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Cubic graphs, their Ehrhart quasi-polynomials, and a scissors congruence phenomenon *

The scissors congruence conjecture for the unimodular group is an analogue of Hilbert's third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose vertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of polytopes. The key ingredient in the proofs is the nearest neighbor interchange on graphs and a naturally arising piecewise unimodular transformation.

Introduction

A cubic graph is a graph whose vertices have degree three and a {1, 3}-graph is a graph whose vertices have degree either one or three. The graphs are allowed to have loops and parallel edges. Motivated by a result of Mochizuki [START_REF] Mochizuki | A Theory of Ordinary p-Adic Curves[END_REF], Liu and Osserman [START_REF] Liu | Mochizuki's indigenous bundles and Ehrhart polynomials[END_REF] associated a polytope P G to each {1, 3}-graph G and studied its Ehrhart quasi-polynomial.

For each degree three vertex v of a {1, 3}-graph G = (V, E), let a, b, and c be the three edges incident to v. Denote by S(v) the linear system consisting of a perimeter inequality and three metric inequalities defined on the variables w a , w b , and w c as follows:

w a + w b + w c ≤ 1 w a ≤ w b + w c w b ≤ w a + w c w c ≤ w a + w b .
From the three metric inequalities, one can immediately conclude that w a , w b , and w c are nonnegative. Consider the union of all the linear systems S(v), taken over all degree three vertices v of G. The polytope P G is defined by the set of all real solutions for this linear system.

Let E = {1, . . . , m} and w : E → R be a weight function defined on the edges of G. We use the vector notation w = (w 1 , . . . , w m ) ∈ R m . In particular, when w is a solution for the linear system defining P G , we write w ∈ P G .

Given a rational polytope P, Eugène Ehrhart defined the function L P (t) := |tP ∩ Z m |, which is the number of lattice points in the closed dilated polytope tP, for a nonnegative integer parameter t. Ehrhart showed that this function is a polynomial in t when P is an integral polytope. More generally, if P is a rational polytope, the function L P (t) is a quasi-polynomial whose period is closely related to the denominators appearing in the coordinates of the vertices of P [START_REF] Ehrhart | Polynômes arithmétiques et méthode des polyèdres en combinatoire[END_REF][START_REF] Beck | Computing the Continuous Discretely[END_REF].

Liu and Osserman conjectured ( [START_REF] Liu | Mochizuki's indigenous bundles and Ehrhart polynomials[END_REF]Conj. 4.2]) that polytopes associated to connected {1, 3}-graphs with the same number of vertices and edges have the same Ehrhart quasi-polynomial. They partially proved their conjecture, by showing that these quasipolynomials coincide for all nonnegative odd values of the dilation parameter t. In 2013, Wakabayashi [15, Thm. A(ii)] proved their conjecture.

An ingredient in Wakabayashi's proof for Liu and Osserman's conjecture is a local transformation performed in {1, 3}-graphs. This transformation is called an A-move by Wakabayashi and it is also known as a nearest neighbor interchange (NNI). The NNI has been studied mainly for binary trees [START_REF] Culik | A note on some tree similarity measures[END_REF][START_REF] Robinson | Comparison of labeled trees with valency three[END_REF], cubic graphs [START_REF] Tsukui | Transformations of cubic graphs[END_REF], and {1, 3}-graphs [START_REF] Wakabayashi | Spin networks , Ehrhart quasi-polynomials, and combinatorics of dormant indigenous bundles[END_REF]. We present the following general result for connected graphs with the same degree sequence, which might of interest on its own. We refer to a vertex of degree one in a graph simply as a leaf. An edge is external if it is incident to a leaf, otherwise it is internal. Theorem 1. Let G and G ′ be connected graphs with the same degree sequence and the same set of external edges. Then (a) G can be transformed into G ′ through a series of NNI moves.

(b) One can choose a spanning tree in G and a spanning tree in G ′ and require that all the pivots of the NNI moves are internal edges of both of these spanning trees.

In particular, for the special case of {1, 3}-graphs, the proof provided for Theorem 1(a) constitutes an alternative graph theoretic proof of a proposition by Wakabayashi [START_REF] Wakabayashi | Spin networks , Ehrhart quasi-polynomials, and combinatorics of dormant indigenous bundles[END_REF]Prop. 6.2].

