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Abstract

Data mining is the study of how to extract information from data and express it as
useful knowledge. One of its most important subfields, pattern mining, involves
searching and enumerating interesting patterns in data. Various aspects of pattern
mining are studied in the theory of computation and statistics. In the last decade,
the pattern mining community has witnessed a sharp shift from efficiency-based
approaches to methods which can extract more meaningful patterns. Recently,
new methods adapting results from studies of economic efficiency and multi cri-
teria decision analyses such as Pareto efficiency, or skylines, have been studied.
Within pattern mining, this novel line of research allows the easy expression of
preferences according to a dominance relation. This approach is useful from a
user-preference point of view and tends to promote the use of pattern mining
algorithms for non-experts. We present a significant extension of our previous
work [1, 2] on the discovery of skyline patterns (or “skypatterns”) based on the
theoretical relationships with condensed representations of patterns. We show
how these relationships facilitate the computation of skypatterns and we exploit
them to propose a flexible and efficient approach to mine skypatterns using a dy-
namic constraint satisfaction problems (CSP) framework.

We present a unified methodology of our different approaches towards the
same goal. This work is supported by an extensive experimental study allowing
us to illustrate the strengths and weaknesses of each approach.
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1. Introduction

The process of extracting useful patterns from data, called pattern mining,
is an important subfield of data mining, and has been used in a wide range of
applications and domains such as bioinformatics [3], chemoinformatics [4], social
network analysis [5], web mining [6] and network intrusion detection [7]. Since
the key papers of Agrawal et al. [8], Mannila et al. [9], a considerable number of
patterns, such as itemsets, strings, sequences, trees and graphs, have been studied
and used in real-world applications. Nowadays, many pattern extraction problems
like subgroup discovery [10], discriminative pattern mining [11], and tiling [12]
are understood from both theoretical and computational perspectives.

Most existing pattern mining approaches enumerate patterns with respect to a
given set of constraints that range from simple to complex. For instance, given a
transaction database, a well-known pattern mining task is to enumerate all item-
sets (i.e. sets of items) that appear in at least s transactions. However, the output
of pattern mining operations can be extremely large even for moderately sized
datasets. For instance, in the worst case, the number of frequent itemsets is expo-
nential in the number of the items in the dataset.

So far, the community has expended much effort on developing sophisticated
algorithms which push the constraints deep into the mining process [13]. But
also in on compression (i.e. reduction) techniques to limit the number of output
patterns depending on the application contexts [14, 15, 16]. The pattern mining
community, however, has paid less attention to combining mining constraints. In
practice, many constraints entail choosing threshold values such as the well-used
minimal frequency. This notion of “thresholding” has serious drawbacks. Unless
specific domain knowledge is available, the choice is often arbitrary and may lead
to a very large number of extracted patterns which can reduce the success of any
subsequent data analysis. This drawback is even more pronounced when several
thresholds have to be combined. A second drawback is the stringent enumeration
aspect: a pattern is either above or below a threshold. But what about patterns
that respect only some thresholds? Should they be discarded? It is often very
difficult to apply subtle selection mechanisms. There are very few works such
as [17, 18] which propose to introduce a softness criterion into the mining pro-
cess. Other studies attempt to integrate user preferences into the mining task in
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order to limit the number of extracted patterns such as the top-k pattern mining
approaches [19, 20]. By associating each pattern with a rank score, this approach
returns an ordered list of the k patterns with the highest score to the user. How-
ever, combining several measures in a single scoring function is difficult and the
performance of top-k approaches is often sensitive to the size of the datasets and
to the threshold value, k.

We present a unified methodology of two approaches that aim to make the re-
sults of pattern mining useful from a user-preference point of view. To this end,
we integrate into the pattern discovery process the idea of skyline queries [21]
in order to mine skyline patterns in a threshold-free manner. Such queries have
attracted considerable attention due to their importance in multi-criteria decision
making and economics where they are usually called “Pareto efficiency or opti-
mality queries”. Briefly, in a multidimensional space where a preference is de-
fined for each dimension, a point a dominates another point b if a is better (i.e.
more preferred) than b in at least one dimension, and a is not worse than b on
every other dimension. For example, a user selecting a set of patterns may prefer
a pattern with a high frequency, a large length and a high confidence. In this case,
we say that pattern a dominates another pattern b if a.frequency ≥ b.frequency,
a.length ≥ b.length, a.confidence ≥ b.confidence, where at least one strict in-
equality holds. Given a set of patterns, the skyline set contains the patterns that
are not dominated by any other pattern.

Skyline pattern mining is interesting for several reasons. First, skyline pro-
cessing does not require any threshold selection. In addition, for many pattern
mining applications it is often difficult (or impossible) to find a reasonable global
ranking function. Thus the idea of finding all optimal solutions in the pattern space
with respect to multiple preferences is appealing. Second, the formal property of
dominance satisfied by the skyline pattern defines a global interestingness mea-
sure with semantics easily understood by the user. These semantics are discussed
at length in the economics literature, where the Pareto efficiency is applied to the
selection of alternatives in resource distributions. However, while this notion of
skylines has been extensively developed in engineering and database applications,
it has remained unused for data mining purposes until recently [1]. Thirdly, sky-
line pattern mining is appealing from an efficiency and usability point of view.
The authors of [22] established a loose upper-bound on the the average number of
skyline tuplesO((lnn)d−1) (with n tuples and d dimensions) which contrasts with
the usual worst-case number of possible itemsetsO(2|I|) (where |I| represents the
cardinality of the set of items).
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Contributions and roadmap
We present significant extensions of our recent papers [1, 2] on the discovery

of skyline patterns, or “skypatterns”. First, we detail a static method (called
Aetheris) based on the theoretical relationships with condensed representations of
patterns (representations which return a subset of the patterns having the same
expressiveness as the whole set of patterns [23]). Second, we describe a dynamic
method (called CP+Sky) which involves a continuous refinement of the skyline
constraints based on the extracted patterns. This is achieved through a dynamic
CSP (Constraint Satisfaction Problems) framework (denoted by DynCSP). Third,
the key notion of “skylineability” which constitutes the cornerstone of our two
methods is explained in more detail. Finally, we present an extensive empirical
study which includes a wide range of datasets and comparisons of our techniques.
This enables us to draw some lessons about the strengths and weaknesses of each
method and to better understand the advantages/weaknesses of the CSP machinery
(see Sections 7.1.2 and 7.1.3).

The rest of this paper is organized as follows. Section 2 surveys the works
related to skyline pattern analysis. Section 3 introduces some basic definitions,
the formal problem statement and an overview of our work. The key notion of
skylineability is then studied in Section 4. Section 5 discusses the computation of
condensed representation of patterns for skypattern queries. Section 6 discusses
skylineability but within a DynCSP framework. We report an empirical study on
several datasets and a case study from the chemoinformatics domain in Section 7.
Finally, Section 8 discusses the learnt lessons.

2. Related work

2.1. Pattern mining
Frequent itemset mining was first described in [8]. The problem can be defined

as follows: a transaction is a subset of a given set of items I, and a transaction
database, denoted T , is a set of such transactions. A subset X of I is a frequent
itemset in T if the number of transactions containing X exceeds a given thresh-
old, denoted by σ. One of the earliest findings in the data mining literature was
that a mining process usually produces large collections of patterns. Many re-
searchers have proposed methods to reduce the size of the output. These include
the constraint-based pattern mining framework [24], the condensed representa-
tions [23] and the compression of the dataset by exploiting Minimum Description
Length Principle [25], to name a few. A general observation is that patterns rep-
resent “fragmented knowledge”, and often there is no clear view of how these
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knowledge fragments interact and combine to produce a global model. Recent ap-
proaches have therefore used schemes such as pattern teams [26], constraint-based
pattern set mining [27] and pattern selection strategies [28] that aim to minimize
the redundancy and the number of patterns. A common theme in these studies is
to select patterns from the initial large set of patterns on the basis of their use-
fulness in a given context. This approach falls into the general trend to produce
pattern sets i.e. sets of patterns satisfying properties on the whole set of pat-
terns [27]. Other approaches take advantage of closed patterns to maximize a spe-
cific measure such as the growth rate for emerging patterns [29] and the area for
tiling [30, 12]. Often, these methods focus on optimizing a global measure on the
discovered pattern set and neglect the relationships between patterns. Moreover,
these approaches suffer from a lack of flexibility to express the queries requested
by the analyst. For each method, the user has to understand its semantics and
express queries satisfying its algorithmic properties and constraints.

Another class of techniques considers statistical significance of patterns. The
objective is to extract patterns for which a given characteristic (usually the fre-
quency) deviates so much from its expected value under a null model that it is
unlikely to have been generated by it. The frequency of a pattern is then consid-
ered as a random variable, whose distribution under the null hypothesis has to be
calculated or approximated, and the significance of the pattern is assessed through
a statistical test that compares the expected frequency under the null model to the
observed frequency. A number of works have explored various notions of statis-
tical significance for itemsets and have proposed novel and efficient methods for
their extraction [31, 32, 33, 34]

Pattern mining and Constraint programming. Pattern mining benefits from the
recent cross-fertilization between data mining and Constraint Programming [35,
36, 37, 18]. Constraint Programming is a general declarative methodology for
solving constraint satisfaction problems. Within this framework, the user specifies
in a declarative way what the problem is by using constraints rather than a method
dedicated to solve the problem. Then a general solver provides the complete set
of solutions satisfying all the constraints. The approach is very expressive and
allows to combine a wide range of mining constraints [36].

