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Abstract. A random walk on a group is noise sensitive if resampling every step independently
with a small probability results in an almost independent output. We precisely define two notions:
`1-noise sensitivity and entropy noise sensitivity. Groups with one of these properties are necessarily
Liouville. Homomorphisms to free abelian groups provide an obstruction to `1-noise sensitivity. We
also provide examples of `1 and entropy noise sensitive random walks.

Noise sensitivity raises many open questions which are described at the end of the paper.

1. Introduction

Physically, noise is a non-significant perturbation of an observation. In signal theory, noise is an
unintentional perturbation of a message. Noise is an inherent phenomenon to physical observations
and to communication. Its influence on a channel capacity was already taken into account by
Shannon in his mathematical theory of communication Shannon (1948).

In probability theory, the noise of an event E(x1, . . . , xn) (i.e. a Boolean function) depending on
a large number of variables can be modeled as the effect of replacing a (small) proportion ρ ∈ (0, 1)
of the variables by random entries. An event is noise sensitive if the realisation of E gives no (or
very little) information on what happens when the entries are perturbed by noise. For instance in
bond percolation at critical probability 1

2 , having a left-right crossing on an n× n square lattice is
a noise sensitive event Benjamini et al. (1999); Garban et al. (2010). On the contrary, (weighted)
majority functions are noise stable Benjamini et al. (1999). The effect of noise in percolation and
voting games has been widely studied over the last decades. We refer to Benjamini et al. (1999);
Garban and Steif (2015); Garban et al. (2010); Kalai (2018) and references therein for more on these
topics.

In the present paper we investigate sensitivity to noise of random walks on groups. A random
walk on a group G is a sequence of products Xn = s1 . . . sn of independent variables si following
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identical distribution µ. Given such a product Xn, we can noise it by resampling independently
each increment si with a probability ρ ∈ (0, 1), this provides a new variable Y ρ

n depending on Xn.
In the Cayley graph, the original word Xn can be interpreted as a sequence of instructions for a
moving particule and Y ρ

n as the effective trajectory if instructions are misread with probability ρ.
Broadly speaking, the random walk (G,µ) is noise sensitive if Y ρ

n generally seems independent of
Xn. This vague statement can be specified in a number of ways and we refer to Section 2 for several
precise definitions. We retain two principal notions of noise sensitivity in this context. The random
walk (G,µ) is `1-noise sensitive if the law of the pair (Xn, Y

ρ
n ) and the law of a pair (Xn, X

′
n) of two

independent samples are close in the sense that their `1-distance tends to zero. The random walk is
entropy noise sensitive if the ratio between the conditional entropy H(Y ρ

n |Xn) and H(Xn) tends to
one, which means that the average amount of information needed to describe Y ρ

n once we already
know Xn is (asymptotically) as big as the average amount of information needed to describe Xn.

These notions of noise sensitivity are relevant for infinite groups. They are trivially satisfied
for finite groups by eventual equidistribution – see Theorem 5.1. For simplicity, we restricted our
investigations to finitely generated groups and finitely supported probability measures, though the
notions make sense in a wider setting.

We first point out two elementary obstructions to `1-noise sensitivity.

Theorem 1.1. Let G be a countable group and µ a finitely supported probability measure on G.

(1) If G admits a non-trivial homomorphism onto a free abelian group, then (G,µ) is not `1-noise
sensitive.

(2) If (G,µ) is `1-noise sensitive, then it is Liouville.

This is a concatenation of Corollary 5.4 and Theorem 4.1. The first part essentially follows
from the central limit theorem. For the second part, recall that the space of bounded harmonic
functions on (G,µ) is parametrized by the Poisson boundary Furstenberg (1971). The random walk
(G,µ) is Liouville if this boundary is reduced to a point, i.e. if all bounded harmonic functions
are constant. In the non-Liouville case, the first increment s1 already carries information on the
position of Xn. For instance in a free group, the first letter of a minimal representative word of Xn

is correlated to the first increment. This prevents `1-noise sensitivity of the free group. In fact, this
obstruction can be strengthen to show that the free group is not even noise sensitive at large scale,
see Proposition 4.2.

By Kăımanovich and Vershik (1983), Liouville property is also equivalent to the vanishing of the
asymptotic entropy lim 1

nH(Xn) which measures the average amount of information in one increment
of Xn. This provides an elementary obstruction to entropy noise sensitivity.

Theorem 1.2. If (G,µ) is entropy noise sensitive, then it is Liouville.

This is a particular case of Theorem 4.3. It follows directly from the upper semi-continuity of
the asymptotic entropy Amir et al. (2013, Proposition 4). By Frisch et al. (2019), any non-virtually
nilpotent finitely generated group admits a symmetric probability measure of finite entropy (usually
not finitely supported) for which it is non-Liouville. It is a fortiori neither `1-noise sensitive, nor
entropy noise sensitive.

Despite these obstructions, we provide examples of noise sensitive random walks on groups.

Theorem 1.3. Regarding entropy noise sensitivity:

• finitely generated abelian groups are entropy noise sensitive with respect to any finitely sup-
ported measure,
• the lamplighter group Z/2ZoZ is entropy noise sensitive with respect to the switch-walk-switch
measure,
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• the permutational extension of the first Grigorchuk group described in Bartholdi and Erschler
(2012) is partially entropy noise sensitive for some switch and walk measure, i.e.

∃c > 0, ∀ρ ∈ (0, 1), lim inf
H(Y ρ

n |Xn)

H(Xn)
≥ c.

The first point is in Proposition 5.2, the second is Theorem 7.1 and the third point a particular
case of Theorem 7.3.

Theorem 1.4. On the infinite dihedral group D∞ = 〈a, b|a2, b2〉,
• the simple random walk is not `1-noise sensitive,
• the lazy simple random walk is `1-noise sensitive.

This is Theorem 6.1. It follows that `1-noise sensitivity is not a geometric property, since it
depends on the measure. Moreover as our notions of noise sensitivity are stable under taking direct
products (of groups and measures), we obtain noise sensitive random walks on groups commensu-
rable to Zd for any rank d.

We expect that morphisms to Z and non-Liouville property (significance of the first increment)
are the only two obstructions for a group to be noise sensitive. This raises the:

Question 1.5. If (G,µ) is Liouville and has no virtual morphism onto Z, is it `1-noise sensitive?

Another (unexpected) type of obstruction to `1-noise sensitivity would probably be very inter-
esting and significant. As a particular case, we conjecture that:

Conjecture 1.6. The first Grigorchuk group is `1-noise sensitive for finitely supported µ.

As for entropy noise sensitivity, we believe it is widely spread and we conjecture:

Conjecture 1.7. A random walk (G,µ) is entropy noise sensitive if and only if it is Liouville.

In particular, we believe that `1-noise sensitivity implies entropy noise sensitivity – see Section 3.
Physically, an `1-noise sensitive process can somewhat not be observed, since the observation

Y ρ
n does not provide any significant information on the actual output Xn. Speculatively, this

could account for the rarity of Liouville (probability) groups in natural science. Indeed besides
virtually nilpotent ones, all known Liouville groups are genuinely mathematical objects, introduced
by mathematicians to solve their problems, without reference to physical sciences Alešin (1972);
Kăımanovich and Vershik (1983); Grigorchuk (1985, 1986); Amir et al. (2013); Brieussel (2013);
Matte Bon (2014); Nekrashevych (2018).
Organization of the paper. Precise definitions of noise sensitivity are given in Section 2 and

some of their relationships are studied in Section 3. The effects of Liouville property on noise
sensitivity are discussed in Section 4. Section 5 is devoted to finite and abelian groups, Section 6 to
the infinite dihedral group. Wreath products are studied in Section 7. Some perspectives and open
questions are presented in the final Section 8.

2. Notions of noise sensitivity

Let G be a countable group. We endow it with a probability measure µ whose support generates
G as a semi-group. The random walk (G,µ) is the sequence of random variables Xn = s1 . . . sn
where (sk)k≥1 are independent of law µ. The law of Xn is the n-fold convolution µn := µ∗n.

Given Xn and a noise parameter ρ ∈ [0, 1], we consider another random variable where the
increments sk are refreshed (i.e. resampled independently according to µ) with probability ρ. More
precisely, we define Y ρ

n = r1 . . . rn where

rk =

{
sk with probability 1− ρ,
s′k with probability ρ,
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where s′k is an independent random variable of law µ. We interpret Y ρ
n as a version of Xn perturbed

by some noise. Of course the law of Y ρ
n alone is the same as that of Xn.

We denote by πρn the joint law of (Xn, Y
ρ
n ) on G × G. It is the distribution at time n of the

random walk on G×G with measure πρ := (1− ρ)µdiag + ρµ2 where µdiag is the diagonal measure
on the product taking values µdiag(x, y) = µ(x) when x = y and µdiag(x, y) = 0 otherwise, and
µ2 := µ×µ. In particular, πρn is symmetric in the two variables, π1

n = µ2
n is the law of a µ2-random

walk on G×G at time n and π0
n = µdiag

n is the original random walk embedded diagonally in G×G.
In this paper, we investigate the notion of noise sensitivity of a random walk, that is how much

Y ρ
n for ρ ∈ (0, 1) can differ from Xn. Informally, we say that Y ρ

n is noise sensitive if the couple
(Xn, Y

ρ
n ) resembles a couple (Xn, X

′
n) of two independent samples of the random walk, i.e. if the

two probability measures πρn and µ2
n are close. We present several precise quantitative ways of

measuring noise sensitivity.

2.1. Measure-theoretic notions of noise sensitivity. Let us start with the most natural notion.

Definition 2.1. `1-noise sensitivity. The random walk (G,µ) is `1-noise sensitive if

∀ρ ∈ (0, 1), ‖πρn − µ2
n‖1 −→n→∞ 0.

We recall that the `1-distance (or twice total variation) between two probability measures ξ1, ξ2

on a countable space E is

‖ξ1 − ξ2‖1 :=
∑
x∈E
|ξ1(x)− ξ2(x)| ∈ [0, 2].

