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Abstract— This paper aims at carrying out a parameters 

sensitivity analysis on a charge transport model using an 

approach based on the Sobol’s method. Charge transport models 

generally encompass a large number of unknown or ill-defined 

parameters, typically 10, that interact to produce macroscopic 

response observable through e.g. space charge density profiles 

and external current measurements. However, the various 

physical processes of the model have different impact on the 

predicted behaviour. The Sobol’ approach applied herein is used 

to study how the variation of the current density and charges 

density can be quantitatively apportioned to the variation of the 

model input parameters. 
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I.  INTRODUCTION 

Various physical models have been implemented for 
describing the mechanisms of charge generation and transport 
in solid dielectrics [1-3]. These models require the handling of 
a number of parameters like injection barrier, mobility, 
trapping coefficient, etc. Most of these parameters cannot be 
determined by independent experiments and it is a heavy task 
to estimate parameter values that best fit experimental data. 
Optimization algorithms aim at systematizing this part of the 
modelling activity. However, to facilitate the convergence of 
optimization algorithms, it is important to quantify the effect of 
each input variable on the output observables in order to limit 
the optimization to the most influential variables.  

The method implemented in this work, based on Sobol's 
analysis, guides the choice of optimization algorithms by 
focussing on the main parameters affecting the charge transport 
model which makes the resolution possible. The task is to build 
a sensitivity analysis on 4 of the inputs of the charge transport 
models regarding the impact on the space charge density and 
current measurements which are the main observables that can 
be implemented for feeding the models. With this in hands, the 
optimization can select the best conditions for appropriate 
estimation of model parameters.  

II. UNIPOLAR CHARGE TRANSPORT MODEL 

A. Physical description and basic equations 

The model developed here is a unipolar description of 
charge transport based as detailed elsewhere [1]. This model 
considers two levels of charge traps: a deep trap level 

accounting for relatively long-lasting trapping of charges and a 
shallow level to which is associated an effective mobility for 
mobile carriers. Charge carriers have a given probability to 
escape from deep traps by overcoming a potential barrier that is 
included in the de-trapping coefficients. Two kinds of species 
are considered, being mobile and trapped carriers. Even when 
neglecting dipolar processes and diffusion one generally has to 
solve the following coupled equations considering a 1D 
problem along the spatial coordinate x, whatever the model 
used to describe charge transport: 
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where j is the transport current associated with mobile carriers 
of density nµ and charge e, µ is the mobility, E is the electric 
field, n the total carriers density. The term s is the source term, 
i.e. it encompasses any local charge density variation due to 
processes other than transport, such as the internal generation 
of charges. These equations may have a specific form for the 
interfaces, and are complemented by boundary conditions (e.g. 
applied electric field, etc.). An example of an expression for the 
source term of Eq. 2 is given for mobile carriers: 
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where B is the trapping coefficient, nµ and nt are respectively 
mobile and trapped carrier densities, n0t is the maximal trap 
density, in our case n0t is such that e.n0t =100 C.m

-3
. The de-

trapping probability is defined by a de-trapping coefficient 
which is of the form: 
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where  is the attempt to escape frequency, which has been set 
to kBT/h = 6.2 1012 s-1 at room temperature, T is the temperature 
and wtr is the de-trapping barrier. In this model, we have 
supposed that charge generation results from injection at the 
electrodes according to a corrected Schottky law (there is no 
injection when the electric field at the electrode is null): 






































 1

4
expexp2


electrode

BB

inj

eE

Tk

e

Tk

ew
ATj  (6) 

where jinj is the flux of charge at the electrode, kB is the 
Boltzmann's constant, A=1.2 106 A.m-2.K-2 is the Richardson 
constant, w is the injection barrier. 

For this study, we consider low density polyethylene -
LDPE material, in film form of thickness D = 200 µm, at a 
temperature of 40°C and under a DC electric field of 
30 kV.mm

-1
 applied between the both electrodes during 

different times of polarization: tpol of 100s, 600s and 1200s. 

III. SENSITIVITY ANALYSIS 

A. Model as black box 

In this part, the model of charge transport described 
previously is viewed as a black box with some inputs and 
outputs that are defined as in Fig. 1. 