2.2. Skyline
The skyline points can be viewed as compromise points with respect to a given

set of criteria. Skyline computation is strongly related to mathematical and mi-
croeconomics problems such as maximum vectors [38], Pareto set [39], and multi-
objective optimization [40]. Since its rediscovery within the database community
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by Börzsönyi et al. [21], many methods have been developed for answering sky-
line queries that can handle various constraints in different computational envi-
ronments [41, 42]. Skyline queries focus on the extraction of tuples from a given
dataset and assume that all the elements are in the dataset, while the skypattern
mining task consists of extracting patterns which are elements of the frontier de-
fined by the given measures. The skypattern problem is clearly harder because
the search space for skypatterns is much larger than the search space for skylines
(cf. Section 3.2). Few studies focus on skypattern mining for several pattern
domains (e.g., graphs and subgroups). The published approaches are designed
for particular types of patterns and consider a very limited number of measures
to compute the skyline of patterns. Among them, two proposals address graph
analysis. In [43], the authors compute the skyline of subgraphs according to the
number of vertices and the edge connectivity. Similarly, in [44], the authors adapt
the framework of the “Subdue” method [45] to compute the patterns that are dom-
inant according to three measures (e.g., frequency, number of nodes and density).
In [46], the authors introduce the skypattern mining problem in the context of
subgroups. Their approach aims at discovering subgroups that maximize a quality
measure and a diversity measure. The notion of dominance is at the core of the
skyline processing. In [47], the notion of dominance is used to propose a novel
algebra extending relational algebras towards pattern mining. It leads to a generic
method for mining several kinds of patterns (including the skypatterns) according
to a preorder associated to the dominance relation. The solving part in [47] is per-
formed by using Constraint Programming with a principle similar as the technique
used in our CP+Sky method (cf. Section 6.2). The key idea is to use constraints on
the dominance relation, which are dynamically added during the mining process.
These constraints avoid producing solutions dominated by the solutions already
extracted. In [47], the dynamically added constraints ensure that a candidate solu-
tion (i) is not dominated according to the preorder corresponding to the algebra or
(ii) is equivalent to a solution already found. This last condition is required since
the Pareto dominance is a strict and partial order whereas a preorder is a reflexive
relation. In CP+Sky, the dynamically added constraints stem from the dominance
relation (i.e. a candidate solution is not dominated by the previous solutions). Fi-
nally, [47] does not deal with the skylineability notion which is introduced in our
work. As we will see, the skylineability allows to reduce the number of measures
that have to be considered in the mining process and thus decreasing the runtime.
Skylineability is associated to the theoretical relationships that we establish be-
tween the skymining problem and condensed representations of patterns. Another
option for preference-based processing is the top-k procedure [19, 20]. A ranking
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function fr is applied to patterns, and the k best patterns with the highest score
with respect to fr are returned. As previously mentioned, this approach suffers
from some limitations. The choice of k is not trivial (i.e. the horizon problem).
A low value may miss useful patterns and too high a value introduces redundancy
within the produced patterns (i.e. highly similar patterns). This limitation is the
main motivation for the notion of the “most informative patterns” (MIP) that were
proposed in [48]. MIPs can be seen as patterns that locally dominate other patterns
according to a scoring function. This approach shares a similar spirit to ours as it
also limits the number of enumerated patterns to a more manageable level. How-
ever, in contrast to our approach, work on MIPs includes a notion of dominance
that is local and specific only to subsets of patterns.

3. Problem Statement and overview of the unified methodology

We introduce in this section some basic definitions and the formal problem
statement. We also give an overview of the two methods Aetheris and CP+Sky
we propose. These methods fully exploit an adequate representation of patterns
dedicated to user preferences [49]. Our study is interesting for several reasons. By
carefully selecting patterns that are “the best available” for a given set of prefer-
ences, we greatly reduce the output and we limit the curse of “pattern explosion”.
The user is guaranteed that only the best patterns w.r.t. his criteria are present
in the final result. Last but not least, our approach is threshold-free1. Only the
preferences and the dataset are required as an input.

3.1. Preliminary definitions
Although the problem can be formulated for any kind of pattern, for the sake

of simplicity, we will illustrate our definitions using the itemset pattern domain.
Section 8 discusses the computational and theoretical aspects associated with the
problem when extracting more sophisticated kinds of patterns.

Let I be a set of distinct literals called items, an itemset (or pattern) corre-
sponds to a non-empty subset of I. These patterns are gathered together in the
language L: L = 2I\∅. A transactional dataset T is a multi-set of patterns of L.
Each element of T , named transaction, is a database entry. Table 1a presents a
transactional dataset T where 6 transactions denoted by t1, . . . , t6 are described
by 6 items denoted by A, . . . , F .

1Thresholds are entirely optional, depending on the analyst’s needs and do not depend on the
algorithm.
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Tid Items Items val
t1 A B C D E F A 10
t2 A B C D E F B 55
t3 A B C 70
t4 D D 30
t5 A C E 15
t6 E F 25

(a) A toy data set T

Name Definition
area X 7→ freq(X)× length(X)

mean X 7→ min(X.val)+max(X.val))
2

bond X 7→ freq(X)
freq∨(X)

aconf X 7→ freq(X)
max(X.freq)

gr1 X 7→ |T2|
|T1| ×

freq(X,T1)
freq(X,T2)

p-value X 7→ −binomial(prod(X.supp), freq(X))

(b) Some measures ofM

Table 1: Example of a toy dataset and measures

All the measures discussed in this study are based on the set of primitive-
based measures M that were defined in the context of constraint-based pattern
mining [50]. Table 2 presents some general definitions of measures and Table 1b
gives some specific examples (gr denotes the growth rate [11], freq∨ the disjunc-
tive support, measures such as bond and aconf are detailed in [51]). Interestingly,
our methodology is suitable for recent mining techniques utilizing statistical sig-
nificance of patterns as discussed in related work. For instance, the p-value un-
der the null model which considers all items to be independent random variables
is rewritable as a primitive-based measure (see the definition of the p-value in
Table 1a). As claimed in [50], M encompasses a very large set of interesting
measures.

In addition to the classical operators of<+ (i.e. +,−,×, /) andL (i.e. ∪,∩, \),
the function freq denotes the frequency of a pattern (i.e. freq(X, T ) = |{t ∈
T | X ⊆ t}|), and length its cardinality. The disjunctive support is freq∨(X) =
|{t ∈ T | ∃i ∈ X : i ∈ t}|. More atypical primitives also fit the primitive-based
framework like binomial(p, i) =

∑n
k=i

(
n
k

)
pk(1− p)n−k.

Given a function val : I → R+, we extend it to a pattern X and denote by
X.val the multi-set {val(i) | i ∈ X}. This kind of function is used with the usual
SQL-like primitives sum, min and max. For instance, sum(X.val) is the sum of
val for each item of X . Note that prod is a slightly different aggregate function

8



Measure m ∈M Primitive(s) Operand(s)
m1θm2 θ ∈ {+,−,×, /, binomial} (m1,m2) ∈M2

θ(s) θ ∈ {freq, freq∨, length} s ∈ S
θ(s.val) θ ∈ {sum,max,min, prod} s ∈ S

constant r ∈ <+ - -
Syntactic expression s ∈ S Primitive(s) Operand(s)

s1θs2 θ ∈ {∪,∩, \} (s1, s2) ∈ S2

θ(s) θ ∈ {f, g} s ∈ S
variable X ∈ L - -
constant l ∈ L - -

Table 2: A subset of the primitive-based measures

due to val : I → [0, 1] (e.g., the support of each item in p-value definition).
Finally, f is the intension i.e. f(T ) = {i ∈ I | ∀t ∈ T, i ∈ t}, and g is the
extension i.e. g(X) = {t ∈ Tid | X ⊆ t}.

This large variety of measures allows for more flexibility to formulate new
or well-known interestingness measures that match the data analyst’s objectives.
Rather than using a ranking function for combining these measures and then max-
imizing it, we propose to use the Pareto composition:

Definition 1 ((Pareto-)Dominance). Given a set of measuresM ⊆M, a pattern
X dominates another pattern Y with respect to M , denoted by X �M Y , iff
for any measure m ∈ M , m(X) ≥ m(Y ) and there exists m ∈ M such that
m(X) > m(Y ). Two patterns X and Y are said to be indistinct with respect to
M , denoted by X =M Y , iff m(X) equals m(Y ) for any measure m ∈ M (if
M = ∅, then X =∅ Y ). Finally, X �M Y denotes that (X �M Y ) ∨ (X =M Y ).

Note that we define the Pareto dominance only with the greater than symbol
(i.e. >) assuming that the end-user wants to maximize a set of measures. The
case of a minimization of a measure m is equivalent to maximizing the measure
m′ = −m (this case is illustrated with the definition of p-value which contains a
minus).

Consider our running example using the data set T in Table 1a and suppose
that M = {freq, area}, then the pattern ABCDEF dominates ABC because
freq(ABC) = freq(ABCDEF ) = 2 and area(ABCDEF ) > area(ABC).
Note in this case that ABCDEF is indistinct to ABC with respect to {freq}.
Similarly, suppose that M = {freq,mean, length}, the pattern AC dominates
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AB because freq(AC) = freq(AB) = 3, |AB| = |AC| = 2 and mean(AC) >
mean(AB).

3.2. The skypattern mining problem
Given a set of measures M , if a pattern is dominated by another according

to all measures of M , it is irrelevant and should be discarded in the output. The
notion of skyline pattern, skypattern for short, formalizes this intuition.