One of the concerns of this paper is on the scissors congruence conjecture for the unimodular group, which is an analogue of Hilbert's third problem (equidecomposability). Concretely, this was stated as the following question by Haase and McAllister [START_REF] Haase | Quasi-period collapse and GL n (Z)-scissors congruence in rational polytopes[END_REF]. An integral matrix U is unimodular if it has determinant ±1. An affine unimodular transformation is defined by x → Ux + b, where U is a unimodular matrix and b is a real vector.

Question 2. [7, Question 4.1] Suppose that P and P ′ are polytopes with the same Ehrhart quasi-polynomial. Is it true that there is a decomposition of P into relatively open simplices P 1 , . . . , P k and affine unimodular transformations U 1 , . . . , U k such that P ′ is the disjoint union of U 1 (P 1 ), . . . , U r (P r )?

We show that for polytopes associated to {1, 3}-graphs such a scissors congruence decomposition holds. Namely, we have the following. Theorem 3. Let G and G ′ be two connected {1, 3}-graphs with the same number of vertices and edges. Then there is a dissection of P G into smaller polytopes P 1 G , . . . , P k G and affine unimodular transformations U 1 , . . . , U k such that P G ′ is the union of

U 1 (Q 1 G ), . . . , U k (Q k G ).
The proof of Theorem 3 relies on a piecewise unimodular transformation associated to a weighted version of the NNI move.

The rational polytope P G , associated to a {1, 3}-graph G, enjoys some fascinating symmetry. Linke [START_REF] Linke | Rational Ehrhart quasi-polynomials[END_REF] considered the extension of L P (t) for all nonnegative real numbers t. Royer [START_REF] Royer | Semi-reflexive polytopes[END_REF] defined a polytope to be semi-reflexive if L P (s) = L P (⌊s⌋) for every nonnegative real number s. One can verify that P G is semi-reflexive. A polytope is reflexive if it is integral, the origin is in its interior, and it is semi-reflexive [START_REF] Beck | Computing the Continuous Discretely[END_REF]. We prove the following. Theorem 4. For each {1, 3}-graph G, the polytope 4P G -½ is reflexive.

The paper is organized as follows. Section 2 contains the results involving the NNI move in graphs with the same degree sequence, including Theorem 1, while Section 3 discusses the extension of the NNI move to weighted graphs. Section 4 describes the unimodular decomposition of P G and presents the proof of Theorem 3. In Section 5, we prove Theorem 4. Finally, Section 6 contains some concluding remarks.

Nearest neighbor interchange

With an eye towards Section 3, where we consider weighted graphs, we think of a graph as defined by Bondy and Murty [START_REF] Bondy | Graph Theory[END_REF]. A graph G is an ordered pair (V, E) consisting of a set V of vertices and a set E, disjoint from V , of edges, together with an incidence function ψ G that associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G. The degree sequence of G is the monotonic nonincreasing sequence consisting of the degrees of its vertices.

A nearest neighbor interchange (NNI) is a local move performed in G on a trail W of length three. This move interchanges one end of the two extreme edges of W on the central edge (Figure 1). We refer to the central edge of W as the pivot of the NNI move. The result of the move is another graph G ′ on the same number of connected components, with the same degree sequence. We consider the graph G ′ as having the same set of vertices and edges, that is, G ′ = (V, E), and only the incidence function ψ G ′ is adjusted accordingly. Intuitively, one can think of the edges as sticks that are being moved from G to G ′ . We think of an NNI move as a function γ W that associates the graph G to the graph

G ′ . In symbols, γ W (G) = G ′ . Observe that W is also a trail in G ′ and γ W (G ′ ) = G.
The well-known rotation, used in data structures to balance binary trees, is a particular NNI move, performed on a {1, 3}-tree (Figure 2). An NNI move does not affect the incidence to leaves, thus it preserves the partition of the edge set into internal and external edges.

Culik and Wood [4, Thm. 2.4] proved that any two {1, 3}-trees with ℓ (labelled) leaves can be transformed into one another through a finite series of NNI moves. They additionally gave an upper bound of 4ℓ -12 + 4ℓ log 2 (ℓ/3) on the number of NNI moves needed for this transformation. In this section, first we extend Culik and Wood's theorem to trees with the same degree sequence (Lemma 8), which we then use to extend their result further to connected graphs with the same degree sequence (Theorem 1).

