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Abstract

The time-course of morphological processing durisgoken word recognition was
investigated using event-related brain potentiBRKs) in an auditory lexical decision task.
We compared three different types of French wotddy suffixed (e.g.,pochette’little
pocket’ =poche'pocket’ + diminutive suffix ette), pseudo-suffixed (e.gmouetteseagull’ =
mou ‘soft’ + pseudo-suffix ettd and non-suffixed target words (e.fprtune ‘fortune’ = fort
‘strong’ + non-suffix uneg. Suffixed (e.g.mouesse= mou + suffix -ess¢ and non-suffixed
nonwords (e.g.mouipe= mou + non-suffix ipe) were also tested. The behavioural results
showed that participants responded more slowlyoto-suffixed words than to truly suffixed
and pseudo-suffixed words, but there was no difiege between these two suffixed
conditions. Moreover, participants made more emejecting pseudo-suffixed nonwords than
non-suffixed nonworddn the ERP analyses, TO was shifted to the end di¢ embedded
stem or pseudo-stemThe ERP results revealed enhanced N400 amplitutesoh-suffixed
words compared to truly suffixed and pseudo-suffinerds. Again, there was no difference
between the truly and pseudo-suffixed conditionsaddition, we found an increased N400
amplitude for both pseudo-suffixed and non-suffiretiwords than for words. The latency of
the onset of this N400 effect varied between threghexperimental conditions: the word-
nonword difference occurred earliest in the truliffisged condition, slightly later in the
pseudo-suffixed condition and latest in the noriksedl condition. Both behavioural and EEG
data jointly suggest that spoken words with a gemumnorphological structure and words with
a pseudo-morphological structure are decomposedniarphemic sub-units. Moreover, the
earlier appearance of the N400 effects in the trelyffixed condition indicates that
morphological information is more readily availaiewords with a semantically transparent

morphological structure.
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1. Introduction
Several decades of research have examined autgoaasiog mechanisms involved in the
visual recognition of morphologically complex worddowever, comparatively little work
has focussed on the automatic mechanisms involvddaomposing spoken complex words.
The goal of the present study was to addressébearch gap by examining the early stages
of morphological processing during spoken word gadtton, using both behavioural data and

event-related brain potentials (ERPS).

1.1. Morphological processing during visual word recognition
One of the key findings in the masked priming &tere is that real suffixed (e lgunte) and
pseudo-suffixed primes (e.gornen both facilitate the recognition of the embeddad)é¢t
word (e.g.hunter-hunt; corner-cor)j relative to an orthographic control (ecgshew-cash
(for reviews, see Amenta & Crepaldi, 2012; RastliB&vis, 2008). A common interpretation
of these widely replicated findings is that botalreuffixed words and pseudo-suffixed words
are rapidly decomposed into their real or pseudgphemic subunitshunt + er; corn + ej)
during the initial stages of visual word recogniti@.g., Beyersmann, Ziegler, et al., 2016;
Longtin, Segui, & Hallé, 2003; Rastle, Davis, & Ne2004), whereas no such decomposition
mechanism applies to words consisting of an emledaded and a non-morphemic ending
(cashewwhereewis not an affix). The extent to which individuarpicipants rely on
morphological parsing during lexical processing barmodulated by individual differences
in spelling and vocabulary (e.g., Andrews & Lo, 3pBeyersmann, Casalis, Ziegler, &
Grainger, 2015). However, what continues to be t#ieanaf debate is how early or late
morphological processing is influenced by semar{gag., Cavalli et al., 2016; Feldman,
Milin, Cho, Moscoso Del Prado Martin, & O'Connof15; Feldman, O'Connor, & Moscoso
del Prado Martin, 2009). Some studies have repatee! magnitudes of priming for truly