Definition 2 (Skypattern operator). Given a pattern set P ⊆ L and a set of
measures M ⊆ M, a skypattern of P with respect to M is a pattern not domi-
nated by any pattern in P with respect to M . The skypattern operator Sky(P,M)
returns all the skypatterns of P with respect to M :

Sky(P,M) = {X ∈ P | 6 ∃Y ∈ P : Y �M X}

Then, the skypattern problem can be stated:

Problem 1. Given a set of measures M ⊆ M, the skypattern mining problem is
to evaluate the query Sky(L,M).

For instance, from the running data set (cf. Table 1a), Sky(L, {freq, length}) =
{ABCDEF,AB,AC,A}, as illustrated in Figure 1.

Figure 1: Example of skypatterns for the set of measures M = {freq, length}
(all the other patterns are in the dominated area).

In the general case, the skypattern mining problem is challenging because of
the very high number of candidate patterns (i.e |L|). Indeed, a naive enumeration
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of L is not feasible. For example, with 1000 items a naive approach will need
to compute (21000 − 1) × |M | measures and then compare them. A less naive
approach based on heuristics (such as the anti-monotonicity of some measures)
may give some results. However, the performance will be closely tied to the un-
derlying properties of the data sets. For instance, in the case of the frequency
measure, the density of the data set plays a major role in the performance and
some algorithms are not able to extract frequent patterns at very low thresholds.
Nevertheless, considering the following property provides new insights into an
efficient computation of skypattern queries.

Property 1. Given a set of measures M ⊆M, Sky(L,M) = Sky(P,M) for any
pattern set P such that Sky(L,M) ⊆ P ,

(∀P ⊆ L)(Sky(L,M) ⊆ P ⇒ Sky(L,M) = Sky(P,M))

Proof Let P be a set of patterns such that Sky(L,M) ⊆ P ⊆ L. First, let X
be a pattern in Sky(L,M). Then there is no Y 6= X in L such that Y �M X . In
particular, there is no Y 6= X in P such that Y �M X . Note that X belongs to P
which is a superset of Sky(L,M). Thus, X is a pattern in Sky(P,M). Suppose
now that X is not in Sky(L,M): then there exists Y ′ 6= X in L \ P such that
Y ′ �M X and ∀Y ′′ ∈ P , there is Y ′′ 6�M X . By induction, any Y ′ or another
pattern dominating Y ′ not in P would have to be in Sky(L,M).

As Sky(L,M) ⊆ P ⊆ L and |P | ≤ |L|, we argue that evaluating Sky(P,M)
is generally much less costly than evaluating Sky(L,M) since the cost of Sky(x,M)
generally decreases with the cardinality of x. Consequently, we aim to reduce the
cost of evaluating Sky(P,M) by finding a small but relevant set P (i.e. that in-
cludes Sky(L,M)) by means of 1) condensed representations of patterns or 2)
dynamic pruning.

Condensed representations of patterns. In many pattern mining tasks (e.g., as-
sociation rule mining or clustering), condensed representations of patterns sig-
nificantly reduce the mining effort without loss of precision. Could we use this
principle in the case of skypattern mining? A direct approach would be to com-
pute a concise representation for each measure m ∈ M , but this is generally not
possible because some measures, such as area or length, are not condensable (i.e.,
the condensed representation is equal to |L|). Therefore, our problem can be re-
formulated as follows: given a set of measures M , how to identify a smaller set
of measures M ′ which allows the computation of a concise representation on the
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patterns (i.e. the pattern set P ) without loss of skypatterns? In addition, how can
one use this set of measures to extract efficiently the skypatterns without redun-
dancies? We address this problem in the next sections.

Dynamic pruning. Instead of extracting the whole condensed representation of
patterns and then applying the Sky operator. One may consider the use of the Sky
operator locally during the extraction. Indeed, as soon as a pattern is a candidate
skypattern, the search space dominated by this pattern can be directly eliminated.
In other words, each new candidate skypattern adds a constraint allowing to safely
prune the remaining search space. These new constraints prevent the enumeration
of unnecessary patterns. Section 6 describes how CSP can be used to update
constraints during the extraction and thus reduce the search space.

3.3. Unified methodology for the two methods

Data

User 
Preferences M

User

M'

Skypatterns

Representative 
skypatterns

Minimal and maximal 
skylineable converters

Distinct
operator

Indistinct 
operator Sky operator

0 1

4

2 2'

Aetheris CP+Sky

Representative patterns 
according to M based on M'

3 ⊇

Figure 2: Unified view of skypattern mining with Aetheris and CP+Sky.

To clarify our methodology, we illustrate in Figure 2 the different processes of
the two methods Aetheris and CP+Sky we propose. These two methods share the
same overall methodology and mainly differ in the specific step of the computation
of representative patterns of the skypatterns.

After the user’s preferences selection, in a common first step, Aetheris and
CP+Sky automatically identify a smaller set of measures M ′ which allows for
the computation of a concise representation on the patterns thanks to the use of
converters (cf. Section 4). The second step (respectively 2 and 2’ for Aetheris
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and CP+Sky) aims at computing an as small as possible superset that enables
the retrieval of all skypatterns. For that purpose, Aetheris builds a static set of
representative patterns according to the set M ′, which is based on the notion of
converting the initial set of preference M (cf. Section 5). CP+Sky builds dynami-
cally a more concise set by pruning unpromising patterns (the set of representative
patterns of CP+Sky is included in the set of representative patterns of Aetheris)
(cf. Section 6). The third step filters the set of representative patterns with the Sky
operator. This step remains efficient because the number of representative patterns
is much smaller than the number of possible skypatterns. Finally, this step pro-
vides a concise representation of the skypatterns. The end-user can either output
this concise representation or the entire list of skypatterns as a final step depend-
ing on the application needs. Our methodology revolves around the simple idea
that to be able to efficiently extract and analyze skypatterns, one needs to be able
to (statically or dynamically) exhibit a concise representation of the skypatterns
that will be used as an input to the skyline operator.

4. Skylineability

The set of skypatterns has no good property like downward closure or con-
vexity. Conventional techniques used to prune the pattern search space like anti-
monotone properties are thus ineffective. However, using Property 1, an efficient
computation of the set of representative patterns of skypatterns becomes possible.
To do so, we introduce the notion of skylineability which aims at computing a
reduced collection of representative patterns of the skypatterns (cf. the end of the
previous section). This efficient computation is carried out using either free [16]
or closed patterns [14].

4.1. Skylineability of a set of measures
Intuitively, skylineability refers to the notion of local extrema in the search

space. The local extrema in this case are the maximal values for each prefer-
ence selected by the end-user. By definition, only these extrema may therefore be
skypatterns. Thus there is no need, while mining, to take into account the other
patterns which are necessarily dominated by these extrema. Assume any two pat-
terns X and Y , such that X ⊂ Y , have the same value for each measure of M ′:
X =M ′ Y . If Y always dominates X for a given set of measures M ⊆ M, then
M is said to be maximally M ′-skylineable. This information is extremely im-
portant as it allows the discarding of non-maximal patterns (here, X) which are
dominated by maximal patterns (here, Y ). This notion of skylineability can be
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seen as a way of mapping domination between two different sets of measures M
and M ′.

Figure 3 (top) depicts the benefit of skylineability in the general case where
it becomes possible to focus only on a subset of patterns and measures (i.e. M ′)
and have a formal guarantee that these patterns will not be dominated in the full
set of measures (i.e. M ). We illustrate now this notion of skylineability on our
running example. Let us consider patterns from T that maximize the frequency
and area measures: M = {freq, area}. In our example (cf. Table 1a), the patterns
B and AB have the same frequency (see Figure 3 (bottom)). Thus, if we define
M ′ = {freq}, B =M ′ AB and AB �M B because the area of AB is greater
than that of B. In fact, for any two patterns X ⊂ Y such that X =freq Y , we
have Y �M X and M = {freq, area} is thus said maximally {freq}-skylineable.
The mining process can focus on only extracting patterns based on the frequency
measure (i.e. M ′) without having to take into account the area measure that is
present in M .

In practice, local extrema are not necessarily the longest patterns (i.e. the
closed patterns which are the maximal patterns of equivalence classes) but can
also be the shortest patterns (i.e. the free patterns which are the minimal patterns
of equivalence classes). Thus, the concept of skylineability is defined in a dual
manner:

Definition 3 (Minimal skylineability). Given a set of measures M ′ ⊆ M, a set
of measures M ⊆ M is said to be (strictly) minimally M ′-skylineable iff for
any patterns X and Y such that X ⊂ Y and X =M ′ Y , one has X �M Y
(respectively X �M Y ).

Definition 4 (Maximal skylineability). Given a set of measures M ′ ⊆ M, a set
of measures M ⊆ M is said to be (strictly) maximally M ′-skylineable iff for
any patterns X and Y such that X ⊂ Y and X =M ′ Y , one has Y �M X
(respectively Y �M X).

From the previous definitions, given a set of measures M which is maximally
M ′-skylineable, if X =M ′ Y and X ⊃ Y , it is clear that X cannot be domi-
nated by Y on M . For instance, M = {freq, area} is strictly maximally {freq}-
skylineable because area(X) strictly increases with the cardinality of X (when
the frequency remains constant). Hence, in Figure 3 (bottom), we can deduce that
ABCDEF dominates the patterns ABCDE, ABCD, . . . , DEF without con-
sidering the full set of measures M but only M ′. Notice that {freq} is (weakly)
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M={M1,M2,M3}

M'={M1,M2}

M1

M2

M1

M2

Z,Z'

Y,Y'
Z

Y'

Y

Z' M3

(a) general case

M={freq, area} M'={freq}

freq freq

area

AB, B

ABCDEF, 
ABCDE, 

ABCDF, ..., 
ABC, ABF

ABCDEF

ABCDE, ... BCDEF

ABCD, ...