 

Fig. 1. Model as a black box 

We denote input data some physical constants allowing 
describing the mechanisms of charge generation and transport 
in the solid insulation, sometimes the term parameters will be 
also used. In this work, only 4 inputs are considered and 
concern the charges injection, mobility of carriers and trapping 
and detrapping processes, Table I. We denote output data the 
main results obtained by the model. In our case, we consider 
only the net density of carriers and the current density because 
they are easily observable using experimental devices. The f 
function corresponds to the charge transport model described 
previously and includes all the partial differential equations. 

TABLE I.  INPUT AND OUTPUT DATA 

Inputs Notation Units 

Barrier height for injection, w x1 eV 

Mobility, µ x2 m2.V-1.s-1 

Trapping coefficient, B x3 s-1 

De-trapping barrier height, wtr x4 eV 

Outputs   

Net carrier density y1 m-3 

Current density y2 A.m-2 

B. Input boundaries 

The range set for the different inputs is shown in Table II. 
Lower and upper bounds are chosen first to be certain to keep 
physical sense to the conditions, second to have a large range 
of inputs in order to assume a broad and consistent 
representation of our output data, and lastly to have tractable 
computation. To the input range of each physical quantity, we 
suppose a renormalization can be achieved and after rescaling, 
the interval is supposed to be [0, 1]. Indeed, it is useful for 
example to conceive each parameter as a random variable 

uniformly distributed over the [0, 1] interval, with all the input 
mutually independent. 

TABLE II.  INPUT RANGES 

Inputs Lower bound Upper bound 

Barrier height for injection 1.10 eV 1.20 eV 

Mobility 10-14 m2.V-1.s-1 10-12 m2.V-1.s-1 

Trapping coefficient 5x10-4 s-1 10 s-1 

De-trapping barrier height 0.73 eV 1 eV 

C. The outputs as scalars 

In order to estimate the Sobol's indexes it is necessary to 
provide the outputs as scalars. Concerning the output y1, which 
is normally a net carrier density profile, function of the position 
in the insulation and of the time, the scalar is obtained by 
integrating the net charge over the space and time as follows: 
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For the current density, y2, the output is obtained by: 



polt

tot dttJy ).(2
 with 

D

tot dxtxj
D

tJ ).,(
1

)(  (8) 

D. The principle of Sobol's indexes 

The goal of the parameters sensitivity analysis is to 
evaluate how the variation in an output can be apportioned to 
the variation of the inputs. In other worlds, the sensitivity 
parameter indicates how each input contributes to the output 
variability. This kind of tool could provide some important 
information before optimization processes to determine the 
influence of the parameters on the output of the charge 
transport model and so to classify parameters in order of 
influence. This leads to the determination of how the output is 
dependent on each of the inputs. Thus, sensitivity analysis 
allows the identification of the factor (or set of factors) that 
have the greatest influence on the response.  

Usually sensitivity analysis methods are classified in two 
distinct groups: Local and Global. The local methods focus on 
the local outcome of the output by varying the inputs one at a 
time, while holding the others at some local values. 
Conversely, global sensitivity analysis methods examine the 
variation of the output while varying all the inputs over their 
entire ranges. 

In this application, our focus is on the Sobol’s method [4, 5], 
which is considered as one of the most powerful global sensitivity 
analysis methods. The principle of this method is to consider each 
input as varying randomly over its entire range. Then an output, 
as a function of the inputs, can be studied as a random variable, 
and thus its variability can be represented by the variance. The 
Sobol algorithm probes how the variance of the output can be 
decomposed into a sum of partial variances. Then, using this 
decomposition, it assigns to each input a sensitivity index 
representing the effect of this input on the output. So, if a general 
form of an input-output representation is written as: 

𝑦𝑘 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) (9) 

Inputs data, xi Outputs data, yj
f

model of charge transport



with k = 1 for net density of charge or 2 for current density. 
The function f represents the charge transport model. 

Then, the sensitivity indexes are defined as: 

𝑆𝑖 =
𝑉𝑎𝑟(𝐸[𝑦𝑘|𝑥𝑖])

𝑉𝑎𝑟(𝑦)
 (10) 

Si is called the first order Sobol's index of the input xi, E the 
mathematical expectation and Var the variance. 

