in input layer of the two proposed
hash functions

Hk = mod{[G1 +G2, 2N]} where

G1 = DSTmap{mod([
3∑

j=0

(WOk,j × Cj)] +BOk, 2
N),

QOk,1}

G2 = DPWLCmap{mod([
7∑

j=4

(WOk,j × Cj)] +BOk,

2N), QOk,2}

(12)

where k = 0, 1, ..., 7.
The outputs Ck of the input layer, weighted byWOk,k(k = 0, ..., 7), and the output
biases BOk(k = 0, ..., 7), weighted by 1, are the inputs of the activation function
of the output layer. Both WOk,k and BOk are samples of 32 bits length. For each
neuron, DSTmap and DPWLCmap are iterated once. The outputHMi(i = 1, ..., q)
of each block is the concatenation vector of Hk(k = 0, ..., 7) (Fig. 12). Then, the
final hash value of length 256 bits is given by the following equation:

(13)

h = O[KMq−1 ⊕HMq ⊕Mq]

= O[(KMq−2 ⊕HMq−1 ⊕Mq−1)⊕HMq ⊕Mq]

= ...

= O[(K ⊕HM1 ⊕M1)⊕HM2 ⊕M2 ⊕ ...⊕HMq ⊕Mq]

where O is the Least Significant Bit (LSB) output function.

Title Suppressed Due to Excessive Length 15

DSTmap with delay 1
Message M

Block 1

WO0,0

WO7,7

WI,BI,QI WO,BO,QO

KM1=LSB(M1 HM1 K)

KMq-2

KMq-1

Block q

Hash Value h

256 bits

Hash Value h

256 bits

Bitwise XOR KMq-1

K
HM1

HMq

P0

P1

P2

P61

P62

P63

3
2

 b
it

s

2
0

4
8

 b
it

s

P0

P1

0

0
P62

P63

P0

P1

P2

P61

P62

P63

P0

P1

P2

P61

P62

P63

M1

M2

Mq-1

Mq

6
4

 b
it

s
v

b
it

s

HMq-1

K

Output

H

H0

H7

Output

H

H0

H7

FI
BI0,QI0

FI
BI7,QI7

Input

C

C0

C7

P0

WI0

P7

WI7

P56

WI56

P63

WI63

DSTmap with delay 1

WO0,0

WO7,7

WI,BI,QI WO,BO,QO

Output

H

H0

H7

Output

H

H0

H7

FI
BI0,QI0

FI
BI7,QI7

Input

C

C0

C7

P0

WI0

P7

WI7

P56

WI56

P63

WI63

FO
BO0,QO0

FO
BO7,QO7

FO
BO0,QO0

FO
BO7,QO7

FI
BI1,QI1

FO
BO1,QO1

H1

FI
BI1,QI1

FO
BO1,QO1

H1

M1

Mq

O

O

Fig. 12: The proposed keyed hash function based on two-layer CNN with MP
output scheme

16 Nabil Abdoun et al.

3.4 Keyed hash functions based on one-layer CNN with Non-Linear output layer
(Structure 2)

Thus, to efficiently increase the hash throughput while keeping the necessary se-
curity requirements, we replace the output layer neural network of Fig. 10 by
a combination of non-linear functions used in the standard SHA-2. However in
our implementation, the round constant Ki(i = 0, ..., 63) and the message sched-
ule array Wi(i = 0, ..., 63) are not useful (Fig. 13). As we can see in the figure
13, the non-linear functions take 8 32-bit inputs Dk(k = 0, ..., 7) and generates
8 32-bit outputs Hk(k = 0, ..., 7). The four boxes (Ch, Ma, Σ0, and Σ1) com-
bine the input data in non-linear ways to generate H0 and H4, while the other
outputs Hk(k = 1, 2, 3, 5, 6, 7) are connected directly to Dk, which is as follows:
Hk = Dk−1 (k = 1, 2, 3, 5, 6, 7). These non-liner functions are defined as follow [3]:

Ch(D4, D5, D6) = (D4 ∧D5)⊕ (¬D4 ∧D6)

Ma(D0, D1, D2) = (D0 ∧D1)⊕ (D0 ∧D2)⊕ (D1 ∧D2)

Σ0(D0) = ROTR2(D0)⊕ROTR13(D0)⊕ROTR22(D0)

Σ1(D4) = ROTR6(D4)⊕ROTR11(D4)⊕ROTR25(D4)

ROTRn(x) = (x� n) ∨ (x� (32− n))

(14)

where ∧ : AND logic,¬ : NOT logic,⊕ : XOR logic,∨ : OR logic,
�: Binary Shift Right operation, and�: Binary Shift Left operation.

Detailed description of One-Layer CNN followed by NL functions: The structure
of the proposed CNN is given in Fig. 14. To supply the CNN, the Chaotic System
generates the necessary samples (Key Stream (KS)) of each block i, which are as
follows:

KS = {WI,BI,QI,WO} (15)

and its size is given as follows:

|KS| = |WI|+|BI|+|QI|+|WO|
= 96 samples

(16)

where |WI| = 64 samples, |BI| = 8 samples, |QI| = 16 samples, and |WO| =
8 samples, each of 32 bits length. The outputs Ck(k = 0, ..., 7) of the chaotic
activation function given by equation 11 are weighted by WOk,k(k = 0, ..., 7) to
form the inputs of the NL layer. The outputs Hk(k = 0, ..., 7) are given by equation
17. 

H0 = Ch(D4, D5, D6)⊕D7 ⊕ Σ1(D4)⊕Ma(D0, D1, D2)

⊕Σ0(D0)

H1 = D0, H2 = D1, H3 = D2

H4 = Ch(D4, D5, D6)⊕D7 ⊕ Σ1(D4)⊕D3

H5 = D4, H6 = D5, H7 = D6

(17)

We iterate the non-linear functions until the necessary security requirements are
met. From experimental results (given in performance analysis paragraph), the
number of rounds r equals to 8, which is sufficient. The final hash value h of
length 256 bits is given in equation 13.

Title Suppressed Due to Excessive Length 17

D0

D1

D2

D3

D4

D5

D6

D7

H0

H1

H2

H3

H4

H5

H6

H7

Ch Ma ∑0∑1

Bitwise XOR

Fig. 13: Non-linear functions

4 Performance analysis

To evaluate the performance, in terms of cryptanalysis and hash throughput, of
the two proposed structures for each suggested output schemes, we perform the
following experiments and analysis. Then, we compare their performance with
most chaos-based hash functions in the literature and SHA-2. First, the one-way
property (preimage resistance) is showed and then the statistical tests, the brute
force, and cryptanalytical attacks of the proposed hash functions are analyzed
(Fig. 15).

4.1 One-way property:

In the two proposed structures, we will show that it is extremely difficult to com-
pute the message M and the secret key K when only the hash value h is known.
For the first structure, the hash H is written in a general form, which is as follows
(equations 11 and 12):

(18)H = G[(WO × C +BO), QO]

= G[(WO × F ((WI × P +BI), QI), QO)]

18 Nabil Abdoun et al.

DSTmap with delay 1
Message M

Block 1
WI,BI,QI

KM1=LSB(M1 HM1 K)

KMq-2

KMq-1

Block q

Hash Value h

256 bits

Hash Value h

256 bits

Bitwise XOR KMq-1

K
HM1

HMq

P0

P1

P2

P61

P62

P63

3
2

 b
it

s

2
0

4
8

 b
it

s

P0

P1

0

0
P62

P63

P0

P1

P2

P61

P62

P63

P0

P1

P2

P61

P62

P63

M1

M2

Mq-1

Mq

6
4

 b
it

s
v

b
it

s

HMq-1

K

Output

H

H0

H7

Output

H

H0

H7

FI
BI0,QI0

FI
BI7,QI7

Input

C

C0

C7

P0

WI0

P7

WI7

P56

WI56

P63

WI63

DSTmap with delay 1
WI,BI,QI

Output

H

H0

H7

Output

H

H0

H7

FI
BI0,QI0

FI
BI7,QI7

Input

C

C0

C7

P0

WI0

P7

WI7

P56

WI56

P63

WI63

FI
BI1,QI1

H1

FI
BI1,QI1

H1

Non-
Linear

Functions

Non-
Linear

Functions

M1

Mq

D0

D1C1

D7

D0

D1

D7

Mq-1

WO

WO

WO0,0

WO1,1

WO7,7

WO0,0

WO1,1

WO7,7

O

O

Fig. 14: The proposed keyed hash function based on one-layer NL CNN with MP
output scheme

Title Suppressed Due to Excessive Length 19

Brute force attacks Cryptanalytical attacks

Attacks on
Hash functions

Preimage
and second
preimage

attacks

Collision
resistance

attack
(Birthday

attack)

Length
extension

attack
(Padding attack)

Herding
attack

Joux attack
(Multi-collision

attack)

Long
message
second

preimage
attack

Meet-in-the-
middle

preimage
attack

Exhaustive
key search

attack

Statistical tests on
Hash functions

Collision
resistance

Sensitivity to
the secret key

Sensitivity to
the message

Diffusion
effect

Distribution
of hash value

Cryptanalysis

Fig. 15: Cryptanalysis: Statistical tests and attacks on hash functions

For the second structure, the hash H can be written as follows:

(19)H = NLr(WO × C)

= NLr[WO × F ((WI × P +BI), QI)]

A brute force attack, as defined in sub-section 4.3.1, tries for a given secret key K
to find a message M, of which its hash is equal to a given hash value. The attacker
needs to try, on average, 2u−1 values of M, to find the desired hash value h. As u
is the length of the hash value equal to 256 bits in the two proposed structures,
then according to today’s computing ability, this attack is infeasible [7, 8, 21,22].

4.2 Statistical tests

This paragraph lists down the analysis of the following tests: Collision resistance,
Distribution of hash value, Sensitivity of hash value h to the message M, Sensitivity
of hash value h to the secret key K, and Diffusion effect.

20 Nabil Abdoun et al.

4.2.1 Analysis of collision resistance

This test is usually conducted to evaluate the quantitative analysis of collision
resistance [5,7]. First, the hash value h of a random message is generated and stored
in the ASCII format. Next, a bit in the message is randomly selected, toggled, and
then a new hash value h′ is generated and stored in the ASCII format. The two
hash values are represented by: h = {c1, c2, ..., cs} and h′ = {c′1, c′2, ..., c′s}, where

ci and c
′

i are the ith ASCII character of the two hash values h and h′, respectively.
The size s of the hash value in the ASCII code is equal to s = u

k=8 = 32 characters.
The two hash values are compared with each other and the number of characters
with the same value at the same location, namely the number of hits ω, is counted
according to the following:

ω =
s=32∑
i=1

f(T (ci), T (c
′

i))

where f(x, y) =

{
1 if x = y
0 if x 6= y

} (20)

where the function T (.) converts the entries to their equivalent decimal values.
For J independent experiments and under the assumption of uniform and random
distribution of hash value, the theoretical number of tests denoted by WJ(ω) with
a number of hits ω = 0, 1, 2, ..., s, is given by [19]:

WJ(ω) = J × Prob{ω} = J
s!