The `1-distance is also characterised in terms of coupling:

‖ξ1 − ξ2‖1 = inf
ν∈Coup(ξ1,ξ2)

ν(x 6= y),

where a coupling ν of ξ1 and ξ2 is a probability measure on E × E whose marginals are ξ1 and ξ2.
Let us now define a weaker notion of noise sensitivity, related to entropy. Recall that the Shannon

entropy of a random variable X of law ξ taking values in a countable set E is

H(X) = H(ξ) := −
∑
x∈E

ξ(x) log(ξ(x)) = EξIξ(x),

where Iξ(x) = − log(ξ(x)) is the information function. Informally, the entropy of X is the average
number of digits needed to describe the value of X. Moreover the conditional entropy of another
random variable Y with respect to X is

H(Y |X) = EXHX(Y ) =
∑

x∈X(E)

P(X = x)

−∑
y∈E

P(Y = y|X = x) logP(Y = y|X = x)


i.e. the expectation with respect to X of the entropy of the law of Y conditioned by the value of
X. Informally this is the average amount of information needed to describe Y when we already
know X.

Definition 2.2. Entropy noise sensitivity. The random walk (G,µ) is entropy noise sensitive if

∀ρ ∈ (0, 1),
H(Y ρ

n |Xn)

H(Xn)
−→
n→∞

1.

The random walk is partially entropy noise sensitive if

∃c > 0,∀ρ ∈ (0, 1),∃N, ∀n ≥ N, H(Y ρ
n |Xn) ≥ cH(Xn).
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Informally speaking, partial entropy noise sensitivity ensures that no matter how small the noise
parameter, there is always a fixed proportion of information that cannot be recovered from the
noised sample.

It is well known that for any two random variables H ((X,Y )) = H(Y |X) + H(X). In the present
context, we get H(Y ρ

n |Xn) = H(πρn)−H(µn).

2.2. Metric notions of noise sensitivity. As the notion of `1-convergence of measures is strong, it
can be interesting to relax it. We propose here other notions of noise sensitivity, related to metrics
on the group, and motivated by the usual interest in geometric group theory for the large scale
aspects of the metric. They can be omitted in first reading.

Given a metric d on a space E, we may define other notions of convergence of measures, for
instance via the Wasserstein distances, defined for p ∈ [1,∞) by:

Wp(ξ1, ξ2) := inf
ν∈Coup(ξ1,ξ2)

Eν [d(x, y)p]
1
p .

In practice, we will rather use a related notion based on the following quantity: given s > 0 set

U s(ξ1, ξ2) := inf
ν∈Coup(ξ1,ξ2)

ν (d(x, y) ≥ s) .

By Markov inequality, we have:

U s(ξ1, ξ2)
1
p ≤ Wp(ξ1, ξ2)

s
(2.1)

Definition 2.3. Noise sensitivity at scale sn. Given a left-invariant distance on G × G and a
sequence (sn), the random walk (G,µ) is noise sensitive at scale sn if

∀ρ ∈ (0, 1), U sn(πρn, µ
2
n) −→

n→∞
0.

From a mass transport point of view, this means that for n large, all but an ε proportion of the
“sand pile" mass distribution of µ2

n can be obtained from πρn, moving sand by distance less than sn.
Unless mentioned otherwise, we assume the distance on G × G is a word distance, e.g.

dG×G((x, y), (x′, y′)) = dG(x, x′) + dG(y, y′) where dG is a word distance on G. We recall that
all word distances on a finitely generated group are equivalent up to multiplicative constants.

We point out:
• Noise sensitivity at scale 1 is equivalent to `1-noise sensitivity when the distance takes integer
values, e.g. in discrete groups with word metric.
• If a Wasserstein distance satisfies Wp(π

ρ
n, µ2

n) = o(sn), then (G,µ) is noise sensitive at
scale sn by (2.1).
• If s′n ≥ sn and (G,µ) is noise sensitive at scale sn, then it is noise sensitive at scale s′n,
because U s′(ξ1, ξ2) ≤ U s(ξ1, ξ2) whenever s′ ≥ s.
• The quantity U s resembles a distance in the sense that

U s(ξ1, ξ3) ≤ U s1(ξ1, ξ2) + U s2(ξ2, ξ3) whenever s1 + s2 = s. (2.2)

The last point is proved along the same lines that W1 is a distance. Namely let ν12 and ν23 be
appropriate couplings to get U s1(ξ1, ξ2) and U s2(ξ2, ξ3). There exists γ a probability on E3 whose
projections satisfy p12γ = ν12 and p23γ = ν23. The coupling ν13 := p13γ gives (2.2).

Definition 2.4. Noise sensitivity at large scale The random walk (G,µ) is noise sensitive at
large scale if there exists a sequence such that sn = o(EdG(Xn, X

′
n)) and (G,µ) is noise sensitive at

scale sn.

The spread EdG(Xn, X
′
n) of the random walk can be considered as the natural scale to describe

the distribution µn. Noise sensitivity at large scale essentially means that most refreshed samples
Y ρ
n look independent of Xn at the spread scale. For instance, the central limit theorem for virtually
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abelian groups provides a gaussian description of the distribution of µn at the spread scale
√
n. For

such a group, noise sensitivity at large scale implies that the limit gaussian distribution of (Xn, Y
ρ
n )

is the same as that of (Xn, X
′
n).

Definition 2.5. Noise sensitivity in average distance. Given a left-invariant distance dG on
G (e.g. a word distance when G is finitely generated), the random walk (G,µ) is noise sensitive in
average distance if

∀ρ ∈ (0, 1), lim inf
n→∞

EdG(Xn, Y
ρ
n )

EdG(Xn, X ′n)
≥ 1.

The random walk (G,µ) is partially noise sensitive in average distance if

∃c > 0,∀ρ ∈ (0, 1), ∃N, ∀n ≥ N, EdG(Xn, Y
ρ
n ) ≥ cEdG(Xn, X

′
n).

3. Relationships between notions of noise sensitivity

The `1 noise sensitivity seems to be the strongest among the notions defined above. It implies
noise sensitivity at any (in particular at large) scale.

3.1. `1-noise sensitivity and entropy noise sensitivity. We believe that `1-noise sensitivity implies
entropy noise sensitivity, which would be a consequence of Conjecture 1.7. We prove it under an
additional assumption of homogeneity.

Definition 3.1. A sequence (ξn) of probability measures on G has homogeneous entropy if

hn(ε) := sup

{
1

H(ξn)

∑
x∈A

ξn(x) log(ξn(x))

∣∣∣∣∣A ⊂ G, ξn(A) ≤ ε

}
−→
ε→0

0

uniformly in n.

Informally, this means that the smallest atoms do not contribute much to the entropy.

Proposition 3.2. If a random walk (G,µ) is `1-noise sensitive and if the sequence of measures
(πρn)n has homogeneous entropy for each ρ ∈ (0, 1], then (G,µ) is entropy noise sensitive.

Proof : The case of finite groups is trivial by Proposition 5.1. We assume G is infinite. Let νn be a
coupling between two sequences (ξ1

n) and (ξ2
n) with homogeneous entropy such that νn(x1 6= x2)→ 0.

Then for small ε > 0 and each i = 1, 2, denote Aiε := {(1 − ε)ξin(x) ≤ νn(x, x) ≤ ξin(x)}. For n
large enough, ξin(Aiε) ≥ 1− ε, thus νn{(x, x) : x ∈ Aiε} ≥ (1− ε)2 ≥ 1− 2ε and by taking marginal
ξ3−i
n (Aiε) ≥ 1− 2ε. It follows that ξin(A1

ε ∩A2
ε) ≥ 1− 3ε.

As the modulus of continuity of the function x log(x) is ω(ε) = ε| log ε|, one has for all x, y ∈ (0, 1]∣∣∣∣xy − 1

∣∣∣∣ ≤ ε ⇐⇒ |x− y| ≤ εy =⇒ |x log x− y log y| ≤ ω(εy) ≤ εy |log ε+ log y|

=⇒
∣∣∣∣x log x

y log y
− 1

∣∣∣∣ ≤ ε| log ε|
| log y|

+ ε

Using the homogeneity assumption:

H(ξin) = −
∑
x

ξin(x) log(ξin(x)) = −
∑

x∈A1
ε∩A2

ε

ξin(x) log(ξin(x)) + hin(3ε)H(ξin)

= −
∑

x∈A1
ε∩A2

ε

νn(x, x) log(νn(x, x))
ξin(x) log(ξin(x))

νn(x, x) log(νn(x, x))
+ hin(3ε)H(ξin)

= −(1 + ψin(ε))
∑

x∈A1
ε∩A2

ε

νn(x, x) log(νn(x, x)) + hin(3ε)H(ξin),
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where |ψin(ε)| ≤ ε| log ε|
log 2 + ε −→

ε→0
0 provided all the atoms of νn have mass at most 1

2 . We apply

these equalities for ξ1
n = πρn and ξ2

n = µ2
n = π1

n (the condition on the atoms of νn is satisfied for
n large because G is infinite). We get that

∑
x∈A1

ε∩A2
ε
νn(x, x) log(νn(x, x)) = H(πρn) + o(H(πρn)) =

H(µ2
n) + o(H(µ2

n)). It follows that H(πρn)
H(µ2n)

→ 1, which is equivalent to entropy noise sensitivity. �

Remark 3.3. For random walks on groups, homogeneous entropy, as well as homogeneous spread
(see Definition 3.4 below), are related to the tail decay of the distribution µn. They are not easy
to check on a given group, for it is usually hard to compute entropy or spread in the first place.
However they are satisfied for random walks on virtually abelian groups by gaussian decay. They
are also satisfied by symmetric random walks on the lamplighter group Z/2Z o Z, because of the
gaussian decay of the range of a random walk on Z – see formula (7.1) in the proof of Theorem 7.1.
Such argument on the range can probably be adapted to the case of iterated lamplighter groups, and
possibly to the case of diagonal products of lamplighter groups as in Brieussel and Zheng (2021).
However detailed computations are out of the scope of the present article. Non-Liouville random
walks also have homogeneous entropy and spread by Shannon’s theorems, see e.g. Kăımanovich
and Vershik (1983). We do not know if there exist random walks on groups with non-homogeneous
entropy or non-homogeneous spread.

3.2. Noise sensitivity at large scale and noise sensitivity in average distance. We also believe that
if (G,µ) is noise sensitive at large scale, then it is noise sensitive in average (word) distance. Re-
mark 4.4 shows that the converse is not true. Again, we prove this under an additional assumption.

