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The reduction of vibrations is a thematic evolution research particularly since the emergence of innovative 

absorbers Nonlinear Energy Sink (NES). This type of absorber is characterized by a secondary mass highly 

coupled via a non-linear stiffness to the main structure that needs to be protected. This nonlinearity allows an 

irreversible energy transfer from the main structure to secondary mass. The mastery of the nonlinearity is a key 

element for obtaining optimum performance. However, in practice it is difficult to obtain a cubic stiffness 

without linear part. In this article, a novel NES design leading to the award of a cubic stiffness is presented. For 

this, conical springs have been specifically sized to provide nonlinearity. To eliminate the linear term, the 

concept of negative stiffness is implemented from two cylindrical compression springs. The system was 

designed and sized. To validate the concept, an analytical study based on the method of multiple scales is 

presented. Future developments will aim manufacturing and experimental validation of the prototype. 

1  Introduction 

Mitigation of unwanted vibration is an important issue 

in many fields of engineering. Since the emergence of 

innovative absorber Nonlinear Energy Sink (NES), more 

attentions were paid to this promising technique [1]. This 

type of absorber is characterized by a secondary mass 

highly coupled with a non-linear stiffness to a main 

structure that needs to be protected. By trigging resonances 

between related nonlinear normal modes, the nonlinearity 

allows an irreversible energy transfer from the main 

structure to secondary mass [2]. Unlike the traditional linear 

absorber Tuned Mass Damper (TMD) that needs to be 

tuned to a specific natural frequency, NES can passively 

absorb the energy over a wide range of natural frequencies 

[2-4]. Additional with a relatively small mass, make it 

particularly attractive in a wide variety of applications such 

as space and aero-structure, vibrating machinery, building 

and vehicle suspensions [4,5].  

The mastery of the nonlinearity is a key element for 

obtaining optimum performance. Depending on the type of 

nonlinearity, different kinds of NES have been proposed: 

oscillating dissipative with pure cubic stiffness [6,7], 

piecewise stiffness [8,9], rotational elements [10] and sinks 

undergoing vibro-impacts [11,12]. As far as the pure cubic 

NES, it has been shown that this configuration is most 

effective at moderate–energy regimes. Yet in practice it is 

difficult to obtain a cubic stiffness without linear part. In 

our recent approaches, the essential cubic stiffness was 

mostly realized by adopting the construction of two springs 

with no pretension [7]. Due to the self-geometric 

nonlinearity, the springs stretch in tension thus creating the 

cubic force. However, this classical type can’t effectively 

profit spring’s compression and tension performance, 

resulting in a large size vertical structure attached to the 

main system; Addition of a relatively weak nonlinear 

stiffness existing at the beginning extension, leads to the 

whole cubic term approximated to a linear term. Therefore, 

how to implement cubic stiffness elements practically is 

still an important issue to broaden the application of NES. 

In this article, a novel NES design leading to the 

award of a strongly cubic stiffness is presented. The 

structure is as follows: section 2 is devoted to conception of 

conical springs, which is specifically sized to provide 

nonlinearity; in section 3, a negative stiffness mechanism is 

implemented from two cylindrical compression springs to 

eliminate the linear term; In the next section, to validate the 

concept an analytical study based on the method of multiple 

scales is presented; Finally, concluding remarks and future 

developments are addressed.  

 

2  Conical spring design 

Owing to the self-nonlinearity, conical spring 

possesses the advantage of providing variable spring rates 

and varying natural frequencies, additional it can avoid 

buckling at large deflections. For this, two conical springs 

with a constant pitch and a constant coil diameter are 

adopted. Considering the strong nonlinearity and lower 

installation height, the shape of telescoping spring is used, 

as shown in Fig.1. 

 
Fig.1 Telescoping conical spring 

 

The dynamical behavior of conical spring with a 

constant pitch can be classified as linear and nonlinear part. 