and pseudo-suffixed words, suggesting that thalrstages of morphological processing are
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semantically ‘blind” (e.g., Beyersmann, Ziegleraet 2016; Longtin et al., 2003; Rastle &
Davis, 2008; Rastle et al., 2004). Other studie® maported significantly increased
magnitudes of priming in the truly suffixed compate the pseudo-suffixed condition,
suggesting that semantics modulate the very irstades of visual word recogniti¢e.g.,
Feldman et al., 2015; Feldman et al., 2009; Jaredouravlev, & Joanisse, 2017,
Schmidtke, Matsuki, & Kuperman, 2017).The latter view is consistent with parallel
distributed processing theories (e.g., GonnermaiteBberg, & Andersen, 2007; Plaut &
Gonnerman, 2000) according to which the readintegypicks up on statistical regularities,
such as the consistency with which the lettersrmbgoheme are mapped onto semantic
representations.

Whether or not the early stages of morphologicatessing are modulated by
semantics may also depend on the nature and praigof the morphological parsing
system within specific languages. For instance, iB@fanguages such as Hebrew and Arabic
consist of divergent internal word structures, veh&iems and affixes are intertwined rather
than concatenated linearly. Morphological primiffige&ts in these languages are particularly
robust compared to other Indo-European languaggs feost, Kugler, Deutsch, & Forster,
2005; Velan & Frost, 2011), suggesting that theele@f semantic influence on early
morphemic parsing might vary between different leages.

Very useful in the context of this debate have bstadies combining masked
priming and high-temporal resolution recordingewént-related brain potentials (ERPS) to
investigate the influences of orthography and séiteduring morphological processing
(e.g., Beyersmann, lakimova, Ziegler, & Colé, 20Ddminguez, De Vega, & Barber, 2004;
Jared et al., 2017; Lavric, Rastle, & Clapp, 2Qbrris, Frank, Grainger, & Holcomb, 2007;
Morris, Grainger, & Holcomb, 2008, 2013; Morris, ldomb, & Grainger, 2008; Morris,
Porter, Grainger, & Holcomb, 2011; Royle, Drury,uBguignon, & Steinhauer, 2012). The

majority of the reported ERP results have typicalipwn no difference between true
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morphological and pseudo-morphological priminganlier time windows (for converging
evidence from MEG, see Lehtonen, Monahan, & Pogdll; Lewis, Solomyak, &

Marantz, 2011; Solomyak & Marantz, 2009; 2010; $ee Jared et al., 2017). However, when
visible primes were used (e.g., Lavric et al., 20biorphological priming effects continued

to be significant, whereas pseudo-morphologicahpny effects tended to be absent or
reduced in the later time windows. Concurrent evoda’s also reported by Lavric, Elchlepp,
and Rastle (2012), who carried out an unprimeccihdecision study, contrasting
morphological juntep, pseudo-morphologicat¢rnern, and non-morphologicatashewy

target words. Results revealed a difference attab®Wms between the non-morphological
condition and the two morphological conditions (efhshowed no differentiation), reflecting
greater negative amplitudes in central and postetextrodes for the non-morphological
condition. In addition, a difference was observetiMeen the pseudo-morphological
condition and the other two conditions at about @80(which showed no differentiation),
reflecting greater positive amplitudes in centrad parietal electrodes in the pseudo-
morphological condition. In sum, these findings egupto suggest that complex printed words
are initially decomposed based on a purely stratform of morphological analysis, whereas
semantic constraints are only taken into accoulatet stages during morphological
processing.

The sensitivity of the N40O component to morphatagprocesses is also evidenced
by studies contrasting inflected relative to simplerds. For instance, two Finnish unprimed
lexical decision studies reported larger N40O atug@és for inflected words compared to
matched mono-morphemic words (Lehtonen et al., 208inonen et al., 2009; for related