A caterpillar is a tree for which the removal of all leaves results in a path, called its central path, or in the empty graph. For the later, we define that the central path is empty.

Lemma 5. Any tree can be transformed into a caterpillar with the same degree sequence through a series of NNI moves.

Proof. Let T be a tree. If T is a caterpillar, there is nothing to prove. So, we may assume T is not a caterpillar. Let P be a longest path in T and uv an internal edge of T not in P such that u is a vertex in P . The vertex u has two neighbors in P , otherwise P would not be a longest path, as v is not in P . Let w and z be the two neighbors of u in P . Let W be a trail with edges wu, uv, and vv ′ , where v ′ is a neighbor of v other than u. Perform an NNI on the trail W as in Figure 3, to insert v in P , obtaining another tree T ′ with the same degree sequence and a path longer than P . By repeating this process, we obtain a desired caterpillar after a finite number of NNI moves. The spine of a caterpillar is the sequence of the degrees of the vertices in the central path. We say the caterpillar is ordered if its spine is a monotonic nonincreasing sequence (Figure 4). Lemma 6. Any caterpillar can be transformed into an ordered caterpillar with the same degree sequence through a series of NNI moves.

Proof. An NNI can be used to swap any two adjacent vertices in the central path of a caterpillar, as in Figure 5(a). So we use an NNI to decrease, one by one, the number of inversions in the spine of a caterpillar until we obtain an ordered caterpillar.

Lemma 7. The external edges of a caterpillar can be sorted arbitrarily through a series of NNI moves.

Proof. An NNI can be used to swap any two external edges incident to two adjacent vertices in the central path of a caterpillar, as in Figure 5(b).

The next lemma is an extension of previous works in the literature [START_REF] Culik | A note on some tree similarity measures[END_REF][START_REF] Robinson | Comparison of labeled trees with valency three[END_REF][START_REF] Tsukui | Transformations of cubic graphs[END_REF][START_REF] Wakabayashi | Spin networks , Ehrhart quasi-polynomials, and combinatorics of dormant indigenous bundles[END_REF] that might be of independent interest. Proof. Let T and T ′ be two trees with the same degree sequence and the same set of external edges. Using Lemmas 5 and 6, we obtain a series of NNI moves that transforms T into an ordered caterpillar with the same degree sequence and the same set of external edges of T . Similarly, we obtain another series for T ′ . Using Lemma 7, we extend the series of NNI moves for T to sort the external edges of the caterpillar coming from T into the order they appear in the caterpillar coming from T ′ . The composition of these two series of NNI moves, with the series for T ′ inverted, gives a series of NNI moves that transforms T into T ′ .

Let G be a connected graph that is not a tree, and let e be an edge that is in a cycle. The graph obtained from G by cutting e is the graph G ′ resulting from the splitting of e into two edges, each connecting one of the ends of e to one of two new leaves (Figure 6). Choose an edge in a cycle of G and an edge in a cycle of G ′ . Let us denote these two edges by e. Let H and H ′ be the graphs obtained from G and G ′ , respectively, by cutting their edge e. The number of vertices in H and H ′ is n + 2 and the number of edges is m + 1. Call e ′ and e ′′ the two new edges in both H and H ′ . Since e is in a cycle in G and in a cycle in G ′ , the graphs H and H ′ are connected and the dimension of their cycle space is r -1. Also, H and H ′ have the same degree sequence and the same set of external edges. By induction, H can be transformed into H ′ through a series of NNI moves. The same series of NNI moves transforms G into G ′ . Indeed, the set of external edges in all graphs obtained during the application of this series of NNI moves, transforming H into H ′ , contain e ′ and e ′′ . Glue e ′ and e ′′ into an edge in each of these graphs, obtaining a sequence of connected graphs that is the result of a series of NNI moves starting at G and ending at G ′ . This ends the proof of (4).

G G ⇓ cut ⇓ cut H = H 0 NNI ←→ • • • NNI ←→ H k = H ′ ⇓ glue ⇓ glue ⇓ glue G = G 0 NNI ←→ • • • NNI ←→ G k = G ′
Similarly, by induction in the cycle space of G and G ′ , one can prove (b). Indeed, it is sufficient to choose in each step of the induction an edge to be cut which is not in either of the spanning trees.