ω! (s− ω)!
(

1

2k
)ω(1− 1

2k
)s−ω (21)

Thus, to find the optimal number of round r for Structure 2, we calculate, using
the equation 20, the number of hits ω according to r (r = 1, 2, 4, 8, 16, 24) in the
worst case, where the number of tests J = 2048 tests.
As we can see from the results obtained in Table 2, with MMO output scheme, as
an example, for r = 8 rounds, there are zero hits for 1825 tests, one hit for 207
tests, two hits for 15 tests, and three hits for 1 test. For r = 24 rounds, there are
zero hits for 1817 tests, one hit for 225 tests, and two hits for 6 tests. Similar results
are obtained for other output schemes as well. The number of rounds r equals 8,
whereas 24 seems to be adequate for the three output schemes. We choose r = 24,
for more robustness and the number r = 8 is a compromise between robustness
and hash throughput.
Table 3 represents the number of obtained hits ω, for the proposed structures for
the three output schemes, with J = 2048 tests and for r = 8, 24 rounds for Struc-
ture 2. We remark that, for r = 8 rounds, the obtained results with Structure
2 are similar to the results obtained with Structure 1, irrespective of the consid-
ered output scheme. For r = 24 rounds, the obtained results with Structure 2,
as are slightly bit better than that of Structure 1.
Thus, to evaluate the influence of the test number J (J = 512, 1024, and 2048
tests) on the number of hits, we calculate ω for the proposed structures with MP
output scheme, and for r = 8, 24 rounds for the second structure. The obtained
results presented in Table 4 for Structures 1 and 2 with r = 8 rounds are similar,
while with r = 24 rounds of Structure 2, the number of hits is smaller than that
of the other cases. We remark that the number of hits increases with the number

Title Suppressed Due to Excessive Length 21

Number of hits ω
0 1 2 3 4 16 17 24 25 26 28

number of rounds
r

Output schemes
MMO 1 1778 240 24 1 0 0 0 5 0 0 0

2 1784 248 11 0 0 5 0 0 0 0 0
4 1790 243 14 1 0 0 0 0 0 0 0
8 1825 207 15 1 0 0 0 0 0 0 0
16 1811 222 14 1 0 0 0 0 0 0 0
24 1817 225 6 0 0 0 0 0 0 0 0

MMMO 1 1757 232 11 0 0 0 0 45 1 2 0
2 1725 259 15 1 0 45 3 0 0 0 0
4 1828 206 14 0 0 0 0 0 0 0 0
8 1800 237 10 1 0 0 0 0 0 0 0
16 1801 233 14 0 0 0 0 0 0 0 0
24 1810 230 7 1 0 0 0 0 0 0 0

MP 1 1744 238 17 1 0 0 0 46 0 1 1
2 1773 215 11 1 0 45 3 0 0 0 0
4 1783 251 13 1 0 0 0 0 0 0 0
8 1817 215 16 0 0 0 0 0 0 0 0
16 1813 218 16 1 0 0 0 0 0 0 0
24 1815 226 7 0 0 0 0 0 0 0 0

Table 2: Number of hits ω according to the number of rounds r of Structure 2
for 2048 tests

of tests J. These results are in sync with the theoretical values of WJ(ω) calculated
from equation 21 and are represented in Table 5.
The collision resistance is also quantified by the absolute difference d of two hash
values given by equation 22. We evaluated and presented the mean, mean/character,
minimum, and maximum of d for the two proposed hash functions in Tables 6 and
7.

d =
s=32∑
i=1

|T (ci)− T (c
′

i)| (22)

From the results given in Table 6 for J = 2048 tests, we observe that the mean/character
value with the MMO output scheme for Structure 1 (mean/character = 85.04)
and Structure 2 - r = 24 rounds (mean/character = 85.81) are close to the ex-
pected value 85.3̄ given in equation 23. The results presented in Table 7 with J (J
= 512, 1024, and 2048 tests) show that, when J is increasing, the mean/character
converge to the expected value E. For two hash, i.e., h = {c1, c2, ..., cs} and
h′ = {c′1, c′2, ..., c′s}, with independent and uniformly distributed ASCII character
having equal probabilities, the expected value of the mean/character is calculated
by [68]:

E[T (ci)− T (c
′

i)] =
1

3
× L = 85.3̄ (23)

where T (ci) and T (c
′

i) ∈ {0, 1, 2, ..., 255} and L = 256 (L is the number of levels).

4.2.2 Distribution of hash value

A hash function H should produce uniform distribution of hash value h. To verify
this property, we perform the following test: for a given message M, With the

22 Nabil Abdoun et al.

Output schemes Number of hits ω
0 1 2 3

Structure 1 MMO 1833 200 15 0
MMMO 1799 237 12 0

MP 1803 232 13 0

Structure 2 MMO 1825 207 15 1
r = 8 MMMO 1800 237 10 1

MP 1817 215 16 0
Structure 2 MMO 1817 225 6 0

r = 24 MMMO 1810 230 7 1
MP 1815 226 7 0

Table 3: Number of hits ω regarding the proposed structures with the three output
schemes for 2048 tests

Number of tests Number of hits ω
0 1 2 3

Structure 1 512 444 64 4 0
1024 905 111 8 0
2048 1803 232 13 0

Structure 2 512 446 62 4 0
r = 8 1024 899 117 8 0

2048 1817 215 16 0
Structure 2 512 452 58 2 0

r = 24 1024 905 116 3 0
2048 1815 226 7 0

Table 4: Number of hits ω of the proposed structures with MP output scheme for
J = 512, 1024, and 2048 tests

ω
0 1 2 3 32

J 512 451.72 56.68 3.44 0.13 4.42× 10−75

1024 903.45 113.37 6.89 0.27 8.84× 10−75

2048 1806.91 226.74 13.78 0.54 1.76× 10−74

Table 5: Theoretical values of the number of hits ω according to the number of
tests J

Output schemes Mean Mean/character Minimum Maximum
Structure 1 MMO 2721.43 85.04 1736 3723

MMMO 2764.05 86.37 1829 3757
MP 2633.17 82.28 1471 3779

Structure 2 MMO 2616.94 81.77 1559 3574
r= 8 MMMO 2854.76 89.21 1845 4195

MP 2861.93 89.43 1707 3951
Structure 2 MMO 2746.07 85.81 1696 3807

r= 24 MMMO 2856.03 89.25 1545 3981
MP 2615.44 81.73 1540 3671

Table 6: Mean, Mean/character, Minimum, and Maximum of the absolute differ-
ence d for the proposed structures with the three output schemes and J = 2048
tests

Title Suppressed Due to Excessive Length 23

Number of tests Mean Mean/character Minimum Maximum
Structure 1 512 2637.00 82.40 1471 3779

1024 2637.99 82.43 1471 3779
2048 2633.17 82.28 1471 3779

Structure 2 512 2872.23 89.75 1828 3872
r= 8 1024 2868.04 89.62 1707 3951

2048 2861.93 89.43 1707 3951
Structure 2 512 2603.32 81.35 1764 3671

r= 24 1024 2620.85 81.90 1626 3671
2048 2615.44 81.73 1540 3671

Table 7: Mean, Mean/character, Minimum, and Maximum of the absolute differ-
ence d for the proposed structures with MP output scheme and J = 512, 1024,
and 2048 tests

wide application of Internet and computer technique, information secu-
rity becomes more and more important. As we know, hash function is
one of the cores of cryptography and plays an important role in informa-
tion security. Hash function takes a message as input and produces an
output referred to as a hash value. A hash value serves as a compact rep-
resentative image (sometimes called digital fingerprint) of input string
and can be used for data integrity in conjunction with digital signature
schemes., we calculate its hash value h, for the proposed Structure 1 with MP
output scheme, before drawing two-dimensional graphs. The first graph shows the
ASCII values of the message according to their index positions (Fig. 16a). The sec-
ond graph exhibits the hexadecimal values of the hash value h according to their
index positions (Fig. 16b). As we can see, the distribution of original message is
mostly localized around a small area, while the distribution of hexadecimal values
spreads around the entire area. This property of hash value h must be true under
the worst case of null input message (Figures 16c and 16d). Similar results are
obtained for the two proposed hash functions with their different output schemes.

4.2.3 Sensitivity of hash value h to the message M

An efficient hash function H should be extremely sensitive to any input message
M, which means that any slight change in the input message should produce a
completely different hash value hi. To verify this property, we calculate, for a
given secret key K, the hash value hi in hexadecimal format, the number of bits
changed Bi(h, hi) (bits), and the sensitivity of the hash value h to the original
message M measured by Hamming Distance HDi(h, hi)(%) is given as follows:

Bi(h, hi) =

|h|∑
k=1

[h(k)⊕ hi(k)] bits (24)

HDi(h, hi)% =
Bi(h, hi)

|h| × 100% (25)

The message variants are obtained under the following conditions:
Condition 1 : The original message M is the one given in Sect. 4.2.2.
Condition 2 : We change the first character W in the original message to X.

24 Nabil Abdoun et al.

0 100 200 300 400 500 600
30

40

50

60

70

80

90

100

110

120

130

Character sequence index

A
S

C
II

va
lu

e

(a)

0 10 20 30 40 50 60 70
0

5

10

15

Hexadecimal code sequence index

H
ex

ad
ec

im
al

 v
al

ue

(b)

0 100 200 300 400 500 600
47

47.2

47.4

47.6

47.8

48

48.2

48.4

48.6

48.8

49

Character sequence index

A
S

C
II

va
lu

e

(c)

0 10 20 30 40 50 60 70
0

5

10

15

Hexadecimal code sequence index

H
ex

ad
ec

im
al

 v
al

ue

(d)

Fig. 16: Distribution of hash value for Structure 1 with MP output scheme

Condition 3 : We change the word With in the original message to Without.
Condition 4 : We change the dot at the end of the original message to comma.
Condition 5 : We add a blank space at the end of the original message.
Condition 6 : We exchange the first message block M1, With the wide applica-
tion of Internet and computer technique, information security becomes
more and more important. As we know, hash function is one of the
cores of cryptography and plays an important role in information se-
curity. Hash function takes a mes, with the second message block M2, sage
as input and produces an output referred to as a hash value. A hash
value serves as a compact representative image (sometimes called dig-
ital fingerprint) of input string and can be used for data integrity in
conjunction with digital signature schemes.
In Tables 8, 9, and 10, we present the obtained results of hi, Bi, and HDi(%) un-
der each condition for the two proposed hash functions with their output schemes,
i.e., MMO, MMMO, and MP.
In Table 11, we reassessed the obtained results and even for a single test, the re-
sults were inside the normal range. Therefore, the proposed hash functions have

Title Suppressed Due to Excessive Length 25

Message variants Hexadecimal hash values Bi HDi%
Structure 1 1 bedf7967520105d114e2cdf3399f52394a53e276bb104307345bacf93e317ef6 - -

2 48def8102016f2e3a5f8e7d8dc782b5b4e3e930cc207f925176ab87f380ad03d 125 48.82
3 d486760a20882b71746704d35ffdcd0f07c5ffe23cad86bd8117737205dd163c 127 49.60
4 b8bdc0f41686695f582a4d2e5b37f9b98813ab9c1cc42ba64024ee1769b422e7 113 44.14
5 e82980358f548044d0328f613a640fe23d1cb8465325dc223a7881ae65ef360d 136 53.12
6 76e33a9b2f6599542c557bdac7bee94f25dddbc615b222653201fd484ae8ce1c 130 50.78