evidence from MEG, see Vartiainen et al., 2009).
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1.2. Morphological processing during spoken word recognition
Unlike the rich literature on the morphological gessing of printed words, we know
comparatively little about its role in spoken woedognition. A number of studies have
found that listeners show sensitivity to morphotadjinformation during spoken word
recognition (e.g., Balling & Baayen, 2008; Emmorg989; Gwilliams, Monahan, & Samuel,
2015; Marslen-Wilson, Tyler, Waksler, & Older, 199%4eunier & Segui, 1999; Wurm,
2000). For instance, Emmorey (1989) carried owdwaditory priming task showing that
pseudo-prefixed words with bound stems produceipgrfe.g.submit — perm)twhereas
phonologically related words do not (ebglloon — salooh However, these findings were not
replicated with suffixed words. A cross-modal pmgpistudy by Marslen-Wilson et al. (1994)
revealed priming effects with truly suffixed (egunishment-punighbut not pseudo-suffixed
forms (e.gcasualty-casugl suggesting that morphological decomposition @gplies to
words with a genuine morphological structure (dee Bleunier & Longtin, 2007, for
converging evidence from spoken pseudoword praggssConsistent with these findings, it
has been shown that the way listeners procesxpdefvords is affected by the transparency
of the semantic relationship between the word dtuestts (e.g., Wurm, 1997, 2000; Wurm &
Ross, 2001). Hence, these findings from spoken wadgnition seem to provide very little
support in favour of semantically "blind" morphoicgl segmentation, a pattern typically
seen in visual word recognition.

Of course, auditory word studies differ from proht@ord studies in one important
aspect. As discussed earlier, semantically blindgssing of printed words is typically
observed in masked priming paradigms that tapthcearly, initial stages of word
recognition. In contrast, auditorily presented sflinare very difficult to mask. As a result,
evidence for the morphological processing of spakerds mainly comes from lexical
decision tasks using overtly presented primes @rimoes, whose behavioural outcome may

reflect both early and later, more strategic, stagfevord recognition, and therefore provide
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little insight into the automatic, online processésvord recognition. One solution to this
problem is the recording of ERPs to more closelyimoo how morphological processes
unfold over time.

Auditorily presented inflected words typically etirger NA0O amplitudes than
mono-morphemic words (Leinonen et al., 2009; Lemieeal., 2011), thus replicating what
is seen in the visual modality (e.g., Lehtonenl.e2807; Leinonen et al., 2009; Vartiainen et
al., 2009). Moreover, illegal derived nonwords ieliclarger wide-spread negativity than
existing derived words and legal derived nonwotds300 ms after suffix onset (Leminen,
Leminen, & Krause, 2010). This larger negativitygsgmbling the N400) in the illegal
nonword condition was interpreted as reflectingaerdifficult lexical-semantic integration
of the morpheme constituents. A comparable patEERP results was described by
Leminen, Leminen, Kujala, and Shtyrov (2013), shhathat derived words produced an
enhanced mismatch negativity (MMN) 130-170 ms aftdfix onset compared to their
derived nonword counterparts (see also Ettingerzen, & Marantz, 2014, for related
evidence from MEG). However, although these studiearly demonstrate that
morphological information influences spoken wordagnition, they do not address the
important question of whether the processing okspaomplex words is largely determined
by semantic transparency, as several behaviowiest would suggest (e.g., Marslen-Wilson
et al., 1994; Wurm, 1997, 2000), or if form-basearpmological segmentation mechanisms
operate independently of semantics, as repeatedbrted in the visual domain (e.g., Amenta
& Crepaldi, 2012; Beyersmann, Ziegler, et al., 26minguez et al., 2004; Rastle & Dauvis,
2008; Rastle et al., 2004; Royle et al., 2012; sb& Marantz, 2006). The goal of the
present study was to address this question usirgditory lexical decision task and ERP

recordings to uncover how auditory morphologicalgesses unfold over time.
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1.3. The present study

Our study was conducted in French, comparing ttiféerent item types: truly suffixed
words (e.g.pochettélittle pocket’, consisting of the stepoche’pocket’ + diminutive suffix
-ette), pseudo-suffixed words (e.gnouetteéseagull’, consisting of the pseudo-stenou
‘soft’, where the pseudo-suffbetteis homophonous to the real diminutive suffix) awoh-
suffixed words (e.gfortune‘fortune’, containing the embedded wduidt ‘strong’ followed
by a non-suffix ending ‘une’). To our knowledgeistls the first ERP study contrasting the
auditory processing of truly suffixed and pseudtitsed words.

