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∗4Université de Montpellier

LIRMM, 161 Rue ADA, 34095 Montpellier, France
[Received February 26, 2018; accepted October 3, 2018]

In realistic situations such as human-robot interac-
tions or contact tasks, robots must have the capac-
ity to adapt accordingly to their environment, other
processes and systems. Adaptive model based con-
trollers, that requires accurate dynamic and geomet-
ric robot’s information, can be used. Accurate esti-
mations of the inertial and geometric parameters of
the robot and end-effector are essential for the con-
troller to demonstrate a high performance. However,
the identification of these parameters can be time-
consuming and complex. Thus, in this paper, a frame-
work based on an adaptive predictive control scheme
and a fast dynamic and geometric identification pro-
cess is proposed. This approach was demonstrated us-
ing a KUKA lightweight robot (LWR) in the perfor-
mance of a force-controlled wall-painting task. In this
study, the performances of a generalized predictive
control (GPC), adaptive proportional derivative grav-
ity compensation, and adaptive GPC (AGPC) were
compared. The results revealed that predictive con-
trollers are more suitable than adaptive PD controllers
with gravitational compensation, owing to the use of
well-identified geometric and inertial parameters.

Keywords: adaptive optimal control, generalized predic-
tive control (GPC), simulation, robot arm, KUKA LWR

1. Introduction

Robotic serial manipulators are widely used in vari-
ous industrial fields [1, 2]. Due to their accuracy and
repeatability, they can manufacture increasingly complex
products in a shorter production time. Industrial manip-
ulators are typically position-driven by commonly known

proportional-integral-derivative (PID) controllers, and the
parameters are tuned based on a fixed robot model. In
the case of human-robot interactions (co-botics) [3, 4],
force control is required to address environmental un-
certainties [5]. A force controller is typically based on
force sensors, which are expensive, fragile, and require
frequent calibrations. Alternatively, external forces can
be estimated besides using force sensors, by using accu-
rate dynamic and kinematic models of the robotic arm.
With joint position sensors and torque sensors, which
are already installed in the robot, force control can be
performed by exploiting robot’s dynamic and kinematic
models and estimating external forces [6, a].

The estimation of external forces has been the focus
of several studies conducted by the scientific commu-
nity [7, 8]. Joint torque measurements and model-based
disturbance observers are typically used for the estima-
tion. Moreover, external forces are estimated as devia-
tions from the model prediction [7, 9–11]. Therefore, the
accuracy of the estimation depends on the accuracy of the
segment lengths and segment inertial parameters (SIPs),
which are required for the development of the kinematic
and dynamic models. Generally, the robot controllers are
based on parameters obtained from the computer-aided
design (CAD) data. However, the CAD data does not in-
clude information on several internal robot components,
and it is typically subject to delayed updates. Moreover,
the CAD data is typically fixed; thus modifications made
to the end-effector in the case of a multi-purpose ma-
nipulator are not considered. The focus of several stud-
ies has been the identification of the serial manipulator
SIP [12–16]. The least-square and maximum likelihood
estimation methods are the most popular approaches. Fur-
thermore, the accuracy of SIP estimation is related to the
maximization of information, i.e., the design of optimal
exciting trajectories [17–20].
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Robotic arms are capable of using various types of
tools. However, the dynamic characteristics of the robot
vary when a tool is being held by the robot, especially
when the mass of the tool is relatively high. The addi-
tional mass and length at the end-effector may result in
an inaccurate control performance if the robot is only op-
erated using position control and a conventional PID con-
troller. Thus, in this study, an adaptive predictive position-
force control framework that uses geometric and dynamic
identification was proposed. This method can be used for
any serial manipulator equipped with joint torque sensors
or equivalent sensors (for motor-current measurement);
enabling the manipulator to accurately perform various
tasks using different tools, without loss of performance.

To achieve better control performances, the adaptive
predictive controller using generalized predictive control
(GPC) was proposed. The model parameters used in the
GPC were based on the results of a fast dynamic and ge-
ometric identification process. GPC is a controller in the
model predictive controls (MPC) category [21,22]. It was
developed by Clarke [23], and it is now widely used in in-
dustry and academia [24–26]. Moreover, it was success-
fully implemented in several industrial applications with
good performance and adequate robustness [21, 24, 27].
M. Makarov et al. [28] applied GPC to an anthropomor-
phic robotic arm, and it demonstrated a superior tracking
and robustness to that of PID controllers. Furthermore,
GPC can handle several control problems [29] for a wide
range of plants with a significant number of design vari-
ables, which have to be specified by the user based on
prior knowledge of the plant and control objectives. By
coupling it with identification, reliable inertial parameters
of the robotic arm can be obtained, and a high-quality
GPC can be designed using the inertial information. A
feedback linearization technique was used to apply the
GPC method to the robotic arm. However, the quality
of feedback linearization depends on the accuracy of the
dynamics model of the robot and the feedback informa-
tion such as the angular acceleration, which is difficult to
obtain on time in real-time.

Other adaptive controllers that use predictive laws such
as the extended horizon adaptive control (EHAC) pro-
posed by B. E. Ydstie, or the extended prediction self-
adaptive control (EPSAC) proposed by Keyser and Van
Cauwenberghe were developed [30–33]. In the EHAC
control, the adaptation of the control law depends on the
system parameters. The controller adapts the final pre-
diction horizon and fixes the optimal weighting parame-
ter (λ ). The parameters are updated over a long period
of time in the process, and the coefficients of the predic-
tion equation cannot be obtained at certain points in time.
Moreover, the controller produces a reduced functional-
ity to calculate the control effort, and an extension of the
horizon results in a delayed velocity response [30]. The
EPSAC updates the prediction horizon, weighting factor,
and filter polynomials. However, the on-line adaptation
affects the structure of the predictor and control, which
may lead to unstable motions.

In this study, a novel control adaptation scheme based

on the adaptive generalized predictive control (AGPC) us-
ing the robot dynamic and geometrical identification with
optimal exciting motions was designed. The adaptation
can calculate the optimal weighting function λ , and di-
rectly modify the optimal predictor in the cost function,
which updates the law of control. The scheme adapts
the parameters of the reference dynamics model using the
on-line dynamic and geometric information of the robot,
and it optimizes the system to obtain the new predictor.
The optimal predictor is calculated to ensure stability over
the full range of robotic motion. The adaptive position
and force controllers were designed and evaluated for the
KUKA robotic arm. Although a wall painting task using
different types of painting rollers is presented in this pa-
per, the system can perform other tasks that involve the
grasping or manipulation of objects. In these cases, the
accuracy of the position control is more crucial for the
completion of the task.