Average - 126.2 49.29

Structure 2 1 1d6238873699dd1c252e02c88e1d2a380d9b5ea8e6c09c788fa4d3955b959975 - -
r = 8 2 6ea75e2045e994639a7d547ece06a6a399397a6cc501f52ffe4d4727030bedb2 128 50

3 72dcdf42b4c6d47352b75a7f2a7bbb3d9144c519e99e10cdd1a04237433730bf 131 51.17
4 308f5d0ce0c0a7b140cc7c179ae4697fba8ea270433c50b015095877c2047267 141 55.07
5 ebeac17eb7b2d842ef21971f6c9da59771f7a0e0612ecd96e37a97691eb0c1cd 135 52.73
6 1e56b053ebe94fc4eb36f8ed74981da9c01a861cdbe93b3c176ecfab8102a336 122 47.65

Average - 131.4 51.32
Structure 2 1 af5e7ca7c83a72c77f0e9b7d47df11b0f66cadc862d6f522d592dc5ad9bae938 - -

r = 24 2 46f051a065a716de24405e782adaccb29b3a85b0b75b34a9ba0757644bcdcc33 127 49.60
3 4f9c3863d40a2a1094d8d7483acc0724cbd9f2b68648db7fe8c0609327c8f318 130 50.78
4 2b4ff84285427b479d6948d20dd00eb389956dd325894d6036e510b99b20055d 126 49.21
5 15e6695fca52780d8694f83b0bba7b5fb43bc29329e78018287bd87776cdf459 132 51.56
6 d5a2f663581034f865ba7a2bc93d29232b0f57f99f8d33a8ef50e1070c84ae88 133 51.95

Average - 129.6 50.62

Table 8: Sensitivity of hash value to the message for the proposed structures with
MMO output scheme

Message variants Hexadecimal hash values Bi HDi%
Structure 1 1 719adf0e0cdf5b149edc54efdbc09bb6df5a0ce3d3ac9bccc39ac5a64ea65531 - -

2 a9472c054759a85c0c172e27bc1b957f09488c40329424c48aac1d1141dd8297 132 51.56
3 1bee2969559824929f8d53fda2c541288a4a04491a0a11670b3b907fa0d5dd91 119 46.48
4 27c29f1e040d922b31559e0e3f4e36edc9bdad55cf058d7f0eaa7a9f9eda6d98 124 48.43
5 65489772dff489621f3188237c1ff84c8bf686d7a4f5c6ff1e114b740c72c922 133 51.95
6 64755b1267f7243f2dbf243d698db2dd40ff63df7375f645886d064b2d05fdb2 135 52.73

Average - 128.6 50.23

Structure 2 1 a594a994aa162adca654e889dea0e6344190aa02328302465570df8f0084f5e6 - -
r = 8 2 9d698ca7855b104a526a075a36cbf158da31c872257db0d8d589502f60a8115f 135 52.73

3 fe77f2939687110cc6f383ed0ac2990e89b513ed1425c2a2ded04ce8ab26331e 129 50.39
4 d906ae7eaf90974ce664e8adb535e71b798873bfdc77827e3715715bb6b5cbb5 113 44.14
5 f1ea83b16b7fecd5d523573d35f52a424e35a8dc38af6e013f9d2020f0825c35 136 53.12
6 29e7a1e00480ff09b86d357982d28ab641758c071cee1a2095452cb583740194 121 47.26

Average - 126.8 49.53
Structure 2 1 6abbd825d6b17184a5fc558670f9f78d91b3812c899c8a062ef855507b4a81e5 - -

r = 24 2 c7c8654da6fd4fb838f8f9bea4baa223b8298a1c1e0cda2181a23e612cbb8446 122 47.65
3 0fe4ee2f96a9092f539a4fd229466b381a794db148da178e635022d9a690eabf 130 50.78
4 9b01f686addb2e2f6dbd7046b985b4ae1b5b39a7da3aec544ecb6c8efd310a00 128 50.00
5 9901ff0d69138df2f70a5930ede63447875c859830bc87e4164a83b083a6a193 131 51.17
6 c5035924044140a2009837907fba710d05efbcbe12ff9c1d14d9090961bd054e 113 44.14

Average - 124.8 48.75

Table 9: Sensitivity of hash value to the message for the proposed structures with
MMMO output scheme

high message sensitivity. These results were in sync with precision in the diffusion
test, which was realized over a large number of tests.

4.2.4 Sensitivity of hash value h to the secret key K

Thus, to evaluate the sensitivity of hash value h to the secret key K, hash sim-
ulation experiments were conducted under five different conditions (the original
input message M is fixed), which are as follows:
Condition 1 : The original secret key K is used.
In each of these conditions, we flip the LSB in the afore-mentioned initial condi-
tions and parameters.
Condition 2 : We change the initial condition KSs(0) in the secret key.
Condition 3 : We change the parameter Ks in the secret key.
Condition 4 : We change the initial condition KSs(-1) in the secret key.
Condition 5 : We change the control parameter Q1 in the secret key.

26 Nabil Abdoun et al.

Message variants Hexadecimal hash values Bi HDi%
Structure 1 1 a005e50f9673ecee6e80c07c550e53f8a950cb4a91176a2a340b5822ec2f28c4 - -

2 d4ecfadcc796f46d63762eb8f0c7af6233ded0d61ea901541db1f8890f999755 141 55.07
3 3f8b28e72a453ad31e798a60ec46b64ab4eb3e95674b28d535a5d2feb8a7cdd8 139 54.29
4 b40f8be0ee3c28fc7c76578d6e8b49f56ea25aa0c2944475691746a7c2f23387 129 50.39
5 c0f0b6c0fee17303c94ab30ad6d7b1ecd50d9606e4fab176e726b20a3c229b5d 139 54.29
6 551eb7f04ec0ae2f0ceec2bb451a2b67682305697a0ffef418e221bdaad4a09c 129 50.39

Average - 135.40 52.89

structure 8 1 31882869cce69d7734f0078d29f297841b99d3f9786a1cf522688de9561826ee - -
r = 8 2 d8da2ae1aacca231e26931237f8ba1388aef0faf2372dde8876d329564bb4f39 129 50.39

3 0b43925c8865869e7dde5c67cfd976f839bd8f5c8fda2814c2c61ce4c926b380 130 50.78
4 d9e813e6f36a7a960664ab422b1eb1892be71f43a28229399bdcf51a5ab0df8d 131 51.17
5 d0f1dcbf0670f8a3ef2771d0f0d8404c6068ab43b303d1aa9e335d9a757ddb6b 149 58.20
6 1441805beb1753d9c81bd16d9059f3f2e57752732c1f2e539ec606555f2d9042 137 53.51

Average - 135.2 52.81
Structure 2 1 a86e4c2ff1450a08a173b2d9ef27d941fcb9a06f76ad1e70108192ce3cd02a16 - -

r = 24 2 22e2025f1d0bdb5b20098e8f2d81a63b27e722c9e2eb521e87e00943f7af1dbe 132 51.56
3 366d73069aa3e7238773a6ba39bbfc29203f28ffd05f8fec06060ececc54fc2e 113 44.14
4 cd1fcb9c2c9a1caab20b4c8bf1ff18493533b42004d9f7741f957ab1850831db 128 50.00
5 a0ef7aa8c7200a711f30101de786e2450f7a7f1e884a44831aba30c77f46b478 122 47.65
6 bbf12b6acb919c42edb035fe0945b414bf0809b666bbb536976139bee4ea9bdd 124 48.43

Average - 123.8 48.35

Table 10: Sensitivity of hash value to the message for the proposed structures with
MP output scheme

Output scheme Bi HDi%
Structure 1 MMO 126.2 49.29

MMMO 128.6 50.23
MP 135.40 52.89

Structure 2 MMO 131.4 51.32
r = 8 MMMO 126.8 49.53

MP 135.2 52.81
Structure 2 MMO 129.6 50.62

r = 24 MMMO 124.8 48.75
MP 123.8 48.35

Table 11: A comparison of average Bi and HDi(%) for message sensitivity

Message variants Hexadecimal hash values Bi HDi%
Structure 1 1 bedf7967520105d114e2cdf3399f52394a53e276bb104307345bacf93e317ef6 - -

2 60f63ae88faea074964bc5e71022d77003f61ed4dddd8b027c7826e8f31725ff 116 45.31
3 3e7a24001b11a0a5376d55d073e5910e1bb3b98e4736793ca8bcdf4b5da27b41 127 49.60
4 fd8fe49f2c5013871f1e291d6c74ceefeb9c4eead9a236d6b923bb04da3c7f4b 135 52.73
5 054c289004f47fde2fd041e5e830cd4a74d9b586ba2b79835fb5ee13c7289717 139 54.29

Average - 129.25 50.48

Structure 2 1 1d6238873699dd1c252e02c88e1d2a380d9b5ea8e6c09c788fa4d3955b959975 - -
r = 8 2 aab2bfb971b64b4349a5045d277421df6ee299dc209b0bf0ce9bfccff8bbbe8b 138 53.90

3 c5667f505bcb289ec52be2fce9a168b72ad0de3fae396b7654f34cf419309b0f 123 48.04
4 54b21e25c1ee818897c54e84eca15d2ddbd7b505ef81ba2c099a5c852db33b51 121 47.26
5 f6e6702867e3c3ee86a4d86a6153b1266f58847a704665417fbc66fc39d8179f 132 51.56

Average - 128.5 50.19
Structure 2 1 af5e7ca7c83a72c77f0e9b7d47df11b0f66cadc862d6f522d592dc5ad9bae938 - -

r = 24 2 f922e9e31c36e932ffb098930fa2726b29a1ce91c5c62b1f16981609b9b2453b 125 48.82
3 3566ab26fff9c3a232368b624267c3397ab1099ba744ff5f6ec97a7cbc483fa5 126 49.21
4 3b6a773dfe06e246ab3f53c3c9a0af08123346bb8a0e58a17caf6046992e08a7 130 50.78
5 40ed183aa3cfb41d9d6f7e304d9ab05a0007044b0db84f039f4315c046051641 146 57.03

Average - 131.75 51.46

Table 12: Sensitivity of hash value to the secret key for the proposed structures
with MMO output scheme

In Tables 12, 13, and 14, we present the obtained results of hi, Bi, and HDi(%)
under each condition for the two proposed structures with their output schemes,
i.e., MMO, MMMO, and MP.
In Table 15, we reassessed the obtained results and even for a single test, the
results are inside the normal range. Therefore, the proposed hash functions have
high key sensitivity.