If it is indeed the case that morphological decosiijpan in the auditory modality is
largely determined by semantics, we would expeset(i) a reduction of the N400
amplitude for truly suffixed words relative to thseudo-suffixed and non-suffixed
conditions, and (ii) a greater "word-advantage'tfaly suffixed words (i.e. shorter response
latencies, lower error rates, and reduced N400 itidpks relative to their corresponding
nonwords) than for pseudo-suffixed and non-suffinedds. Behaviorally, this pattern should
be reflected in faster and more accurate responghs truly suffixed condition compared to
the pseudo-suffixed and non-suffixed conditiongdose access to the affix and the stem
typically “bolsters” word responses (Gwilliams &t 2015).

If however morphological processing operatetependentlpf semantics (as Lavric
et al., 2012's findings suggest), we would expeetN400 amplitudes for truly and pseudo-
suffixed words to pattern together (efgpchetteandmouettg and differ from the non-
suffixed condition (e.gfortune. In other words, the presence of an affix inttiady suffixed
and pseudo-suffixed word conditions should leaa teduction of the N400 amplitude,
relative to the non-suffixed control. Moreover, ardradvantage (i.e., a reduction in N400
amplitude) should be evident for both truly suffixend pseudo-suffixed words relative to
their corresponding nonword counterparts, whereasuch difference would arise between

non-suffixed words and their corresponding nonwamndtrols. Given that the behavioural
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responses in an unprimed lexical decision paradepresent the end point of the lexical
decision process, it is impossible to clearly tessart early form-based vs. later semantic
influences on the observed response latenciesarrmtes (which is precisely why we
combined behavioural measures with the recordih@R®s in this study). That is, the
behavioural component of the morpheme facilitagffect may emerge for both truly
suffixed and pseudo-suffixed words (Lavric et 2012), or alternatively only for truly
suffixed words (Rastle, Davis, Marslen-Wilson, &l&iy 2000).

In addition to the word trials, two sets of psewddfixed and non-suffixed nonwords
were included in the lexical decision task. Forreaord (e.gmouettg, we created a
corresponding pseudo-suffixed nonword (by replativegending with a suffix, e.giouesse,
where -essds a real French affix) and a corresponding ndfixad nonword (by replacing
the ending with a non-suffix, e.mouipe where 4pe is not an affix). As such, we obtained
item triplets with an identical word stem (exmou at word onset. If auditorily presented
complex nonwords are decomposed into morphemicrstsjust like words are, we would
expect to see a “morpheme interference effect”d@arza, Laudanna, & Romani, 1988; Taft
& Forster, 1975) for pseudo-suffixed compared to-soffixed nonwords. That is, nonwords
consisting of stems and suffixes (emgquesseshould be harder to reject and therefore elicit
an enhanced N400 amplitude compared to nonwordsstorg of stems and non-suffixes
(e.g.,mouips.

Generally, the N400 effect for morphologically cdempwords occurs later in the
auditory modality than in the visual modality, aledponse latencies are overall slower than
in the visual modality (for a direct comparisonsoffixed inflected word processing in the
visual and auditory modalities, see Leinonen e&l09).Moreover, the N40O in the
auditory modality is more spread out than the N400n the visual modality (e.g., see

Figure 1 in Perre, Midgley, & Ziegler, 2009) Given that all our stimuli were presented in
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the auditory modality, we expected to observe atiradly late emergence of the N400 effect

and overall slower response times than standaeggrted in the visual modality.