2. Paper Contributions

In the context of this study, novel methods for adap-
tive controllers using the predictive laws based on the fast
robot dynamic and geometric identification with optimal
exciting motion were proposed. Moreover, the contribu-
tions of this study are as follows:

I) The development of the predictive controllers with a
proposal of a new scheme of adaptation and predic-
tive actions based on the fast dynamic and geometric
identification with optimal trajectories.

II) The estimation of control parameters for the optimal
predictor, with respect to the dynamic and geometric
modeling of the robot.

III) The adaptive generalized predictive control using ex-
citing optimal motion trajectories with constrained
optimization.

IV) The application of a method for the estimation of the
external forces (without force sensors) based on the
dynamic identification results, to generate the adap-
tation of the predictive motion in the control system.

An overview of the framework proposed in this paper
is presented in Fig. 1. In this study, the framework was
applied to the KUKA lightweight robot (LWR) and it was
generalized for any robotic arm platform. In Section 3,
the geometric and dynamic models of the KUKA LWR
are described. Section 4 presents the parameter identi-
fication of the robot using optimal exciting trajectories.
In Section 5, the reference motion planning is discussed.
Section 6 presents the development of the robot control
system with position and force controls, and the applica-
tion of the adaptation with the novel prediction scheme. In
Section 7, the experimental setup is presented; followed
by the results and discussion in Section 8.
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Fig. 1. Overview of the proposed framework for adaptive predictive controllers based on dynamic and geometric identification with
optimal exciting motion.

Fig. 2. Frames and segments definitions for the KUKA
LWR used in the MDH in Table 1 [34].

3. Modeling of KLWR

3.1. Geometric Model

The KUKA LWR (KLWR) is a manipulator with a
kinematic redundancy similar to that of the human arm,
i.e., with seven degrees of freedom (DoFs) (Fig. 2). The
KLWR has a load-to-weight ratio of approximately 1 : 1,
whereas industrial robots typically have a ratio of 1 : 10
or lower [4]. The total mass of the arm is approxi-
mately 17 kg with a 1.2 m work space. Each link has
an angle and torque sensor, and in this case, the position
control and torque control could be easily performed. Us-
ing the modified Denavit-Hartenberg (MDH) parameters

Table 1. Modified DH parameters of the KUKA LWR.

i ai μi σi αi di θi ri

1 0 1 0 0 0 θ1 L1

2 1 1 0 π/2 0 θ2 0
3 2 1 0 −π/2 0 θ3 L2

4 3 1 0 −π/2 0 θ4 0
5 4 1 0 π/2 0 θ5 L3

6 5 1 0 π/2 0 θ6 0
7 6 1 0 −π/2 0 θ7 0

(Table 1), the forward kinematics model was calculated.
The segment lengths L1, L2, L3 were set using the avail-
able CAD data [12, b].

In this study, the controllers for the KLWR were man-
aged from the robot task space. Therefore, an inverse
geometric model of the KLWR was required. The in-
verse geometric model is generally calculated using the
Paul method. However, given that the KLWR has seven
DoFs, the calculation of its inverse geometric model was
not trivial. To solve the redundancy problem in the robot,
a swivel angle ϕ was added to the model [35], and the
Paul method was then implemented to obtain the resolu-
tion of the inverse geometric model. With this approach,
the elbow was free to move along a circular arc with a nor-
mal vector parallel to the axis defined from the shoulder
to the wrist, for any given end-effector pose.

In Fig. 3, Ps,Pe,Pw define the position of the shoulder,
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Fig. 3. For any pose of the robot end-effector, the elbow
joint moves freely in a circular trajectory of swivel angle ϕ .

elbow, and wrist of the robot, respectively. The swivel
angle ϕ uniquely defines the position of the elbow Pe
on a circular trajectory, which is orthogonal to vectors
[(PsPw)]. To mathematically describe this circle, the unit
vector n̂ of the direction from the shoulder to the wrist
was defined. A local coordinate system was created from
unit vectors û and v̂. It can be noted that û was arbitrarily
set to be the projection of a user-defined vector b. The
mathematical description of û, v̂, and n̂ is found in [35].

3.2. Dynamic Model
The inverse dynamic model of the KLWR was calcu-

lated using Newton-Euler equations, to obtain the joint
torques vector ΓΓΓ [36]:{

ΓΓΓ = M(q)q̈+C(q, q̇)+G(q)+ΓΓΓ f +ΓΓΓext

ΓΓΓ f = diag(q̇)FV+diag(sign(q̇))FC
(1)

where q, q̇, and q̈ represents the (7 × 1) vectors of the
joint angles, velocities, and accelerations; M(q) (7× 7)
represents the robot tensor of the inertia; C(q, q̇) (7× 1)
represents the Coriolis and centrifugal terms; and G(q)
(7 × 1) is the gravitational term. Moreover, ΓΓΓext is the
joint torques vector, which represents the influence of
the external forces; and ΓΓΓ f (7× 1) is the vector of the
friction torques due to Coulomb and viscous-friction ef-
fects. Furthermore, FC = [FC1 · · ·FCNJ ]T (7× 1) is the
vector containing the Coulomb’s friction coefficients, and
FV = [FV1 · · ·FVNJ ]T (7×1) is the vector containing the
viscous friction coefficients.

The equations of motion can be expressed in linear
form with respect to the inertial parameters in the joint
frames [13] as follows:

W(q, q̇, q̈)ΦΦΦ = ΓΓΓ . . . . . . . . . . . . (2)

where W (7 × 84) is the regressor of the chains,
ΦΦΦ (84×1) is the vector of standard inertial parameters
to be identified, and ΦΦΦ = [ΦΦΦT

1 ΦΦΦT
NL FCT FVT ]T .

For each segment i, 10 inertial parameters can be

expressed in the joint frame ΦΦΦi = [Mi MST
i TIT

i ]T ,
where Mi is the mass, MSi = [MSXi MSYi MSZi]T
is the three-dimensional vector of the first moment
of inertia, and the six-dimensional vector TIi =
[XXi YYi ZZi XYi XZi YZi]T that gathers the
components of the 3×3 tensor of inertia.

4. Identification of Robot Parameters

Adaptive controllers are based on the dynamic and ge-
ometric models of the robot. To precisely estimate each
parameter, the identification method using the optimal ex-
citing motion for fast robot identification described in [34]
was implemented. The complete identification can be di-
vided into three stages: i) the generation of the optimal
exciting motions, ii) the identification of the robot iner-
tial parameters, and iii) the end-effector tool identification
(dynamic and geometric identification).