For the case of cubic graphs, the proof of Theorem 1 provides an alternative proof for a theorem by Tsukui [14, Thm. II], which refers to NNI moves as S-transformations, where the 'S' stands for slide. For the slightly more general case of {1, 3}-graphs, the proof of Theorem 1 provides an alternative proof for a proposition by Wakabayashi [15, Prop. 6.2], which refers to NNI moves as A-moves. Wakabayashi's proof uses a topological pants decomposition for compact, oriented surfaces of finite genus.

Figure 7 shows a series of NNI moves from the complete graph K 4 to a tree with a loop added to each of its leaves.

Weighted NNIs for {1, 3}-graphs

To deal with weights on the edges of a {1, 3}-graph, we now enhance the NNI move. This was achieved by a bijection defined by Wakabayashi [START_REF] Wakabayashi | Spin networks , Ehrhart quasi-polynomials, and combinatorics of dormant indigenous bundles[END_REF]Prop. 6.3].

Let G = (V, E) be a {1, 3}-graph and w be a weight function defined on the edges of G. A weighted NNI is a local move performed in (G, w) on a trail W of length three induced by a NNI move in G on W . The result of the move is the graph G ′ obtained from G by applying an NNI move on W , and the weight function w ′ defined on the edges of G ′ as follows.

+2 +1 -3 -2 +3 -1 +2 +1 -3 -2 +3 -1 +2 +1 -3 -2 +3 -1 +2 +1 -3 -2 +3 -1 +2 +1 -3 -2 +3 -1 +2 +1 -3 -2 +3 -1 NNI NNI NNI NNI NNI K 4 T 4
Let e be the central edge of W , that is, the pivot of the NNI move. Let a and b be the other edges in W , and c and d be the remaining edges adjacent to e, as depicted in Note that, if w is integer valued, then so is w ′ . Moreover, since pivots are always internal edges and an NNI move does not affect the partition of the edges into internal and external, a weighted NNI move may only change the weights of internal edges. We think of a weighted NNI move as a function φ W (G, w) = (G ′ , w ′ ), which extends the previously defined NNI move, γ

W (G) = G ′ . Note that φ W (G ′ , w ′ ) = (G, w), because γ W (G ′ ) = G and w ′ e + max{w ′ b + w ′ c , w ′ a + w ′ d } -max{w ′ a + w ′ c , w ′ b + w ′ d } = w ′ e + max{w b + w c , w a + w d } -max{w a + w c , w b + w d } = w e + max{w a + w c , w b + w d } -max{w b + w c , w a + w d } + max{w b + w c , w a + w d } -max{w a + w c , w b + w d } = w e .
Wakabayashi [START_REF] Wakabayashi | Spin networks , Ehrhart quasi-polynomials, and combinatorics of dormant indigenous bundles[END_REF]Prop. 6.3] proved that w ∈ tP G if and only if w ′ ∈ tP G ′ for every integer t ≥ 0, which implies Liu and Osserman's conjecture. We observe that this holds also for every real t ≥ 0, and state it below as we will use it in the next section.

Lemma 9.

Let G be a {1, 3}-graph and w be a weight function defined on the edges of G. Let W be a trail in G of length three and suppose that φ W (G, w) = (G ′ , w ′ ). Then w ∈ tP G if and only if w ′ ∈ tP G ′ for every t ≥ 0.

Therefore there are distinct rational polytopes whose Ehrhart quasi-polynomials coincide for all real t.

As a weighted NNI changes only the weight of the pivot, which is always an internal edge, the series of NNI moves from G to G ′ changes only the weights of internal edges.

In fact, by Theorem 1(b), one can choose a spanning tree T in G and a spanning tree T ′ in G ′ and require that the series of NNI moves uses as pivots only internal edges of T and T ′ . As a consequence, the bijection from P G to P G ′ keeps fixed the majority of the coordinates of the points. Namely, it changes only coordinates that correspond to internal edges of the chosen spanning trees. Formally, the latter discussion provides the following as a corollary of Theorem 1(b) and Lemma 9. Let E = {1, . . . , m} and w : E → R be a weight function defined on the edges of G. If X is a subset of E, then the restriction of w to X is the function w| X : X → R such that w| X (x) = w(x) for all x ∈ X.

Corollary 10. Let G and G ′ be connected {1, 3}-graphs with the same number of vertices and on the same set E of edges. Then there exists a bijection φ between P G and P G ′ such that, for w ′ = φ(w), we have that

w ′ | X = w| X
where E \ X is the set of internal edges of arbitrary spanning trees in G and G ′ .