2. Method

2.1. Participants
Twenty-eight healthy, native French-speaking vaders (16 females, 12 males) participated
in this study for monetary reimbursement. Theirsagaged from 18 to 46 years (mean age =
23.8, SD = 6.8). All were right-handed, with normalcorrected or corrected-to-normal
vision and none reported any neurological or lagguenpairment. All participants were
university students and gave written consent. Btapproval was obtained from the

Institutional Review Board of Aix-Marseille Univetg

2.2. Materials
Fifty-one French pseudo-suffixed target words (mguettg, were selected from the Lexique
database (New, Pallier, Brysbaert, & Ferrand, 2004¢ pseudo-suffixed target words were
selected such that the whole word never sharedgemgantic relationship with the embedded
pseudo-sterngoy. In addition, we chose 51 truly suffixed targetrds (e.gpochettg,
where whole word and stemdchg always shared a semantic relationship. The &ty
pseudo-suffixed target words shared the exact saiffiges (and thus the exact same final
string of phonemes). Finally, a third set of 51 +swoiffixed items was selected from Lexique
(e.g.fortune, which consisted of an embedded wdadt] and a meaningless non-morphemic
ending (une. Given that the items were presented auditowly ensured that the
pronunciation of the stem did not change in theexhdled context. All 153 target words were

nouns.
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The three sets of targets words were matched aslglas possible on written word
frequency, spoken word frequency, number of lettausber of phonemes, number of
syllables, orthographic neighbourhoadthographic N, phonological neighbourhood
(phonological N, orthographic Levenshtein distance 220, phonological Levenshtein
distance 20dld20), ending length and uniqueness polP). Semantic relatedness values
between whole words and their embedded words rfegetteandmou were extracted using
the Latent Semantic Analysis Web facility (htts#lcolorado.edu; Landauer & Dumais,
1997). This analysis revealed that semantic retegesivalues in the truly suffixed condition
(0.24) were significantly higher than those in bihte pseudo-suffixed (0.11) and the non-
suffixed conditions (0.11), but the pseudo-suffieed non-suffixed conditions did not differ
(see Figure 1). Crucially, a close inspection ef 20 nearest semantic neighbours of our
target words showed that the results were higldgaarate, presumably due to a bug in the
French corpus analysis. We therefore applied thent&semantic Analysis model (Landauer
& Dumais, 1997) to a lemmatised corpus of 1.2 GBrehch books, which replicated the
results of the Latent Semantic Analysis Web facfilite. the semantic similarity between
words and their embedded stems was significanglgdni for truly suffixed words [0.54] than
for pseudo-suffixed words [0.29], and 0.28 for reuffixed words [0.28]). The mean item
characteristics for each condition gmelalues for the critical comparisons are reported i
Appendix A.

- Figure 1 -

For each word target, a pseudo-suffixed and a néfiked target nonword were
created (306 nonwords in total). Pseudo-suffixeawards included the same stem but
different affix, such that the whole letter striwgs not a word (e.g., fonouette we selected
the pseudo-suffixed nonwordouesske The suffixes of the word targets were 'recyciedhe
nonword targets by changing suffixes between diffestems. Non-suffixed nonwords

included the same stem with a non-morphemic en@gg formouette we selected the non-
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suffixed nonwordnouipg. The non-morphemic endings of the nonwords weeetical to

the non-morphemic endings of the non-suffixed wo@sly a few phonemes had to be
changed in the nonwords to maintain the pronounligadf the letter string, and to match
syllable structure. Three counterbalanced experiahdéiats were created using a Latin square
design, such that every embedded word only occumed in each list (e.gnouette, mouesse
andmouipeall occurred in different experimental lists, irder to avoid repetition of the
embedded wordhouwithin lists and therefore within participants).

Auditory targets were produced with the OS X Spegghthesizer, using the French
male voice 'Thomas'. The naturalness of the syrb@$iles was checked by two
independent French native speakers. The speakimgves set to 180 words per minute. All
stimuli had a bit rate of 705 kbps. Auditory fileere edited to ensure that any silence at the
beginning and end of each item was removed. Thensi@aulus duration across all items
was 628ms. The mean durations per word-type anditomm are presented in Table 1. A list
of all items is presented in Appendix B.