The robot identification and control system procedure
were developed on two levels. The first level involved the
identification of the dynamic parameters of the robot and
painting rollers, to create the complete dynamic and kine-
matic models of the robot, including the painting rollers
attached to the end-effector. The identification was con-
ducted with fully exciting optimal trajectories to detect
all the parameters of the robot and rollers with minimum
errors and deviations. The optimal exciting trajectories
were based on B-spline trajectory parametrization and the
log determinant exciting criterion. The definition of the
optimization problem includes the physical limitations
of the joint angles, velocity, acceleration, and maximal
torque. Furthermore, the optimal exciting trajectories in-
clude constraints to prevent auto-collision and collisions
with the environment. The results of this full identifica-
tion were applied to the base of the models and the system
design of the control.

The second level involves the development of the paint-
ing task with controllers that were based on the results of
the previous identification, to update the models in real-
time. Moreover, they were used in the control design,
which is discussed in Section 6. In this work, PD + Grv,
GPC + feedback linearization, and AGPC were investi-
gated. Each controller utilizes the identified dynamic pa-
rameters of the robot and rollers. In particular, GPC and
AGPC are based on the dynamic models, and updating
the parameters of the robot is a crucial task for the con-
trollers if the characteristics of the robot varies with dif-
ferent types of rollers attached to its end-effector. Accu-
rate parameters can be obtained after a change from the
previous set using minimal information, given that only
small variations require detection. In Section 6, the pro-
posed AGPC that exploits the identified results of level
one is presented. This adaptation was implemented during
the execution of the painting task on-line. Given that the
robot is a non-linear variant system, the values of the iner-
tia matrix elements varied during the motion. The AGPC
updates the inertia matrix using the identified information
(level one). Moreover, the AGPC adapts its design param-

930 Journal of Robotics and Mechatronics Vol.30 No.6, 2018



Adaptive Generalized Predictive Controller

eters during the painting task.
The identification of the base parameters was devel-

oped by using the solution of Eq. (3) to determine the
ΦΦΦ vector that contains the standard inertial parameters
(SIP). Rewriting this equation with respect to the base
parameters (BPs) as expressed by [14]; the vector ΦΦΦb
(Nb × 1), which is the minimal set of inertial parameters
required to define the robot dynamics, can be solved. The
BPs are related to the kinematic structure of the robot, and
they can be numerically computed [15].

WΦΦΦ = WbΦΦΦb = ΓΓΓ . . . . . . . . . . . (3)

The end-effector tool used by the robotic arm can be
changed and modified. Moreover, it generates geometric
and dynamic changes in the system. The geometric pa-
rameters of the end-effector tool were identified using its
SIP, as described in [16, 34].

The dynamic identification of the end-effector was de-
veloped using a specific identification model based on two
sets of grouped equations that represent the trajectories
without and with the end-effector [37] by⎡⎣ΓΓΓu

ΓΓΓl

⎤⎦ =

⎡⎣Wu
b 0

Wl
b Wl

L

⎤⎦[
ΦΦΦb

ΦΦΦL

]
. . . . . . . (4)

where the upper and lower equations represent the tra-
jectories without and with the end-effector, respectively.
Moreover, ΓΓΓu

, ΓΓΓl
, Wu

b, Wl
b represent the measured joint

torques vectors and BP regressor matrices that correspond
to the end-effector inertial parameters when the KLWR is
unloaded and loaded, respectively.

The end-effector geometric identification is based on
the relationship between the inertial and geometric param-
eters [38]. Moreover, the length and width of a paint roller
can be determined from the look-up table. This table con-
tains the inertial and geometric parameters for each paint-
ing tool. A principal component analysis (PCA) of the
inertial parameters [39] is conducted for the classification
and discrimination of the different tool characteristics.

Several studies have been conducted to generate opti-
mal exciting motions for the robot trajectories [17,18,40].
It is important to minimize the computation time and max-
imize the collected information. The log determinant ex-
citation criterion was applied. This criterion represents
the optimal option with minimal error over a short time-
period, according to the identification in real-time [34].
The optimization generates the constrained exciting mo-
tion with respect to the joint angles, velocities, accelera-
tions, and torques within their physical limitations. More-
over, constraints to prevent auto-collision and collisions
with the environment were included in the process.

5. Reference Motion Planning

In this work, the main task was the painting of flat sur-
faces with smooth and continuous trajectories. The task
was conducted using different sizes of painting rollers.

Table 2. Physical parameters for the painting roller tools.

Name of
the roller

Length [m] Width [m] Weight [kg]

Big roller 0.35 0.20 0.2
Small roller 0.33 0.10 0.1

Table 3. Identified inertial parameters for big and small
rollers [34] (see Section 3.2 for the definition of each sym-
bol).

Parameter ΦΦΦbr %σΦbr ΦΦΦsr %σΦsr

M [kg] 2.4×10−1 0.5 9.7×10−2 1.3
MSX [kgm] −3.9×10−3 8.1 4.5×10−5 28.4
MSY [kgm] −1.5×10−5 21.0 7.2×10−5 25.4
MSZ [kgm] 6.5×10−2 0.6 2.4×10−2 1.4
XX [kgm2] 2.0×10−2 1.9 7.4×10−3 4.4
YY [kgm2] 2.1×10−2 2.0 7.1×10−3 5.1
ZZ [kgm2] 2.1×10−3 14.9 1.5×10−4 31.0
XY [kgm2] 5.6×10−4 56.6 2.0×10−4 102.8
XZ [kgm2] 6.3×10−4 41.5 −4.2×10−4 54.7
YZ [kgm2] 8.3×10−5 49.9 2.1×10−4 47.5

Moreover, it required precision and adaptation in accor-
dance with the changes in the physical parameters of the
end-effector (painting rollers) of the robot. In particu-
lar, the robot manipulator traced a painting trajectory in
the shape of “W” on the wall using painting rollers at-
tached to the end-effector. The size of the “W” trajectory
was approximately 0.2 m × 0.2 m. The painting roller
was applied to the wall with a constant force of 30 N.
In this work, two painting rollers (big and small) speci-
fied in Sections 4 and 7 (environmental setup) were used.
The initial parameters are presented in Tables 2 and 3 of
the end-effector parameters. The trajectory for the paint-
ing task was generated in the Cartesian space by the opti-
mization process [37]; thus ensuring a smooth trajectory
and stability in the joints, in addition to a high-quality out-
come of the final painting task.