Title Suppressed Due to Excessive Length 27

Message variants Hexadecimal hash values Bi HDi%
Structure 1 1 719adf0e0cdf5b149edc54efdbc09bb6df5a0ce3d3ac9bccc39ac5a64ea65531 - -

2 f2d4772a5a605c729e8ad2c3db016a20135f617b98c4366bb9b44cea418afe92 114 44.53
3 23c5a8b268979416f80a32c7aa272c23cd293e20fe3547f8a621815276b3ebab 130 50.78
4 75c848fa05415217403dbc2235da6d8fa7fa18b7526b376e4fbb89497303c340 120 46.87
5 22c9b90204e4522181389ccff6ab7d24547415b87c8cbd3425c83929c3221024 118 46.09

Average - 120.50 47.07

Structure 2 1 a594a994aa162adca654e889dea0e6344190aa02328302465570df8f0084f5e6 - -
r = 8 2 96ebc3ab71912e96b77b6c0db2ad2b0b300484abec4c326bbf10e7b5263ba545 127 49.60

3 67d10bee9dedd7e06d58ee10aca74ca3336000f1984a54591d4f9e33face2a1a 138 53.90
4 d2db99f2d01e0b5933c37fd86f8983577893b03f490abe2683e2e11870d1df69 123 48.04
5 6d5b61d74e75cd983b4f0bf3913211dd991aa35f378842bb187d734f708a49db 126 49.21

Average - 128.5 50.19
Structure 2 1 6abbd825d6b17184a5fc558670f9f78d91b3812c899c8a062ef855507b4a81e5 - -

r = 24 2 8741188aadde9edba0310e69541c85936202a4c7ef4de93e9906bdd970931948 149 58.20
3 e10308d6126ebaef0ed5982b03e0c27a521060a570aa0a2cf692e63d2d149336 137 53.51
4 e8818d36b227e849ed6e3a121745f8d8803bf9425384745fba6a2b1b7adbe32c 119 46.48
5 26354f0bc5a4e6385ac23c715acccf65c2d2b28785e504a4a2966f21189b8fde 132 51.56

Average - 134.25 52.44

Table 13: Sensitivity of hash value to the secret key for the proposed structures
with MMMO output scheme

Message variants Hexadecimal hash values Bi HDi%
Structure 1 1 a005e50f9673ecee6e80c07c550e53f8a950cb4a91176a2a340b5822ec2f28c4 - -

2 27de6d91694c777474b94f2a4ec3ed8c5b5b0da8c38fed5b4c75e2e2bf97972f 143 55.85
3 3fa8a997b46131a1429d0006b6c03f181898632313a64f3da8143d1cadd66925 122 47.65
4 f670f60cfc1daecb0c81988735b736c8c18851cebe5b94a6f1234f49bd4d5209 117 45.70
5 7c68bc63287bfe02badbceb99cdde6a0ef5e9e7429d1dc3d2a9bf90b34a6402c 123 48.04

Average - 126.25 49.31

Structure 2 1 31882869cce69d7734f0078d29f297841b99d3f9786a1cf522688de9561826ee - -
r = 8 2 0b840b10ffda4c9feb4dabf4ab2f642ffe55f730386b8d295534368af526fa33 136 53.12

3 2f65ed46a3cb9b0ebb1cf7cd52558de58e2ebc7474b01f169a6b30067e20e5a5 134 52.34
4 cf524afe65de3a8123e43e61540a28180f0be21669a3ca4b4d62fdca34f538b5 139 54.29
5 27d7a12c3a95c9f52148b43d60c7dbd3acd0b774c885d712bf2bb7673b77443e 131 51.17

Average - 135 52.73
Structure 2 1 a86e4c2ff1450a08a173b2d9ef27d941fcb9a06f76ad1e70108192ce3cd02a16 - -

r = 24 2 37235dea611e13421ca8545078d0ec3a88654cfbc4e24bd64dd110ce2ed4ea3e 121 47.26
3 7f60df23e3570ba37890a0b199e891835757fabc67b96e2cbbd02d0f64629cb7 120 46.87
4 d3bd1e2064cecd5851624b61019a097a00eca137bd1cff0d50b1af161185581e 127 49.60
5 149bb7e22e3a018254a5cfb711e192471971857c96663e6ec189762548f09ca3 139 54.29

Average - 126.75 49.51

Table 14: Sensitivity of hash value to the secret key for the proposed structures
with MP output scheme

Output scheme Bi HDi%
Structure 1 MMO 129.25 50.48

MMMO 120.50 47.07
MP 126.25 49.31

Structure 2 MMO 128.5 50.19
r = 8 MMMO 128.5 50.19

MP 135 52.73
Structure 2 MMO 131.75 51.46

r = 24 MMMO 134.25 52.44
MP 126.75 49.51

Table 15: A comparison of average Bi and HDi(%) for key sensitivity

4.2.5 Statistical analysis of diffusion effect

Since confusion and diffusion were first proposed by Shannon [4] in 1949, they have
been extensively used to evaluate the security of cryptographic primitives. In the
context of hash functions, confusion is defined as the complexity of the relation
between the secret key K and the hash value h for a given message M, whereas
diffusion is defined as the complexity of the relationship between the message M
and the hash value h for a given key K. The confusion effect is naturally obtained

28 Nabil Abdoun et al.

in hash functions and it is very strong in chaos-based hash functions, due to the
inherent properties of chaos. In cryptographic hash functions, strong diffusion is
required. The ideal diffusion effect is obtained when any single bit change in the
message causes a change with a 50% probability for each bit of a hash value (binary
format). This is often referred to the avalanche effect in literature [69].
To evaluate the performance of the two proposed structures with different output
schemes, i.e., MMO, MMMO, and MP, we performed the following diffusion test:
the previous defined message M is chosen and a hash value h is generated. Next,
a bit in the message is randomly selected and toggled and a new hash value is
generated. Then, the number of bits changed Bi between the two hash values is
calculated. This test is performed at J-time, where J = 512, 1024, and 2048 tests.
The six statistical values concerning this test are calculated as follows:

1. Minimum number of bits changed:
Bmin = min({Bi}i=1,...,J) bits

2. Maximum number of bits changed:
Bmax = max({Bi}i=1,...,J) bits

3. Mean number of bits changed:
B̄ = 1

J

∑J
i=1Bi bits

4. Mean changed probability (mean of HDi(%)):

P = (B̄
256)× 100 %

5. Standard variance of the changed bit number:

∆B =
√

1
J−1

∑J
i=1(Bi − B̄)2

6. Standard variance of the changed probability:

∆P =
√

1
J−1

∑J
i=1(Bi

256 − P)2 × 100 %

The obtained statistical results of diffusion presented in Table 16 with 2048 tests
demonstrates that the diffusion effect is close to the expected one. Indeed, irre-
spective of the used structure and the output schemes, both B̄ and P are very
close to the ideal values (128 bits and 50%, respectively), while ∆B and ∆P are
very low, which indicates that the diffusion is extremely stable. These results, pre-
sented in Table 17, are also confirmed through the tests with J = 512 and 1024,
for Structures 1 and 2 with MP output scheme.
In addition, we draw the histogram Bi (Fig. 17) of Structure 1 with MP output
scheme to show that the values of Bi are centered on the ideal value 128 bits.
Similar results are obtained for the other proposed hash functions as well.

4.3 Cryptanalysis

The attackers make use of some general attack methods that are available to them,
which can be applied to any Unkeyed or Keyed hash functions (Fig. 15). These
attacks depend only on the hash value length u for the unkeyed hash function
and on the hash value length u and the secret key length |K| for the keyed hash
function. If the cryptanalyst can find a method to retrieve K, the system is entirely
compromised (during the key life time) [54,70].

Title Suppressed Due to Excessive Length 29

Output schemes
MMO MMMO MP

Structure 1 Bmin 98 98 100
Bmax 158 158 154
B̄ 127.98 127.90 127.95
P 49.99 49.96 49.98

∆B 8.01 8.12 8.03
∆P 3.13 3.17 3.13

Structure 2 Bmin 99 98 103
r = 8 Bmax 157 154 157

B̄ 128.31 128.18 127.97
P 50.12 50.07 49.99

∆B 8.03 8.17 8.01
∆P 3.13 3.19 3.13

Structure 2 Bmin 101 103 100
r = 24 Bmax 155 156 157

B̄ 127.81 127.70 127.88
P 49.92 49.88 49.95

∆B 8.23 8.06 7.94
∆P 3.21 3.15 3.10

Table 16: Diffusion statistical-results for the two proposed structures

Number of tests
512 1024 2048

Structure 1 Bmin 100 100 100
Bmax 149 152 154
B̄ 128.11 128.22 127.95
P 50.04 50.08 49.98

∆B 8.11 8.17 8.03
∆P 3.16 3.19 3.13

Structure 2 Bmin 104 104 103
r = 8 Bmax 150 151 157

B̄ 127.98 127.88 127.97
P 49.99 49.95 49.99

∆B 7.92 7.98 8.01
∆P 3.09 3.12 3.13

Structure 2 Bmin 100 100 100
r = 24 Bmax 153 153 157

B̄ 127.85 127.96 127.88
P 49.95 49.98 49.95

∆B 8.22 8.10 7.94
∆P 3.21 3.16 3.10

Table 17: Diffusion statistical-results for the two proposed structures with MP
output scheme

4.3.1 Brute force attacks

A brute-force attack on a keyed hash function is more difficult than a brute-force
attack on an unkeyed hash function. There are two possible types of attacks, which
are as follows:

1. Attacks on the hash value h, namely Preimage attack, second preimage attack,
and collision resistance attack.

2. Attack on the secret key K, namely Exhaustive key search attack.

30 Nabil Abdoun et al.

100 110 120 130 140 150 160
0

20

40

60

80

100

120

Bi value

F
re

q
u
e
n
cy

 d
is

tr
ib

u
tio

n

Fig. 17: Histogram of Bi

For the first type of attacks, for a given secret key K, the fastest way to compute
a first or second preimages and collision resistance is through a brute force attack
that consists of randomly selecting values of M and try each value until a collision
occurs. For exhaustive key search attack, the attacker requires known {message,
hash} pairs.

Preimage and second preimage attacks [71]: In a preimage attack, given only the
hash value h, the attacker tries to find the original message M in a way such
that H(M) = h without attempting to recover the secret key K. For example, in
an authentication security service, a website stores {username, H (password)} in
its database instead of {username, password}. When a user tries to access the
website in question, the website verifies the authenticity of the user by comparing
H (input) with the stored hash H (password) (Fig. 18). Now, suppose this database
is compromised and an attacker succeeds in accessing a given hash value, then he
can try to generate the corresponding message using a preimage attack.
In a second preimage attack, the adversary has more information. Specifically, he
knows the hash value h for a given message M and he tries to find another message
M ′ that produces the same hash value h. For example, in digital signature scheme
for data integrity security service, the attacker has access to both document M
and its hash h and tries to find a new document M ′, such that H(M ′) = h, so
that he can send the signed new document M ′ as the original signed document M
(Fig. 19).
For the first and second preimage attacks, the adversary would have to try, on
average, 2u−1 values of M to find one that generates the given hash value h. Our
proposed structures produce hash values of length 256 bits, so that the minimum
amount of work required by an attacker to violate the preimage or second preimage

Title Suppressed Due to Excessive Length 31

H

Hash value h

Message
M

Message
M

Validate
Authentication

=
No

Authentication

YES

NO
Stored Hash

values

Secret Key
K

Fig. 18: General scheme of hash authentication

H

Hash value h

Message
M’

Message
M’

Network H
Hash value h

Message
M’

Message
M’

Digital
Signature

DS

Digital
Signature

DS
Hash value h

Encryption
Decryption

Private Key

Public Key

Validate
Data

Integrity

Sender Receiver

=

u
u

u

M’M’

DS

M’M’

DS

Secret Key
K

Secret Key
K

Fig. 19: Second preimage attack on Digital Signature scheme

resistance property should be 2256−1 operations, which is considered very high.
Thus, the proposed hash functions are robust against first and second preimage
attacks.