ABC, ...

AB

B

(b) running example

Figure 3: Use of skylineability in the general case (cf. Figure 3a, top) and in
our running example (cf. Figure 3b, bottom) in which AB =freq B: we directly
knows that AB �M B without considering area (length(AB) > length(B)).

maximally (or minimally) {freq}-skylineable and that {length(X)} is strictly
maximally ∅-skylineable.

Property 2. Given a set of measures M ⊆M, there is at least one set M ′ ⊆M
such that M is minimally and maximally M ′-skylineable.

Proof Let M ⊆M be a set of measures. Let M ′ ⊆M be the set of all unary
primitives defined on L. Let X and Y be two patterns such that X =M ′ Y . Let
m ∈ M . As X =m′ Y for any primitive m′ ∈ M ′ and m is composed of such
primitives, thus X =m Y . We conclude that X =M Y and then, X �M Y and
Y �M X .
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Property 2 is a very important result as it means that a set of measures is al-
ways skylineable (due to the fact thatM is at leastM -skylineable). Obviously, for
a set of measures M , the smaller2 M ′, the stronger its M ′-skylineability. For in-
stance, {freq}-skylineability is more interesting than {freq, area}-skylineability
because area is not a condensable function [49]: there is no pair of distinct pat-
terns X and Y such that X ={freq,area} Y . How to choose automatically a subset
M ′ is discussed next.

4.2. Minimal and maximal skylineable converters
One of the disadvantages of skylineability is that it depends on a set of mea-

sures M ′ whose choice is essential to effectively reduce the search space. We
propose two operators to automatically build M ′ given the initial set of measures
M . Basically, the construction of M ′ consists in identifying primitives that must
remain constant in order that minimal or maximal patterns are always dominant
patterns. Intuitively, any primitive p that is part of the measure m ∈ M that hin-
ders the M ′-skylineability of m, has to be added to M ′. For instance, it is easy
to see that the frequency decreases the area because the frequency decreases with
the specialization. In order that the closed patterns maximize the area, the fre-
quency has to belong to M ′. More generally, it is essential to take into account
the monotone behavior of primitives: decreasing or increasing. For instance, the
length increases withX while the frequency decreases. It is also necessary to con-
sider the operations that combine these primitives. The result of a multiplication
increases when one of its operands increases. However, the result of a division
decreases with its second operand. For this purpose, we define two operators de-
noted c and c (see Table 3).

Expr. e Primitive(s) c(e) c(e)

e1θe2 θ ∈ {+,×,∪} c(e1) ∪ c(e2) c(e1) ∪ c(e2)
e1θe2 θ ∈ {−, /, binomial,∩} c(e1) ∪ c(e2) c(e1) ∪ c(e2)

constant - ∅ ∅
d(X) d ∈ {freq,min, g, prod} ∅ {d(X)}
i(X) i ∈ {length,max, sum, freq∨, f} {i(X)} ∅
d(e1) d ∈ {freq,min, g, prod} c(e1) c(e1)
i(e1) i ∈ {length,max, sum, freq∨, f} c(e1) c(e1)

Table 3: Definition of the minimal and maximal skylineable converters c and c

2In the sense of cardinality.
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Given a primitive-based measure m ∈ M, the minimal skylineable converter
returns a set of measures M ′ = c(m) guaranteeing that for any pattern X ⊂ Y ,
if X =M ′ Y then m(X) ≥ m(Y ). In other words, X dominates Y with respect
to m. Dually, the maximal converter c guarantees that m(X) ≤ m(Y ) for any
pattern X ⊂ Y such that X =c(m) Y .

Let us illustrate c and c on the area measure. The area is defined as a product of
the frequency and length. Thus, we use the first definition in Table 3. c(area) =
c(freq(X))∪c(length(X)) = ∅∪{length(X)} = {length(X)}. Symmetrically,
c(area) = c(freq(X)) ∪ c(length(X)) = {freq(X)} ∪ ∅ = {freq(X)}. The
skylineable converters enable us to automatically find optimization techniques al-
ready known for specific measures such as area [30, 12], p-value [32] or growth-
rate [29] (see Table 4a). We can observe that many measures are maximized
by the closed itemsets according to frequency which may explain the success of
closed pattern mining. But, in this work, we generalize this principle to optimize
any primitive-based measures. Note that when the converter c returns no mea-
sure (e.g., bond or aconf ), it means that the measure decreases with respect to
the specialization. Dually, c(m) = ∅ means that m increases with respect to the
specialization.

Meas. m c(m) c(m)
area {length(X)} {freq(X)}
mean {max(X.val)} {min(X.val)}
bond ∅ {freq(X), freq∨(X)}
aconf ∅ {freq(X),max(X.val)}
gr1 {freq(X, T2)} {freq(X, T1)}
p-value {prod(X.supp)} {freq(X)}

(a) Individual measures

c({freq(X), area(X)})

c(freq(X)) c(freq(X)× length(X))

c(freq(X)) c(length(X))

(b) A set of measures M = {freq(X), area(X)}

Table 4: Applying the minimal and maximal converters

In practice, as the skypatterns are computed for a set of measures, we extend
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the minimal and maximal converters:

Definition 5 (Minimal and maximal skylineable converters). The minimal and
maximal skylineable converters defined by Table 3 for any primitive-based mea-
sure are naturally extended to a set of primitive-based measuresM ⊆M: c(M) =⋃
m∈M c(m) and c(M) =

⋃
m∈M c(m).

For instance, c({freq(X), area(X)}) = c(freq(X)) ∪ c(area(X)) =
{freq(X)} and c({freq(X), area(X)}) = c(freq(X)) ∪ c(area(X)) =
{length(X)}. c({freq(X), area(X)}) = {freq(X)} means that the most spe-
cific patterns (when the frequency remains unchanged) maximize the measures
{freq(X), area(X)}. The following property formalizes this observation:

Property 3. A set of primitive-based measures M ⊆ M is minimally c(M)-
skylineable and maximally c(M)-skylineable.

Proof The key idea relies on the monotonous property according to each vari-
able of a primitive. The operators c(�) and c(�) are recursively applied to return
the set of primitives which must be constant in order to respectively minimize or
maximize the measure. Two cases arise to be sure that an expression p(h1, . . . , hk)
is minimized with X . For each i ∈ {1, . . . , k}, if the primitive p increases accord-
ing to the ith variable (while the other ones remain unchanged), it is necessary
to return the primitives such that hi is also minimized according to X . For this
purpose, the minimal skylineable converter is applied again. Otherwise, the prim-
itive p decreases with the ith variable and we return the primitives such that hi is
maximized by applying the maximal skylineable converter. The dual approach is
used to maximize a measure.

In our implementation, the set of measures M is parsed through a syntax tree.
Following this step, the minimal and maximal skylineable converters are recur-
sively applied to automatically compute c(M) and c(M) (an example is provided
in Table 4b for M = {freq(X), area(X)}). This process is illustrated in Figure 2
with the edge labelled 1. From now on, the set of measures M ′ refers to c(M) or
c(M).

5. Condensed representations of patterns for static mining of skypatterns

This section presents our static method called Aetheris based on the theoreti-
cal relationships between condensed representations of patterns and skypatterns.
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Aetheris follows a two-step process (cf. Section 3.3) : first, a set of representa-
tive patterns is extracted and then the Sky operator is applied on these patterns.
The technique is said to be static because the extraction of a representative pattern
does not depend on the patterns already extracted, contrary to the CP+Sky method
presented in the next section.

A major issue is how to extract representative patterns for a group of skypat-
terns. In the previous section, we remarked that some skypatterns share exactly
the same values on the whole set of measures M ′ (e.g. B ={freq} AB). This
observation enables us to properly answer the question: instead of directly evalu-
ating the skypattern query on L, we can compute the skypatterns on a condensed
representation of L and then generate the entire set of skypatterns. To this end,
we introduce the distinct operator which is at the core of the construction of a
condensed representation adequate to M ′:

Definition 6 (Distinct operator). Given a set of measures M ′ ⊆M, the distinct
operator for P ⊆ L with respect to M ′ and θ ∈ {⊂,⊃} returns all the patterns X
of P such that their generalizations (or specializations) are distinct from X with
respect to M ′:

Disθ(P,M ′) = {X ∈ P | ∀Y θX : X 6=M ′ Y }

where θ ∈ {⊂,⊃}.

Given a set of measures M ′, the set of free (respectively closed)
patterns adequate to M ′ corresponds exactly to Dis⊂(L,M ′) (re-
spectively Dis⊃(L,M ′)). For instance, from our running example,
Dis⊂(L, {freq}) = {A,B,C,D,E, F,AD,AE,BC,BD,BE,CD,CE,DE}
and Dis⊃(L, {freq}) = {A,D,E,AB,AC,ABCDEF}.

We now introduce the indistinct operator that enables the retrieval of all the
indistinct patterns from their representatives:

Definition 7 (Indistinct operator). Given a set of measures M ′ ⊆M, the indis-
tinct operator returns all the patterns of L being indistinct with respect toM ′ with
at least one pattern in P .

Ind(L,M ′, P ) = {X ∈ L | ∃Y ∈ P : X =M ′ Y }

For instance, from Table 1a, the set of patterns that have exactly the same
frequency as patterns B or C is Ind(L, {freq}, {AB,AC}) = {B,C,AB,AC}.
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Preserving functions express a property of compression and are at the core of
Property 4. A preserving function is a condensable primitive (many functions are
preserving: freq, freq∨, count, min, max, sum, etc., see more details in [49]).