The motion of the robot was designed for trajectories in
the Cartesian space. The trajectories were planned via an
optimization process with constraints, and the optimiza-
tion generated the trajectories with conditions for smooth
motions using the dynamic robot and end-effector identi-
fication.

The optimization for the motion trajectory minimizes
a cost function constituted by the norm of the robot joint
jerks and the duration of the desired trajectory. Simulta-
neously, the optimization maximizes the work area (in the
case of a painting surface by the horizontal and vertical
distances traveled by the roller) during the motion; thus
ensuring dynamic and kinematic viability in the robot.

The Cartesian trajectory applied in this study was
developed by T. Katsumata et al. [34]. It con-
sists of a painting trajectory with six DoFs; PC =
[PX PY PZ θ X θY θ Z ]T . It is described by the
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Fig. 4. Adaptive control system for robot force and position
control based on fast dynamic and geometric identification.

3D positions PX ,Y,Z of the end-effector and the orienta-
tions represented by Euler angles θθθ X ,Y,Z . The path plan-
ning optimization problem can be expressed as the solu-
tion of Xopt = [Tc ϕ Zu Zl Y0 ΔY ] ∈ ℜ6, where
the Tc represents the trajectory duration time; ϕ is the
swivel angle; Zu and Zl are the upper and lower verti-
cal positions of the roller, respectively; Y0 is the initial
horizontal roller position; and ΔY is the horizontal dis-
tance traveled by the roller. The Cartesian velocity and
acceleration were defined as null at each way point. The
trajectory was interpolated using 5th order B-splines.

6. Robot Control System (Position and Force
Controllers)

The robot control system was designed according to the
scheme as shown in Fig. 4. The objective of the proposed
adaptive predictive and force control was the execution of
the painting task with redundant robots, using continuous
trajectories in Cartesian space ensuring smooth motion,
stability, non-vibration, and precision during the task.

The system consisted of a Cartesian motion trajectory,
which is the optimal reference calculated in Section 5 to
execute the painting task. The inverse geometric model
(IGM) is the model that converts the Cartesian informa-
tion in joint references for the joint robot controllers us-
ing the identified parameters. The controllers were de-
veloped for force and position regulation. The force con-
troller was designed using the calculated estimate force
and a proportional-integral (PI) controller in the Carte-
sian space. The position controllers were developed us-
ing the PD-gravitational compensator, GPC, and AGPC.
Moreover, the above mentioned controllers make use of
the models identified in the previous sections.

The control system performance was validated by an-
alyzing the stability, robustness response, and precision
of the trajectory tracking. In addition, the focus of this
work was to determine the applicability of fast identifica-
tion combined with the adaptation in robot control.

6.1. External Force Estimation
Applying the identification of the robot and of its end-

effector, the external forces could be estimated from the

measured joint torques using the following equations:⎧⎪⎨⎪⎩
ΓΓΓ = M̂(q)q̈+ Ĉ(q, q̇)+ Ĝ(q)+ΓΓΓext

ΓΓΓ = ΓΓΓdyn +ΓΓΓ f +ΓΓΓext

Fest = (JT )+ΓΓΓextFest = (JT )+(ΓΓΓ−ΓΓΓdyn)
. (5)

where J is a (6× 7) robot Jacobian matrix; M̂(q) (7× 7)
is the identified robot inertia matrix; Ĉ(q, q̇) (7×1) is the
vector that contains the identified Coriolis and centrifugal
terms; ΓΓΓ and ΓΓΓdyn are the measured and estimated joint
torques, respectively; and Fest (6×1) is the estimated vec-
tor of the external forces in Cartesian space.

6.2. Force Control
The proposed control scheme is composed of two em-

bedded control loops [41]. The outer loop controls the
external forces, and the inner loop controls the pose of the
Cartesian end-effector as shown in Fig. 4. The additional
displacement to the desired Cartesian 3D position, due to
the force control, is given by:

ΔPC = K f
p(Fd −Fest)+K f

i

∫ T

T0

(Fd −Fest) . . (6)

where ΔPC is the additional displacement reference signal
in Cartesian space; Fd is the desired external force; K f

p

and K f
i are the proportional and the integral gains, respec-

tively; and T0 and T represent the initial time and current
time, respectively.

6.3. Position Control
For the position control of the painting motion, several

control techniques were developed using the previously
calculated identification models. First, a PD control with
a gravitational compensator was proposed. Second, a PD
control with feedforward compensation was developed.
Finally, GPC and AGPC were proposed.

6.3.1. PD control & Gravitational Compensator
The PD control with a gravitational compen-

sator was designed by tuning the gains as a clas-
sical joint space PD controller [42] with P gain
[1500,5000,1000,2000,500,200,200] and D gain
[50,50,30,30,20,10,10] for links 1–7, respectively. The
gravitational torque was computed using the dynamic
parameters identified in the previous part. Given that
the dynamic models of the robot and painting tool were
already identified, the PD control could be expressed as:

Γd = Kp(qd −q)+KKKd(q̇d − q̇)+ Ĝ(q) . . . (7)

where Kp and Kd are (NJ ×NJ) diagonal matrices for the
experimentally-tuned proportional and derivative gains;
qd (7× 1) and q̇d (7× 1) are the vectors of the desired
and measured joint angles, respectively; q̇d and q̇ were
obtained by the first-order backward difference with re-
spect to qd and q; and Ĝ(q) (NJ × 1) is the vector of
gravitational terms obtained using the identified inertial
parameters.
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6.3.2. PD Control and Feedforward
The PD control with feedforward was applied, as ex-

pressed in Eq. (8). Typically, the plant with previous de-
termined dynamics and a predefined trajectory was con-
trolled using feedback and feedforward controls. The
feedforward torques were computed using the identified
dynamic parameters and dynamic model of the robot.
Moreover, P gains and D gains were tuned using the same
values of the PD gravitational compensator control.