Collision resistance attack (Birthday attack) [72]: In the collision resistance at-
tack, the attacker tries to find two messages (M,M ′) that collide with the same
hash value h. The minimum amount of work required by an attacker to violate the
collision resistance property is approximately 2u/2 operations. This required effort

32 Nabil Abdoun et al.

is proven by a mathematical result referred to as the birthday paradox, which is
detailed in the example below.
Let us take the situation whether any two students in a class have the same birth-
day. Suppose that the class has 23 students. If a teacher specifies a day (say August
11), then the probability that at least one student has the same birthday as any

other student is (1 − (365×364×...×343)
365(23)) = 50.73%. Birthday attack is widely ex-

ploited for finding any two messages M and M ′, such that H(M) = H(M ′), then
the couple (M, M ′) is named a collision. If the length of h is u and hash values are
random with a uniform distribution, an adversary can expect to find a collision
(M, M ′) with a 50% probability within

√
2u = 2u/2 attempts. Yuval [73] proposed

the following strategy in DS application (Fig. 19) to exploit the birthday paradox
in a collision resistant attack without attempting to recover the secret key K :

1. The sender is prepared to sign a legitimate message M by appending the
appropriate ciphered u-bit hash code using its private key.

2. The attacker generates 2u/2 minor variations δM of the message M , where all
of them essentially convey the same meaning along with storing these messages
and their hash values in a table.

3. The attacker tries to find a fraudulent message M ′ that has the same sender’s
signature which was generated using the second preimage attack.

4. The attacker generates 2u/2 minor variations δM ′ of M ′, where all of them
essentially convey the same meaning. For each δM ′, the attacker computes
H(δM ′), checks for matches with any of the H(δM) values, and continues
until a match is found, H(δM ′) = H(δM).

5. Then, the attacker gives the valid fraudulent message δM ′ to the sender for
signature and this signature can then be attached to the fraudulent message for
transmission to the intended receiver. Thus, the attacker is assured of success
even though the encryption key is not known.

Another practical example is when the attacker finds a collision between a valid
Microsoft Windows security patch and a malware. Then, the attacker sends his
malware to sign it, in any certificate company, and ship it to Microsoft Windows
users around the world. Later, when a user tries to download the new patch, his
computer gets infected.
Also, for collision resistance attack, the length of hash value h determines the
security and the proposed hash functions are secure against these kinds of attacks
because an attacker needs, on average, 2128−1 tries.

Exhaustive key search attack [68, 74]: In keyed CNN hash functions, if the at-
tacker has access to a pair (message, digest), then normally the key can be found
by exhaustive searching and, on average, the attacker needs 2|K|−1 tries, where
|K| is the length of the secret key K. Thus, the level of effort for brute force at-
tack on keyed hash functions can be expressed as min(2|K|, 2u). As |K| = 160
bits, consequently, the proposed hash functions are immune against these kinds of
attacks.

4.3.2 Cryptanalytical attacks

Cryptanalytic attacks seek to exploit some properties of the keyed hash function to
perform some attacks other than brute force attacks. An ideal keyed hash function

Title Suppressed Due to Excessive Length 33

should require a cryptanalytic effort greater than or equal to the brute force effort.
Far less research has been conducted on developing such attacks. A useful survey
of some methods for specific keyed hash functions is developed in [75]. In the
following paragraphs, we apply the main cryptanalytic attacks of the literature on
the proposed hash functions, which are listed below:

1. Length extension attack (Padding attack)
2. Meet-in-the-middle preimage attack
3. Joux attack (Multi-collision attack)
4. Long message second preimage attack
5. Herding attack

Length extension attack [76,77]: In cryptography and computer security, a length
extension attack is a type of attack where an attacker can use H(M) and the
length of M to calculate H(M ||EM) for an attacker-controlled extended message
EM . The following attack is applied on Merkle − Dåmgard structure that is
transformed on keyed hash functions by adding the secret key K in the beginning
of the message M (MAC). This attack allows the inclusion of extra message (EM)
into a signed message, but needs to know the length of secret key K. Algorithms like
MD5, SHA-1, and SHA-2 that are based on the Merkle−Dåmgard construction
are vulnerable to these kinds of attacks. However, HMAC is not vulnerable to the
length extension attacks [78].
The attacker can perform the following steps. Suppose Alice sends (message M,
hash value h) as a pair to Bob. Let us assume that the attacker has access to the
message and its hash, then, he can easily calculate, from this pair, a new hash
value h′, which is as follows:

1. Pad the message M with an arbitrary extended message EM with a length
equal or multiple of a size block.

2. Set the digest h as the secret key.
3. Calculate the new hash value h′ corresponding to (M ||EM). This means that
h is used as the key for the added block(s) of (M ||EM).

4. Substitute (M, h) pair by (M ||EM,h′) and send it to Bob as a valid signature
(Fig. 20).

In our proposed hash functions, the secret key K is not pre-pended to the message
M but used as an input for the Chaotic System to produce the necessary supplies
to CNN. Then, such an attack can not be conducted.

Meet-in-the-middle preimage attack (MITM) [79,80]: The meet-in-the-middle preim-
age attack is a generic cryptanalytic approach that is originally applied to the
cryptographic systems based on block ciphers (Chosen plain-text attack). In 2008,
Aoki and Sasaki [80] noticed that the MITM attack could be applied to hash
functions, to find preimage, second preimage, or collision for intermediate hash
chaining values instead of the hash value h. This attack has successfully broken
several designs: the MD hash family includes MD5 [81], round-reduced SHA-0,
and SHA-1 [80], round-reduced SHA-2 [82], some Davies-Meyer hash construc-
tions, e.g., Tiger [83], reduced HAS-160 [84] and HAVAL [85]. The steps of MITM
attack, illustrated in Fig. 21 for a given secret key K, can be explained as follows:

34 Nabil Abdoun et al.

Message
M

Message
M

Original Hash
value h

Block q Block q+1

[Message + key] length

Key

NULL Bytes Padding
Original
Message

Just 1 Bit

EM

[EM] length

EMEM

New Hash
value h’ Block 1

Original
Message

…...

Fig. 20: Hash length extension attack

1. Use the hash function H to calculate the hash value h of a message M that is
divided into q fixed-size blocks.

2. Split the chain hash function in two parts, where the first part includes q-2
blocks and the second part includes the last two blocks q-1 and q.

3. Choose a message Q of length q-2 in the form
{Q1, Q2, ..., Qq−2}.

4. Compute the hash value KQq−2 of the chosen message using H.
5. Generate 2u/2 random blocks BX . For each generated block BXi

(instead of
Mq−1), start computing (from the splitting point) to generate the chaining
hash value: KQq−1,i = C(BXi

,KQq−2), i = 1, 2, ..., 2u/2, which forms a list
LBX

containing all the computed chaining values (KQq−1,i)X , i = 1, 2,
..., 2u/2 at the matching point.

6. Generate 2u/4 random blocks BY . For each generated block BYj
, j = 1, ..., 2u/4

(instead of Mq), start calculating KQq,k (k = 1, 2, ..., 2u/4) with KQq,k =

C(BYj
,KQq−1,k) (k = 1, 2, ..., 2u/4). Then form a list LBYj,k

containing the

chaining values of
(KQq−1,j,k)Y (k = 1, 2, ..., 2u/4). Then, LBY

is compared to LBX
to find a

collision at the matching point.
7. If a collision is found, then form the message
{Q1, Q2, ..., Qq−2, BXi

, BYj
} that gives the desired hash value h and, therefore,

use it to produce the same digital signature. Otherwise, repeat the above six
steps with a different chosen message {Q1, Q2, ...,
Qq−2}.

The probability that one element {KQq−1,j,k}Y from LBY
matches one element

{KQq−1,k}X from LBX
is equal to 1

2u/2 . Otherwise, the probability is (1− 1
2u/2). For

all the elements of LBY
, the probability that none of them are equal to an element

of BX , is (1− 1
2u/2)2u/2

. Given that, (1−x) ≤ e−x, the previous expression can be

approximated by: (e−1/2
u
2

)2u/2

= e−1. Then, the probability that one intermediate
matching value occurs is:

P = 1− e−1 = 0.632 (26)

Title Suppressed Due to Excessive Length 35

Message
M

Block 1 Hash value h K

Output
function

P: Padding, L: Length of the message M, C: Message compression function

M1 Mq

HM1

P, L… Mq-1Mq-2

…

Split Match

O
KM1

Block q-2
HMq-2

O
KMq-2

Block q-1
HMq-1

O
KMq-1

Block q
HMq

O

KMq
KM0 KMq-3

Chosen
Message

Q
Q1 By… BxQq-2

KQq-2

Hash value h

KQq

C

2048

KQq-1

Fig. 21: Meet-in-the-middle preimage attack

As our hash functions are preimage resistant, the effort to succeed the meet-in-
the-middle attack with probability 0.632 is 2u/2.

Joux attack [86]: A collision attack takes time of order 2u/2 (sec. 4.3.1). A multi-
collision attack means that a set of messages that all have the same hash value h.
In 2004, Joux showed that searching multi-collisions is not so hard when it comes
to finding ordinary collision. Indeed, he demonstrated that finding 2t collisions

cost only about t times a single collision attack, t × 2u/2 instead of 2u(2t−1)/2t

evaluations [54]. To illustrate this relation, let we show how 4 collisions (t = 2)
can be obtained with only two calls of a collision finding machine. This collision
finding machine uses birthday attack algorithm. For a given secret key K, a first
call to the collision finding machine generates two different blocks M1 and M ′1
that yield a collision: KM1 = C(M1,K) = C(M ′1,K). Then, a second call to
the same collision finding machine locates two other blocks M2 and M ′2 such that
C(M2,KM1) = C(M ′2,KM2). When putting these two steps together, we obtain
the following 4 collisions:
C(M2, C(M1,K)) = C(M ′2, C(M1,K))
= C(M2, C(M ′1,K)) = C(M ′2, C(M ′1,K)).
Joux claimed that this basic idea can be extended to much larger collisions by
using more calls to the collision finding machine. More precisely, using t calls, we
can build 2t-collision for a given hash function H. All of the 2t hashing processes
go through KM1,KM2, ...,KMt. A schematic representation of these 2t blocks
together with their common intermediate hash values is drawn in Fig. 22.
Furthermore, Joux observed that, for two independent hash functions H and G
and a given message M with H(M) = h and G(M) = g, the concatenation of
the two obtained hash values (h||g) is not more secure against collision attacks,
preimage resistance attack, and second preimage attack than any of the two hash
functions taken separately.

