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Thanks to recent advances in signal processing, the interest for fast 1-regularized reconstruction algorithms in cryo-electron microscopy (cryo-EM) has intensified. The approaches based on the alternating-direction of multipliers method (ADMM) are particularly well-suited due to the prime convergence speed and flexibility of use of this algorithm. Yet, the standard ADMM scheme still relies on a nested conjugate gradient (CG) to solve the linear step in its alternating-minimization procedure, which can be costly when handling large-scale problems. In this work, we present an innerloop-free ADMM algorithm for 3D reconstruction in cryo-EM. By using an appropriate splitting scheme, we are able to avoid the use of CG for solving the linear step. This leads to a substantial increase in algorithmic speed, as demonstrated by our experiments.

INTRODUCTION

Cryo-electron microscopy (cryo-EM) aims at characterizing the three-dimensional (3D) structure of proteins at the atomic level [START_REF] Dubochet | Cryo-electron microscopy of vitrified specimens[END_REF]. The process starts with the imaging of numerous replicates of a macromolecule with nearly parallel electron rays at cryogenic temperatures. Software packages are then used to process the set of acquired two-dimensional (2D) measurements and produce a highresolution 3D structure [START_REF] Frank | SPIDERA modular software system for electron image processing[END_REF][START_REF] Tang | EMAN2: An extensible image processing suite for electron microscopy[END_REF][START_REF] Shw Scheres | RELION: Implementation of a Bayesian approach to cryo-EM structure determination[END_REF][START_REF] Jm De La Rosa-Trevín | Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy[END_REF][START_REF] Punjani | cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination[END_REF].

In most packages, the reconstruction is performed using direct methods based on the central-slice theorem [START_REF] Pa Penczek | Gridding-based direct Fourier inversion of the three-dimensional ray transform[END_REF][START_REF] Abrishami | A fast iterative convolution weighting approach for gridding-based direct Fourier threedimensional reconstruction with correction for the contrast transfer function[END_REF]. Direct approaches work adequately when the projections are sufficiently numerous and weakly degraded. Their speed is also a key advantage. Unfortunately, the use of direct methods is less appropriate when dealing with strongly ill-posed imaging conditions such as heavy noise, few projection measurements, or inaccurately known projection angles.

This drawback has led to a surge of robuster iterative schemes in the past years [START_REF] Oscar | A survey of the use of iterative reconstruction algorithms in electron microscopy[END_REF]. Among those, 1-regularized reconstruction algorithms perform particularly well in challenging imaging situations. However, as with most iterative schemes, they come with a prohibitive computational cost if not carefully engineered, which was up to recently hindering their wider use in cryo-EM.

Several works have improved this situation by proposing methods with increased speed. In particular, a breakthrough came when a costly step of many reconstruction algorithms was shown to be quickly computable as a discrete convolution [START_REF] Delaney | A fast and accurate Fourier algorithm for iterative parallel-beam tomography[END_REF][START_REF] Vonesch | Fast wavelet-based single-particle reconstruction in cryo-EM[END_REF][START_REF] Wang | A Fourier-based approach for iterative 3d reconstruction from cryo-EM images[END_REF][START_REF] Donati | Fast multiscale reconstruction for cryo-EM[END_REF].

This development was essential to the deployment of the alternating-direction of multipliers method (ADMM) for iterative reconstruction in cryo-EM [START_REF] Donati | Fast multiscale reconstruction for cryo-EM[END_REF]. ADMM is a powerful splittingbased minimization algorithm with prime convergence speed [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. This work was funded by an ERC grant (ERC-692726-GlobalBioIm).

Moreover, the alternating scheme decouples the physical aspects of the problem from the imposition of prior constraints on the signal, which permits a particularly modular implementation [START_REF] Unser | GlobalBioIm: A unifying computational framework for solving inverse problems[END_REF]. Yet, the standard ADMM scheme still relies on inner conjugate-gradient (CG) loops to solve the linear step in its minimization procedure. This leads to an algorithmic cost that grows with the number of inner CG loops required for reconstruction, which can be prohibitive.

In this work, we present an inner-loop-free ADMM algorithm for cryo-EM inspired by [START_REF] Zhu | An augmented ADMM algorithm with application to the generalized lasso problem[END_REF]. By using an appropriate splitting scheme, we are able to directly solve the linear step in ADMM without using CG. Experiments show that this improvement leads to a noticeable increase in algorithmic speed.