To clarify the concept behind Sobol’s notation, let us 
consider the following. For predicting the influence of a certain 
input xi on the output yk, one could fix this xi at some specific 
value x* and measure how yk varies while varying other inputs. 
If the variation of yk is small compared to that with all inputs 
varying, then xi does not have a real influence on yk. However, 
if the variation of yk decreases, this means that xi is affecting yk. 
Note that this variation of yk while fixing xi is quantified using 
𝑉𝑎𝑟(𝑦𝑘|𝑥𝑖 = 𝑥∗). Now, we must consider that xi has different 
possible values over its entire range and is not just one specific 
x*, thus it is required to take the mean of this conditional 
variance over the whole range of values of xi. So the real 
reference for the sensitivity of yk with respect xi is 
𝐸[𝑉𝑎𝑟(𝑦𝑘|𝑥𝑖)]. Small values of 𝐸[𝑉𝑎𝑟(𝑦𝑘|𝑥𝑖)] indicate that xi 
actually affects yk, large values indicate that xi has no strong 
effect on yk. Knowing that: 

𝑉𝑎𝑟(𝑦) = 𝐸[𝑉𝑎𝑟(𝑦𝑘|𝑥𝑖)] + 𝑉𝑎𝑟(𝐸[𝑦𝑘|𝑥𝑖]) (11) 

then 𝑉𝑎𝑟(𝐸[𝑦𝑘|𝑥𝑖]) can be also a reference for the sensitivity 
of yk with respect to xi. Indeed, 𝑉𝑎𝑟(𝑦) is a constant positive 
quantity, then large values 𝑉𝑎𝑟(𝐸[𝑦𝑘|𝑥𝑖])  correspond to low 
values of 𝐸[𝑉𝑎𝑟(𝑦𝑘|𝑥𝑖)], and thus high sensitivity. However, 
small values of 𝑉𝑎𝑟(𝐸[𝑦𝑘|𝑥𝑖])  correspond to large values of 
𝐸[𝑉𝑎𝑟(𝑦𝑘|𝑥𝑖)], and thus indicating less sensitivity. This 
interprets the notion of the Sobol’s sensitivity indexes. 

One can also calculate the index of order 2, for each pair of 
variables (xm, xn) (xm is a variable different from xn, chosen 
among the p input variables, p = 4 in our case) that represent 
the part of variance induced by the combination of variables xm 
and xn. Therefore, for each variable xm, there is p-1 order index 
2. Similarly we can calculate indexes of higher order 
quantifying the part of total variance assignable to the 
combined variation of 3 or 4 variables. For each variable xm, 
we can calculate the total sensitivity index corresponding to the 
sum of all orders sensitivity indexes involving the variable xm. 
Note that the sum of the total sensitivity indexes of all the 
variables of the system is theoretically equal to one.  

The different steps for Sobol sensitivity analysis: 
1- Define the inputs xi and the lower and upper bound; 
2- Generate the input sets over the defined ranges; 
3- Run the input sets through the charge transport model; 
4- Calculate the Sobol indices with Eq. (10); 
5- Analyze the different order sensitivity indexes. 

Note that, the Sobol’s method, unlike many other 
sensitivity analysis methods, does not rely on any previous 
assumptions concerning the structure of the model under study. 
This is favorable in our case when studying the sensitivity of 
the logistic parameters, since we have no evidence about the 
form of the parameters in terms of xi. In the next section, the 
Sobol's indexes of the factors xi associated with each of the 

outcomes yk will be displayed, this allows the ranking of 
factors according to their impact on the responses. 

IV. RESULTS AND DISCUSSION 

A. The various contributions to Sobol index  

The first result obtained concerns the influence of the 
inputs of the model on the net charge density. An electric field 
of 30 kV/mm is applied during 100 s on a LDPE material and 
the charge profiles are computed and integrated over time and 
space. Sobol index calculations are computationally expensive 
and require a high number of calls to the studied function. To 
illustrate this, Fig. 2 shows a result for the convergence as a 
function trial number. Two trials are made at each step for each 
input. It can be seen that about 50 000 runs are necessary to 
reach convergence. This means 100 000 calls to functions for 
each parameter, and in total 500 000 calls for the all input 
parameters to guarantee the convergence of the Sobol's index. 
It represents about 30 hours to implement with a computer 
having an Intel Core i7-4790 processor, CPU of 3.60GHz and 
32Go of RAM.  