36 Nabil Abdoun et al.

Message
M / M

Block 1K

Output
function

C: Message compression function

M1 / M Mt / M t

HM1

 Mt-1 / M t-1M2 / M

 O
KM1

Block 2
HM2

O
KMt-2

Block t-1
HMt-1

O
KMt-1

Block t
HMt

O

KMt
KM0

C

2048

KM2

M1 M2 Mt-1 Mt

M M M t-1 M t

Fig. 22: Joux attack

Long message second preimage and Herding attacks The Long message second
preimage attack [87] and the Herding attack [88] are closely related to the Joux
attack. For the first kind of attack, the attacker can find a second preimage for a
message M of 2b blocks with b×2u/2+1 +2u−b+1 effort. For the second attack, the
needed work by the attacker to find 2t collisions is 2u−t−1+2u/2+t/2+2+t×2u/2+1.

4.4 Speed analysis

We evaluated the computing performance of the two proposed hash functions with
their output schemes for different message lengths. For this purpose, we calculated
the average hashing time HT (micro second), the average hashing throughput
HTH (MBytes/second) and the needed number of cycles to hash one Byte NCpB
(cycles/Byte).

HTH (MBytes/s) =
Message size(MBytes)

Average hashing time(s)
(27)

NCpB (cycles/Byte) =
CPUspeed(Hz)

HTH(Byte/s)
(28)

We used a computer with a 2.6 GHZ Intel core i5-4300M CPU with 4 GB of RAM
running Ubuntu Linux 14.04.1 (32-bit). In Tables 18, 19, and 20, the average HT,
the average HTH, and the average NCpB for the two structures with their output
schemes are presented. It was observed that, irrespective of the output schemes,
the computing performance of Structure 2 is approximately twice better than
the computing performance of Structure 1, even for r = 24 rounds. To focus
more on these results, the HTH for the two structures with their output schemes
23 were drawn.
The variation of computing performance according to the size of the message is
due to the transition phase of both chaotic system and chaotic activation function

Title Suppressed Due to Excessive Length 37

Message Structure 1 Structure 2 - r = 8 Structure 2 - r = 24
length HT HTH NCpB HT HTH NCpB HT HTH NCpB

513 8.60 57.37 43.70 4.47 112.02 22.71 6.73 73.21 34.20
1024 15.24 64.98 38.75 8.18 124.18 20.79 8.02 124.17 20.30
2048 27.02 72.66 34.33 13.82 143.44 17.56 15.11 132.90 19.20
4096 51.13 76.50 32.46 25.73 153.06 16.34 26.99 146.33 17.13
104 122.15 78.18 31.76 60.16 159.42 15.64 62.30 153.79 16.20
105 1211.30 79.14 31.49 590.16 162.70 15.34 626.89 154.21 16.29
106 11972.02 79.73 31.12 5910.81 162.14 15.36 6185.43 155.61 16.08

Table 18: Hashing time, hashing throughput, and the number of cycles per Byte
for Structures 1 and 2 with MMO output scheme and 2048 random tests

Message Structure 1 Structure 2 - r = 8 Structure 2 - r = 24
length HT HTH NCpB HT HTH NCpB HT HTH NCpB

513 8.53 57.72 43.34 5.16 99.80 26.21 6.89 71.12 35.02
1024 15.11 65.65 38.42 7.78 127.88 19.77 8.03 124.46 20.40
2048 27.21 72.30 34.56 13.47 145.78 17.11 14.32 137.94 18.19
4096 51.71 75.81 32.83 25.40 154.57 16.13 26.67 147.56 16.93
104 122.50 78.05 31.85 59.71 160.27 15.52 63.25 152.32 16.44
105 1216.68 78.70 31.63 603.15 159.79 15.68 632.82 153.17 16.45
106 11935.23 79.97 31.03 6015.73 160.38 15.64 6272.66 153.96 16.30

Table 19: Hashing time, hashing throughput, and the number of cycles per Byte
for Structures 1 and 2 with MMMO output scheme and 2048 random tests

Message Structure 1 Structure 2 - r = 8 Structure 2 - r = 24
length HT HTH NCpB HT HTH NCpB HT HTH NCpB

513 8.67 57.19 44.04 4.45 111.99 22.61 6.76 73.19 34.36
1024 14.77 66.84 37.55 7.72 128.94 19.62 7.94 124.42 20.19
2048 27.05 72.73 34.35 13.81 143.17 17.55 16.03 127.37 20.36
4096 51.52 76.12 32.71 27.42 145.93 17.41 28.16 141.84 17.88
104 122.12 78.32 31.75 59.73 160.25 15.53 63.87 151.23 16.60
105 1232.16 78.32 32.03 585.29 163.83 15.21 631.08 153.34 16.40
106 11866.13 80.42 30.85 5864.95 163.29 15.24 6250.05 154.55 16.25

Table 20: Hashing time, hashing throughput, and the number of cycles per Byte
for Structures 1 and 2 with MP output scheme and 2048 random tests

of a neuron. Indeed, the cost of the transition phase is approximately equal 2× tr
×4 = 240 Bytes for Structure 1 (tr = 30) and 160 Bytes for Structure 2 (tr =
20) in our implementation.

4.5 Performance comparison with other Chaos-based hash functions of literature
and standards hash functions

We compared the performance of the proposed hash functions with some hash
functions of literature in terms of statistical analysis and NCpB. Table 21 presents
the comparison with chaos-based hash function in terms of collision resistance for
MP output scheme with 2048 tests. As we can see, except Li et al. [30] our obtained
results are more close to the expected values. Table 22, additionally, presents the
comparison of statistical results of diffusion. We observed that the obtained re-
sults for all cited references are closed to the expected values. It should be noted
that besides the two references [34, 38], all the other references in Tables 21 and
22 present structures that work with hash value h = 128 bits. For comparison
purposes, we took the 128 LSB hash values.

38 Nabil Abdoun et al.

10
2

10
3

10
4

10
5

10
6

50

60

70

80

90

100

110

120

130

140

150

160

Data Length [Bytes]

H
a

sh
 T

h
ro

u
g

h
p

u
t

[M
B

/s
]

S1−MMO
S1−MMMO
S1−MP
S2−MMO
S2−MMMO
S2−MP

Fig. 23: Comparison of HTH for Structure 1 and Structure 2 - r = 24 rounds
with MMO, MMMO, and MP output schemes

Tables 23 and 24 present the comparison of the proposed chaos-based hash func-
tions with standard hash function in terms of collision resistance and diffusion.
Aside the values of Structure 2 - r = 8 rounds, the obtained results are similar
to those obtained by standard hash functions.
The speed performance, in terms of the number of cycles to hash one Byte (NCpB),
of the proposed keyed chaos-based hash functions is compared to that of some
chaos-based hash functions of literature and with the main standards of the un-
keyed and keyed hash functions, which are presented in Tables 25 and 26, respec-
tively. We observed that the NCpB of the Structure 2 is approximately twice
as fast as the best NCpB obtained by [35], but it is a little bit slower than the
SHA-2’s NCpB and approximately four times slower than the main keyed hash
functions.

5 Conclusion

We realized and analyzed the security and computation performance of the two
keyed chaotic neural network hash functions, based on Merkle-Dåmgard construc-
tion with three output schemes MMO, MMMO, and MP. The obtained results
quantified the robustness of the proposed hash functions for using them in data in-
tegrity, message authentication, and digital signature applications. The very good
performance is due to the strong one-way property of the combined chaotic system

Title Suppressed Due to Excessive Length 39

Hash function Number of hits ω Absolute difference d
0 1 2 3 Mean Mean/character Minimum Maximum

Xiao et al. [7] - - - - 1506 94.12 696 2221
Xiao et al. [24] 1926 120 2 0 1227.8 76.73 605 1952
Deng et al. [26] 1940 104 4 0 1399.8 87.49 583 2206
Yang et al. [27] - - - - - 93.25 - -
Xiao et al. [28] 1915 132 1 0 1349.1 84.31 812 2034
Li et al. [13] 1901 146 1 0 1388.9 86.81 669 2228
Wang et al. [16] 1917 126 5 0 1323 82.70 663 2098
Huang [33] 1932 111 5 0 1251.2 78.2 650 1882
Li et al. [29] 1928 118 2 0 1432.1 89.51 687 2220
Li et al. [30] 1899 124 25 0 1367.6 85.47 514 2221
Li et al. [31] 1920 124 4 0 1319.5 82.46 603 2149
He et al. [32] 1926 118 4 0 1504 94 683 2312
Xiao et al. [42] 1924 120 4 0 1431.3 89.45 658 2156
Yu-Ling et al. [89] 1928 117 3 0 1598.6 99.91 796 2418
Xiao et al. [90] 1932 114 2 0 1401.1 87.56 573 2224
Li et al. [91] 1920 122 6 0 - - - -
Li et al. [92] 1905 135 8 0 1335 83.41 577 2089
Structure 1 1931 114 3 0 1291.64 80.72 480 2038
Structure 2 - r = 8 1929 114 5 0 1426.23 89.13 730 2213
Structure 2 - r = 24 1942 106 0 0 1338.85 83.67 629 2071

Table 21: Comparison in terms of collision resistance of the proposed structures
with MP output scheme with some chaos-based hash functions

with neural network structure. Indeed, the neuron’s activation functions are based
on a secure and efficient chaotic generator. Compared to some chaos-based hash
functions of literature, the proposed CNN hash functions are more robust and
show good results in terms of computation performance. Our future work will fo-
cus on the design of the keyed CNN hash function based on Sponge construction,
adopted in the standard SHA-3, and its Duplex construction for authenticated
encryption application.

Conflict of Interest: The authors declare that they have no conflict of inter-
est.
Ethical approval: All procedures performed in studies involving human partic-
ipants were in accordance with the ethical standards of the institutional and/or
national research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.
Informed consent: Informed consent was obtained from all individual partici-
pants included in the study.