Property 4. Given a set of preserving functions M ′, one has the following rela-
tion for any P ⊆ L and θ ∈ {⊂,⊃}:

Ind(P,M ′,Disθ(P,M ′)) = P

In other words, the indistinct operator is the inverse function for the dis-
tinct operator. For instance, Ind(L, {freq},Dis⊃({B,C,AB,AC}, {freq})) =
{B,C,AB,AC}.

These operators are the basis of an efficient technique to compute skypatterns.
The key principle is to confront only distinct patterns together instead of indi-
vidually comparing each pattern. Indeed, the computation of skypatterns with
respect to M = {freq, area} can be limited to Dis⊃(L, {freq}) because max-
imal {freq}-skylineability guarantees us that the other patterns are not domi-
nant patterns. For instance, as AB =freq B, the {freq}-skylineability of M
gives AB �M B and B cannot be a skypattern. More formally, we know that
Sky(Ind(L,M ′,Disθ(L,M ′)),M) = Sky(L,M) from Property 4. Theorem 1
now proves that the skypattern operator can be pushed into the indistinct operator:

Theorem 1 (Operational equivalence). If a set of measuresM isM ′-skylineable
with respect to θ ∈ {⊂,⊃} and M ′ is a set of measures, then one has:

Sky(L,M) = Ind(L,M,Sky(Disθ(L,M ′),M))

Proof Let M be a set of measures M ′-skylineable with θ ∈ {⊂,⊃}.
1. Sky(L,M) ⊇ Ind(L,M,Sky(Disθ(L,M ′),M)).

Let X ∈ Ind(L,M,Sky(Disθ(L,M ′),M)) and Y ∈ L. There exist
X ′ ∈ Sky(Disθ(L,M ′),M) such that M ′ =M X and Y ′ ∈ Disθ(L,M ′) such
that Y ′ =M ′ Y and Y ′ �M Y (i.e. M ′-skylineability). As X ′ belongs to
Sky(Disθ(L,M ′),M), it cannot be dominated by any pattern of Disθ(L,M ′):
Y ′ 6�M X . Thus, X is not dominated by Y (i.e. X is a skyline of L with respect
to M ) because X ′ =M X and Y ′ �M Y .
2. Sky(L,M) ⊆ Ind(L,M,Sky(Disθ(L,M ′),M)).

such that Y ′ =M ′ Y and Y ′ �M Y . As Y is a skypattern, one has Y �M
Y ′ and thus, Y ′ =M Y . Furthermore, no pattern of Disθ(L,M ′) dominates
Y nor Y ′: Y ′ ∈ Sky(Disθ(L,M ′),M). Finally, as Y ′ =M Y , Y belongs to
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Figure 4: Computing the skypatterns with respect to {freq; area} from the run-
ning example

Ind(L,M,Sky(Disθ(L,M ′),M)).

The skypatterns of Sky(Disθ(L,M ′),M) form a condensed representation of
Sky(L,M). It is well-known that the size of adequate condensed representations
(i.e. Dis⊂(L,M ′) or Dis⊃(L,M ′)) is smaller than the whole collection of pat-
terns [23]. Thus, we have achieved our objective as mentioned in Section 3.2.

The technique is even more efficient if the set of measures is strictly M ′-
skylineable. In this case, the Ind operator can be skipped and Theorem 1 is
reduced to the following relation: Sky(L,M) = Sky(Disθ(L,M ′),M) (with
θ ∈ {⊂,⊃}).

Figure 4 illustrates the computation of the skypatterns with our method
Aetheris. Suppose that M = {freq, area}, the first step applies the maximal sky-
lineable converter on M . Then, the distinct operator preserves the closed itemsets
(Step 2). The skyline operator selects the dominant patterns at Step 3 by remov-
ing D and E which are dominated by AB (i.e. area(D) = area(E) = 3 <
area(AB) = 6). Finally, the last step computes the indistinct patterns of skypat-
terns. Note that this step in this example is unnecessary because the area is strictly
{freq}-skylineable.

6. Mining skypatterns using dynamic CSP

This section describes how the skypattern mining problem can be modeled
and solved by using DynCSP [52, 53]. A major advantage of this method is that
it improves the mining step during the process thanks to constraints dynamically
arising from the current set of candidate skypatterns. These constraints avoid
producing new solutions dominated by the current skypatterns and thus reduce
the search space. More precisely, each time a solution is found, a new constraint
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is dynamically posted. The process stops when we cannot enlarge the dominated
area further (cf. Figure 1). The set of obtained representative patterns is a subset
of the set of representative patterns extracted with Aetheris (cf. Section 3.3). The
completeness of our CP+Sky method is insured by the completeness of the CSP
solver. The implementation has been carried out in Gecode3.

The rest of this section is organized as follows. Subsection 6.1 recalls some
general background on CSP and DynCSP. Subsection 6.2 describes how skypat-
tern mining can be modeled using DynCSP. Subsection 6.3 presents the pattern
encoding as well as the filtering that is achieved. Subsections 6.4 and 6.5 are de-
voted to closedness constraints and freeness constraints. Finally, Subsection 6.6
provides an example.

6.1. CSP and DynCSP
Constraint Satisfaction Problem. A CSP [54, 55] P=(X ,D, C) is defined by a
finite set of variables X = {x1, x2, . . . , xk}, a set of domainsD which maps every
variable xi ∈ X to a finite set of values D(xi) and a finite set of constraints C.

Algorithm 1 provides a general overview of a CSP solver. Dom and Store
denote respectively the current domains and the current set of constraints. Es-
sentially, a CSP solver consists of a depth-first search algorithm. At each node
of the search tree, procedure Constraint-Search selects an unassigned variable
(line 5) according to user-defined heuristics4 and assigns it a value (line 6). After
that assignment, procedure Constraint-Search is called recursively (line 7). It
backtracks when a constraint cannot be satisfied, i.e. when at least one domain
is empty (line 2). A solution is obtained (line 9) when each domain Dom(xi) is
reduced to a singleton and all constraints are satisfied.

3http://www.gecode.org/
4For our implementation, we used the most constrained variable order heuristics, which

branches over the variable contained in most constraints; this order is dynamic (updated during
the search).
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Algorithm 1: Constraint-Search(Dom)
Dom← Filtering(Dom, Store);1

if there exists xi ∈ X s.t. Dom(xi) is empty then2

return failure;3

if there exists xi ∈ X s.t. |Dom(xi)| > 1 then4

Select xi ∈ X s.t. |Dom(xi)| > 1;5

forall v ∈ Dom(xi) do6

Constraint-Search(Dom ∪ {xi → {v}});7

else8

output solution Dom;9

Store← Store ∪ {φ(X )};10

The main concept used to speed-up the search is the constraint propagation
by Filtering method. This method reduces the domains of variables such that
they remain locally consistent. Constraint propagation operates on an individual
constraint. To maintain local consistency for individual constraints, propagation
rules are used. Given a constraint and the current domains of the variables in
its scope, a propagator removes domain values that do not satisfy the constraint.
Since variables usually participate in several constraints, the updated domains are
propagated to the other constraints, whose propagators are in turn activated. This
process of constraint propagation is repeated for all constraints until no more do-
main values can be removed or a domain becomes empty.

Dynamic CSP. A DynCSP [52, 53] is a sequence P1, P2, ..., Pn of CSPs, each
one resulting from some changes in the definition of the previous one. These
changes may affect every component in the problem definition: variables (addi-
tions or removals), domains (value additions or removals), constraints (additions
or removals).

6.2. DynCSP-based method for mining skypatterns
This section provides our CSP-based method CP+Sky for mining skypatterns.

As before, the representative patterns are searched according to M ′ using the sky-
lineability principle. The key idea is to use constraints on the dominance relation,
which are dynamically added during the mining process. These constraints avoid
producing solutions dominated by the solutions already extracted and thus reduce
the search space. We start by highlighting the way we handle DynCSP and then
we provide our encoding.
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For our approach, changes between CSP Pi and CSP Pi+1 are only performed
by adding new constraints without any removal of constraints. Additions are han-
dled in a straightforward way with the help of filtering. Solving such a DynCSP
involves solving a single CSP with additional constraints posted during search.
These constraints will survive backtracking and state that next solutions should
verify both the current set of constraints as well as the added ones. Each time a
new solution is found, new constraints φ(X ) are imposed. Such constraints state
that next solutions should verify both the current set of constraints Store and
φ(X ) (cf line 10 of Algorithm 1).

Variable x will denote the (unknown) skypattern we are looking for. We con-
sider the sequence P1, P2, . . . , Pn of CSP where each Pi = ({x},L, qi(x)) and:

q1(x) = disθ(x) where disθ(x) denotes the representative pattern x.
qi+1(x) = qi(x) ∧ φi(x) where si is the first solution to query qi(x).

First, the constraint disθ(x) states that xmust be either a closed pattern w.r.t.M ′

(i.e. disθ(x) = closedM ′(x)) or a free pattern w.r.t. M ′ (i.e. disθ(x) = freeM ′(x)).
Then, the constraint φi(x) ≡ ¬(si �M x) states that the next solution (which is
searched for) will not be dominated by si. Using a short induction proof, we can
easily argue that query qi+1(x) looks for a pattern x that will not be dominated by
any of the patterns s1, s2, . . ., si.