Scissors congruence

Haase and McAllister [START_REF] Haase | Quasi-period collapse and GL n (Z)-scissors congruence in rational polytopes[END_REF] have raised Question 2 that can be thought of as an analogue of Hilbert's third problem (equidecomposability) for the unimodular group. We show that for polytopes associated to {1, 3}-graphs a statement similar to Question 2 holds.

Let G be a {1, 3}-graph with edge set E = {1, . . . , m}. Let W be a trail in G of length three and suppose that φ W (G, w) = (G ′ , w ′ ). As argued ahead, the function φ W (G, •) : R m → R m is associated to one or two hyperplanes in R m and two or four unimodular transformations. For short, let φ(w) = φ W (G, w) for every w ∈ R m . Let a, b, c, d, and e be as in Figure 8, with a, e, and b being the edges of W . Clearly φ is piecewise linear, namely, for w ∈ R m , w ′ f = w f for every f = e and

w ′ e = w e + w b -w d if w a + w b ≥ w c + w d and w a + w d ≥ w b + w c , (1a) w ′ e = w e + w a -w c if w a + w b ≥ w c + w d and w a + w d < w b + w c , (1b) w ′ e = w e + w c -w a if w a + w b < w c + w d and w a + w d ≥ w b + w c , (1c) w ′ e = w e + w d -w b if w a + w b < w c + w d and w a + w d < w b + w c . ( 1d 
)
The hyperplanes associated to φ are w a + w b -w c -w d = 0 and w a -w b -w c + w d = 0, which are either the same hyperplane (if a = b or c = d) or two orthogonal hyperplanes. Moreover, the matrix that gives the linear transformation in each case is unimodular. Indeed, the matrix for case (1a) is obtained from the identity matrix by substituting the row corresponding to the edge e by the row χ e + χ b -χ d , the matrix for case (1b) is obtained from the identity matrix by substituting the row corresponding to the edge e by the row χ e + χ a -χ c , the matrix for case (1c) is obtained from the identity matrix by substituting the row corresponding to the edge e by the row χ e + χ c -χ a , and the matrix for case (1d) is obtained from the identity matrix by substituting the row corresponding to the edge e by the row χ e + χ d -χ b . Thus the determinant of each such matrix is always 1. Therefore each of them is unimodular. Figure 9 shows an example with the two 3-regular graphs on two vertices and their polytopes. The two graphs differ by one NNI move. The function = w ′ between the two polytopes in Figure 9 is defined by w ′ 1 = w 1 , w ′ 2 = w 2 , and

(0, 1 2 , 1 2 ) ( 1 2 , 1 2 , 0) ( 1 2 , 0, 1 2 ) ( 1 4 , 1 4 , 1 2 ) ( 1 2 , 1 2 , 0) 1 2 3 w 1 w 2 w 3 w 1 w 3 w 2 w 1 + w 2 + w 3 ≤ 1 2w 1 + w 3 ≤ 1 w 1 ≤ w 2 + w 3 w 3 ≤ 2w 1 w 2 ≤ w 1 + w 3 w 3 ≥ 0 w 3 ≤ w 1 + w 2 2w 2 + w 3 ≤ 1 w 3 ≤ 2w 2
w ′ 3 = w 3 + max{w 1 + w 2 , w 1 + w 2 } -max{2w 1 , 2w 2 } = w 3 + w 1 + w 2 -2 max{w 1 , w 2 } = w 3 -w 1 + w 2 if w 1 ≥ w 2 w 3 + w 1 -w 2 if w 1 ≤ w 2 ,
which is piecewise unimodular. In this case, only one hyperplane (the one containing the shaded triangle inside the polytopes, w 1 = w 2 ) splits the polytopes into two, each part being unimodularly equivalent to one of the parts of the other polytope. The corresponding unimodular transformations are given by

U w 1 ≤w 2 =    -1 0 -0 0 1 0 1 -1 1    U w 1 ≥w 2 =    1 -0 -0 0 1 0 -1 1 1    .
Note that the polytope on the right side of Figure 9 has one more vertex than the other one, so that the combinatorial types of these piecewise unimodularly equivalent 