Definition 3.4. We say the random walk (G,µ) has homogeneous spread if

fn(ε) := sup

 1

EdG(Xn, X ′n)

∑
(x,y)∈A

dG(x, y)µ2
n(x, y)

∣∣∣∣∣∣A ⊂ G×G,µ2
n(A) ≤ ε

 −→ε→0
0

uniformly in n.

Informally, this means that far away points do not contribute to the spread.

Proposition 3.5. If a random walk (G,µ) is noise sensitive at large scale and has homogeneous
spread, then it is noise sensitive in average word distance.

Proof : There exists a sequence sn = o(EdG(Xn, X
′
n)) such that U sn(πρn, µ2

n)→ 0. So there exists a
probability νn ∈ Coup(πρn, µ2

n) such that νn(An)→ 1 where An is the event dG2((x, y), (x′, y′)) ≤ sn.
We compute

EdG(Xn, Y
ρ
n ) =

∑
G2

πρn(x, y)dG(x, y) =
∑
G4

νn(x, y, x′, y′)dG(x, y)

≥
∑
An

νn(x, y, x′, y′)dG(x′, y′)− 2sn by triangle inequality,

=
∑
G2

νn
(
(G2 × {(x′, y′)}) ∩An

)
dG(x′, y′)− 2sn.

Given ε > 0, for n large enough there exist Bn ⊂ G2 such that µ2
n(Bn) ≥ 1− ε and

∀(x′, y′) ∈ Bn, νn
(
(G2 × {(x′, y′)}) ∩An

)
≥ (1− ε)µ2

n(x′, y′).

Then

EdG(Xn, Y
ρ
n ) ≥ (1− ε)

∑
Bn

µ2
n(x′, y′)dG(x′, y′)− 2sn

≥ (1− ε)(1− fn(ε))Eµ2ndG(x′, y′)− 2sn.
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Noise sensitivity in average distance now follows from the homogeneity assumption. �

4. Noise sensitivity and Liouville property

A function on a group G is µ-harmonic if f(y) =
∑

x∈G µ(x)f(yx) for all y. A random walk
(G,µ) is Liouville if there are no non-constant bounded µ-harmonic functions. This is equivalent to
the fact that the Poisson boundary is reduced to a point Furstenberg (1971) and also equivalent to
the fact that the entropy H(Xn) of the random walk is sublinear Kăımanovich and Vershik (1983).

Theorem 4.1. If (G,µ) is `1-noise sensitive, then (G,µ) is Liouville.

The converse is not true because of infinite abelian groups, see Proposition 5.2.

Proof : First observe that `1-noise sensitivity implies

‖µdiag ∗ µ2
n−1 − µ2

n‖1 −→n→∞ 0. (4.1)

Indeed, taking the convex decomposition of the first factor πρ = (1 − ρ)µdiag + ρµ2, the `1-noise
sensitivity first implies (1− ρ)‖µdiag ∗ πρn−1 − µ2

n‖1 → 0. On the other hand ‖µdiag ∗ πρn−1 − µdiag ∗
µ2
n−1‖1 → 0 by left multiplication. Convergence (4.1) follows.
Assume by contradiction that (G,µ) is not Liouville, i.e. admits a non-trivial Poisson boundary

(Π, ν). We claim that there exists a subset A ⊂ Π such that

ν(A)2 <
∑
z∈G

µ(z)ν(z−1A)2. (4.2)

Indeed, as ν is stationary ν(A) =
∑

z∈G µ(z)ν(z−1A) and the above inequality (4.2) holds with ≤ in
place of < by Jensen. As the square function is strictly convex, equality implies ν(z−1A) = ν(A) for
all z in the support of µ and a fortiori for all z. Therefore equality for all A would imply triviality
of the Poisson boundary, whence the claim.

Now by stationarity of ν2 with respect to µ2, we have for each n that

ν(A)2 =
∑

(x,y)∈G×G

µ2
n(x, y)ν(x−1A)ν(y−1A)

and ∑
z∈G

µ(z)ν(z−1A)2 =
∑

(x,y)∈G×G

µdiag ∗ µ2
n−1(x, y)ν(x−1A)ν(y−1A)

Convergence (4.1) implies that the difference between right hand sides tends to zero, raising a
contradiction to (4.2) that ν(A)2 =

∑
z∈G µ(z)ν(z−1A)2. �

For the free groups, this theorem can be improved.

Theorem 4.2. Finitely supported random walks on free groups are not noise sensitive at large scale.

Proof : We follow the same line of reasoning as in the previous proof. We are now given a sublin-
ear sequence sn such that U sn(πρn, µ2

n) → 0. By diagonal coupling of the first factor, we deduce
U sn−1(πρn, πρ ∗ µ2

n−1)→ 0. By (2.2) in Section 2.2, we obtain:

U sn+sn−1(πρ ∗ µ2
n−1, µ

2
n) −→ 0. (4.3)

Let us consider a subset A satisfying (4.2) in the Poisson boundary which is now the geometric
boundary of the Cayley tree, i.e. the set of infinite geodesic rays out of the neutral element e. Up
to taking a close enough approximation, we may assume that A is open-closed, i.e. a finite union
of “cylinder" sets. Recall that “cylinder" sets Ch are indexed by h ∈ F, and Ch is the collection of
geodesic rays out of e crossing h. Moreover, the point h partitions F\{h} into the set Ĉh consisting
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of points g from which there is a geodesic ray towards Ch not going through h and its complement
Ĉch.

Recall that the speed (or drift) λ := lim 1
nEd(e,Xn) > 0 is positive. Given α ∈ (0, λ), we define

[x]n to be the point at distance αn from e on the geodesic ray from e to x, when x is at distance at
least αn from the identity. Otherwise [x]n = e. We will use the fact that

P(d(e,Xn) ≥ αn) −→
n→∞

1. (4.4)

We claim that ∣∣∣∣∣∑
G2

µ2
n(g)gν(A)−

∑
G2

µ2
n(g)[g]nν(A)

∣∣∣∣∣ −→n→∞ 0 (4.5)

where we write gν(A) := ν(x−1A)ν(y−1A) for g = (x, y) and [g]n = ([x]n, [y]n). Convoluting by πρ
which has finite support, we get∣∣∣∣∣∑

G2

πρ ∗ µ2
n−1(g)gν(A)−

∑
G2

πρ ∗ µ2
n−1(g)[g]nν(A)

∣∣∣∣∣ −→n→∞ 0. (4.6)

Now let νn denote appropriate couplings to get (4.3), we have:∣∣∣∣∣∑
G2

µ2
n(g)[g]nν(A)−

∑
G2

πρ ∗ µ2
n−1(g)[g]nν(A)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(g1,g2)∈G4

νn(g1, g2) ([g1]nν(A)− [g2]nν(A))

∣∣∣∣∣∣
≤ 2

∑
(g1,g2)∈G4

νn(g1, g2)1{[g1]n 6=[g2]n}

≤ U sn+sn−1(πρ ∗ µ2
n−1, µ

2
n) + 4P [dG(e,Xn) ≤ αn+ sn + sn−1] −→

n→∞
0

where the last inequality is due to the geometry of the tree that if both x, x′ are at distance ≥ αn+s
from identity and d(x, x′) ≤ s, then [x]n = [x′]n. The convergence to 0 follows by (4.3) and (4.4)
for α < α′ < λ as αn+ sn + sn−1 < α′n for n large. Together with (4.5) and (4.6), we deduce∣∣∣∣∣∑

G2

µ2
n(g)gν(A)−

∑
G2

πρ ∗ µ2
n−1(g)gν(A)

∣∣∣∣∣ −→n→∞ 0

raising the same contradiction as at the end of the proof of Theorem 4.1.
There remains to prove the claim (4.5). As A is a finite union of cylinder sets, it is enough to

prove that for any h1, h2 in F, one has∣∣∣∣∣∣
∑

(x,y)∈G2

µn(x)xν(Ch1)µn(y)yν(Ch2)−
∑

(x,y)∈G2

µn(x)[x]nν(Ch1)µn(y)[y]nν(Ch2)

∣∣∣∣∣∣ −→n→∞ 0 (4.7)

We use the facts that xν(A) = ν(x−1A) is the probability that a random walk started in x tends
to a boundary point in A, and that for any ε > 0 there exists N such that when d(x, z) ≥ N , the
probability that a random walk started in x ever hits z is at most ε. Using union bounds, we can
deduce that for any R ≥ 0, there exists N ′ such that when d(x, h1) ≥ N ′, a random walk started at
x hits the ball B(h1, R) with probability at most ε. We use it for R large enough that a random walk
trajectory cannot move from Ĉh1 to its complement (or vice-versa) without stepping in B(h1, R).
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It follows that for d(e, x) ≥ αn ≥ N ′ + d(e, h1) we have

if x ∈ Ĉh1 , then xν(Ch1) ≥ 1− ε and [x]nν(Ch1) ≥ 1− ε,

if x ∈ Ĉch1 , then xν(Ch1) ≤ ε and [x]nν(Ch1) ≤ ε.

Finally, let us denote Λn the set of points (x, y) in G2 such that d(e, x) ≥ αn and d(e, y) ≥ αn
where n is large enough to have d(e, x) ≥ αn ≥ N ′ + d(e, h1) and the analogous property for y, h2

in place of x, h1. For (x, y) ∈ Λn, one has

|xν(Ch1)yν(Ch2)− [x]nν(Ch1)[y]nν(Ch2)| ≤ 5ε

by checking the four cases. Then the expression in (4.7) is∣∣∣∣∣∣
∑

(x,y)∈G2

µn(x)µn(y) (xν(Ch1)yν(Ch2)− [x]nν(Ch1)[y]nν(Ch2))

∣∣∣∣∣∣ ≤ 2µ2
n(Λcn) + 5εµ2

n(Λn) ≤ 4ε+ 5ε

where µ2
n(Λcn) is bounded above using (4.4) for n large. �

The above proof can probably be generalised to groups with hyperbolic properties. However in
full generality, it is not clear if sublinearly close points have close actions on the harmonic measure.

Theorem 4.3. If (G,µ) is partially entropy noise sensitive, then (G,µ) is Liouville.

This is one direction of Conjecture 1.7.

Proof : Assume (G,µ) is not Liouville, which means that the associated Poisson boundary is not
trivial. By Kăımanovich and Vershik (1983), this implies

h∞(µ) := lim
n→∞

H(µn)

n
> 0.