Each time the first solution si to query qi(x) is output by Algorithm 1, we
dynamically post a new constraint φi(x) (see line 10) leading to a reduction of the
search space. For skypatterns, φi(x) states that ¬(si �M x):

φi(x) ≡

( ∨
m∈M

m(si) < m(x)

)
∨

( ∧
m∈M

m(si) = m(x)

)

This process stops when we cannot enlarge the dominated area further, i.e.
there exists n s.t. query qn+1(x) has no solution. The dominated area cannot be
extended and is fully established.

But, the n extracted patterns s1, s2, . . ., sn are not necessarily all skypatterns.
Some of them could only be “intermediate” patterns simply used to enlarge the
dominated area. A post processing step must be performed to filter all candidate
patterns si that are not skypatterns, i.e. for which there exists sj (1 ≤ i < j ≤ n)
s.t. sj dominates si. So mining skypatterns is achieved in a two-step approach:

1. Compute the set S = {s1, s2, . . . , sn} of candidates using DynCSP.
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2. Filter all patterns si ∈ S that are not skypatterns.

While the number of candidates (n) could be very large, it remains reasonably-
sized in practice for the experiments we conducted (see Section 7).

However, the order in which candidates are produced in the first step influ-
ences the way the dominated area is enlarged, and therefore the effectiveness of
CP+Sky. One way to enhance the efficiency would be to select the most beneficial
order in which candidates are generated. In the case of a single measure m, we
can always derive an optimal order that guarantees that any solution produced in
step 1 is a skypattern, thus avoiding the need for post-processing. It suffices to
generate the patterns from the largest values of m to the lowest values of m (cf
Definition 1). But in the general case where several measures are involved, finding
such an optimal order is often impossible and post-processing is required.

6.3. Pattern encoding and filtering
We now introduce the modeling of a pattern that can be provided to the con-

straint programming system. Let d be the 0/1 matrix where, for each transaction
t and each item i, (dt,i = 1) iff (i ∈ t). Pattern variables are set variables rep-
resented by their characteristic function with Boolean variables. [35] and [36]
model an unknown pattern x and its associated dataset T by introducing two sets
of Boolean variables:

• item variables {Xi | i ∈ I} where (Xi = 1) iff (i ∈ x),

• transaction variables {Tt | t ∈ T } where (Tt = 1) iff (x ⊆ t).

Each set of Boolean variables aims to represent the characteristic function of the
unknown pattern.

The relationship between x and T is modeled by posting reified constraints
stating that, for each transaction t, (Tt = 1) iff x is a subset of t:

∀t ∈ T , (Tt = 1)⇔
∑
i∈I

Xi × (1− dt,i) = 0 (1)

A reified constraint associates a 0/1 variable to a constraint reflecting whether
the constraint is satisfied (value 1) or not (value 0). Such constraints are useful
for expressing propositional formulas over constraints and for expressing that a
certain number of constraints hold. Reified constraints do not enjoy the same
level of propagation as simple constraints, but if the solver deduces Tt = 1 (resp.
Tt = 0), then the sum must be equal to 0 (resp. must be different from 0).
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The propagation is also performed in the same way from the sum constraint
towards the equality constraint. For example, when an item variable Xi is set, the
following propagation is applied to the reified constraints described by equation 1
(see [35] for more details):

• if for some t,
∑

i∈I(minD(Xi))×(1−dt,i) > 0 then remove 1 fromD(Tt),

• if for some t,
∑

i∈I(minD(Xi))×(1−dt,i) = 0 then remove 0 fromD(Tt).

Finally, using the Boolean encoding, it is worth noting that some measures
are easy to encode: freq(x) =

∑
t∈T Tt and length(x) =

∑
i∈I Xi. So, the

minimal frequency constraint freq(x) ≥ θ (where θ is a threshold) is encoded
by the constraint

∑
t∈T Tt ≥ θ. In the same way, the maximal size constraint

length(x) ≤ α (where α is a threshold) is encoded by the constraint
∑

i∈I Xi ≤
α.

6.4. Closedness constraints
This section describes how to encode closedM ′(x). As an illustration, we

provide the examples of M ′={min} and M ′={freq}. Recalling that thanks to
skylineability, these measures also allow to handle measures such as mean, area,
growth-rate, etc. In practice, these two examples are enough for running the
experiments given in Section 7.

LetM ′={min} and val(j) a function that associates an attribute value to each
item j. If item i belongs to x, then its value must be greater than or equal to the
min. Conversely, if this value is greater than or equal to the min, then i must
belong to x (if not, x would not be maximal for inclusion). Item i belongs to x is
encoded as (Xi = 1). So, x is a closed pattern for the measure min iff:

∀i ∈ I, (Xi = 1)⇔ val(i) ≥ min{val(j) | j ∈ x} (2)

Let M ′={freq}, the closedness constraint ensures that a pattern has no super-
set with the same frequency. If item i belongs to x, it is obvious that freq(x ∪
{i}) = freq(x). Conversely, if freq(x ∪ {i}) = freq(x), then i must belong to
x (if not, x would not be maximal for inclusion). freq(x) is encoded as

∑
t∈T Tt

and freq(x∪{i}) is encoded as
∑

t∈T Tt×dt,i. Finally, the constraint closedM ′(x)
is encoded using Equation (1) and Equation (3).

∀i ∈ I, (Xi = 1)⇔
∑
t∈T

Tt × (1− dt,i) = 0 (3)
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6.5. Freeness constraints
Similar to the closedness constraint, we now give two examples of encoding of

the freeness constraint. Following our principle of dealing with measures used in
the experiments, we give the examples of M ′={freq} and M ′={max} because
applying the minimal converter c on mean gives max (cf. Table 4).

LetM ′={max} and val(j) a function that associates an attribute value to each
item j. If item i does not belong to x, then its value must be greater than or equal
to the min. Conversely, if this value is greater than or equal to the min, then i
cannot belong to x (if i belongs to x, x would not be minimal for inclusion). Item
i does not belong to x is encoded as (Xi = 0). So, x is a free pattern for the
measure max iff:

∀i ∈ I, (Xi = 0)⇔ val(i) ≤ max{val(j) | j ∈ x} (4)

Let M ′={freq}, the freeness constraint ensures that a pattern has no subset
with the same frequency. If item i does not belong to x, it is obvious that freq(x\
{i}) = freq(x). Conversely, if freq(x \ {i}) = freq(x), then i must not belong
to x (if i belongs to x, x would not be minimal for inclusion).

In order to encode freq(x\{i}), we introduce Boolean variables T ′t,i such that
the relationship between x \ {i} and T is modeled by posting reified constraints
stating that, for each transaction t, (T ′t,i = 1) iff x \ {i} is a subset of t:

∀t ∈ T , (T ′t,i = 1)⇔
∑

j∈I\{i}

Xj × (1− dt,j) = 0 (5)

freq(x) is encoded as
∑

t∈T Tt and freq(x\{i}) is encoded as
∑

t∈T T
′
t,i. So

freeM ′(x) is modeled using Equation (1) and Equation (6).

∀i ∈ I, (Xi = 0)⇔
∑
t∈T

(Tt − T ′t,i) = 0 (6)

6.6. Solving the running example using DynCSP
We now illustrate CP+Sky on the running example in Table 1a with

M={freq, area}. We use the maximal converter c and thus the closedness con-
straint. As c(area) = freq, we get M ′={freq}. Figure 5 depicts the various
steps of the resolution.

Let P1 be the associated DynCSP (see Section 6.2). P1 = ({x},L, q1(x))
where query q1(x) = closedM ′(x). Its first solution is pattern s1 = ABCDEF
(with freq(s1) = 2 and area(s1) = 12), cf. Figure 5a. So, we consider query
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(a) 1st solution: s1 = ABCDEF . (b) 2nd solution: s2 = AB.

(c) 3rd solution: s3 = AC. (d) Last solution: s4 = A.

Figure 5: Solving the running example using DynCSP.

q2(x) = closedM ′(x) ∧ ¬(s1 �M x) stating that we are looking for a closed
pattern x not dominated by s1 = ABCDEF . Its first solution is pattern s2 = AB
(with freq(s2) = 3 and area(s2) = 6), cf. Figure 5b. Then, the next query is
q3(x) = closedM ′(x) ∧ ¬(s1 �M x) ∧ ¬(s2 �M x) stating that we are looking
for a closed pattern x neither dominated by s1 nor s2. Its first solution is pattern
s3 = AC (with freq(s3) = 3 and area(s3) = 6), cf. Figure 5c. The next query
is q4(x) = q3(x) ∧ ¬(s3 �M x) whose first solution is s4 = A (cf. Figure 5d)
and then query q5(x) = q4(x) ∧ ¬(s4 �M x). q5(x) has no solution since the
dominated area cannot be enlarged further and the process ends at n = 5.

In this example, note that all extracted patterns are skypatterns (i.e. there are
no intermediate patterns). The CSP system did not generate solutions that do not
satisfy the dominance relation. Experiments in the next section provide examples
with intermediate patterns.
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7. Experiments

We first report an experimental study on several UCI benchmarks (see Sec-
tion 7.1). We then discuss the practical use of skypatterns in a chemoinformatics
case study (see Section 7.2). All experiments were conducted on a personal com-
puter running a Linux operating system with an i3 core processor with a clock
speed of 2.13 GHz and 4GB of RAM. The implementation of Aetheris refers
to [1]. The implementation of CP+Sky was carried out in Gecode. All source
codes and data sets are publicly available at https://forge.greyc.fr/
projects/skymining/files

Note that it was shown in [1] that Aetheris always outperforms a baseline ap-
proach by at least a factor of 10. In addition, the collection of skypatterns is always
much smaller than the collection of patterns returned by an optimal constraint-
ased approach (i.e. assuming that an ideal end-user is able to perfectly set the
thresholds and then run a usual constraint-based mining method). Therefore, this
empirical study focuses on the comparison between Aetheris and CP+Sky.