The paper is structured as follows: In Section 2, we describe the imaging model H and the fast formulation for the costly H T H. In Section 3, we present our inner-loop-free ADMM algorithm, derived from a suitable splitting of the objective function. Finally, we provide in Section 4 results on the convergence speed of the proposed algorithm compared to the standard ADMM formulation. , respectively. The spaces of finite-energy sequences and functions are denoted by 2(Z d ) and L2(R d ), respectively. The continuous convolution is written as

(f * g)(x) = R d f (τ )g(x -τ )dτ .
We make the distinction with the discrete convolution, denoted by

(c d)[m] = n∈Z d c[n]d[m - n].
We denote the reflection of a function as f ∨ (x) = f (-x). The proximal mapping associated to the convex functional R is defined as prox R (z; µ) = argmins 1 2 sz 2 2 + µR(s) , with µ ∈ R.

IMAGING MODEL

Let P θp {f }(y) with y ∈ R 2 denote the x-ray transform of the atomic density f for a pth 3D particle copy with orientation θp (Euler angles) [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF]. In cryo-EM, this entity is usually blurred by the point-spread function (PSF) w p . We thus model the noiseless 2D cryo-EM measurements bp (y) of the pth particle as bp (y) = (P θp {f } * w p )(y).

To discretize our object f , we use a generalized sampling scheme [START_REF] Unser | Sampling-50 years after Shannon[END_REF] where the reconstruction space is defined as

V (ϕ) = k∈Z 3 c[k]ϕ(• -k) : c ∈ 2 Z 3 .
(

) 2 
The coefficient sequence c thus corresponds to the discrete representation of the object

f = k∈Z 3 c[k]ϕ(• -k) in the space V (ϕ).
In practice, as the object f is compactly supported, the sequence c is restricted to a finite number of nonzero coefficients. We write this vector of coefficients as c

= c[k] k∈Ω 3D
, where the set Ω3D ⊂ Z 3 corresponds to the support of the coefficients required to represent the object f . The number of elements in Ω3D is then denoted by N = #Ω3D, such that c ∈ R N . An appropriate choice for ϕ in ( 2) is the optimized Kaiser-Bessel window function (KBWF) [START_REF] Lewitt | Multidimensional digital image representations using generalized Kaiser-Bessel window functions[END_REF][START_REF] Nilchian | Optimized Kaiser-Bessel window functions for computed tomography[END_REF]. A KBWF represents functions very effectively when using specific parameter values (see [START_REF] Nilchian | Optimized Kaiser-Bessel window functions for computed tomography[END_REF]). Its isotropic property also allows for a significant reduction in computational costs.

Then, combining ( 1) and ( 2) and using the linearity and pseudoshift-invariant properties of the x-ray transform [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF], we obtain

bp (y) = k∈Ω 3D c[k] P θp {ϕ} * w p (y -M θ ⊥ p k), (3) 
where the hyperplane projection matrix M θ ⊥ p ∈ R 2×3 has rows that specify the normal basis of the hyperplane perpendicular to the direction θp of integration. The measurements bp (y) for the pth particle are assumed to be acquired at the sampled points y j = j∆ for j ∈ Ω2D. Here, the set Ω2D ⊂ Z 2 denotes the support of the projection of f . The number of elements in Ω2D is denoted by M = #Ω2D. For the sake of clarity, we consider ∆ = 1 and we note bp ∈ R M the discrete noiseless measurement vector for the pth particle. This gives us the entries of the imaging matrix

H p ∈ R M ×N as [H p ] j,k = P θp {ϕ} * w p (j -M θ ⊥ p k). (4) 
In practice, each measurement bp is corrupted by substantial additive Gaussian noise n p [START_REF] Cos Sorzano | Normalizing projection images: A study of image normalizing procedures for single particle three-dimensional electron microscopy[END_REF]. Therefore, we finally obtain the discrete formulation of the complete forward model with P particles as

b = Hc + n, (5) with b 
=       b 1 b 2 . . . b P       , H =       H 1 H 2 . . . H P       , n =       n 1 n 2 . . . n P       , (6) 
where P ∈ N * , b ∈ R M P , H ∈ R M P ×N , and n ∈ R M P .

Fast H T H Formulation

When the imaging model is described as in (4), we have a fast formulation for the product H T H [START_REF] Donati | Fast multiscale reconstruction for cryo-EM[END_REF].