1 0 0 0 1 0 -1 -1 -1    U w 1 ≤w 2 U w 1 ≥w 2    1 0 0 0 1 0 -1 -1 -1    U w 1 ≥w 3    1 0 0 -1 -1 -1 0 0 1       1 0 0 -1 -1 -1 0 0 1    U w 1 ≤w 3
P G 2 = T 1 (Q 1 G 1 ) ∪ T 2 (Q 2 G 1 ) = T 1 (Q 1 G 1 ∩ U 1 (Q 1 G )) ∪ T 1 (Q 1 G 1 ∩ U 2 (Q 2 G )) ∪ T 2 (Q 2 G 1 ∩ U 1 (Q 1 G )) ∪ T 2 (Q 2 G 1 ∩ U 2 (Q 2 G )) = T 1 U 1 (P 11 ) ∪ T 1 U 2 (P 12 ) ∪ T 2 U 1 (P 21 ) ∪ T 2 U 2 (P 22 ) .
This completes the proof for the two first weighted NNI moves assuming that both are associated to only one hyperplane and consequently two unimodular transformations.

For the remaining cases, whenever a weighted NNI move is associated to two hyperplanes (and consequently four unimodular transformations), the polytopes would be dissected into up to four smaller polytopes, but the process would be essentially the same.

Reflexivity

An equivalent way to define a reflexive polytope is to require that it is integral and has the hyperplane description {x ∈ R d | Ax ≤ ½} for some integral matrix A. Another equivalent definition of reflexivity is to say that a polytope P is reflexive if and only if the origin is in P • and (t + 1)P • ∩ Z d = tP ∩ Z d for all t ∈ Z ≥0 , where P • is the interior of P.

Proof of Theorem 4. The polytope 4P G -½ consists of the vectors w ∈ R m satisfying

w a + w b + w c ≤ 1 w a -w b -w c ≤ 1 -w a + w b -w c ≤ 1 -w a -w b + w c ≤ 1,
for each degree three vertex v and edges a, b, and c incident to v, for a total of 4n 3 inequalities, where n 3 is the number of degree three vertices in G. From Liu and Osserman [10, Prop. 3.5], the polytope 4P G is integral, and thus so is 4P G -½.

The reflexivity of the integral polytope 4P G -½ has some interesting consequences, as follows. Let m denote the number of edges of G. Since 4P G is an m-dimensional integral polytope, we have that for t ≡ 0 mod 4:

L P G (t) = t + m m + h * 1 t + m -1 m + • • • + h * d-1 t + 1 m + h * d t d ,
where h * 1 , . . . , h * d-1 , h * d are the coefficients of the numerator of the rational function given by the Ehrhart series of 4P G [START_REF] Beck | Computing the Continuous Discretely[END_REF]Lemma 3.14].

The polytopes 4P G and 4P G -½ have the same Ehrhart polynomial. Hence it follows from the reflexivity of 4P G -½ and from Hibi's palindromic theorem [START_REF] Beck | Computing the Continuous Discretely[END_REF]Thm. 4.6] that h * k = h * m-k for all 0 ≤ k ≤ m/2. Therefore it follows that to describe L 4P G (t), we only need to compute half of its coefficients, thus lowering the computational complexity required to compute L 4P G (t).

Concluding remarks and open problems

In the process of proving the main theorem, a great deal of structure of the polytopes P G , and their corresponding cones has been revealed. The polytopes P G and their corresponding cones may be related to the well-known metric polytopes and metric cones [START_REF] Deza | Geometry of Cuts and Metrics[END_REF]. In particular, in the case that G is a planar graph, the polytope P G can be thought of as a restricted type of "metric polytope" [START_REF] Laurent | Graphic vertices of the metric polytope[END_REF], associated to the dual graph G * . It would be interesting to pursue connections to metric polytopes.

Wakabayashi [START_REF] Wakabayashi | Spin networks , Ehrhart quasi-polynomials, and combinatorics of dormant indigenous bundles[END_REF] gave a formula for two of the four constituent polynomials of the Ehrhart quasi-polynomial for P G and for the volume of P G when G is a connected cubic graph on n vertices. It is rather surprising that the Verlinde formula makes an appearance here, namely, Wakabayashi showed that, for odd t, where B n is the n-th Bernoulli number. Zagier [START_REF] Zagier | Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula[END_REF] showed that the above Verlinde formula is the polynomial

L P G (t) = (t + 2) n/2 2 n+1 n/2 k=0 (-1) k-1 2 2k B 2k (2k)! c k (t + 2) 2k ,
where c k is the coefficient of x -2k in the Laurent expansion of sin -n x at x = 0. It would be interesting to determine if a similar formula holds for all connected {1, 3}-graphs. Even when G is a {1, 3}-tree, it is completely open, and quite interesting, to determine the Ehrhart quasi-polynomial of P G . We determined the following quasi-polynomials for some small trees with LattE [START_REF] Baldoni | Software and user's guide for LattE integrale[END_REF].
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 1 Figure 1: An NNI move on the trail marked in bold. One of the incidences of the edges a and b were interchanged.