ΓΓΓd = Kp(qd −q)+Kd(q̇d − q̇)

+M̂(q)q̈+ Ĉ(qd , q̇)+ Ĝ(qd) . . . . . (8)

6.3.3. Generalized Predictive Control (GPC)
The generalized predictive control scheme was applied

for the position control, to improve the performance of
the robot with respect to its trajectory tracking with pre-
dictive actions, velocity, precision, and stability. Before
describing the GPC design, the linearization method is
presented. In this study, the same feedback linearization
technique as that in the common case of computational
torque control (CTC) was used [43] to calculate suitable
models for the design of the predictive controllers. The
nonlinear dynamic model of the robotic arm was consid-
ered, as expressed in Eq. (1). That robotic arm equations
could be linearized and decoupled by nonlinear feedback,
as expressed by

ΓΓΓ = M̂(q)w+ Ĉ(q, q̇)+ Ĝ(q) . . . . . . (9)

M̂(q), Ĉ(q, q̇), and Ĝ(q) are the estimates of M(q),
C(q, q̇), G(q), respectively; and w is the new input con-
trol vector. Assuming that M̂(q) = M(q), Ĉ(q, q̇) =
C(q, q̇), and Ĝ(q) = G(q) the problem is reduced to a
linear and decoupled double-integrators system, where N
is the number of DoFs of the robot [44].

q̈ = w . . . . . . . . . . . . . . . . (10)

Furthermore, Eq. (10) corresponds to the inverse dy-
namic control scheme, where the dynamics of the robot
are transformed into a double set of integrators. Thus,
linear control techniques can be used to design position-
tracking controllers such as the model-based predictive
control (i.e., GPC). Moreover, the GPC is a type of
model predictive control algorithm. Predictive control
can be summarized as follows [22, 45]: 1) the defini-
tion of a numerical model of the system to predict future
behavior; 2) the minimization of a quadratic cost func-
tion over a finite future horizon using future predicted er-
rors; 3) the elaboration of a sequence of future control
values by applying the first value to the system and the
model; and 4) the iteration of the entire procedure dur-
ing the next sampling period, according to the “reced-
ing horizon” strategy [23]. For the GPC, the plant was
modeled using controlled autoRegressive moving aver-
age (CARIMA) model (Eq. (11)). Moreover, A(z−1) and
B(z−1) polynomials were obtained by discretizing the lin-
earized model (Eq. (10)), and C(z−1) is the polynomial

with coefficients that represent the white noise in the sys-
tem.

A(z−1)y(t) = B(z−1)u(t −1)+
C(z−1)

Δ
ξ (t) . (11)

where u(t) and y(t) are the plant input and output respec-
tively; and ξ (k) is a centered Gaussian white noise.

The optimal predictor (Eq. (12)) was configured with
the matrix in the past, present, and future actions of
Fj(z−1), Hj(z−1), and G j(z−1), respectively [25].

ŷ
(

t +
j
t

)
=

Fj(z−1)
C(z−1)

y(t)+
Hj(z−1)
C(z−1)

Δu(t −1)

+G j(z−1)Δu(t + j−1) . . . (12)

Equation (12) can be written in the following vector
form:

ŷ =
1

C(z−1)
ify(t)+

1
C(z−1)

ihΔu(t −1)+Gũ (13)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if = [FN1(z−1), . . . ,FN2(z−1)]T

ih = [HN1(z−1), . . . ,HN2(z−1)]T

ũ = [Δu(t), . . . ,Δu(t +Nu −1)]T

ŷ = [ŷ(t +N1), . . . , ŷ(t +N2)]T

r = [r(t +N1), . . . ,r(t +N2)]T

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gN1−1 · · · g0 0 · · · 0
gN1 · · · g1 g0 · · · 0

...
. . .

...
. . . . . .

...
gNu−1 · · · · · · · · · · · · g0

...
. . .

...
gN2−1 · · · · · · · · · · · · gN2−Nu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . (14)

Each element of the G matrix represents the dynamic
response of the system. The control signal Δu was
obtained by minimizing of the quadratic cost function
(Eq. (15));

J =
N2

∑
j=N1

(
[ŷ(t + j|t)−w(t + j)]2

)
+

Nu

∑
j=N1

(
λ ( j) [Δu(t + j−1)]2

)
. . . . (15)

where N1 and N2 define the range of the prediction output,
Nu defines the control horizon, λ is a control weighting
factor, r(k) is the reference value, y(k) is the prediction
output value obtained by solving the Diophantine equa-
tion, and Δu is the control signal. Moreover, Eq. (15) can
be expressed by a vector with the following form:

J = (ŷ(t)− r(t))T (ŷ(t)− r(t))+ΔU(t)T ΛΔU(t) (16)

where{
Λ = diag[λ (1), . . . ,λ (Nu)]

ΔU(t) = [Δu(t), . . . ,Δu(t +Nu −1)]T
. . (17)
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Fig. 5. Scheme for the AGPC.

By substituting Eq. (13) into Eq. (16) and partially dif-
ferentiating ΔU(t), the control law ũopt that minimizes the
evaluation function (Eq. (18)) was obtained as follows:

ũopt =−N
[

1
C(z−1)

ify(t)+
1

C(z−1)
ihΔu(t −1)− r

]
(18)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ũopt = [Δu(t)opt , . . . ,Δu(t +Nu −1)opt ]T

N = [GT G+Λ]−1GT =

⎡⎢⎣nT
1
...

nT
u

⎤⎥⎦ . (19)

The receding horizon principle assumes that only the
first value of the optimal control series ũopt is applied;
thus for the next step, the procedure is repeated. Finally,
the GPC is expressed as shown in Eq. (20):

Δu(t) =

−NT
1

[
1

C(z−1)
ify(t)+

1
C(z−1)

ihΔu(t −1)− r
]

(20)

The design was therefore implemented adjusting Ts, N1,
N2, Nu, and λ to satisfy the required input/output behav-
ior, i.e., fastest response that is consistent with the stabil-
ity requirements. With this control strategy, a two-DoF
reference signal tracking (RST) controller was obtained,
and the procedure is described in [46, 47]. The result-
ing GPC was then synthesized as a two-DoF controller, as
shown in Eq. (21).

S(z−1)Δu(t) = −R(z−1)y(t)+T (z)w(t +N2) . . (21)

The controller was calculated using synthesized poly-
nomials R(z−1), S(z−1), and T (z−1).

6.3.4. Adaptive GPC
The AGPC was also implemented for position control,

and the structure is presented in Fig. 5. In the real-time
robot manipulation case, it may be difficult to obtain reli-
able acceleration information. In particular accurate ac-
celeration information could not be obtained when the
previous experiment with the real robot was conducted
in this study. Without the acceleration information, ad-

vanced control techniques such as CTC could not be ap-
plied to the system. Consequently, the adaptation of the
GPC was designed using the dynamic information of the
robot, and the robot modeling varied in accordance with
the new robot states. The AGPC then tunes its parame-
ters on-time based on the posture of the robotic arm, and
directly calculates the control signal without a decrease
in the performance of the robot. This automated design
process simplifies the tuning process, thus increasing the
versatility of the proposed system in that it can be applied
to any serial robotic arm. According to Khalil and Dom-
bre [44], the approximate dynamic model of robot arm
links can be expressed as a linear second order differen-
tial equation:

Γ j = m jq̈ j +Fv jq̇ j + γ j . . . . . . . . . (22)

where m j = Mj jmax is the maximum magnitude of ele-
ment Mj j of the inertial matrix of the robot, γ j represents
a disturbance torque, and Fv j is the coefficient of viscous
friction.