To distinguish the two phases, three particular points are 

introduced, as shown in Fig.2: Point O corresponds to the 

spring free state; Point T means the transition point that 

starts the nonlinear behavior; Point C represents the state of 

maximal compression.  

 
Fig.2 Conical spring characteristic 

 

In the linear phase (from point O to T), the largest coil 

is free to deflect as the other coils, so the load-deflection 

relation is linear and the stiffness can be expressed as [13]: 
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In the nonlinear regime (from point T to C), the active 

coils are gradually compressed to the ground. During this 

regime, 
fn  coils are free, and 

a fn n coils are compressed 

to the ground, which means that these coils have reached 

their maximum physical deflection. By compressing 

progressively, 
fn decreases from 

an  to 0 and leads to a 

gradual increase of the spring stiffness. The load-deflection 

relation is shown as follows [13]: 
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To profit the nonlinear performance of conical 

spring, the connecting type of spring is proposed in Fig.3.  

 
Fig.3 Connecting type  

 

However, this configuration exist the problem of 

possessing piecewise stiffness of linear and nonlinear part. 

To skip the linear phase, a method of pre-compressing at 

transition point is adopted. By changing the initial original 

point, the behaviors of two conical springs can respectively 

belong to linear and nonlinear regimes simultaneously. 

Supposing the right direction of vibrating as positive, 

setting the left spring as first one and the right as second 

one, we can obtain the new load-deflection relation, as 

shown in Fig.4. By compressing progressively, the force of 

second spring increases nonlinearly, while the first 

decreases linearly. When the displacement reaches the 

value of transition point’s deflection, it returns back to the 

free length and starts to work at tension regime. Combining 

the two spring’s curves, the composed stiffness curve is 

obtained and it is obviously observed that the new curve is 

smooth and no longer piecewise as before. 

 
Fig.4 Pre-compressed characteristics   

 

To analysis the internal polynomial components, the 

method of polynomial fitting is used to obtain the new load-

deflection relation, as follows: 
2 3
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In this polynomial, the linear term 1a x is hardly to be 

eliminated owing to the superposition of linear and 

nonlinear part, while the square term
2

2a x is possible to 

make its value small.  

After optimizing the parameters of conical spring (the 

mean diameter D1 and D2), the new polynomial components 

is obtained and presented in Fig.5. It can be observed that 

the curve of cubic and linear term is almost closed to the 

original one, by means that the contribution of square term 

is small that can be almost neglected. 

 
Fig. 5 Polynomial components 

3  Negative stiffness mechanism 

To eliminate the proposed linear term, adding a new 

term which has the negative stiffness in the translational 

direction seems be a way forward. For this, a negative 

stiffness mechanism is implemented from two cylindrical 

compression springs, and the structure is shown in Fig.6. 

PP

 
Fig.6 Negative stiffness mechanism 

 

Based on Taylor expansion, the force-displacement 

relationship of pre-compressing at the length of pl  is 

expressed as: 
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Superposing the force with the one of conical spring in 

the translational direction, the composed force can be 

depicted as: 
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As can be seen from Eq. (5), if we set
1 2 /pa kl l , the 

equation will be left with the pure cubic term, and the 

coefficient of cubic term will increase a little larger.  

Based on the proposed methods, a small sized NES 

system providing strongly nonlinear stiffness is designed, 

and the assembly drawing is presented in Fig.6, of which 

the component parts are spherical plain bearing, linear 

guide, conical spring, linear spring and NES mass.  



 

 

 

Fig.6 Cubic stiffness absorber system 

 
To make certain the conical springs work in the 

compression state, the maximum displacement of NES is 

limited at the deflection of transition point. The 

corresponded characteristic curve is presented in Fig.7. It 

shows that the stiffness in the required working range is 

pure cubic and strongly nonlinear.  

 

Fig.7 Pure cubic stiffness curve 

4  Analytical study 

To validate the concept, an analytical study of a 

harmonically excited linear oscillator (LO) strongly 

coupled to a NES is presented, as shown in Fig. 8. 