Theorem 1. Let ϕ(x) with x ∈ R 3 be such that ϕ(ω) = 0 for all ω ≥ π. Moreover, let the imaging matrix H be as defined in (6) and let P denote the number of particles. Then, the discrete product H T Hc can be computed as the discrete convolution

[H T Hc] k = (c r)[k] (7) 
for k ∈ Ω3D and with kernel

r[k] = P p=1 P θp {ϕ} * P θp {ϕ ∨ } * q p (M θp ⊥ k), (8) 
where the function q p (y) = (w p * (w p ) ∨ )(y) with y ∈ R 2 is the autocorrelation function of the PSF w p (y). The benefit is that the costly matrix-vector product H T Hc can now be computed quickly as a pointwise multiplication in the Fourier domain (Table 1). This is an extremely valuable result as many optimization algorithms rely on computing this product at every iteration. Note also that the cost of the convolution in [START_REF] Pa Penczek | Gridding-based direct Fourier inversion of the three-dimensional ray transform[END_REF] does not depend on the number of projection directions, which is another significant advantage in cryo-EM.

In practice, the discrete convolution c r in ( 7) only needs to be computed for k ∈ Ω3D. This convolution is computed in the Fourier domain using periodic boundary conditions. We do this by convolving a padded c with a kernel r of finite support. This kernel is obtained by first convolving the autocorrelation function of P θp {ϕ} with the autocorrelation function of the PSF w p , and then interpolating its value at the sampling points M θp ⊥ k.

FAST ADMM-BASED ALGORITHMS

For cryo-EM reconstruction, the task is to minimize

c = argmin c∈R N 1 2 Hc -b 2 2 + λR(Lc) + i ≥0 (c) (9) 
where the convex functional R associated to the regularization operator L ∈ R N ×N injects prior knowledge into the reconstruction process. A popular prior is the edge-preserving total-variation (TV) regularization (R = • 1,2, L = ∇) [START_REF] Li Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The constraint i ≥0 imposes nonnegativity of the reconstruction, while the regularization parameter λ > 0 sets the strength of the regularization. With our fast formulation ( 7) for H T H in hand, the goal is then to favor optimization algorithms that solve [START_REF] Oscar | A survey of the use of iterative reconstruction algorithms in electron microscopy[END_REF] without applying H or H T at every iteration. To support this reasoning, a comparison of the runtime of these operators is provided in Table 1. There, the forward operator was constructed from (4) as to compute 500 projections of a (128×128×128) volume, with a KBWF as basis function. The time needed for computing the kernel (8) for the fast H T H is 118.07s (computed only once per reconstruction). For comparison purposes, we considered the cost of the projector without CTF correction.

A powerful algorithm that leverages (7) is ADMM [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. Yet, as explained in Section 3.1, the standard ADMM still has a bottleneck since it relies on inner CG loops to solve the linear step at each iteration. To avoid these costly CG procedures, we present in Section 3.2 a splitting scheme that permits to directly compute the linear step.

ADMM with Inner CG Loops (Standard)

To solve (9) using ADMM, the problem is split by introducing two auxiliary variables u, v ∈ R N [START_REF] Donati | Fast multiscale reconstruction for cryo-EM[END_REF] so that

c = argmin c∈R N 1 2 Hc -b 2 2 + λR(u) + i ≥0 (v) s.t. u = Lc, v = c. (10) 
Algorithm 1 ADMM with inner CG loops (standard)

Require: b ∈ R M P , ρ > 0 1: ρu = ρv = ρ 2: k = 1 3: while (ADMM not converged) do 4:

u k+1 = prox R Lc k -u k ρu ; λ ρu 5: v k+1 = prox i ≥0 c k -v k ρv ; 1 ρv 6:
while (CG not converged) do 7:

c k+1 ← solve (11) using CG and fast H T H 8:

u k+1 = u k + ρu u k+1 -Lc k+1
9:

v k+1 = v k + ρv v k+1 -c k+1 10: k ← k + 1 11: return c k+1
In our case, the ADMM scheme for solving (9) consists of 5 alternating steps, as summarized in Algorithm 1. The proximal operators at Lines 4 and 5 admit closed-form expressions that can be computed efficiently [START_REF] Pl Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF]. Lines 8 and 9 correspond to simple updates of the dual variables u, v ∈ R N . The ρu, ρv > 0 are penalty parameters.