40 Nabil Abdoun et al.

Hash function Bmin Bmax B̄ P(%) ∆B ∆P %
Xiao et al. [7] - - 63.85 49.88 5.78 4.52
Lian et al. [21] - - 63.85 49.88 5.79 4.52
Zhang et al. [19] 46 80 63.91 49.92 5.58 4.36
Wang et al. [10] - - 63.98 49.98 5.53 4.33
Xiao et al. [24] - - 64.01 50.01 5.72 4.47
Deng et al. [25] - - 63.91 49.92 5.58 4.36
Deng et al. [26] - - 63.84 49.88 5.88 4.59
Yang et al. [27] - - 64.14 50.11 5.55 4.33
Xiao et al. [28] - - 64.09 50.07 5.48 4.28
Amin et al. [12] - - 63.84 49.88 5.58 4.37
Li et al. [13] 45 81 63.88 49.90 5.37 4.20
Wang et al. [16] - - 63.90 49.93 5.64 4.41
Akhavan et al. [17] 42 83 63.91 49.92 5.69 4.45
Huang [33] - - 63.88 49.91 5.75 4.50
Li et al. [29] - - 63.80 49.84 5.75 4.49
Wang et al. [11] 44 82 64.15 50.11 5.76 4.50
Li et al. [30] - - 63.56 49.66 7.42 5.80
Li et al. [31] - - 63.97 49.98 5.84 4.56
He et al. [32] 45 83 64.03 50.02 5.60 4.40
Jiteurtragool et al. [34] 43 81 62.84 49.09 5.63 4.40
Teh et al. [35] - - 64.01 50.01 5.61 4.38
Chenaghlu et al. [38] - - 64.12 50.09 5.63 4.41
Akhavan et al. [39] 43 82 63.89 49.91 5.77 4.50
Nouri et al. [40] - - 64.08 50.06 5.72 4.72
Xiao et al. [42] 47 83 63.92 49.94 5.62 4.39
Yu-Ling et al. [89] - - 64.17 50.14 5.74 4.49
Xiao et al. [90] - - 64.18 50.14 5.59 4.36
Li et al. [91] - - 64.07 50.06 5.74 4.48
Li et al. [92] - - 63.89 49.91 5.64 4.41
Ren et al. [93] - - 63.92 49.94 5.78 4.52
Guo et al. [94] - - 63.40 49.53 7.13 6.35
Yu et al. [95] 45.6 81.8 63.98 49.98 5.73 4.47
Zhang et al. [96] - - 64.43 49.46 5.57 4.51
Jiteurtragool et al. [34] 101 153 126.75 49.51 7.98 3.12
Chenaghlu et al. [38] 101 168 128.08 50.03 8.12 3.21
Structure 1 45 86 64.05 50.03 5.65 4.41
Structure 2 - r = 8 42 84 63.88 49.91 5.66 4.42
Structure 2 - r = 24 43 85 63.90 49.92 5.60 4.37

Table 22: Comparison of the statistical results of diffusion for the proposed struc-
tures with MP output scheme with some chaos-based hash functions

Hash function Number of hits ω Absolute difference d
0 1 2 3 Mean Mean/character Minimum Maximum

SHA2-256 [3] 1817 220 11 0 2707.10 84.59 1789 3819
Structure 1 1803 232 13 0 2633.17 82.28 1471 3779
Structure 2 - r = 8 1817 215 16 0 2861.93 89.43 1707 3951
Structure 2 - r = 24 1815 226 7 0 2615.44 81.73 1540 3671

Table 23: Comparison in terms of collision resistance of the proposed structures
with MP output scheme with some chaos-based hash functions

Title Suppressed Due to Excessive Length 41

Hash function Bmin Bmax B̄ P(%) ∆B ∆P %
SHA2-256 [3] 104 154 128.01 50.00 7.94 3.10
Structure 1 100 154 127.95 49.98 8.03 3.13
Structure 2 - r = 8 103 157 127.97 49.99 8.01 3.13
Structure 2 - r = 24 100 157 127.88 49.95 7.94 3.10

Table 24: Comparison of the statistical results of diffusion for the two proposed
structures with MP output scheme and SHA2-256

Hash Structure 1 Structure 2 - r = 8 Structure 2 - r = 24 Wang [10] Akhavan [17] Teh [35]
function MMO MMMO MP MMO MMMO MP MMO MMMO MP
NCpB 31.12 31.03 30.85 15.36 15.64 15.24 16.08 16.30 16.25 122.4 105.5 28.45

Table 25: Comparison of NCpB of the proposed structures with three output
schemes with some chaos-based hash functions

Hash function Structure 1 Structure 2 - r = 8 Structure 2 - r = 24 SHA2-256
MMO MMMO MP MMO MMMO MP MMO MMMO MP

NCpB 31.12 31.03 30.85 15.36 15.64 15.24 16.08 16.30 16.25 11.87

Hash function VMAC HMAC GCM CMAC DMAC CBC-MAC BLAKE 2
NCpB 0.42 14.42 0.42 4.41 4.40 2.88 2.58

Table 26: Comparison of NCpB of the proposed hash functions with the unkeyed
and keyed standards

42 Nabil Abdoun et al.

References

1. S. H. Islam, “Provably secure dynamic identity-based three-factor password authentication
scheme using extended chaotic maps,” Nonlinear Dynamics, vol. 78, no. 3, pp. 2261–2276,
2014.

2. K. Chain and W.-C. Kuo, “A new digital signature scheme based on chaotic maps,”
Nonlinear dynamics, vol. 74, no. 4, pp. 1003–1012, 2013.

3. S. H. Standard and P. FIPS, “180-2,” August, vol. 1, p. 72, 2002.
4. N. SHA, “standard: Permutation-based hash and extendable-output functions,” FIPS

PUB, vol. 202, p. 2015, 3.
5. K.-W. Wong, “A combined chaotic cryptographic and hashing scheme,” Physics letters A,

vol. 307, no. 5, pp. 292–298, 2003.
6. H. S. Kwok and W. K. Tang, “A chaos-based cryptographic hash function for message

authentication,” International Journal of Bifurcation and Chaos, vol. 15, no. 12, pp. 4043–
4050, 2005.

7. D. Xiao, X. Liao, and S. Deng, “One-way hash function construction based on the chaotic
map with changeable-parameter,” Chaos, Solitons & Fractals, vol. 24, no. 1, pp. 65–71,
2005.

8. X. Yi, “Hash function based on chaotic tent maps,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 52, no. 6, pp. 354–357, 2005.

9. G. Arumugam, V. L. Praba, and S. Radhakrishnan, “Study of chaos functions for their
suitability in generating message authentication codes,” Applied Soft Computing, vol. 7,
no. 3, pp. 1064–1071, 2007.

10. Y. Wang, X. Liao, D. Xiao, and K.-W. Wong, “One-way hash function construction based
on 2d coupled map lattices,” Information Sciences, vol. 178, no. 5, pp. 1391–1406, 2008.

11. Y. Wang, K.-W. Wong, and D. Xiao, “Parallel hash function construction based on coupled
map lattices,” Communications in Nonlinear Science and Numerical Simulation, vol. 16,
no. 7, pp. 2810–2821, 2011.

12. M. Amin, O. S. Faragallah, and A. A. A. El-Latif, “Chaos-based hash function (cbhf) for
cryptographic applications,” Chaos, Solitons & Fractals, vol. 42, no. 2, pp. 767–772, 2009.

13. Y. Li, D. Xiao, and S. Deng, “Secure hash function based on chaotic tent map with
changeable parameter,” High Technol. Lett, vol. 18, no. 1, pp. 7–12, 2012.

14. J. Liu, X. Wang, K. Yang, and C. Zhao, “A fast new cryptographic hash function based
on integer tent mapping system.,” JCP, vol. 7, no. 7, pp. 1671–1680, 2012.

15. M. Maqableh, A. B. Samsudin, and M. A. Alia, “New hash function based on chaos theory
(cha-1),” International Journal of Computer Science and Network Security, vol. 8, no. 2,
pp. 20–27, 2008.

16. Y. Wang, M. Du, D. Yang, and H. Yang, “One-way hash function construction based on
iterating a chaotic map,” in Computational Intelligence and Security Workshops, 2007.
CISW 2007. International Conference on, pp. 791–794, IEEE, 2007.

17. A. Akhavan, A. Samsudin, and A. Akhshani, “Hash function based on piecewise nonlinear
chaotic map,” Chaos, Solitons & Fractals, vol. 42, no. 2, pp. 1046–1053, 2009.

18. Q.-h. Zhang, H. Zhang, and Z.-h. Li, “One-way hash function construction based on con-
servative chaotic systems,” in Information Assurance and Security, 2009. IAS’09. Fifth
International Conference on, vol. 2, pp. 402–405, IEEE, 2009.

19. J. Zhang, X. Wang, and W. Zhang, “Chaotic keyed hash function based on feedforward–
feedback nonlinear digital filter,” Physics Letters A, vol. 362, no. 5, pp. 439–448, 2007.

20. D. Xiao and X. Liao, “A combined hash and encryption scheme by chaotic neural network,”
Advances in Neural Networks-ISNN 2004, pp. 13–28, 2004.

21. S. Lian, J. Sun, and Z. Wang, “Secure hash function based on neural network,” Neuro-
computing, vol. 69, no. 16, pp. 2346–2350, 2006.

22. S. Lian, Z. Liu, Z. Ren, and H. Wang, “Hash function based on chaotic neural networks,”
in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Sym-
posium on, pp. 4–pp, IEEE, 2006.

23. X. Liu and C. Xiu, “Hysteresis modeling based on the hysteretic chaotic neural network,”
Neural Computing and Applications, vol. 17, no. 5-6, pp. 579–583, 2008.

24. D. Xiao, X. Liao, and Y. Wang, “Parallel keyed hash function construction based on
chaotic neural network,” Neurocomputing, vol. 72, no. 10, pp. 2288–2296, 2009.

25. S. Deng, D. Xiao, Y. Li, and W. Peng, “A novel combined cryptographic and hash al-
gorithm based on chaotic control character,” Communications in Nonlinear Science and
Numerical Simulation, vol. 14, no. 11, pp. 3889–3900, 2009.

Title Suppressed Due to Excessive Length 43

26. S. Deng, Y. Li, and D. Xiao, “Analysis and improvement of a chaos-based hash function
construction,” Communications in Nonlinear Science and Numerical Simulation, vol. 15,
no. 5, pp. 1338–1347, 2010.

27. H. Yang, K.-W. Wong, X. Liao, Y. Wang, and D. Yang, “One-way hash function con-
struction based on chaotic map network,” Chaos, Solitons & Fractals, vol. 41, no. 5,
pp. 2566–2574, 2009.

28. D. Xiao, X. Liao, and Y. Wang, “Improving the security of a parallel keyed hash function
based on chaotic maps,” Physics Letters A, vol. 373, no. 47, pp. 4346–4353, 2009.

29. Y. Li, S. Deng, and D. Xiao, “A novel hash algorithm construction based on chaotic neural
network,” Neural Computing and Applications, vol. 20, no. 1, pp. 133–141, 2011.

30. Y. Li, D. Xiao, S. Deng, Q. Han, and G. Zhou, “Parallel hash function construction
based on chaotic maps with changeable parameters,” Neural Computing and Applications,
vol. 20, no. 8, pp. 1305–1312, 2011.

31. Y. Li, D. Xiao, S. Deng, and G. Zhou, “Improvement and performance analysis of a novel
hash function based on chaotic neural network,” Neural Computing and Applications,
vol. 22, no. 2, pp. 391–402, 2013.

32. B. He, P. Lei, Q. Pu, and Z. Liu, “A method for designing hash function based on chaotic
neural network,” in International Workshop on Cloud Computing and Information Secu-
rity (CCIS), 2013.

33. Z. Huang, “A more secure parallel keyed hash function based on chaotic neural network,”
Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 8, pp. 3245–
3256, 2011.

34. N. Jiteurtragool, P. Ketthong, C. Wannaboon, and W. San-Um, “A topologically simple
keyed hash function based on circular chaotic sinusoidal map network,” in Advanced Com-
munication Technology (ICACT), 2013 15th International Conference on, pp. 1089–1094,
IEEE, 2013.

35. J. S. Teh, A. Samsudin, and A. Akhavan, “Parallel chaotic hash function based on the
shuffle-exchange network,” Nonlinear Dynamics, vol. 81, no. 3, pp. 1067–1079, 2015.

36. N. Abdoun, S. El Assad, M. A. Taha, R. Assaf, O. Deforges, and M. Khalil, “Hash func-
tion based on efficient chaotic neural network,” in International Conference on Internet
Technology and Secured Transactions, pp. 32–37, 2015.