Thus H(Xn) = H(µn) = h∞(µ)n+ o(n). Similarly

h∞(πρ) := lim
n→∞

H(πρn)

n
≥ h∞(µ)

because H(πρn) = H(Xn, Y
ρ
n ) = H(Y ρ

n |Xn) + H(Xn) ≥ H(Xn) = H(µn). It follows that H(πρn) =
h∞(πρ)n+ o(n).

Moreover πρ = (1− ρ)µdiag + ρµ2 tends to µdiag weakly as ρ→ 0, and H(πρ)→ H(µdiag) = H(µ)
as these measures have support in the finite set supp(µ)2. The upper semi-continuity of asymptotic
entropy Amir et al. (2013, Proposition 4) implies

lim
ρ→0

h∞(πρ) = h∞(µ).

Therefore we have

lim
n→∞

H(Y ρ
n |Xn)

H(Xn)
=
h∞(πρ)− h∞(µ)

h∞(µ)
−→
ρ→0

0,

ruling out partial entropy noise sensitivity. �

Remark 4.4. Noise sensitivity in average distance does not imply Liouville property. Indeed for the
simple random walk on the free group F2, one easily computes EdF2(Xn, X

′
n) ∼ n ∼ EdF2(Xn, Y

ρ
n )

for any ρ > 0. It follows that average distance noise sensitivity does not imply large scale noise
sensitivity.
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5. Finite and abelian groups

5.1. Finite groups.

Proposition 5.1. Any finite group is `1-noise sensitive, entropy noise sensitive and noise sensitive
in average distance with respect to any generating probability measure.

Proof : The measure πρ := (1−ρ)µdiag +ρµ2 is generating of G2, so πρn satisfies ‖πρn−unifG2‖1 ≤ βn1
for some β1 < 1 (see e.g. Saloff-Coste (2004)). Similarly ‖µ2

n − unifG2‖1 ≤ βn2 for some β2 < 1.
Therefore the random walk in G is `1-noise sensitive, with total variation converging exponentially
fast to zero.

Since the set G is finite, it follows that H(πρn)→ H(unifG2) = 2H(unifG) and H(µn)→ H(unifG).
This implies entropy noise sensitivity.

Moreover let Z denote a uniformly random variable in G, it is immediate that |EdG(Xn, X
′
n) −

EdG(e, Z)| ≤ diam(G)‖µn − unifG‖1 and

|EdG(Xn, Y
ρ
n )− EdG(e, Z)| ≤ diam(G) (‖µn − unifG‖1 + ‖πρn − unifG2‖1) .

By `1-noise sensitivity, both converge to zero, whence distance noise sensitivity. �

This result is not surprising since we defined noise sensitivity only asymptotically. An interesting
further question is whether it is possible that noise sensitivity manifests itself before cut-off, that is
before the random walk seems equidistributed. However we will not pursue in this direction.

5.2. Infinite abelian groups. In abelian groups, computations are explicit, based on the local central
limit theorem.

Proposition 5.2. Let G be an infinite finitely generated abelian group and µ be any finitely supported
probability measure. Then

• (G,µ) is entropy noise sensitive,
• (G,µ) is not, even partially, noise sensitive in average word distance,
• (G,µ) is not `1-noise sensitive.

The proof of the first point is based on the following folklore lemma.

Lemma 5.3. Let Xn be a random walk on Zd with step distribution µ finitely supported and gen-
erating. Then

H(Xn) =
d

2
log n+ o(log n).

Proof of Lemma 5.3: We denote m = EX1. We fix ε > 0. The central limit theorem gives K such
that P(|Xn − nm| ≤ K

√
n) ≥ 1− ε. Then

H(Xn) = H(Xn||Xn − nm| ≤ K
√
n)P(|Xn − nm| ≤ K

√
n)

+ H(Xn||Xn − nm| > K
√
n)P(|Xn − nm| > K

√
n) + h1,

(5.1)

where 0 ≤ h1 ≤ log 2 is the entropy of the conditioning partition. The local central limit theorem
Davis and McDonald (1995); Lawler and Limic (2010) provides two constants c1, c2 > 0 depending
only on K such that for all n large enough, for all |x− nm| ≤ K

√
n,

c1

n
d
2

≤ P(Xn = x||Xn − nm| ≤ K
√
n) ≤ c2

n
d
2

(5.2)

It follows that for n large enough

d

2
log(n) + log

1− ε
c2

= log
(1− ε)n

d
2

c2
≤ H(Xn||Xn − nm| ≤ K

√
n) ≤ d

2
log(n) + log

1− ε
c1

(5.3)

and the lower bound together with (5.1) give lim inf H(Xn)
logn ≥

d
2 .
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On the other hand, as Xn is confined in a ball of radius Cn and of volume at most C ′nd, we have

H(Xn||Xn − nm| > K
√
n) ≤ log(C ′nd) = d log(n) + log(C ′).

For n large enough, we deduce with (5.1) and (5.3)

H(Xn) ≤ (1− ε)d
2

log(n) + εd log(n) + C ′′

which gives lim sup H(Xn)
logn ≤

d
2 . �

Proof of Proposition 5.2: Such a group G is isomorphic to Zd × F for some finite abelian group
F . Lemma 5.3 still holds in this more general setting for the finite group F contributes at most a
constant to entropy.

We first prove entropy noise sensitivity, we have to show lim H(Y ρn |Xn)
logn = d

2 . The inequality
H(Y ρ

n |Xn) ≤ H(Xn) provides the upper bound.
Let ` be the number of refreshed variables in Y ρ

n . Given `, we can write (Xn, Y
ρ
n ) = (Xn−`X`, Xn−`X

′
`)

where X` and X ′` are independent, of law µ`. They are also independent of Xn−` which has law
µn−`. As ` follows a binomial law B(n, ρ), we have for any ε > 0

P(Aε) = P(` ∈ [(ρ− ε)n, (ρ+ ε)n]) −→
n→∞

1 (5.4)

where we denote Aε = {` ∈ [(ρ− ε)n, (ρ+ ε)n]}. As further conditioning does not increase entropy,
we have the lower bound

H(Y ρ
n |Xn) = H(Xn−`X

′
`|Xn) ≥ H(Xn−`X

′
`|Xn, Xn−`, `) = H(X ′`|Xn, Xn−`, `) = H(X ′`|`).

It follows that

H(Y ρ
n |Xn) ≥

n∑
k=0

H(X ′k)P(` = k) ≥
n∑

k=(ρ−ε)n

H(X ′k)P(` = k) ≥ H(X ′(ρ−ε)n)P(` ≥ (ρ− ε)n)

and thus by Lemma 5.3 and (5.4)

H(Y ρ
n |Xn) ≥

(
d

2
log((ρ− ε)n) + o(log n)

)
(1 + o(1)) =

d

2
log n+ o(log n)

which is the required lower bound to get entropy noise sensitivity.
Regarding the spread, there exist two constants c3, c4 > 0 depending only on µ such that

c3

√
n ≤ EdG(Xn, X

′
n) ≤ c4

√
n. (5.5)

Conditioning as above by the number ` of refreshed variables, we have

EdG(Xn, Y
ρ
n ) = EdG(Xn−`X`, Xn−`X

′
`) = EdG(X`, X

′
`) =

Cn∑
k=0

E
(
dG(X`, X

′
`)|` = k

)
P(` = k)

where C = 2 max{dG(e, x)|x ∈ suppµ}. By splitting the sum at (ρ + ε)n for arbitrary ε > 0 and
using (5.4), we get

EdG(Xn, Y
ρ
n ) ≤ c4

√
(ρ+ ε)nP(` ≤ (ρ+ ε)n) + c4

√
CnP(` > (ρ+ ε)n) = c4

√
ρ+ ε

√
n(1 + o(1)).

With (5.5) we deduce that

lim sup
n→∞

EdG(Xn, Y
ρ
n )

EdG(Xn, X ′n)
≤ c4

c3

√
ρ −→
ρ→0

0.

This rules out partial noise sensitivity in average word distance, and thus `1-noise sensitivity by
Proposition 3.5. �

Corollary 5.4. Let (G,µ) be a group with a surjective homomorphism G � Z and µ finitely
supported, then (G,µ) is not `1-noise sensitive.
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Proof : It follows from Proposition 5.2 because `1-noise sensitivity is preserved under taking quo-
tients G � Ḡ (for the induced measure): if µ1, µ2 are two measures on G, then ‖µ̄1 − µ̄2‖1 ≤
‖µ1 − µ2‖1. �

5.3. Product groups.

Proposition 5.5. Let G1, G2 be two finitely generated groups with probabilities µ1 and µ2 respec-
tively. If both (G1, µ1) and (G2, µ2) are noise sensitive in the sense of one definition of section 2,
then (G1 ×G2, µ1 × µ2) is noise sensitive as well in this definition.

Proof : It follows straightforwardly from the definitions. �

The choice of product probability measure is important here, because noise sensitivity notions
may depend on the choice of probability. It is the case for `1-noise sensitivity and noise sensitivity
in average distance by Corollary 6.3.

6. The infinite dihedral group

Let D∞ = 〈a, b|a2 = b2 = 1〉 denote the infinite dihedral group. The random walk on D∞ driven
by 1

2(δa + δb) is called simple. The random walk driven by 1
3(δe + δa + δb) is called lazy simple.

Theorem 6.1. Let D∞ be the infinite dihedral group.
• The simple random walk on D∞ is not `1-noise sensitive.
• The lazy simple random walk on D∞ is `1-noise sensitive.

The Cayley graph of D∞ with respect to the generating set {a, b} is a line, so it coincides with
the Cayley graph of Z. Therefore random walks on D∞ are related to random walks on the integers,
which explains the first statement. However the edge labelings are very different. This difference
will be key to the second statement.

Corollary 6.2. The simple random walk on D∞ is not noise sensitive in average word distance.
The lazy simple random walk on D∞ is noise sensitive in average word distance.

Proof of Corollary 6.2: The first statement is justified below in the proof of Theorem 6.1. The
second statement follows from Proposition 3.5. �

Note that both simple and lazy simple random walks on D∞ are entropy noise sensitive by the
same argument as in abelian case.

Corollary 6.3. The `1-noise sensitivity and the noise sensitivity in average word distance are not
group properties but depend on the probability measure. A fortiori they are not preserved under
quasi-isometries.