 

Fig.8 LO coupled with NES 

 
The governing equations of motion of this system are 

given by: 
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        The imposed harmonic displacement ex is expressed as:  

sinex G t                                     (7) 

 By scaling parameter such as
0 ,t  2 1/ ,m m   the 

transferred equations are obtained: 
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Where the dots denote differentiation with respect to 

 and the following parameters are defined: 
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New variables are introduced as follows: 

v x y  ,  w x y                                (9) 

To study the response in the vicinity of the 

1:1resonance, the following complex variables are 

introduced: 

1

i te v i v     ,   
2

i te w i w                 (10) 

Substituting Eq. (9) and Eq. (10) into Eq. (8) and 

keeping only the secular term containing I te  yields the 

following slow modulated system: 
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Considering the small parameter , the method of 

multiple scales is introduced in the following form:
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Introducing Eq. (12) into Eq. (11) and equating 

coefficient in order 0 and 1 : 
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Substituting 2

1 2( )
i

N e
   into Eq. (13), the equation of 

slow invariant manifold (SIM) is presented as follows: 
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Introducing the parameters of previous cubic stiffness 

absorber of Tab.1, the structure of slow invariant manifold 

(SIM) is obtained, as shown in Fig.9. This topologic 

structure is mainly responsible for the possible occurrence 

energy pumping and it may give rise to the strongly 



 

 

modulated response (SMR) .The detailed description can 

refer to [15]. 

Tab.1 Parameters of NES 

Physical parameters 

m1 14kg k2 6 31.68 10 /N m  

10N/m3 
m2 0.14kg C1 4Ns/m 

k1 43 10 /N m  C2 0.4Ns/m 

Reduced parameters 

  0.01 
2  0.062 

1  0.62 K 5620 

The SMR threshold 

G1c 0.045mm, G2c 0.16mm 

 

stable unstable stable
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Fig.9 SIM structure   

 

Based on the Eq. (8), setting the initial condition state 

as zero and the excitation amplitude as 0.1mm, the 

numerical responses of NES and LO are obtained in Fig.10. 

A quasi-periodic regime with a slow evolution of the 

amplitudes of both oscillators is observed. For LO, the 

amplitude increases and decreases repeatedly in a regular 

fashion. For the amplitude of NES, it can be classified into 

two levels: a small one corresponding to the growth of LO 

amplitude, a large one when LO amplitude decreases. This 

alternating regime of SMR proves the jump phenomenon of 

SIM (the hypothetic “jump” between the stable branches is 

noted by arrow), and it has been demonstrated that this 

regime is rather effective for vibration mitigation [15]. 

 
Fig.10 Strongly modulated response with G=0.1mm 

As can be seen from Fig.10, the maximum amplitude 

of NES is near to 20mm, by means that this value is closed 

to the deflection of transition point and the performance of 

conical spring is well profited. Moreover, it can be 

observed that this system with strong nonlinearity could 

effetively abosrber and dissipate targeted energy uner a 

small excitation amplitude. 

5 Conclusion 

In this paper, a novel design NES of cubic stiffness 

without linear part is presented. For this, two conical 

springs were specifically sized to obtain the strong 

nonlinearity. To skip the linear phase of conical spring, a 

method of pre-compressing at the transition point was used, 

so to provide the polynomial components only with linear 

and cubic term. To eliminate the linear term, the concept of 

negative stiffness was implemented from two cylindrical 

compression springs. Based on the proposed methods, a 

small sized NES system providing strongly nonlinear 

stiffness was developed. To validate the concept, an 

analytical study based on the method of multiple scales was 

presented. The results showed that at specified excitation 

amplitude, this system could passively transfer the 

unwanted disturbance energy with the response of SMR. 

Moreover, owing to the strong nonlinearity, this type could 

effetively abosrber and dissipate targeted energy uner a 

small excitation, which makes it possible to broaden the 

NES application in vibration mitigation of fine mechanics. 

Further developments will aim manufacturing and 

experimental validation of this prototype. 
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