The inertial characteristics of the robot vary in accor-
dance with the motions of the robot; thus, the variations
and the differences between the real dynamics and ap-
proximate dynamic model may result in unstable control.
Therefore, to stabilize the GPC, the update of R(z−1),
S(z−1), and T (z−1) polynomials was attempted, due to
the adaptive optimization with respect to the current robot
motion. Moreover, the AGPC was stabilized by adjusting
the GPC design parameter λ and final horizon N2.

The controller directly adapts the control parameters
from the optimal design in an on-line scheme. Two main
optimization procedures are executed during the adapta-
tion of the controllers. The first is the calculation of the
optimal weight control λ and the predictive window for
the control design, which are based on the minimum re-
ceding horizon, minimum time, and stability response as
the main constraints in the optimization problem. The
second optimization is executed to determine the optimal
predictive controllers based on the optimal variables, to
obtain the polynomials that produced the robot torques
for each joint.

The optimization to determine the optimal parameters
(weight for control input λ and predictive window N1–N2)
is based on the stability analysis, according to the dy-
namic models and the predictive laws, as discussed in
Sections 6.3.3 and 6.3.4. For the stability analysis, the
phase and gain margins are calculated. The phase margin
is required to be larger than 45◦, and the gain margin is
required to be larger than 6 dB, to be selected as the op-
timal controller. The stability analysis is conducted every
0.1 s to determine the optimal λ for the GPC. The initial
optimal λ is calculated using the solution of the Diophan-
tine equation and the matrix in Eq. (14). The optimal λ
is selected based on the λ that yields the best stability re-
sponse. Every choice of λ is evaluated with respect to the
system stability. The corresponding λ is selected as the
new optimal λ until the next time-period. Currently, the
algorithm is set to select the best λ from 20 sets in the
range of 0.01 ∼ 5.0× 108. Besides λ , N2 is preferred to
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be small, as it has a direct influence on the computational
cost and delay of the system response. On the other hand,
a larger N2 generally results in an increased system stabil-
ity. In this study, the initial value of N2 was set as a min-
imum and tolerable value of the gain and phase margins,
and to provide the stable regulators expressed in Eqs. (20)
and (21). The stability analysis was conducted over the
entire duration of the task. Moreover, if the λ cannot pro-
vide system stability, the algorithm immediately changes
the final window of predictor N2, and a new λ is selected.
Furthermore, the optimal parameters are validated using
the robustness criteria, which involves checking the direct
and complementary sensibilities in Eq. (23). With this λ ,
the design of the controllers ensures that the robot action
is sufficient to maintain stable actions during the painting
task.

The adaptive algorithm is summarized below.

1. Calculate the inertial matrix of the robot at the sam-
ple time using the angle information and identified
dynamic parameters.

2. Build the new robot models for each link using the
updated information of the dynamic model (Eq. (22))
of the robot.

3. To determine the first optimal predictor, design the
GPC controllers with the initial setup of the parame-
ters: the prediction horizon N1, N2, the control hori-
zon Nu, and the sample time Ts.

4. Execute the optimization process using the min-
imization of the cost function represented in
(Eq. (15)) and the resolution of the Diophantine
equation, to obtain the possible regulators for mul-
tiple options of the weighting parameter λ and ex-
tended horizon N2. The optimization can be config-
ured by a time cycle (defined by the user, and re-
lated to the desired robot velocity), and it is associ-
ated with the prediction time-period. Moreover, it
determines the final N2 prediction horizon, executes
different options, and starts with the stable N2 until
the final cycle time. This step enables the analysis of
the stability for different optimal λ and the extended
horizon N2 values. Moreover, it determines the mini-
mum final horizon that is suitable for the high veloc-
ity robot motion.

5. The values of N2 and λ are selected with the mini-
mum extended horizon.

6. Using the response of the 5th step, a second opti-
mization with a new horizon N2 is calculated using
Eqs. (17) and (18), to obtain the updated optimal λ .

7. The results of the 6th step are used to compute the
stability margin gains of each GPC controller using
the final optimal parameter λ and N2.

8. The optimal GPC controllers for all the links are de-
termined based on the stability results from the tem-
poral and frequency analysis. The robustness of the

controllers is analyzed using the direct and comple-
mentary sensibility of the robot with the new con-
trollers (Eq. (23)). The results of GPC controllers
for each of the joint polynomials R0(z−1), S0(z−1),
T0(z−1) are configured with the optimal parameters,
and then validated with respect to the stability and
robustness using the frequency response of the robot.
Bode and black analyses reveal the relationship be-
tween the measurement of the direct sensitivity σd ,
and the complementary sensitivity σc. The first rep-
resents the relationship between the output and the
noise measurement, and the second represents the re-
lationship between the output and the perturbation in
the robot when the AGPCs are applied.⎧⎪⎪⎪⎨⎪⎪⎪⎩

σd =
A(z−1)ΔS(z−1)
Ac(z−1)C(z−1)

,

σc =
(z−1)B(z−1)R(z−1)

Ac(z−1)C(z−1)

. . . (23)

9. Using the response of the 8th step, the Δu control sig-
nal (Eq. (20)) is synthesized by the adaptive polyno-
mials Radp(z−1), Sadp(z−1), and Tadp(z−1), to send
the direct torques command for the robot.

10. The control is then continued until the next sample
time comes.

11. Return to the 1st step.

The stability analysis is conducted over the entire du-
ration of the task, and the optimal λ is selected by the al-
gorithm. If the algorithm cannot determine the optimal λ
that can yield a sufficient system, it immediately changes
the final window of the predictor N2 and starts searching
for a new λ .