Corollary 6.4. For any positive integer d, there exists a group commensurable with Zd which is
`1-noise sensitive for some probability measure.

Proof : Take a direct product Dd
∞ and use Proposition 5.5. �

Remark 6.5. Theorem 6.1 shows that virtually abelian groups may be `1 noise sensitive. Informally,
this is due to the noise sensitivity of the action of the finite quotient on the torsion free subgroup. It
is obvious that if we are given a trajectory in the streets of New York by a sequence of moves North-
South-East-West and we misread one instruction, we will still end up close to the aim. However
if the instructions are given in terms of Forward-Backward-Left-Right and we miss a turn, we will
most likely end up very far from the aim. It would be interesting to understand precisely when a
virtually abelian group is noise sensitive or not.
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6.1. Couplings of (lazy or not) simple random walks on Z. We record here three lemmas that will
be used in the proof of Theorem 6.1. The first one is very classical and the other two are easy
consequences.

Lemma 6.6. Let Sn, resp. S′n, denote a (lazy or not) simple random walk on Z started at 0, resp.
at x
√
n. There exists σ = σx ∈ {0, 1}, such that

lim sup
n→∞

||law(Sn)− law(S′n − σ)||1 −→
x→0

0.

For lazy simple random walks, this holds true with σ = 0.

Proof : Let us start with the case of (non lazy) simple random walk. We assume x
√
n is even

and take σ = 0. The case x
√
n odd and σ = 1 is similar. We consider the following coupling

of Sn and S′n : while Sk 6= S′k, sample the increments independently, once Sk = S′k take the
same increments. This ensures that Sk = S′k for any k ≥ T = min{k : Sk = S′k}. We have
||law(Sn)− law(S′n − σ)||1 ≤ 2P(T > n).

Now while k ≤ T , the random variable S′k−Sk has the law of a random walk with step distribution
1
2δ0 + 1

4δ2 + 1
4δ−2. Then P(T > n) is the probability that such a random walk, starting at the even

integer x
√
n, does not hit 0 by time n. The later tends to 0 with x by Révész (2013, Theorem 2.13).

For lazy simple random walks, the random variable S′k − Sk has a step distribution charging
positively each increment in {−2,−1, 0, 1, 2}, and it can hit 0 as above without parity issue. �

We will actually rather use the proof than the lemma, and we call the coupling above the standard
coupling between two simple random walks on Z started at different positions.

Lemma 6.7. Let Sn, resp. S′n, denote a (lazy or not) simple random walk on Z started at 0, resp.
at x
√
n, and let δ ∈ R. There exists σ ∈ {0, 1} such that

lim sup
n→∞

||law(Sn)− law(S′(1+δ)n − σ)||1 −→ 0

when both x and δ tend to 0. This holds true with σ = 0 for lazy simple random walks.

Proof : This is a consequence of the previous lemma. We consider only the (non lazy) simple random
walk and assume that δ > 0 and that both x

√
n and δn are even. Similar arguments apply in the

other cases. We first sample S′δn. By the central limit theorem, for any ε > 0, there exists A > 0
such that for n large

P
[
|S′δn| ≤ A

√
δn
]
≥ 1− ε.

Conditioning on this event, we apply Lemma 6.6 to Sn and S′−1
δn S

′
(1+δ)n which is starting at x′

√
n

with x−Aδ ≤ x′ ≤ x+Aδ. The probability to achieve their standard coupling is greater than 1− ε
as long as x and δ are small enough. It follows that the probability to couple Sn and S′(1+δ)n is at
least 1− 2ε for n large. �

In order to ease notations, we write [a± b] as a shortcut for the interval [a− b, a+ b].

Lemma 6.8. Assume `+, `− ∈
[(

4
9 ± δ

)
n
]
and ` ∈ [(1± δ)n], then for any given integer s,

lim sup
n→∞

∥∥∥∥∥
(

1

2
δ1 +

1

2
δ−1

)∗`+
∗
(

1

2
δ0 +

1

4
δ1 +

1

4
δ−1

)∗`−
− δs ∗

(
1

3
δ0 +

1

3
δ1 +

1

3
δ−1

)∗`∥∥∥∥∥
1

−→
δ→0

0.

We could replace s by x
√
n with x tending to 0 but this will not be necessary. There is no shift

σ 6= 0 because of the lazy aspect of the random walk.

Proof : Fix ε > 0. Set µS = 1
2δ1 + 1

2δ−1 and µLS = 1
3δ0 + 1

3δ1 + 1
3δ−1. Then(

1

2
δ1 +

1

2
δ−1

)∗`+
∗
(

1

2
δ0 +

1

4
δ1 +

1

4
δ−1

)∗`−
= µ∗`

+

S ∗
(

3

4
µLS +

1

4
δ0

)∗`−
= µ∗`

+

S ∗ (µLS)∗m
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Figure 6.1. Cayley graph of D∞ and identification with Z.

with 1− ε ≤ P
[
m ∈

[(
3
4 ± δ

)
`−
]]
≤ P

[
m ∈

[(
1
3 ± 2δ

)
n
]]

for n large. Similarly we have

δs ∗ µ∗`LS = δs ∗ µ
∗ 2
3
n

LS ∗ µ
∗`− 2

3
n

LS = δs ∗
(

2

3
µS +

1

3
δ0

)∗ 2
3
n

∗ µ∗`−
2
3
n

LS = δs ∗ µ∗m
′

S ∗ µ∗`−
2
3
n

LS

with 1 − ε ≤ P
[
m′ ∈

[(
2
3 ± δ

)
2
3n
]]
≤ P

[
m′ ∈

[(
4
9 ± δ

)
n
]]

for n large. Under these generic condi-
tions on m and m′, Lemma 6.7 gives a probability no less than 1 − ε that the two random walks
with respective laws µ∗`+S and δs ∗ µ∗m

′
S achieve a standard coupling (up to adding 1), provided δ is

small enough, and n large. Conditioning by such a success, Lemma 6.7, applied to random walks of
respective laws (µLS)∗m and µ∗`−

2
3
n

LS started at most 1 apart, gives a probability no less than 1− ε
that the two considered random walks achieve coupling. We conclude that∥∥∥∥∥

(
1

2
δ1 +

1

2
δ−1

)∗`+
∗
(

1

2
δ0 +

1

4
δ1 +

1

4
δ−1

)∗`−
− δs ∗

(
1

3
δ0 +

1

3
δ1 +

1

3
δ−1

)∗`∥∥∥∥∥
1

≤ 4ε

provided δ is small enough and n large. �

6.2. Proof of Theorem 6.1. Let us now describe precisely the labelling of the Cayley graphs of Z and
D∞, pictured in Figure 6.1. In the integers, from each vertex there is an edge to the right labelled
by +1 and and edge to the left labelled by −1. In the dihedral group, let us say that the words (ab)k

correspond to even positions and the words (ab)ka to odd positions. At each even position, there is
an edge to the left labelled by a and an edge to the right labelled by b. At each odd position, this
is the converse.

Proof of the first part of Theorem 6.1: For the simple random walk, the key observation is that
position Xn and time n have the same parity. The path parametrized by Xn corresponds to a
random walk on the integers where the increments at odd times are +1 for a and −1 for b, and
the increments at even times are +1 for b and −1 for a. This provides a simple random walk
on the integers, which is neither `1-noise sensitive nor noise sensitive in average word distance by
Proposition 5.2. �

For lazy random walks, time and position no longer have the same parity. Let us first observe
the effect of refreshing one increment. Denote Xn = v0sv1 and Yn = v0rv1 with s, r independent,
µ-distributed in {a, b, e}. By abuse of notation, we denote Xn = v0 + s+ v1 the corresponding path
in the integers, as above.

When s ∈ {a, b} and r = e (or vice-versa), it corresponds in the integers to s = ±1 (the sign
depends on the parity of v0) being replaced by r = 0 (or vice-versa). Thus v0s and v0r have different
parity, so the next moves of the random walk, described by the word v1, will be mirrored of the
moves in the original walk. We write Yn = v0 + r − v1.

When s = a and r = b (or vice-versa), then s = ±1 (depending on v0) is replaced by r = ∓1.
The parity is not modified and we write Yn = v0 + r + v1.
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L0 αi = −αi−1 αi = αi−1

si ∈ D∞ e a b e e a a b b
ri ∈ D∞ e e e a b a b a b

even position si ∈ Z 0 1 −1 0 0 1 1 −1 −1
ri ∈ Z 0 0 0 1 −1 1 −1 1 −1

odd position si ∈ Z 0 −1 1 0 0 −1 −1 1 1
ri ∈ Z 0 0 0 −1 1 −1 1 −1 1

Figure 6.2. Correspondence of the effect of noising in the dihedral and integer
model. The position is the integer v0 + · · ·+ sji−1 + vi−1, as in (6.1).

Now denote Xn = v0sj1v1sj2 . . . sjmvm a lazy simple random walk where sji are the increments
to be refreshed and vi = sji+1 . . . sji+1−1 are words. With the notations above, it corresponds to a
sum

Xn = v0 + sj1 + v1 + sj2 + v2 · · ·+ sjm + vm (6.1)

in the integers. The refreshed sample Y ρ
n = v0rj1v1 . . . rjmvm corresponds to a sum

Y ρ
n = α0v0 + rj1 + α1v1 + rj2 + α2v2 · · ·+ rjm + αmvm (6.2)

where αi = ±1 are given by α0 = 1 and αi = −αi−1 if and only if si ∈ {a, b} and ri = e or
vice-versa, i.e. there is a change of parity, which occurs with probability 4/9. This is summarised
in Table 6.2.

At this stage, we can get an intuition of the result because the sum
∑
rj is actually independent of

the sum
∑
sj and the Lyapunov central limit theorem applied to the random variables ±vi ensures

that the sums
∑
vi and

∑
αivi are essentially independent. Making this precise would prove noise

sensitivity at large scale.
However, to obtain `1 convergence, we need to construct a coupling between (Xn, Y

ρ
n ) and

(Xn, X
′
n). For this, we will use the additive model of expressions (6.1) and (6.2).