The bottleneck in Algorithm 1 is the quadratic minimization (or "linear step") at Line 7, which requires one to solve [START_REF] Vonesch | Fast wavelet-based single-particle reconstruction in cryo-EM[END_REF] in terms of c. The difficulty is that one cannot explicitly build the inverse of the matrix ρuL T L + ρvI + H T H . Moreover, because the fast computation of H T H in [START_REF] Pa Penczek | Gridding-based direct Fourier inversion of the three-dimensional ray transform[END_REF] requires padding of the object prior to the convolution, [START_REF] Vonesch | Fast wavelet-based single-particle reconstruction in cryo-EM[END_REF] cannot be inverted in the Fourier domain. Hence, the standard ADMM scheme must rely on an iterative algorithm-classically CG-to solve [START_REF] Vonesch | Fast wavelet-based single-particle reconstruction in cryo-EM[END_REF], which can be costly if multiple inner CG loops are needed. 1

ρuL T L + ρvI + H T H c k+1 =H T b + ρv(v k+1 + v k /ρv) + ρuL T (u k+1 + u k /ρu)

Inner-Loop-Free ADMM (Proposed)

To avoid the use of CG for solving the linear step, we propose a novel splitting of (9) inspired by [START_REF] Zhu | An augmented ADMM algorithm with application to the generalized lasso problem[END_REF]. The idea is to add a tailored auxiliary variable w ∈ R N to (10) that simplifies the standard algorithm and makes the linear step directly solvable.

We formulate this splitting scheme as

c = argmin c∈R N 1 2 Hc -b 2 2 + λR(u) + i ≥0 (v) s.t. u = Lc, v = c, w = Tc, (12) 
where T = (A -H T H) 1/2 with A H T H. (We impose that the matrix A dominates the term H T H). In this work, we set A = H 2 I, where I is the identity matrix.

The augmented Lagrangian for ( 12) is then given by

L c, u, u, v, v,w, w = 1 2 Hc -b 2 2 + λR(u) + u, u -Lc + ρu 2 u -Lc 2 2 + i ≥0 (v) + v, v -c + ρv 2 v -c 2 2 + w, w -Tc + ρw 2 w -Tc 2 2 , ( 13 
)
where w is the additional dual variable and ρw the associated penalty parameter. The ADMM alternating scheme is thus (temporarily) composed of 7 steps.

• Minimization w.r.t. the auxiliary variables u, v and w:

u k+1 = prox R Lc k - u k ρu ; λ ρu (14) 
v k+1 = prox i ≥0 c k - v k ρv ; 1 ρv (15) 
w k+1 = arg min w∈R N ρw 2 w -Tc k + w k ρw 2 2 = Tc k - w k ρw . (16) 
• Minimization w.r.t. to the object c:

c k+1 = arg min c∈R N 1 2 Hc -b 2 2 + ρv 2 v k+1 -c + v k ρv 2 2 + ρu 2 u k+1 -Lc + u k+1 ρu 2 2 + ρw 2 w k+1 -Tc + w k ρw 2 2 . (17) 
• Update of the dual variables u, v and w:

u k+1 = u k + ρu u k+1 -Lc k+1 (18) 
v k+1 = v k + ρv v k+1 -c k+1 (19) 
w k+1 = w k + ρw w k+1 -Tc k+1 . (20) 
Operations ( 14), ( 15), ( 18) and ( 19) are identical to Lines 4, 5, 8 and 9 in the standard ADMM algorithm, respectively. As currently stated, the proposed algorithm necessitates two steps more than the standard ADMM. The trick is that we can put ( 16) in [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF], which then simplifies as:

c k+1 = arg min c∈R N 1 2 Hc -b 2 2 + ρu 2 u k+1 -Lc + u k+1 ρu 2 2 + ρv 2 v k+1 -c + v k ρv 2 2 + ρw 2 T(c k -c) 2 2 . (21) 
Operations ( 16) and [START_REF] Nilchian | Optimized Kaiser-Bessel window functions for computed tomography[END_REF] can then be set aside as they are not used in any other alternating step. Moreover, if one sets ρw = 1, the minimizer of ( 21) satisfies

ρuL T L + ρvI + A c k+1 = H T b + ρuL T (u k+1 + u k /ρu) + ρv(v k+1 + v k /ρv) + (A -H T H)c k . ( 22 
)
Algorithm 2 Inner-loop-free ADMM (proposed)

Require: b ∈ R M P , ρ > 0 1: ρu = ρv = ρ 2: A = H2 I 3: k = 1 4: while (not converged) do 5:

u k+1 = prox R Lc k -u k ρu ; λ ρu 6: v k+1 = prox i ≥0 c k -v k ρv ; 1 ρv 7:
c k+1 ← solve [START_REF] Li Rudin | Nonlinear total variation based noise removal algorithms[END_REF] directly using fast H T H 8:

u k+1 = u k + ρu u k+1 -Lc k+1 9: v k+1 = v k + ρv v k+1 -c k+1 10: k ← k + 1 11: return c k+1
The elegance of this formulation is that ( 22) can be solved directly without relying on a nested CG. Indeed, the matrix ρuL T L+ρvI+ A is easily invertible in the Fourier domain.