The main differences between the GPC + feedback lin-
earization and AGPC are the presence of the linearizer
and the adaptive method used to develop the on-line opti-
mization for the control design parameters and final con-
trollers. The GPC + feedback linearization uses a strict
linearizer to reduce the controlled system, as shown in
Eq. (10). However, the linearizer is sensitive to model
errors such as the mass of the end-effector; thus, the
model error affects the entire linearizer, and the GPC is
optimized using the linearizer for the controlled system.
Model errors therefore decrease the control performance.
On the other hand, the AGPC is designed to be stable
at all times by analyzing the system responses through-
out the duration of the task. Moreover, it guarantees a
certain range of robustness against model errors. Thus,
the AGPC is less sensitive to the model errors than the
GPC. In addition, the AGPC is an auto tuning system;
thus, the user is not required to determine optimal set
of design control parameters such as in the case of the
GPC + feedback linearization. Although GPC + feedback
linearization demonstrated an improved tracking ability
and lower computation cost, AGP exhibited a superior
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Fig. 6. Robot motion for dynamic identification with opti-
mal exciting trajectories [34].

control performance. Moreover, it confirmed the poten-
tial of the GPC adaptation in the application with the on-
line robotic arm during the task. The performance of the
proposed AGPC therefore verified the effectiveness of the
GPC solving the robotic arm control problem using a sim-
ple model such as in Eq. (22), and demonstrated the ro-
bustness and applicability of the GPC scheme.

7. Experimental Setup

The position and force controllers with the proposed
adaptive predictive control scheme were validated us-
ing the KUKA LWR real experimental identification
data [34], models, MATLAB, SYMORO+ [36], and
V-REP simulation platforms. For the experimental identi-
fication, the KUKA LWR was working on a custom-built
painting wall (height: 0.8 m, width: 0.6 m). A six-axes
force sensor (ATI, Mini45) was employed to measure the
reference force data, and it was positioned at the center
of the wall. The desired external forces were set as Fd
equal (−30,0,0) N. Fig. 6 presents the KUKA environ-
ment when the exciting motion was executed for the iden-
tification of the parameters.

The identification and control were validated using two
different types of painting rollers. Table 2 presents the
physical parameters of these tools, and Table 3 presents
the identified parameters.

The dynamic identification of the end-effector using
different painting rollers was implemented using a model
discussed in Section 4. The identification was conducted
by analyzing the relationship between the geometric and
inertial parameters. In particular, the value of the iner-
tial parameters increases in accordance with the size of
the tool. The identified moment of inertia around the two
axes were larger than the remaining axis [37]; thus, the
physical parameters of different tools could be determined
using a look-up table, as explained in Section 4, in addi-
tion to conducting PCA method to recognize between the
characteristics of the tools and that of other tools.

The KUKA LWR used in this study had a mass of
12 kg, and the masses of the rollers were 100∼ 200 g. Al-
though the differences between the masses of the rollers
were relatively small, and a difference of 100 g could af-
fect the control system as it attempts to conduct precise

and high-speed tasks, more over with paint the wait of the
roller may be double or triple. It should be noted that the
proposed system successfully identified the physical pa-
rameters of the rollers and discriminate between the dif-
ferent rollers, although the mass difference between the
rollers was only 0.1 kg. Furthermore, the identified val-
ues were used to implement the model predictive control
such as the GPC and AGPC, to provide a superior control
performance to that of the PD + Grv control.

The masses and dimensions of the rollers were linked
in the look-up table and updated for the final robot mod-
els. Moreover, they were used for the GPC controllers and
the computation of the gravitational compensation torque
for the PD + Grv control. The models were modified
specifically in the control torque described in Eqs. (7)–
(9) and (22). If there were any changes in the physical
parameters of the roller, the identification could solve the
new parameters and update the models for the controllers.

Table 3 presents the values of the identified inertial pa-
rameters for both paint rollers. It can be considered the
two identified masses are closed to their reference one.
The parameters were downsized using PCA and stored
in a look-up table with associated geometric parameters.
Thus, the robot could recognize the painting roller at-
tached to the end-effector. These values were obtained in
the previous experimental identification developed by the
authors of this paper in [34], using the data of the joint an-
gles and torques when the optimal exciting motions were
applied at 1 kHz. The root mean square (RMS) obtained
with this identification was Jd = 0.63 Nm.

8. Results and Discussion

8.1. Position and Force Control Results

Using the complete experimental identification models,
the controllers were implemented on a platform in which
other types of robots and controllers could be configured.
To validate the proposed approach, the painting trajectory
was executed using a classical position/force controller,
as presented in Fig. 4. The position and force control
was performed using the PD controller with gravitational
compensation in the real robot, in addition to the identi-
fied models. Subsequently, the predictive controllers of
the position and force control were implemented on the
platform. Fig. 7 presents the desired painting trajectory
generated by the optimization process [34] using the iden-
tified models in both roller cases. By identifying the dy-
namic and geometric models, a painting trajectory that
satisfied the dynamic robot limitations could be gener-
ated from the updated models. Given that the masses of
the end-effectors were low, the painting trajectories were
remarkably similar. However, the advantage of the pro-
posed method can be clearly seen in the case of a heavy
payload. The real-time duration of each trajectory was
50 s and 46 s for the large roller and small roller, respec-
tively.

For the force control, the estimated external force was
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Fig. 7. Results with GPC, AGPC, and PD+ for small roller.

used in the control feedback. The corresponding differ-
ences in the RMS (NRMS) values between the estimated
force and measured external force were 2.9 Nm (9.8%)
and 2.0 Nm (6.8%) for the big roller and small roller, re-
spectively. From the results, it is evident that the con-
troller can adequately control the estimated external force
using the feedback of the external forces that was esti-
mated without force sensors (RMS error ≤ 3 N). Besides
the force control, there was approximately 5 mm of a con-
stant position error in the tracking control with the PD
controller and gravitational compensation in the cases of
the big roller and small roller.

8.2. GPC, AGPC, and PD+ Gravitational
Controllers Results

Although the system demonstrated a sufficient force
control and tracking control performance, a constant po-
sition error of approximately 5 mm was presented in each
case, as mentioned above. The error may be suitable for
the painting task over a large area. However, the system
would be required to reduce the position error if the com-
plexity of the task and precision requirements increased
such as writing small letters or locate the tool into the re-
duced place. Therefore, other controllers with the adap-
tive methods for position error were proposed, i.e., the
GPC, AGPC, and feedforward-PD control using the opti-
mal trajectory and force control strategy discussed in the
previous sections.

To ensure the proper functioning of the AGPC, sim-
ple motion control was conducted using the AGPC in the
V-REP environment. Fig. 8 reveals that the AGPC could
stably control the LWR and follow the reference with min-
imal error. Moreover, Fig. 9 presents an example of the
polynomial Radp(z−1), and how it varied in accordance
with changes in the posture of the robot.