Proof of the second part of Theorem 6.1: Let us first explain how we sample (Xn, Y
ρ
n ) in the integer

model (6.1,6.2). We first sample the locations L of the refreshed increments, according to a Bernoulli
law of parameter ρ. Among L, we sample the locations L0 where (si, ri) = (e, e) (or (si, ri) = (0, 0)
in the integer model), according to a Bernoulli law of parameter 1

9 . Then we sample the vi, i.e.
the increments si for i not in L according to 1

3(δe + δa + δb). Then we sample the values of αi
according to a Bernoulli law of parameter 1

2 . This partitions L \ L0 into L+
α t L−α . Finally, we

sample the pairs (si, ri) according to 1
4(δ(1,−1) + δ(1,1) + δ(−1,1) + δ(−1,−1)) for i in L+

α and according
to 1

4(δ(1,0) +δ(−1,0) +δ(0,1) +δ(0,−1)) for i in L−α . In view of Table 6.2, this yields a sample of (Xn, Y
ρ
n )

in the integer model.
Now we explain how to couple (Xn, Y

ρ
n ) with (Xn, X

′
n). More precisely, we will couple the

conditioned law (Y ρ
n |Xn) with X ′n (which is equal to (X ′n|Xn) by independence) on a large enough

subset.
We first sample the subsets L and L0, thus we have integer expressions of Xn and Y ρ

n as in
(6.1,6.2). We will mimic these expressions for X ′n and write it in the form

X ′n = v′0 + s′j1 + v′1 + s′j2 + v′2 · · ·+ s′jm + v′m +
∑
i∈L0

s′i

where v′i =
∑

i∈{ji+1,...,ji+1−1}\L0
s′i. In other words, we pull out the terms in L0. Then we will call

length of vi, and denote by `(vi), the cardinal of the set {ji+1, . . . , ji+1−1}\L0. This choice makes

sure that `(vi) = `(v′i) for all i. This length follows a geometric law of parameter 1− 8
9
ρ

1− 1
9
ρ
(taking into
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account the specificity of L0). It follows that for any integer k ≥ 0 there is a constant ck > 0 such
that for any δ > 0

P [#{i : `(vi) = k} ∈ [(ck ± δ)n]] −→
n→∞

1. (6.3)

In order to construct a coupling between (Xn, Y
ρ
n ) and (Xn, X

′
n), we will take advantage of

commutativity of the addition of integers in order to decompose the conditioned process (Y ρ
n |Xn)

and X ′n into a finite sequence of independent rescaled simple random walks, run during close times.
For this, we fix an integer K to be determined later and define:

X long
n =

∑
{i:`(vi)>K}

vi and Xshort
n =

K∑
k=0

∑
{i:`(vi)≤K,|vi|=k}

vi =

K∑
k=0

kS
(k)
m(k) (6.4)

and similarly

Y long
n =

∑
{i:`(vi)>K}

αivi and Y short
n =

K∑
k=0

∑
{i:`(vi)≤K,|vi|=k}

αivi =

K∑
k=0

kS
′′(k)
m(k) (6.5)

where m(k) is the cardinal of the subset {i : `(vi) ≤ K, |vi| = k}. The sum of the vi’s on the latter
subset has the law of a simple random walk, which we denote S(k)

m(k), rescaled by the multiplicative
factor k. As the αi’s are independent uniform on {±1}, the sum of the αivi’s indexed by this very
subset is an independent simple random walk S′′(k)

m(k). We also denote

Xα+
n =

∑
j∈L+

α

sj , Xα−
n =

∑
j∈L−α

sj , Y α+
n =

∑
j∈L+

α

rj , Y α−
n =

∑
j∈L−α

rj ,

in order to have

Xn = X long
n +Xshort

n +Xα+
n +Xα−

n and Y ρ
n = Y long

n + Y short
n + Y α+

n + Y α−
n .

Similarly we decompose X ′n = X ′long
n +X ′short

n +X ′α+
n +X ′α−n +X ′0n into

X ′long
n =

∑
{i:`(v′i)>K}

v′i, X ′short
n =

K∑
k=0

∑
{i:`(v′i)≤K,|v′i|=k}

vi =

K∑
k=0

kS
′(k)
m′(k),

and
X ′α+
n =

∑
j∈L+

α

s′j , X ′α−n =
∑
j∈L−α

s′j , X ′0n =
∑
j∈L0

s′j ,

Using (6.3) and the distributions of the vi’s conditioned by their lengths, we obtain for each k ≥ 0
a constant c′k > 0 such that for any δ > 0 and n large

P
[
m(k) ∈

[
(c′k ± δ)n

]]
−→
n→∞

1 (6.6)

and the same holds for m′(k). Observe that c′1 > c1. Also note that by (6.3) and tail decay of the
geometric law, there exists a sequence εK −→

K→∞
0 such that

P
[
`(X long

n ) ≤ εKn
]
−→
n→∞

1 (6.7)

where `(X long
n ) =

∑
i:`(vi)>K

`(vi) is the length of X long
n as a word (we removed the trivial increments

in L0).
We are now ready to describe the required coupling. We fix some ε > 0. By Lemma 6.7, there

exists x, δ > 0 such that any two simple random walks started distance ≤ x
√
n apart and run for

times in [(1 ± δ)n] achieve a standard coupling with probability at least 1 − ε, provided n is large
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enough. Moreover by the central limit theorem applied to a (lazy or not) simple random walk Sn,
there exists A > 0 such that for n large

P
[
|Sn| ≤ A

√
n
]
≥ 1− ε.

We choose K large enough that 4A
√
εK

c1
≤ x. The central limit theorem and (6.7) show that

P
[
|X long

n | ≤ A
√
εKn

]
≥ 1− ε

and the same inequality holds with Y long
n or X ′long

n in place of X long
n . Let B0 = {|Y long

n | > A
√
εKn}∪

{|X ′long
n | > A

√
εKn} denote the “bad" set at step 0. We have P(B0) ≤ 2ε.

We also choose δ1 > 0 such that δ1c1 ≤ δ. We set B1 = {m(1) /∈ [(c′1±δ1)n]}∪{m′(1) /∈ [(c′1±δ1)n]}.
Applying (6.6) with k = 1, we have P(B1) ≤ 2ε

K provided n is large enough.
Conditioned on Xn and on B{0 ∩ B{1, the random variables Y long

n + S
′′(1)
m(1) and X ′long

n + S
′(1)
m′(1)

are simple random walks started distance |Y long
n − X ′long

n | ≤ 2A
√
εK
√
n apart and run for times

m(1),m′(1) ∈ [(c′1± δ1)n] ⊂ [(1± δ)c′1n] by choice of δ1. The choice of K permits to use Lemma 6.7
and we obtain for n large

P
[
|Y long
n + S

′′(1)
m(1) − (X ′long

n + S
′(1)
m′(1))| ≤ 1

∣∣∣B{0 ∩B{1, Xn

]
≥ 1− ε. (6.8)

Now we will use Lemma 6.7 repeatedly as follows. For ε′ = ε
K > 0, there exists δ′ > 0 such that

two simple random walks started distance at most 1 apart and run for times in [(1± δ′)n] achieve
a standard coupling with probability at least 1 − ε′. For each 2 ≤ k ≤ K, we choose δk > 0 with
δk
c′k
≤ δ′. We denote Bk the “bad” event that {m(k),m′(k)} is not included in [(c′k ± δk)n]. For

n large enough, we have P(Bk) ≤ 2ε′ by (6.6), so the “bad” event B = ∪Kk=0Bk has probability
P(B) ≤ 4ε and thus P(B{) ≥ 1− 4ε.

Let us denote Gk the “good” event at step k, still conditioned by Xn, that

Gk =
{∣∣∣Y long

n + S
′′(1)
m(1) + · · ·+ kS

′′(k)
m(k) −

(
X ′long
n + S

′(1)
m′(1) + · · ·+ kS

′(k)
m′(k)

)∣∣∣ ≤ 1 |Xn

}
Inequality (6.8) implies P(G1|B{, Xn) ≥ 1− ε. We also have:

∀2 ≤ k ≤ K, P(Gk|B{, Gk−1, Xn) ≥ 1− ε′.

Indeed under the conditions Xn, Gk−1 and B{, the event Gk has the probability that two simple
random walks started at most 1 apart and run for times m(k),m′(k) ∈ [(c′k ± δk)n] ⊂ [(1± δ′)c′kn]
achieve a standard coupling, which holds for n large with probability no less than 1− ε′ by choice
of δ′. It follows that

P(GK |B{, Xn) ≥ 1− ε− (K − 1)ε′ ≥ 1− 2ε. (6.9)

There remains to consider the contributions of the pairs (si, ri) for i ∈ L \L0 and of s′i for i ∈ L.
Note that as the values of αi’s have been sampled (which guaranteed the independence of S(k)

m(k) and

S
′′(k)
m(k)), the locations L+

α and L−α are determined already. For some δα > 0, let us denote

Bα =

{
#L+

α /∈
[(

4ρ

9
± δα

)
n

]}
∪
{

#L−α /∈
[(

4ρ

9
± δα

)
n

]}
∪
{

#L0 /∈
[(ρ

9
± δα

)
n
]}

the “bad” event that the partition L = L+
α tL−α tL0 is not “generic”. We have for any δ > 0 and n

large that P(B{α) ≥ 1− ε.
According to Table 6.2, the laws of Y α

n + and Y α−
n conditioned by B{α, Xn, L

+
α , L

−
α are(

1
2δ1 + 1

2δ−1

)∗#L+
α and

(
1
2δ0 + 1

4δ1 + 1
4δ−1

)∗#L−α respectively. The law of X ′α+
n + X ′α−n + X ′0n is(

1
3δ0 + 1

3δ1 + 1
3δ−1

)∗#L.
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Note that GK =
{∣∣∣Y long

n + Y short
n −

(
X ′long
n +X ′short

n

)∣∣∣ ≤ 1 |Xn

}
. We apply Lemma 6.8 with

|σ| ≤ 1, and obtain, provided δα is small enough and n large,

P
[
Y ρ
n = X ′n

∣∣∣GK , B{α, Xn

]
≥ 1− ε.

Combined with (6.9), we get

P
[
Y ρ
n = X ′n

∣∣∣B{, B{α, Xn

]
≥ P

[
Y ρ
n = X ′n

∣∣∣GK , B{, B{α, Xn

]
P
[
GK

∣∣∣B{, B{α, Xn

]
≥ 1− 3ε.