7.1. Experiments on UCI benchmarks
7.1.1. Experimental protocol

We focused on 23 different (in terms of dimensions and density5) datasets
(see the left column in Table 5) from the UCI6 repository. We considered the set
of measures M={freq, max, area, mean, growth-rate} and selected 6 sub-
sets: M1={freq,area, mean, growth-rate}, M2={freq, max, area, growth-
rate}, M3={freq, max, area, mean}, M4={freq, max, mean, growth-rate},
M5={max, area, mean, growth-rate} and M6=M . Measures using numeric
values, like mean or max, were applied to randomly generated attribute values
(within the range [0, 1]).

For each method, we report the CPU-time and the number of skypatterns for
every query on the selected set of measures. Note that Aetheris first computes
the set of closed patterns7 w.r.t. M ′ and then applies the Sky operator on the
extracted collection. On the other hand, CP+Sky does not mine closed patterns
as a first step but instead computes a small set of candidates using DynCSP and
then applies the Sky operator. For each method, the reported CPU-times include
the different processing steps. We also report for each dataset the size of the

5The density of a dataset is
∑

t∈T |t|/(|T | × |I|).
6http://www.ics.uci.edu/˜mlearn/MLRepository.html
7We use an absolute minimal frequency threshold of 1.
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Table 5: Comparing the two methods on 23 UCI datasets (a detailed summary).

condensed representation w.r.t M ′ and the number of candidates to respectively
analyse the behaviors of Aetheris and CP+Sky.
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(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

Figure 6: Comparing CPU times on the 7 selected datasets for Mi, i ∈ [1..6].

7.1.2. Performance analysis
A general overview. Table 5 provides the results of CPU-times for CP+Sky and
Aetheris for 138 skypattern queries (23 × 6). We report for each dataset and for
every collection of measures8:
• the number of skypatterns (the largest output is 478),
• with CP+Sky: the number of candidates and the associated CPU-time,
• with Aetheris: the number of closed patterns and the associated CPU-time.

Table 5 indicates that CP+Sky and Aetheris run within the same order of mag-
nitude. On 16 datasets out of 23, CPU times for both CP+Sky and Aetheris are
very small (less than 30 seconds). The results of the 7 remaining data sets are an-
alyzed in more detail to highlight the differences and limitations of our proposed
methods.

8Reported values in columns (6-9) are associated to M6. But, reported values in columns
(10-14) represent average values over M1, M2, M3, M4 and M5.

31



Figure 7: Comparing # of patterns on the 7 selected datasets for M1, . . . ,M6.

A more detailed analysis. Figure 6 depicts a scatter plot of CPU-times for CP+Sky
and Aetheris. Each point represents a skypattern query for one of the 7 selected
datasets: its x-value (log-scale) is the CPU-time obtained with CP+Sky, its y-
value (log scale) the CPU-time with Aetheris. A specific color is associated to
each dataset. The line y = x draws the case where Aetheris and CP+Sky have the
same CPU-times. Most of the points are above this line, which means a longer
runtime for Aetheris. With all the measures (i.e. M6), the speed-up is 1.9 (resp.
1.53) on hypo (resp. german). The only exception is the mushroom dataset.

Another interesting result provided by Table 5 is the number of closed patterns
extracted by Aetheris in comparison with the number of candidates generated by
CP+Sky. The number of candidates remains small (in the thousands) compared to
the number of closed patterns (in millions). Figure 7 illustrates this particular re-
sult for the selected datasets. It reports for each set of measuresMi (i ∈ [1, 6]) and
the 7 datasets investigated in Figure 6, the number of closed patterns, the number
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of candidate patterns and the number of skypatterns (both methods). This figure
highlights the discrepancy between the methods with the distinct lower number of
representative patterns required by CP+Sky in comparison to the Aetheris method.

Dataset # of Sky-
patterns

# of Candi-
dates Patterns

CPU-Times (Seconds) # of Closed
Patterns

CPU-Times (Seconds)
Step 1 Step 2 Total Step 1 Step 2 Total

crx 143 78,327 44 0 44 349,721 40 15 55
german 308 347,957 425 1 426 3,662,911 511 141 652
hepatic 237 41,096 10 0 10 722,333 23 8 31
horse 63 28,275 26 1 27 191,177 33 14 47
hypo 478 221,032 468 1 469 1,604,864 812 83 893
mushroom 176 14,599 1,186 0 1186 1,153,229 497 51 548
vehicle 280 164,152 171 1 172 745,353 111 27 138

Table 6: Comparing the CPU times for the two steps on the 7 selected datasets for
M6.

Table 6 shows an in-depth comparison of the CPU-times for the two steps per-
formed by CP+Sky and Aetheris for the set of measures M6. The second (i.e.
the post-processing) step is the same for both methods and is performed using the
same classical algorithm: the BNL approach [21]. The time complexity of this
approach is O(n2) where n is the number of representative patterns generated in
the first step. These results clearly show that CP+Sky takes less time than Aetheris
to generate the representative patterns. This is in part explained by the huge num-
ber of closed patterns that Aetheris needs to post-process. This drawback does
not exist for CP+Sky because the number of candidates remains small and thus,
the post-processing step is negligible. The only exception is for the mushroom
dataset, where Aetheris is very efficient

7.1.3. Summary
No method is constantly better on all datasets. CP+Sky usually generates a

low number of candidates compared to Aetheris. The number of candidates and
closed patterns seems to provide an appropriate explanation of the performances
of the two methods. However, they only constitute simple indicators and do not
take into account other evidence. For instance the results on the mushroom
dataset may seem surprising and counter-intuitive. Even if the number of can-
didates (14, 599) is low compared to the number of closed patterns extracted from
this dataset (1, 153, 229), Aetheris is more performant than CP+Sky.

The mushroom dataset (which is the largest UCI dataset both in terms of
transactions and items) has the lowest density (around 18%), which implies that its
number of closed patterns is small w.r.t its size. The same reasoning also applies
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Figure 8: Measuring the impact of the density for the two methods.

for the number of candidates. In this case, the size of the set of constraints is
important, as there are as many reified constraints as transactions (cf Section 6.3).
So, filtering takes much more time to generate the candidates. For this dataset, it
is more efficient to compute the closed patterns and filter them, even if they are
more numerous.

Following the mushroom dataset analysis, we investigated the notion of den-
sity and its impact on the performances of our two methods by generating several
datasets and varying their density from 0.15 to 0.65 (we kept the numbers of items
and transactions similar to the mushroom dataset). Figure 8 shows the evolution
of CPU-times according to the density for both methods. As the items in the data
are randomly generated to provide the density value, the number of closed pat-
terns increases according to the density. Thus, the running time of Aetheris also
increases according to this parameter. The behavior of CP+Sky is more complex
due to the dynamic pruning. Having more candidate skypatterns is a benefit if
these patterns are able to prune significantly the search space. The experimental
study shows a good trade-off with a density close to 0.5 (note that in practice there
are very few real-world datasets with a density higher than 0.5).

We also performed experiments on other data sets from the UCI repository,
such as the chess (75 items, 3196 transactions, density 0.49) and the connect data
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sets (129 items, 67557 transactions, density 0.33). However, we were not able
to complete the skypattern mining process. Aetheris was not able to complete
the closed pattern mining step on either data set. For CP+Sky, the first step of
candidates generation took approximatively 20 hours and generated more than
40 million candidates for the chess dataset. The application of the sky operator
failed because of the quadratic complexity (i.e. O(n2) ) of the BNL method. The
experiments on the connect dataset with CP+Sky were aborted after more than 24
hours of computation.

7.2. Case study: discovering toxicophores
A major issue in chemoinformatics is to establish relationships between chem-

icals and their activity in (eco)toxicity. Chemical fragments9 which cause toxicity
are called toxicophores and their discovery is at the core of prediction models
in (eco)toxicity [56]. The aim of this study, which is part of a larger research
collaboration with the CERMN Lab, is to investigate the use of skypatterns for
discovering toxicophores.

7.2.1. Experimental protocol
The dataset was collected from the ECB web site10. For each chemical, the

chemists have associated it with hazard statement codes (HSC) in 3 categories:
H400 (very toxic, CL50 ≤ 1 mg/L), H401 (toxic, 1 mg/L < CL50 ≤ 10 mg/L),
and H402 (harmful, 10 mg/L < CL50 ≤ 100 mg/L). We focus on the H400 and
H402 classes. The dataset T consists of 567 chemicals (transactions), 372 from
the H400 class and 195 from the H402 class. The chemicals are encoded using
1450 frequent closed subgraphs (items) previously extracted11 with a 1% relative
frequency threshold. Therefore, the extracted skypatterns correspond to sets of
chemical fragments, which are represented by frequent closed subgraphs [57].

Discovering candidate toxicophores is similar to supervised descriptive rule
discovery [11], and or learning classification rules, and we therefore use growth
rate as a contrast measure. Indeed, when a pattern’s frequency strongly increases
from class H402 to class H400, it can be considered a potential structural alert
related to toxicity. If a compound includes several such fragments in its graph
structure, it is more likely to be toxic. Emerging patterns model this idea using the

9A fragment denotes a connected part of a chemical structure having at least one chemical
bond.