- Table 1 -

2.3. Procedure
Stimuli were presented using experimental softviPame 2.0 (Psychology Software Tools,
Pittsburgh, PA). Participants were tested indivijua a Faraday cage. Each trial consisted
of a fixation cross which appeared in the centrarof CD computer screen for 1000 ms,
followed by the auditory target. The inter-triaterval was 1000 ms. If participants did not
respond after 3 seconds had elapsed, the experprmrgeded automatically to the next trial.
The auditory target words were presented via heaggshbinaurally. Participants were
instructed to decide as quickly and accuratelyassiple if the presented items were real
French words or not. Participants responded bysprgone of two different response
buttons. The right hand was used to respond YEShankkft hand was used to respond NO.

Stimuli were presented in randomized order. Alltipgrants completed the three
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experimental lists, but in randomised order (ibe pessible list orders were created, which
were assigned to 4 or 5 participants each). The é&pHnstallation time (prior to testing)
took between 20-30 minutes per participant. Eagleemental list took approximately 10

minutes to complete (30 minutes in total).

3. Results

3.1. ERP recording and Pre-processing

ERPs were recorded using the Biosemi Active2 systeansampling rate of 2048Hz. Sixty-
four electrodes were arranged on the participausips using the 10-20 placement system.
Four additional electrodes were used to recordoarand horizontal eye movements
(VEOGs and hEOGs, respectively). Two electrodegwesitioned on the right and left
mastoids; the left mastoid served as referencexguecording. Throughout EEG acquisition,
electrode impedance was kept belowQO0k

Processing of EEG data was carried out using tHelEAB toolbox (Delorme &
Makeig, 2004). The acquired EEG was down-sampléd &Hz offline and a second-order
Butterworth band-pass filter (0.1Hz — 40Hz) waslegop The data were re-referenced to the
average of the right and left mastoids. Noisy etetds were detected in a semi-automatic
manner by observing the electrode spectra andlbylating the kurtosis for each channel;
those channels with a kurtosis value exceedingsg¢ze) were considered for rejection.
Ocular movements were corrected with Independent@ment Analysis (ICA) by
calculating the infomax ICA algorithm (Bell & Sewski, 1995) on the 64 scalp electrodes.
To facilitate the calculation of clean ICA compotgnntervals of signal presenting very
large noise exceeding {9 were detected automatically and removed fronctir@ginuous
data before ICA calculation. Those components spording to eye artefacts were identified

via component topography, spectra and time courdealy those components corresponding
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to eye artefacts were removed; this generally spoaded to the first component. After ICA
correction, those electrodes rejected due to negse interpolated using spherical spline
interpolation. The continuous data were then seg¢mdento individual trials using the end of
the embedded stems or pseudo-stems (e.g. the emoudfi mouettg as TA. For each trial a
pre-stimulus interval of 200ms was defined to eashe same baseline activity for all word
types. With TO at the offset of the embedded stenpgst-stimulus interval of 700ms was
defined. The pre-stimulus interval served as baselnd baseline correction was carried out
for all trials. Those trials in which the particiga’ reaction times fell outside the lower and
upper limits of 200ms and 3000ms, respectivelyevwartomatically rejected. Noisy trials
were detected semi-automatically. Firstly, thosecép with activity exceeding a limit of
+75uV were removed. Linear drift was assessed andrinstaof drift exceeding ¥ were
marked after which the remaining epochs were asdassing kurtosis, applying a limit of 5
(z-scores).

Five participants were excluded from the study wuine large number of trials
rejected because of high error rates, extremeiogatitnes, or noisy EEG data. In addition,
twelve words in the non-suffixed condition wereanectly classified as nhon-morphological
as they consisted of pseudo-stem + pseudo-suffgki{ghted with an asterisk in Appendix
B) and were therefore excluded from behavioural BR® analyses. Table 2 summarizes the
total number of epochs retained after data cleaagwgell the average proportion of epochs
rejected across participants.