Integrating over the condition Xn, we get P
[
(Xn, Y

ρ
n ) = (Xn, X

′
n)
∣∣∣B{, B{α ] ≥ 1 − 3ε. Finally as

P
(
B{
)
≤ 4ε and P

(
B{α

)
≤ ε, we obtain for n large that P [(Xn, Y

ρ
n ) = (Xn, X

′
n)] ≥ 1− 8ε �

Observe that in the proof above the parity issue between Xn and Y ρ
n can only be solved using

the final “lazy” Y α−
n part, because X long

n , respectively Xshort
n , Xα+

n , has the same parity as Y long
n ,

respectively Y short
n , Y α+

n .

7. Wreath products

Let G and Λ be two groups. Assume G acts transitively on a set S. The permutational wreath
product of G and Λ over S is the semi-direct product

Λ oS G :=

(⊕
S

Λ

)
oG.

Its elements are pairs (f, g) where f : S → Λ is finitely supported and g belongs to G. The action of
G on finitely supported functions is by translations gf(·) = f(·g). Given an arbitrary point o in S,
a natural generating set is the union of elements (id, g) for g in some generating set of G together
with elements (λδo, id) for λ in some generating set of Λ where λδo(x) = λ if x = o and λδo(x) = id
otherwise.

When S = G is acted upon by the right regular representation, we recover the (usual) wreath
product and we simply denote it by Λ oG.

7.1. The lamplighter group. The lamplighter group is the wreath product Z/2Z oZ. Its elements are
pairs (f, t) where t is an integer and f : Z→ Z/2Z is a finitely supported function. As the action is
by shift on Z, the product is (f, t)(f ′, t′) = (f(·) + f ′(·+ t), t+ t′). One can think of t as a position
of a lighter and f as a space of configurations of lamps on or off. The group is generated by (0,±1),
which correspond to moves of the lighter, and (1δ0, 0), where 1δ0(x) takes value 1 for x = 0 and
value 0 otherwise, which corresponds to switching on or off the lamp at the lighter’s position. Let
µ1 be equidistributed on {(0, 0), (1δ0, 0)} and µ2 be equidistributed on (0,±1), then the measure
µ := µ1 ∗ µ2 ∗ µ1 is called the "switch-walk-switch" measure.

Theorem 7.1. The lamplighter group with switch-walk-switch measure is entropy noise sensitive
and partially noise sensitive in average word distance.

This group is not `1-noise sensitive by Corollary 5.4.

Proof : Let Xn = s1 . . . sn = (fn, xn) denote a sample. The projection xn to the integers is a simple
random walk. We denote

Loc(x, n) := {0 ≤ t ≤ n : xt = x}
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the local time at x (both the set and its cardinal are called local time by a slight abuse). Conditioned
on the local time, the state of the lamp at x is given by:

fn(x) =
∏

t∈Loc(x,n)

αt, where αt are i.i.d. uniform in Z/2Z.

Let us denote Rn := {x ∈ Z : Loc(x, n) > 0} the range of the random walk projected to the integers.
The entropy of Xn is given by

H(Xn) = E|Rn|+O(log n) (7.1)

because to describe Xn we need to provide the lamp configuration on the range and the position
(which has only logarithmic entropy). Note that we use logarithm in base 2. It is well-known that
E|Rn| �

√
n. Moreover, by gaussian decay, the expected size of range is homogeneous in the sense

that for n large, one has E1A|Rn|/E|Rn| ≤ f(P(A)) for some function f(ε) −→
ε→0

0.

Now consider a refreshed sample Y ρ
n = r1 . . . rn = (gn, yn). Again conditioning by the trajectory

projected onto the integers, it appears that the conditional entropy satisfies

H(Y ρ
n |Xn) ≥ E|Rref

n (Y ρ
n )|, (7.2)

where Rref
n (Y ρ

n ) := {x ∈ Rn(Y ρ
n ) : ∃t ∈ Loc(x, n), rt = s′t was refreshed}, because for x in this set

of refreshed lamps, the value gn(x) is independent of the sample Xn. Moreover, for a given x in
the range of Y ρ

n , the probability that the lamp is not refreshed is precisely (1 − ρ)Loc(x,n), so our
conditional entropy is related to the distribution of local time. The Ray-Knight theorem guarantees
that

P
[
#
{
x ∈ Rn : Loc(x, n) ≤ δ

√
n
}
≤ δ
√
n
]
−→
δ→0

1.

So for any ε > 0, there exists an δ > 0 such that the event

Aδ :=
{

#
{
x ∈ Rn(Y ρ

n ) : Loc(x, n) ≥ δ
√
n
}
≥ (1− ε) |Rn(Y ρ

n )|
}

has probability P(Aδ) ≥ 1− ε. In this set each lamp is refreshed with probability at least 1− (1−
ρ)δ
√
n ≥ 1− ε, provided n is large enough, so:

P
[
|Rref

n (Y ρ
n )| ≥ (1− 2ε) #

{
x ∈ Rn(Y ρ

n ) : Loc(x, n) ≥ δ
√
n
}]
−→
n→∞

1.

It follows that conditioned on Aδ we have for n large:

P
[
|Rref

n (Y ρ
n )| ≥ (1− 3ε) |Rn(Y ρ

n )| |Aδ
]
≥ 1− ε.

Denote B the event that |Rref
n (Y ρ

n )| ≥ (1− 3ε) |Rn(Y ρ
n )|, we finally have P(B) ≥ 1− 2ε for n large.

We can compute:

E|Rref
n | = E1B|Rref

n |+ E1B{ |Rref
n | ≥ (1− 3ε)E1B|Rn| ≥ (1− 3ε)(1− f(2ε))E|Rn|.

Together with (7.1) and (7.2), this implies entropy noise sensitivity.
The distance between two elements (f, x) and (g, y) is the minimal number of steps for the lighter

to start from position x, switch all lamps at positions t with f(t) 6= g(t) and go to position y. In
particular, Ed(Xn, Y

ρ
n ) ≥ E|Rref

n (Y ρ
n )| − o(

√
n) �

√
n. This implies partial noise sensitivity in

average word distance. �

7.2. A lower bound for permutational wreath products. The ideas in the previous proof can be used
in arbitrary permutational wreath products, but it is usually difficult to obtain informations about
local times. We give a weaker statement which will be used in the next section.

Given an action of G on S, recall that the inverted orbit of a point x in S under a word w =
s1 . . . sn is the set

O(w) =
{
x, xs−1

1 , xs−1
2 s−1

1 , . . . , xs−1
n . . . s−1

1

}
.
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A switch-walk measure on Λ oSG is a measure of the form µΛ ∗µG where µG is an arbitrary measure
on G and µΛ is an arbitrary measure on the copy of Λ siting over a fixed point o in S, namely
Λ = {λδo : λ ∈ Λ}.

Lemma 7.2. Let Λ be a finite group. A switch-walk random walk on Λ oS G satisfies

H(Y ρ
n |Xn) ≥ ρH(µΛ)E |O(Xn)| .

By slight abuse of notation, we write on the righthand side O(Xn) where we mean the inverted
orbit of the inverse of a sample path (or word) of the random walk and not only its evaluation
in the group. Heuristically this lemma is simply a lower bound on the expected number of lamps
refreshed. In its own, it does not provide information on noise sensitivity because the righthand
side depends on the noise parameter ρ.

Proof : Let Xword
n = λ1δos1 . . . λnδosn denote a sample path of the random walk with evaluation

Xn = (fn, gn) in the group Λ oS G. The lamp at x takes value

fn(x) = λ1δo(x)λ2δo(xs1) . . . λnδo(xs1 . . . sn) =
∏

t∈Loc(x,n)

λt,

where Loc(x, n) := {0 ≤ t ≤ n : x.s1 . . . st−1 = o} and λt are independent of law µΛ. Note that
points with positive local time are precisely points on the inverted orbit of Xword

n .
Now to sample Y ρ

n , we first sample the locations of refreshed increments, then resample only the
µG factors of the increments. This gives an intermediate word Y ′word

n whose evaluation Y ′n in the
group individually has the same law as Xn. Then we refresh the µΛ factors of the increments. We
have :

H(Y ρ
n |Xn) ≥ H(Y ρ

n |Xword
n ) ≥ H(Y ρ

n |Xword
n , Y ′word

n ) = H(Y ρ
n |Y ′word

n ).

The last equality is due to the fact that all the factors in the word Xword
n agree with the factors of

Y ′word
m except those that will be resampled according to µΛ independently to obtain Y ρ

n .
For x in S, the lamp at x is refreshed from Y ′word

n to Y ρ
n with probability 1 − (1 − ρ)Loc(x,n),

which is ≥ ρ as soon as x has positive local time, i.e. is in the inverted orbit of Y ′word
n . It follows

that H(Y ρ
n |Y ′word

n ) ≥ ρH(µΛ)E|O(Y ′word
n )| = ρH(µΛ)E

∣∣O(Xword
n )

∣∣. �

7.3. Permutational wreath products of some groups acting on rooted trees. Let T = Td be a rooted
tree of degree d. We view it as the graph with vertex set t`≥0X

` where X = {1, . . . , d} and edges
between any two vertices of the form v and vx for x ∈ X. The root is the empty sequence obtained
for ` = 0, and the set X` is called the `th level. The tree boundary is the set ∂T = XZ+ . The
group Aut(T ) of (rooted) automorphisms of T is canonically isomorphic to its permutational wreath
product with the symmetric group SX over X

Aut(T ) ' Aut(T ) oX SX . (7.3)

This is obtained by identification between T and the subtrees xT rooted at vertices x in the first
level. We identify an element and its image under this isomorphism to write g = 〈g|1, . . . , g|d〉σ
where g|x ∈ Aut(T ) is called the section at x and σ ∈ SX is the root permutation. The action of
g ∈ Aut(T ) on a vertex of the form xu for x ∈ X is given by g.xu = σ.xg|xu. The product rule is
gg′ = 〈g|1g|σ−1(1), . . . , g|dg|σ−1(d)〉σσ′. This isomorphism can be iterated to the `th level as

Aut(T ) ' Aut(T ) oX SX oX · · · oX SX ↪→ Aut(T ) oX` SX` ,

and in particular, the section of g at any vertex is defined by induction as g|vx = (g|v)|x We refer
to Grigorchuk (2000) or Nekrashevych (2005) for details on the structure of Aut(T ) and wreath
product isomorphisms.