Figures 7–12 show that the GPC and AGPC con-
trollers yielded accurate tracking, whereas the PD control-
gravitational compensation and feedforward-PD control
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with respect to the new optimal λ .

deviated from the desired trajectory, as the painting mo-
tion progressed. Given that the PD and feedforward con-
trol do not support integral action, the robot could not han-
dle the position error caused by the external force at the
end-effector. On the other hand, the GPC supports inte-
gral action due to the nature of its structure, successfully
managed the disturbance of external force and exhibited a
significant improvement of tracking ability.

Furthermore, the results reveal that the GPC with feed-
back linearization demonstrates a good performance due
to the fine identified inertial parameters used to develop
the model of the robot. Fig. 13 presents the RMS posi-
tion error when the controllers were implemented. The
GPC and AGPC yielded a minimal position error when
compared with that of PD with gravitational compensa-
tion. The results for the GPC and AGPC were 0.1 mm and
0.21 mm with the small roller, and 0.22 mm and 0.62 mm
with the big roller in the end-effector, respectively.

As shown in Figs. 14 and 15, the GPC and AGPC
yielded better force control results due to their fast reac-
tion capabilities. The AGPC presented a better control re-
sult than the adaptive PD control with gravitational com-
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Fig. 10. Zoom result for small roller with GPC, AGPC, and
PD+.

Fig. 11. Results with GPC, AGPC, and PD+ for big roller.

Fig. 12. Zoom results for big roller with GPC, AGPC, and PD+.

Fig. 13. RMS position error with GPC, AGPC, and PD
controllers.

Fig. 14. External Force with GPC, AGPC, and PD controllers.

Fig. 15. RMS force error with GPC, AGPC, and PD controllers.
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pensation. Moreover, the AGPC re-adjusted according to
the posture of the robot arm on-line, and its automated
tuning structure reduced the initial tuning process when
it was implemented in other robotic arms. In addition,
in the case of the GPC with feedback linearization, the
AGPC can affect directly the signal control with the ac-
celeration feedback, which could contain a noise error in
the real situation. Thus, the AGPC is more suitable for
robots in planning and motion tasks.

The performance of the GPC was stable and precise
during the trajectory tracking. Moreover, it was robust
with respect to changes in the end-effector. However, it
could not adapt to new changes during the execution of
the task, and the variability of the rollers when exposed to
new elements or environments.

8.3. Considerations of the Controllers
The GPC developed in this study implemented the

feedback linearization, and was optimized by tuning the
parameter λ , prediction windows N1–N2, and control
horizon Nu, as discussed in Section 6.3. The parameters
were previously set to start the motion control. By adjust-
ing the parameters, GPC response speed, and convergence
speed/position, the stability and robustness sensibilities
changed. Given that the controlled system is strictly lin-
earized, and that its controlled system does not change
over the range of motion, a fixed GPC (fixed values of
design parameters) is applicable to this system, and the
values of the optimal parameters depend on the robot dy-
namics and motion task.

By combining GPC + feedback linearization and on-
line system identification, another AGPC can be intro-
duced. Using on-line system identification, the system
could detect whether the robot is in high-speed motion or
interacting with the external environment. In this case, the
high response speed of the GPC should be designed by ad-
justing the design parameters. Moreover, it is possible that
using on-line system identification to design the feedback
linearizer on-line strictly linearizes the robot system. This
system identifies the dynamic parameters of the robot on-
line and simultaneously constructs a feedback linearizer
using the identified values. Eventually, the optimal lin-
earizer is obtained by evaluating the tracking error. How-
ever, it is difficult to set the initial parameters for the lin-
earizer and the GPC, which provide a certain level of sta-
bility from the start of the motion.

Once the dynamic and geometric parameters are identi-
fied, the integration with the GPC + feedback linearization
in on-line system identification is applicable to the robot
for the generation of an adaptive optimal predictor. In this
case, the feedback linearization could calculate new mod-
els and modify the optimal predictor. The controller could
then be enhanced by considering the contribution of the
AGPC scheme proposed in this paper by calculating the
optimal on-line control parameters based on the dynamic
and geometric identification.

The computational cost was calculated by the program
for different types of rollers, to validate the GPC, AGPC,

Table 4. Computational cost using the GPC, AGPC, and
PD+ during the painting task.

Controller Memory [GB] %CPU CPUtime [s]
AGPC

(small roller) 0.993 27 0.043

AGPC
(big roller) 0.628 21 0.051

GPC
(small roller) 0.950 23 0.032

GPC
(big roller) 0.599 21 0.040

PD+
(small roller) 0.628 18 0.037

PD+
(big roller) 0.601 17 0.038

and PD+ controllers. The computational cost was verified
by measuring the allocated memory, % of CPU, and time
consumption. The results are summarized in Table 4.

The table above presents CPU time of each controller
for one cycle. As expected, it shows that the AGPC has
the highest computational cost. This is because the AGPC
conducts optimizations and stability analyses, in addition
to the calculation of the control torques. In this study,
the sampling time for the calculation was 1 ms; approxi-
mately 43 s was required to calculate 1 s of motion. How-
ever, this type of on-line adaptive controller can be further
enhanced with potential computational characteristics to
decrease the duration of the control tasks.

9. Conclusion

In this study, a novel robot control adaptation based on
predictive controllers and the fast dynamic and geometric
identification of base parameters in a force control frame-
work was developed. The proposed methods were applied
to the KUKA lightweight robot. During the roller paint-
ing task, the external forces applied to the end-effector
could be estimated and controlled without a force sensor
mounted at the end-effector, due to the accurate model
identification. Moreover, the controllers were developed
using the identification performed with the exciting mo-
tion of 10 s, which was generated by an optimization.
The proposed adaptive predictive controllers were com-
pared with other controllers such as the PD control with
gravitational compensation, feedforward with PD control,
and GPC. The AGPC updated itself during the motion
and successfully controlled the robot with good stabil-
ity by exploiting the fine identified SIPs. The GPC and
AGPC demonstrated excellent control performances such
as a 90% reduction in the position errors when compared
with the results of the previous experiment. Moreover, a
novel tuning design with robust control will be developed
in the future to enhance the AGPC. Furthermore, the fu-
ture work will extend this method to a significantly larger
number variables, rollers, and tools.
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Brief Biographical History:
2009 Received Ph.D. degree in Automatics Control and Robotics from the
University of Montpellier
2016- Associate Professor, Electrical Engineering and Robotics,
University of Paris-Est Créteil
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