37. N. Abdoun, S. El Assad, M. A. Taha, R. Assaf, O. Déforges, and M. Khalil, “Secure hash
algorithm based on efficient chaotic neural network,” in The 11th International Conference
on Communications, p. comm2016, 2016.

38. M. A. Chenaghlu, S. Jamali, and N. N. Khasmakhi, “A novel keyed parallel hashing scheme
based on a new chaotic system,” Chaos, Solitons & Fractals, vol. 87, pp. 216–225, 2016.

39. A. Akhavan, A. Samsudin, and A. Akhshani, “A novel parallel hash function based on
3d chaotic map,” EURASIP Journal on Advances in Signal Processing, vol. 2013, no. 1,
p. 126, 2013.

40. M. Nouri, A. Khezeli, A. Ramezani, and A. Ebrahimi, “A dynamic chaotic hash function
based upon circle chord methods,” in Telecommunications (IST), 2012 Sixth International
Symposium on, pp. 1044–1049, IEEE, 2012.

41. R. Guesmi, M. Farah, A. Kachouri, and M. Samet, “A novel chaos-based image encryption
using dna sequence operation and secure hash algorithm sha-2,” Nonlinear Dynamics,
vol. 83, no. 3, pp. 1123–1136, 2016.

42. D. Xiao, X. Liao, and S. Deng, “Parallel keyed hash function construction based on chaotic
maps,” Physics Letters A, vol. 372, no. 26, pp. 4682–4688, 2008.

43. S. El Assad and H. Noura, “Generator of chaotic sequences and corresponding generating
system,” July 15 2014. US Patent 8,781,116.

44. S. El Assad, “Chaos based information hiding and security,” in Internet Technology And
Secured Transactions, 2012 International Conference for, pp. 67–72, IEEE, 2012.

45. W. Stallings, Cryptography and Network Security: Principles and Practice, International
Edition: Principles and Practice. Pearson Higher Ed, 2014.

46. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography.
CRC press, 1996.

47. C. Liu, H. Ling, F. Zou, Y. Wang, H. Feng, and L. Yan, “Local and global structure
preserving hashing for fast digital fingerprint tracing,” Multimedia Tools and Applications,
vol. 74, no. 18, pp. 8003–8023, 2015.

48. S.-H. Lee, W.-J. Hwang, and K.-R. Kwon, “Polyline curvatures based robust vector data
hashing,” Multimedia tools and applications, vol. 73, no. 3, pp. 1913–1942, 2014.

44 Nabil Abdoun et al.

49. B.-K. Kim, S.-J. Oh, S.-B. Jang, and Y.-W. Ko, “File similarity evaluation scheme for
multimedia data using partial hash information,” Multimedia Tools and Applications,
vol. 76, no. 19, pp. 19649–19663, 2017.

50. M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authenti-
cation,” in Annual International Cryptology Conference, pp. 1–15, Springer, 1996.

51. B. Denton and R. Adhami, “Modern hash function construction,”
52. R. C. Merkle, R. Charles, et al., “Secrecy, authentication, and public key systems,” 1979.
53. I. B. Damg̊ard, “A design principle for hash functions,” in Conference on the Theory and

Application of Cryptology, pp. 416–427, Springer, 1989.
54. S. Lucks, “Design principles for iterated hash functions.,” IACR Cryptology ePrint

Archive, vol. 2004, p. 253, 2004.
55. M. Nandi and S. Paul, “Speeding up the wide-pipe: Secure and fast hashing.,” in Indocrypt,

vol. 6498, pp. 144–162, Springer, 2010.
56. O. Dunkelman and E. Biham, “A framework for iterative hash functions: Haifa,” in 2nd

NIST Cryptographich Hash Workshop, vol. 22, 2006.
57. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge functions,” in ECRYPT

hash workshop, vol. 2007, 2007.
58. R. Rivest, “The md5 message-digest algorithm,” 1992.
59. F. PUB, “Secure hash standard,” Public Law, vol. 100, p. 235, 1995.
60. S. M. Matyas, “Generating strong one-way functions with cryptographic algorithm,” IBM

Technical Disclosure Bulletin, vol. 27, pp. 5658–5959, 1985.
61. T. Bartkewitz, “Building hash functions from block ciphers, their security and implemen-

tation properties,” Ruhr-University Bochum, 2009.
62. B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas Jr, C. H. Meyer, J. Oseas,

S. Pilpel, and M. Schilling, “Data authentication using modification detection codes based
on a public one way encryption function,” Mar. 13 1990. US Patent 4,908,861.

63. S. Miyaguchi, M. Iwata, and K. Ohta, “New 128-bit hash function,” in Proc. 4th In-
ternational Joint Workshop on Computer Communications, Tokyo, Japan, pp. 279–288,
1989.

64. B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block ciphers: A
synthetic approach.,” in Crypto, vol. 93, pp. 368–378, Springer, 1993.

65. S. Miyaguchi, K. Ohta, and M. Iwata, “Confirmation that some hash functions are not col-
lision free,” in Workshop on the Theory and Application of of Cryptographic Techniques,
pp. 326–343, Springer, 1990.

66. B. Prencel, A. Bosselaers, R. Govaerts, and J. Vandewalle, “Collision-free hashfunctions
based on blockcipher algorithms,” in Security Technology, 1989. Proceedings. 1989 Inter-
national Carnahan Conference on, pp. 203–210, IEEE, 1989.

67. K. Desnos, S. El Assad, A. Arlicot, M. Pelcat, and D. Menard, “Efficient multicore imple-
mentation of an advanced generator of discrete chaotic sequences,” in Internet Technology
and Secured Transactions (ICITST), 2014 9th International Conference for, pp. 31–36,
IEEE, 2014.

68. B. Preneel, Analysis and design of cryptographic hash functions. PhD thesis, Katholieke
Universiteit te Leuven, 1993.

69. H. Feistel, “Cryptography and computer privacy,” Scienfitic American, vol. 228, pp. 15–23,
1973.

70. I. Mironov et al., “Hash functions: Theory, attacks, and applications,” Microsoft Research,
Silicon Valley Campus. Noviembre de, 2005.

71. K. Aoki and Y. Sasaki, “Preimage attacks on one-block md4, 63-step md5 and more,” in
International Workshop on Selected Areas in Cryptography, pp. 103–119, Springer, 2008.

72. P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon collectors, caching
algorithms and self-organizing search,” Discrete Applied Mathematics, vol. 39, no. 3,
pp. 207–229, 1992.

73. G. Yuval, “How to swindle rabin,” Cryptologia, vol. 3, no. 3, pp. 187–191, 1979.
74. S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, et al., “Cryptographic hash functions: A survey,”

Centre for Computer Security Research, Department of Computer Science, University of
Wollongong, Australie, 1995.

75. B. Preneel and P. van Oorschot, “On the security of two mac algorithms,” in Advances in
CryptologyEUROCRYPT96, pp. 19–32, Springer, 1996.

76. “Hash length extension attacks — java code geeks - 2017.” https://www.javacodegeeks.
com/2012/07/hash-length-extension-attacks.html. (Accessed on 07/11/2017).

Title Suppressed Due to Excessive Length 45

77. “Md5 length extension attack revisited — v’s inner peace.” https://web.archive.
org/web/20141029080820/http://vudang.com/2012/03/md5-length-extension-attack/.
(Accessed on 07/11/2017).

78. “Stop using unsafe keyed hashes, use hmac — rdist.” https://rdist.root.org/2009/10/
29/stop-using-unsafe-keyed-hashes-use-hmac/. (Accessed on 07/11/2017).

79. L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling, “Improved meet-in-the-
middle cryptanalysis of ktantan (poster),” in Australasian Conference on Information
Security and Privacy, pp. 433–438, Springer, 2011.

80. K. Aoki and Y. Sasaki, “Meet-in-the-middle preimage attacks against reduced sha-0 and
sha-1,” in Advances in Cryptology-CRYPTO 2009, pp. 70–89, Springer, 2009.

81. Y. Sasaki and K. Aoki, “Finding preimages in full md5 faster than exhaustive search.,” in
EUROCRYPT, vol. 5479, pp. 134–152, Springer, 2009.

82. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages for step-reduced
sha-2.,” in ASIACRYPT, vol. 5912, pp. 578–597, Springer, 2009.

83. J. Guo, S. Ling, C. Rechberger, and H. Wang, “Advanced meet-in-the-middle preimage at-
tacks: first results on full tiger, and improved results on md4 and sha-2.,” in ASIACRYPT,
vol. 6477, pp. 56–75, Springer, 2010.

84. D. Hong, B. Koo, and Y. Sasaki, “Improved preimage attack for 68-step has-160.,” in
ICISC, vol. 5984, pp. 332–348, Springer, 2009.

85. Y. Sasaki and K. Aoki, “Preimage attacks on 3, 4, and 5-pass haval,” in International Con-
ference on the Theory and Application of Cryptology and Information Security, pp. 253–
271, Springer, 2008.

86. A. Joux, “Multicollisions in iterated hash functions. application to cascaded construc-
tions,” in Annual International Cryptology Conference, pp. 306–316, Springer, 2004.

87. J. Kelsey and B. Schneier, “Second preimages on n-bit hash functions for much less than
2 n work,” in Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pp. 474–490, Springer, 2005.

88. J. Kelsey and T. Kohno, “Herding hash functions and the nostradamus attack,” in Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pp. 183–200, Springer, 2006.

89. L. Yu-Ling and D. Ming-Hui, “One-way hash function construction based on the spa-
tiotemporal chaotic system,” Chinese Physics B, vol. 21, no. 6, p. 060503, 2012.

90. D. Xiao, F. Y. Shih, and X. Liao, “A chaos-based hash function with both modifica-
tion detection and localization capabilities,” Communications in Nonlinear Science and
Numerical Simulation, vol. 15, no. 9, pp. 2254–2261, 2010.

91. Y. Li, D. Xiao, H. Li, and S. Deng, “Parallel chaotic hash function construction based on
cellular neural network,” Neural Computing and Applications, vol. 21, no. 7, pp. 1563–
1573, 2012.

92. Y. Li, D. Xiao, and S. Deng, “Keyed hash function based on a dynamic lookup table of
functions,” Information Sciences, vol. 214, pp. 56–75, 2012.

93. H. Ren, Y. Wang, Q. Xie, and H. Yang, “A novel method for one-way hash function
construction based on spatiotemporal chaos,” Chaos, Solitons & Fractals, vol. 42, no. 4,
pp. 2014–2022, 2009.

94. X.-F. Guo and J.-S. Zhang, “Keyed one-way hash function construction based on the
chaotic dynamic s-box,” 2006.

95. H. Yu, Y.-f. Lu, X. Yang, and Z.-l. Zhu, “One-way hash function construction based on
chaotic coupled map network,” in Chaos-Fractals Theories and Applications (IWCFTA),
2011 Fourth International Workshop on, pp. 193–197, IEEE, 2011.

96. H. Zhang, X.-F. Wang, Z.-H. Li, and D.-H. Liu, “One way hash function construction
based on spatiotemporal chaos,” 2005.