10European Chemicals Bureau: http://echa.europa.eu/
11A chemical Ch contains an item A if Ch supports A, and A is a frequent subgraph of T .
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growth rate measure. On the other hand, real-world datasets are often noisy and
patterns with low frequency may be artefacts. We also use the frequency measure
to ensure the representativeness of the patterns (i.e. the higher the frequency, the
better).

The skypattern framework makes it possible to integrate measures coming
from the background domain. In ecotoxicity, chemists know that the aromaticity
measure is a chemical property that favors toxicity since their metabolites can lead
to very reactive species which can interact with biomacromolecules in a harmful
way (the higher the aromaticity, the higher the toxicity hypothesis). The chemical
knowledge provides the aromaticity of the chemical fragments and we compute
the aromaticity of pattern as the mean of the aromaticity of its chemical fragments.

We tested several combinations of measures: M1={growth-rate, freq},
M2={growth-rate, aromaticity}, M3={freq, aromaticity} and
M4={growth-rate, freq, aromaticity}.

Skypatterns
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M1={growth-rate, freq} 8 613 18m:34s 41, 887 19m:20s

M2={growth-rate, aromaticity} 5 140 15m:32s 53, 201 21m:33s
M3={freq, aromaticity} 2 456 16m:45s 157, 911 21m:16s

M4={growth-rate, freq, aromaticity} 21 869 17m:49s 69, 827 21m:40s

Table 7: Skypattern mining on ECB dataset.

7.2.2. Performance analysis
Table 7 reports, for each set of measures Mi ∈ [1..4]: (i) the number of sky-

patterns, (ii) for CP+Sky, the number of candidates and the associated CPU-time
and (iii) for Aetheris, the number of closed patterns and the associated CPU-time.
CP+Sky outperforms Aetheris in term of CPU-times. Moreover, the number of
candidates for CP+Sky is drastically smaller than the number of closed patterns
computed by Aetheris. It clearly shows the usefulness of filtering via the dynami-
cally posted constraints.
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(a) Distribution of the skypatterns for M1. (b) Distribution of the skypatterns for M4.

Figure 9: Analysing the skypatterns.

7.2.3. Qualitative analysis
We now analyse the skypatterns qualitatively by comparing them with well-

known environmental toxicophores [58]. With the growth rate and frequency
measures (i.e. M1), only 8 skypatterns are found, among those we have empha-
sized 3 well-known toxicophores. Figure 9a depicts these skypatterns denoted
Pi, one of them is on the y-axis. Two of them are components of widespread
pesticides, namely the chloro-substituted aromatic ring (P1: {Clc}) and organo-
phosphorus moiety (P3: {OP, OP=S}). The third one, the phenol ring (P2:
{c1(ccccc1)O}) is related to hydrophobocity and formation of free radicals [59].

The most interesting results follow from the addition of the background knowl-
edge. Indeed, adding the aromaticity measure leads to skypatterns with novel
chemical characteristics. We discuss the results obtained with the growth rate,
frequency and aromaticity measures (i.e. M4). Once again, the whole set of
skypatterns remains small and can lends itself to straight-forward analysis. 21
skypatterns are mined (see Figure 9b). To simplify the picture, the Si denote
sets of skypatterns sharing a common chemical feature. The figure emphasizes
several environmentally hazardous chemical fragments: the phenol ring (S4), the
chloro-substituted aromatic ring (S3), the alkyl-substituted benzene (S2), and the
organophosphorus moiety (P1). Besides, information dealing with nitrogen aro-
matic compounds is also extracted (S1). The comparison of this list of patterns
with jumping emerging fragments (JEF) extracted from previous experiments [60]
highlights the generalization potency of the skypatterns. As an example, the
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Figure 10: Examples of environmentally hazardous compounds related to skypat-
terns S4, S3, S2, P1, and S1.

organophosphorus moiety skypattern is a generalization of around 90 JEFs and
can be seen as a kind of maximum common structure (i.e. consensus structure) of
these fragments.

The main result of the study concerns the chemical interpretation of the out-
puts. Indeed, the generalization capability of the skypatterns leads to a reduced
list of potential toxicophores easily interpretable by the chemists (cf. Figure 10).
Even if the skypattern process is complete with respect to the user preferences and
the dataset, the proposed list of toxicophores depends on the composition of the
used dataset and the measures. We cannot hope to discover all the ecotoxicolog-
ical structural alerts in one pass, because we cannot expect that all the structural
alerts are present in a single dataset. But any progress in the discovery of poten-
tial toxicophores is a valuable step. The method can suggest new compounds as
toxicophores, i.e. toxicophores which were previously unknown. Further in vitro
experiments are required to validate such candidate toxicophores.

Note that adding the p-value as a measure in order to provide a statistical sig-
nificance in the skypatterns does not change the results in this experiment. Indeed,
p-value is maximized by the closed patterns adequate to frequency and with the set
of measures M5={growth-rate, freq, aromaticity, p-value} only the aromatic-
ity leads to another closed patterns. Out of curiosity, we ran the experiment with
M5 and we get 28 skypatterns instead of 21 with M4 (the 21 skypatterns extracted
with M4 are still skypatterns with M5). There are no significant new insights from
a chemical point of view.

8. Conclusion and Perspectives

In this paper, we investigate in detail the skyline pattern mining problem by
studying the theoretical relationships between condensed representations of pat-
terns and skypatterns. Based on the concept of skylineability, we have devised
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the static method Aetheris and the dynamic method CP+Sky. Aetheris exploits
the condensed representations of patterns to provide a proper superset of skypat-
terns on which to apply the Sky operator. CP+Sky iteratively refines the skyline
constraints using the extracted patterns. This leads to better pruning of the search
space. Our approach generates the complete set of skypatterns in a generic man-
ner (i.e. with a large set of measures that includes statistical assessments such as
the p-value). The practical goal is to make the result of pattern mining useful from
a user-preference point of view. One strength of the approach lies in the fact that
no threshold has to be set, the end-user only needs to specify as input the dataset
and the set of measures she is interested in.

An extensive empirical study as well as a case study from chemoinformat-
ics show the efficiency and effectiveness of our two algorithms according to both
quantitative and qualitative aspects. Despite the gain in generality brought by
the CSP framework and the fact that Aetheris benefits from the pruning strate-
gies based on the anti-monotonicity to extract patterns, CP+Sky competes with
Aetheris and even outperforms it in some cases. However, with CP+Sky, the
search order of the patterns may significantly impact the efficiency of the CSP
solver. Investigating the most beneficial order in which patterns are enumerated
is a promising research direction to maximize the effectiveness of the strategy of
dynamically posting constraints.

Skypattern mining can generally be applied to a wide range of problems by
adapting either the language or the dominance relation. For instance, the language
of sequences or graphs can also produce skypatterns. The dominance relation
can be changed or extended to take into account different other criteria for user-
preferences. We sketch now these two issues.

Language. Our formalization, and especially the skylineability notion, is general
enough to be applied to a large set of languages (sequences, trees and graph for
instance). However, a change in the language can impact the efficiency of the
extraction methods. Regarding Aetheris, the efficiency of the approach is based
on Theorem 1 involving the distinct and indistinct operators. As aforementioned,
with itemset patterns and the frequency measure, the distinct operator corresponds
to the well-known closed or free condensed representations of frequent patterns.
Consequently, the efficient extraction of skypatterns for more complex languages
(i.e. skyline sequential patterns or skyline graph patterns) is strongly tied to the
advances and progress on complex condensed representations of patterns.

Evaluating the distinct operator on more complex patterns efficiently such as
sequences, trees and graphs implies additional challenges. To cite one, in the case
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of sequences, convenient properties such as the free patterns apriori property [61],
which implies effective search space pruning, cannot be used. However, there are
already many methods of extraction dedicated to closed sequential patterns, closed
graphs and so on. Extending CP+Sky to other languages is a challenging task due
to the difficulty of modeling complex patterns. To the best of our knowledge, only
certain types of pattern in sequence mining have been successfully studied [62,
63].

Dominance relation. The dominance relation contains two components: the mea-
sures for which basic preferences are expressed (e.g., frequency, area) and the
combination of these basic preferences (here, the Pareto composition). Primitive-
based measures are flexible enough to allow the user to express a wide variety
of criteria. Indeed, classical interestingness measures for pattern mining (such as
frequency, growth rate), utility functions and measures of statistical significance
(like the p-value) fall within this framework. Of course, Aetheris, as mentioned
above, depends again on condensed representations that are well-adapted for the
desired measures. Conversely, all interestingness measures are easily expressible
with CP+Sky. Through its declarative nature, CP+Sky offers via CSP a very flex-
ible way to change the dominance relationship. For instance the strict dominance
(i.e. a pattern is dominated by another pattern when the latter has a better value
for all measures in M ), is easily configurable with CSP and this relaxation of the
dominance relation leads to the mining of soft-skypatterns [2].

Exploratory skypattern mining. We think that the skypattern mining is particu-
larly well suited to exploratory research. Indeed, a strength of our approach is to
propose a reduced collection of patterns to the data expert who can quickly ana-
lyze it. It would be interesting to integrate the user feedbacks to make skypattern
mining more iterative and more exploratory. An interesting avenue is to offer an
interactive way to refine the preference criteria by computing the skypattern cube
according to all possible subsets of measures [64] and then assist the user with an
intuitive navigation. We claim that the skypattern cube exploration will provide a
better understanding of the impact of the measures on the problem at hand. Other
kinds of interactions are also possible, such as discarding a skypattern to reveal
patterns that were previously dominated and could become interesting.
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