We consider a finitely generated subgroup G = G(A,H) of Aut(T ) with a generating set of the
form A ∪H where A and H are two subgroups such that
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• all the elements of A are rooted, i.e. have all their sections of the first level trivial, and A
acts transitively on the first level,
• all the elements of H have the form h = 〈h|1, . . . , h|d〉σ with sections h|1 ∈ H and h|x ∈ A
for all x ∈ X \ {1} and permutation fixing 1, i.e. σ1 = 1.
• let uH and uA denote respectively the uniform measure on H and A, we assume moreover
that the first section map h 7→ h|1 pushes uH forward to uH itself, and that the other section
maps h 7→ h|x for x ∈ X \ {1} push uH forward to uA (this together with transitivity of the
A-action on X implies in particular that the image of G under the section map g 7→ g|v is
G itself, and this for any vertex v).

Recall that the first Grigorchuk group is the group acting on a binary rooted tree generated
by four elements recursively defined by a = 〈e, e〉(12), b = 〈c, a〉, c = 〈d, a〉 and d = 〈b, e〉. It
satisfies this set of hypotheses by putting A = {e, a} and H = {e, b, c, d}. Other classical exemples
covered by our hypotheses are the various Grigorchuk groups Grigorchuk (1985, 1986), as well as
generalisations in Bartholdi and Šuniḱ (2001), and mother automata groups of degree 0 introduced
in Bartholdi et al. (2010).

We now consider some specific permutational wreath products Λ oS G of a group G = G(A,H)
with a finite group Λ over the set S = G.1∞ ⊂ ∂T , which is the orbit of the boundary point 1∞

under the action of G. This group is generated by A∪H ∪Λ where we identify Λ with the subgroup
{λδ1∞ : λ ∈ Λ} where λδ1∞(x) takes value λ at x = 1∞ and e elsewhere. Under identifications of
the tree boundaries ∂T = tx∈X∂xT , the isomorphism (7.3) extends to the action on the boundary
and we obtain an embedding

Λ oS G(A,H) ↪→ (Λ oS G(A,H)) oX A.

Notice that under this embedding λδ1∞ = 〈λδ1∞ , e, . . . , e〉. Moreover it is immediately checked that
H and Λ commute. For such groups, we have:

Theorem 7.3. Let G = G(A,H) be as above and let Λ be a finite group. The random walk
(Λ oS G,uΛH ∗ uA) is partially entropy noise sensitive.

The measure uΛH ∗uA = uΛ ∗uHA was called “switch and walk” in the statement of Theorem 1.3.
This theorem applies for instance to extensions of the Grigorchuk groups introduced by Bartholdi
and Erschler, and which can have prescribed growth, see Bartholdi and Erschler (2012); Brieussel
(2014); Bartholdi and Erschler (2014). For simplicity we have decided to restrict ourselves to the
case of tree of constant degree, but this hypothesis is unnecessary and the arguments of the proof
below apply to rooted trees with bounded degree. Such generalisations provide interesting groups
with prescribed entropy when Λ is finite and prescribed speed when Λ = Z, see Brieussel (2013);
Amir and Virág (2017).

Proof : For these groups, Amir and Virág (2017, Inequality (9) and Corollary 24) have shown that
the entropy of the random walk satisfies

cE |O(Xn)| ≤ H(Xn) ≤ CE |O(Xn)| (7.4)

where O(Xn) is the inverted orbit of 1∞ and the constants c, C depend only on the degree of the
tree.

We will also use Brieussel (2013, Proposition 3.8) that the size of the inverted orbit is the sum
of that of the sections |O(Xn)| =

∑d
x=1 |O(Xn|x)|. By induction, we deduce that for any level `

|O(Xn)| =
∑
v∈X`

|O(Xn|v)|. (7.5)

Let us first understand a section Xn|x of the first level. By Brieussel (2013, Lemma 4.1), for each
1 ≤ x ≤ d, the random word on the section at x has the form Xn|x = bx1a

x
1b
x
2 . . . b

x
sa
x
s where the

factors axr are uniform in A and the factors bxr are uniform in ΛH. These factors are all independent
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and their number s follows a binomial law B(n, d−1
d2

). In particular, the uΛH ∗ uA random walk
induces (slowed down) uΛH ∗ uA random walks on the sections.

More precisely, if we denote an increment of Xn by si = biai with ai uniform in A and bi =
〈λiδ1∞hi, ai2, . . . , aid0〉πi uniform in ΛH, then each factor bxj of the section Xn|x is a product of

exactly k factors of the form λiδ1∞hi with probability
(

1
d

)k d−1
d . Similarly each factor axj is a product

of exactly k factors aij with probability
(
d−1
d

)k 1
d . This is so because for each i the independent

factor ai resamples which section will receive the increment in ΛH (the unique section at 1.X−1
i−1),

while the d− 1 other sections will receive an increment in A. (Note that this is not true for the last
factor of Xn|x because of time truncation.)

We will now consider the refreshed sample Y ρ
n . As in the proof of Lemma 7.2, we consider the

word Y ′word
n obtained by resampling the locations of the refreshments and the µG = uH ∗uA part of

the refreshed samples (but not yet the uΛ part). The conditioned entropy H(Y ρ
n |Y ′word

n ) is bounded
below by the expected number of sites in S where the lamps will be refreshed. The key point is
that the refreshing parameter ρ increases under taking sections.

Let us denote an increment of Y ′word
n by si = biai, where the factor ai is uniform in A and

bi = 〈λiδ1∞hi, ai2, . . . , aid0〉πi is uniform in ΛH. By the above discussion, each factor λxj of the

section Y ′word
n |x is a product of exactly k factors of the form λi with probability

(
1
d

)k d−1
d . Such a

product is refreshed with probability 1− (1−ρ)k (always, except if no factor is refreshed). It follows
that in the word Y ′word

n |x, the probability to refresh a uΛ-factor is

ρ1 =

∞∑
k=1

(1− (1− ρ)k)

(
1

d

)k d− 1

d
= 1− 1− ρ

1 + ρ
d−1

> ρ.

By induction, we deduce that for any initial ρ > 0, there exists a level ` at which the refresh-
ing parameter of uΛ-factors is ρ` ≥ 1

2 . Let v belong to level `, the average number of points
of O(Y ′word

n |v) ⊂ ∂vT where the lamps are refreshed is, as in the proof of Lemma 7.2, at least
ρ`E|O(Y ′word

n |v)| = ρ`E|O(Xn|v)|.
Using the partition (7.5) and inequalities (7.4), we conclude that

H(Y ρ
n |Xn) ≥ H(Y ρ

n |Y ′word
n ) ≥

∑
v∈X`

ρ`H(uΛ)E|O(Xn|v)| ≥
1

2
H(uλ)E|O(Xn)| ≥ c

2
H(uΛ)H(Xn).

�

The choice of measure is heavily used in the proof to get similar random walks at the sections.

Remark 7.4. It would be interesting to have a similar result for the groups G(A,H) themselves
rather than such permutational product extensions, for instance for the first Grigorchuk group.
However it is difficult to describe precisely the effect of noise on the µHA part. Indeed, not only
does this resample the increments in one section but it also shuffles the increments between different
sections of a given level. Heuristically, this means that the effect of noise in the sections is even
stronger than simply “increasing the parameter”, as was used in the proof above. We should also
mention that the precise asymptotic behaviour of the entropy of (even simple) random walks on the
first Grigorchuk group is still unknown.

8. Perspectives and questions

As mentioned in the introduction, our observations on noise sensitivity lead us to believe that
the only obstructions to noise sensitivity are homomorphisms onto Z and non-Liouville property,
whence Question 1.5 and Conjectures 1.6 and 1.7. We record here some questions and tasks for
further study of noise sensitivity of groups.
1. Find more examples of `1-noise sensitive groups.
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• Clarify which virtually abelian (or more generally nilpotent) groups are `1-noise sensitive,
and for which measures.
• Is the wreath product of a finite group with the dihedral group `1-noise sensitive for some
measure? If yes, it would provide an example with exponential growth.
• Study noise sensitivity phenomena in other Liouville groups, such as degree 0 automata
groups Amir et al. (2016), degree 1 mother automata groups Amir et al. (2013) or simple
groups Matte Bon (2014); Nekrashevych (2018).
• Find examples of strongly `1-noise sensitive groups, i.e. noise sensitive with respect to any
(finitely supported generating) probability measure. Possibly, this would be the case for any
torsion or simple Liouville group. We expect this property to hold for the first Grigorchuk
group.

2. Noise sensitivity could also be studied quantitatively.
• The choice of refreshing parameter ρ to be constant is arbitrary and it is natural to consider
a parameter ρ(n) depending on the length n. There should be a threshold over which the
noised random walk resembles an independent sample. Our definitions of noise sensitivity
simply require that this threshold is tending to 0.

A lower bound is given by entropy consideration: the entropy of the noise should be no
less than that of the independent sample: ρ(n)nH(µ) ≥ H(µn). However this is not enough
in general (e.g. Z is not `1-noise sensitive).
• Does partial `1-noise sensitivity (∃c > 0,∀ρ ∈ (0, 1), lim inf ‖πρn − µ2

n‖1 ≤ 2 − c) imply
Liouville property?

3. About entropy noise sensitivity:
• it is likely that the proof of Theorem 7.1 could be improved to show that when G is entropy
noise sensitive, then G o Z and G o Z2 are entropy noise sensitive as well. It would be
a consequence of Conjecture 1.7. By Proposition 4.3, this is no longer true for wreath
products with Zd for d ≥ 3 as they are non-Liouville.
• Is it true that partial entropy noise sensitivity is equivalent to entropy noise sensitivity?

4. About the relationship between notions of noise sensitivity:
• Is it true that `1-noise sensitivity implies entropy noise sensitivity?
• Is it true that large scale noise sensitivity implies noise sensitivity in average word distance?
• Are there random walks on groups not satisfying the homogeneity assumptions of Definitions
3.1 and 3.4?

5. About average distance noise sensitivity.
• Abelian groups are not (even partially) noise sensitive in average distance for any measure.
Are there other groups with this property ?
• Is it possible that lim inf EdG(Xn,Y

ρ
n )

EdG(Xn,X′n) > 1?
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