 
Fig. 2. Convervenge for the Sobol indexes calculation 

Fig. 3 quantifies the amount of variance that each inputs xi 
contributes to the total variance of the net charge density and 
current density. We note Si the Sobol index of the xi input and 
Sij the index of order 2 between two inputs xi and xj. As shown 
on this figure, the variance of a give contribution can be split in 
two parts: that caused by variations of individual inputs, which 
represent the main effect, and that caused by mutual 
interactions of several inputs. The sum of the total index 
reaches 1, which proves the independence of the different 
inputs and a good convergence of the algorithm (a value higher 
than 1 would mean redundancy between some input 
parameters). Concerning the Sobol's index for the net charge 
output, Fig. 3 shows that the barrier height of injection, x1, 
plays an essential role in the first instants of the polarization: 
Sobol's index for the net charge density is affected by the 
charge injection at up to 60%. The de-trapping barrier and the 
interaction between injection / de-trapping represent only 10% 
each to the total variance of the y1 output. Other inputs are 
negligible, meaning that, at the first moments of the 
polarization, mobility and trapping do not have substantial 
influence on the net charge density. This first result shows that 
injection phenomena could be analyzed nearly independently 
of the other physical phenomena. For parameters optimization, 
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the barrier height of injection could be estimated by fixing the 
others inputs at any value. Concerning the Sobol index for the 
current density output, the mutual interactions of inputs are 
more impacting that the individual inputs. The interaction 
injection / de-trapping represents 30% of the total variance 
while the individual input de-trapping concerns slightly less 
than 20% and injection phenomena about 10%. Note here that 
the total sum of indexes is less than 1, meaning that higher 
order interactions (involving 3 input parameters) are at play. 

 
Fig. 3. Sobol indexes for the y1 and y2 output with charging time of 100 s 

B. Impact of charging time 

Fig. 4a) shows the evolution of Sobol indexes during 
polarization process for the y1 output (representing charge 
density) with charging times of 100 s, 600 s and 1200 s. As 
explained previously, at the first moment of the polarization the 
injection process overwhelms the other parameters in terms of 
influence on the charge density. This trend tends to weaken 
over time. For 1200 s, de-trapping rises up to 55% while 
barrier height of injection drops to less than 20%. The other 
parameters, mobility and trapping do not have much influence 
on the output, at most 10% of the total variance. Finally, 
injection process, de-trapping and their interactions are 
impacting at up to 80%. Concerning indexes for the y2 output 
i.e. current density, there is not much evolution over time, cf. 
Fig 4b). Results show that interaction of order 2 is more 
impacting that the individual inputs. Here again, the sum of the 
total index does not reach 1. 

By analyzing these results a strategy of study can be designed 
for parameters optimization. The first step would consist in fixing 
mobility and trapping coefficient to a random value and then 
optimizing de-trapping coefficient and barrier height of injection 
with the net charge density only, preferably using short time data. 
By constraining the variation interval of estimated parameters 
found in the first step, the optimization could then be realized 
with the current density as output and the others parameters, 
trapping and mobility, as inputs. Indeed, interactions between 
parameters being more important with the y2 output, the 
optimization process could adjust more precisely each one. 

Beyond the current objectives, reverse uncertainty propagation 
can also be applied for identifying experimental favourable 

conditions to reduce uncertainties on the parameters. For instance, 
local sensitivity indexes can be evaluated for experimental 
conditions (temperature, field, etc..) allowing detecting the 
configuration that is the less dependent on the most uncertain 
parameters. The measurements coming from these specific 
configurations could be used to calibrate the models. 

 
Fig. 4. Evolution of Sobol indexes during polarization process with charging 

times of 100 s, 600 s and 1200 s a) for the y1 output and b) for the y2 output 

V. CONCLUSION 

A Sobol algorithm has been used in order to estimate the 
impact of parameters of a charge transport model on the 
observables for the charge build up in insulation that are charge 
density measurements and external current. The procedure has 
been tested on 4 variable parameters as model input, 
considering charge density and current predicted for up to 20 
min charging time. We show that at short charging time (100s), 
the main influent model parameters for the charge distribution 
are barrier to injection and de-trapping coefficient. The exact 
reason for the impact of de-trapping is not really elucidated at 
present. For longer polarization time, the contribution from de-
trapping rises and that from injection drops. Regarding 
charging current, the contributions to the Sobol index are 
mostly from mutual interactions between input parameters: this 
means that current analysis alone cannot easily unravel the 
different contributing processes to the macroscopic behaviour. 
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