For a volume of size N , this new scheme leads to a complexity of O(2N log(N )) per ADMM iteration. By comparison, the standard ADMM with K inner CG loops has a complexity of O(2(K + 1)N log(N )) per iteration.

A pseudo-code of our inner-loop-free ADMM is presented in Algorithm 2.

EXPERIMENTS

We compared the convergence speed of the two algorithms by reconstructing synthetic data. We used as ground-truth a (256×256×256) β-galactosidase volume [START_REF] Bartesaghi | Structure of β-galactosidase at 2.2 Å resolution obtained by cryo-electron microscopy[END_REF]. We put ourselves in challenging imaging conditions, such as those faced at the beginning of the so-called "refinement procedure" in cryo-EM (i.e., few data 2 , fairly noisy projections, multiple angular misassignments). From the ground-truth, we computed 30 equi-distributed projections using the imaging model in (4) with a KBWF as basis function. We then degraded those projections with Gaussian noise, setting their SNR to 1, and added error on the projection directions prior to reconstruction. For the sake of simplicity, we did not consider CTF effects.

The reconstruction algorithms were implemented using the GlobalBioIm Library, an open-source library 3 for solving inverse problems [START_REF] Unser | GlobalBioIm: A unifying computational framework for solving inverse problems[END_REF]. The library contains generic modules that facilitate the implementation of imaging models and optimization algorithms.

We compared three ADMM configurations: two standard ADMM with 1 and 3 inner CG loops, and the inner-loop-free ADMM. The algorithm parameters (i.e., the regularization parameter λ and the penalty parameter ρ with ρu = ρv = ρ) were tuned empirically to get the best reconstruction with the fastest convergence. We ran each algorithm for 200 iterations and recorded their convergence with respect to the elapsed time (Figure 1.a) and the number of iterations (Figure 1.b).

Overall, the results show that the proposed inner-loop-free ADMM provides a significant gain in algorithmic speed compared to the standard approach. As expected, the convergence of the standard ADMM accelerates with the number of CG iterations, but this also severely increases the execution time of the algorithm. The cost per iteration of the proposed ADMM algorithm is significantly lower, which permits faster computations.

CONCLUSION

We presented an inner-loop-free ADMM algorithm for 3D reconstruction in cryo-EM. By using an appropriate splitting scheme, we eliminated the need for a nested CG scheme to solve the linear step in ADMM. We showed experimentally that this leads to a noticeable increase in algorithmic speed compared to the standard ADMM formulation.

1. 1 .

 1 Notations Depending on the context, we write a continuous function f , f (•), or f (x), where x = (x1, . . . , x d ) ∈ R d . In this work, we shall either consider d = 2 or d = 3. Sequences are denoted by c or c[k] with k = (k1, . . . , k d ) ∈ Z d . Vectors are denoted by bold lowercase letters (e.g., c) and matrices by bold uppercase letters (e.g., H). The 1 and 2 norms of c = (c1, . . . , cN ) ∈ R N are defined as c 1 = N n=1 |cn| and c 2 = N n=1 |cn| 2 1 2
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 1 Fig.1. Comparisons of the empirical convergence of the objective function[START_REF] Oscar | A survey of the use of iterative reconstruction algorithms in electron microscopy[END_REF] for three ADMM schemes: the standard ADMM with inner CG loops (resp. 1 and 3) and the proposed inner-loop-free ADMM. The proposed algorithm provides a substantial gain in algorithmic speed for cryo-EM reconstruction.
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 1 Runtimes for applying the projection operator H and its variants H T , H T H, and fast H T H (7) in a given experimental setup.

	Computation	Hc	H T b	H T Hc fast H T Hc (7)
	Runtime [s]	127.70 132.08 257.41	0.81

Note that, although the discrete product H T b in[START_REF] Vonesch | Fast wavelet-based single-particle reconstruction in cryo-EM[END_REF] only needs to be computed once during the whole optimization procedure, it is also costly in its own rights. Recent works have shown that it was also possible to formulate it as a convolution[13, 

[START_REF] Andén | Structural variability from noisy tomographic projections[END_REF].

Most packages reconstruct high-resolution volumes by gradually adding information to a rough initial volume computed from very few class averages.
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