Figure 2 :

 2 Figure 2: Right and left rotations applied to a binary tree.

Figure 3 :

 3 Figure 3: An NNI to insert v in the central path.

Figure 4 :

 4 Figure 4: (a) A caterpillar with spine (4, 5, 2, 3) and central path highlighted in bold. (b) An ordered caterpillar.

Figure 5 :Lemma 8 .

 58 Figure 5: (a) An NNI to swap two adjacent vertices in the central path of a caterpillar. (b) NNIs to swap labels on leaves hanging from adjacent vertices in the central path.

Figure 6 :

 6 Figure 6: Graph G ′ obtained from G by cutting an edge e.

Figure 7 :

 7 Figure 7: A series of NNI moves from K 4 to the graph T 4 .

Figure 8 .

 8 Possibly a, b, c, and d are not pairwise distinct. The weight function w ′ is such that w ′ f = w f for every f = e and w ′ e = w e + max{w a + w c , w b + w d } -max{w b + w c , w a + w d }.

Figure 8 :

 8 Figure 8: Edges and weights in a weighted nearest neighbor interchange.

Figure 9 :

 9 Figure 9: The polytopes of the two cubic graphs on two vertices. The shaded triangles are the intersection of the polytopes with the hyperplane w 1 = w 2 .

Figure 10 :

 10 Figure 10: Example for Theorem 3.

L

  

Acknowledgements

We thank Tiago Royer and Fabrício Caluza Machado for valuable comments.

CNPq 456792/2014-7 and 452507/2016-2, CAPES PROEX.

polytopes may differ. Observe how the extra vertex ( 14 , 1 4 , 1 2 ) is "formed" when going from the polytope on the left to the one on the right, and how it "disappears" when going in the other direction. Also, the edge between the origin and the vertex ( 12 , 1 2 , 0) in the polytope on the left is not an edge in the polytope on the right.

Theorem 3 extends this for graphs that differ by a series of NNI moves. It relates to Question 2.

Proof of Theorem 3. The proof is constructive. By Theorem 1, there exists a finite sequence of NNI moves that transforms

We shall explain the procedure for the first two NNI moves assuming that both underlying weighted NNI moves are associated to only one hyperplane and consequently two unimodular transformations. The other cases and the rest of the NNI moves follow in an analogous but more cumbersome fashion.

Let W 0 be the trail used in the first NNI move, that goes from G = G 0 to G 1 , and let φ 0 (w) = φ W 0 (G 0 , w), for w ∈ R E , be the corresponding weighted NNI move. Let H 0 be the hyperplane associated to φ 0 , and let U 1 , U 2 be the two unimodular transformations, one for each side of the hyperplane H 0 . The hyperplane H 0 dissects the polytope

In words, we presented a dissection of P G into two smaller polytopes and two affine unimodular transformations U 1 and U 2 that, if applied to the two smaller polytopes, result in P G 1 . Now we will proceed one more step, and present a dissection of P G into four smaller polytopes, and four affine unimodular transformations that, if applied to the four smaller polytopes, will result in P G 2 (Figure 10).

Let W 1 be the trail used in the second NNI move, that goes from G 1 to G 2 , and let φ 1 (w) = φ W 1 (G 1 , w), for w ∈ R E , be the corresponding weighted NNI move. Let H 1 be the hyperplane associated to φ 1 , and let T 1 , T 2 be the two unimodular transformations, one for each side of the hyperplane H 1 . The hyperplane H 1 dissects the polytope

) each into two smaller polytopes, obtaining the dissection

The latter naturally induces the following dissection:

So, if we let

( 1 2 , 0, 0)

NNI on W = (1, 2, 3)

)

( 1 2 , 0, 0) (0, Further generalizations to more general graphs and connections with other topics as manifold invariants would also be of interest.