- Table 2 —

3.2. Statistical analyses

3.2.1. Behavioural analyses

! In an earlier version of our manuscript the camims data were segmented using the onset
of the auditory target as TO, while using the s&aseline. These earlier analyses led to
similar but later effects, which are reported ia gsupplementary materials.
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Lexical decisions to word and nonword targets vesralysed as follows. Reaction
times and error rates were analysed separatelgtreat responses were removed from the
reaction time (RT) analysis (7.7% of all data).drse RTs (-1000/RT) were calculated for
each participant to correct for RT distributionwkand used throughout the analyses (Kliegl,
Masson, & Richter, 2010). RTs and error rates aeegnted in Tables 3 and 4 (see below)
and were analysed for each participant.

We used linear mixed-effect modelling to perforra thain analyses (Baayen, 2008;
Baayen, Davidson, & Bates, 2008). Fixed effectsgdoan effects, and random slopes were
only included if they significantly improved the ae’s fit in a backward stepwise model
selection procedure. Models were selected usingairred log-likelihood ratio tests with
regular maximum likelihood parameter estimatione finodel was refitted after excluding
data-points whose standardised residuals wererldrge 2.5 in absolute value (see Baayen,
2008), which led to the removal of 1.6% of the nomivdata and 2.4% of the word data. Trial
order was included to control for longitudinal taftects such as fatigue or habituation.
Experimental list order was included as a covayiaterder to examine whether or not the
observed effects would be modulated by number pbsures to the embedded word. In
addition, we included word properties (i.e., subtvord frequency, number of phonemes,
number of syllables, phonological Levenshtein adisé&a20 (PLD20), uniqueness point (UP),
and semantic relatedness proportion (LSA)) for hatlole words (i.e. target words) and
embedded words as covariates in the word analisesntrol for item specific differences
across target words. The subtitle word frequenem® extracted from the film subtitle
corpus in Lexique based on 52 million French wdhisw, Brysbaert, Veronis, & Pallier,
2007), coming from a variety of films, and themstormed using the Zipf scale (Van
Heuven, Mandera, Keuleers, & Brysbaert, 2014) diditzon, the duration of the embedded

stem or pseudo-stem (in ms) was added as a cavaritdte analyses to control for
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differences in stimulus length. All continuous \adnles were centered and the Imer default
coding for treatment contrasts (i.e., in alphalatcder) was used for the item type variable.

Word targets and nonword targets were first andlgeparately, followed by a
combined analysis. In the word data, factor itepetwas a 3-level factor (truly suffixed,
pseudo-suffixed, non-suffixed), whereas in the nomadata, factor item type was a 2-level
factor (suffixed, non-suffixed). Linear mixed-efteenodel as implemented in the Ime4
package (Bates, Maechler, Bolker, & Walker, 20h4thie statistical software R (Version
3.0.3; RDevelopmentCoreTeam, 2008) were fittedgudie above described model selection
procedure. P-values were determined using the les¢fackage (Kuznetsova, Brockhoff, &
Christensen, 2014).

Error analyses followed the same logic as the Ralyaes. We applied a binomial
variance assumption to the trial-level binary degag the functiogimeras part of the R-

packagdme4

3.2.1.1. Words.

In the reaction time analyses, the final linearedbeffect model included five fixed
effects factors (item type, list order, whole-wdrelquency, embedded word frequency,
embedded word duration), random intercepts for@pants and items, and random slopes
for list order by participant®\ significant effect of item type showed that pagants
responded more slowly to non-suffixed words thatruty suffixed wordst(= 3.89,p < .001)
and pseudo-suffixed words% 3.39,p < .001). The difference between the truly suffixeu
the pseudo-suffixed condition was not significant 0.53,p = .598). There was also a
marginal main effect of list ordex{(1) = 3.28,p = .070) showing that participants responded
gradually more slowly in the second and third ekpental list compared to the first list. In
addition, the analyses revealed a significant reéfiect of whole-word frequency®(1) =

22.54,p < .001) showing that participants responded fastérgh frequency words, as well
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as a significant main effect of embedded word feemy (*(1) = 6.85p = .009), showing
that participants responded slower to targets amtitvedded high frequency words than to
targets with embedded low frequency words (seer€igyu The interactions between whole-
word frequency and item type as well as the intesadetween embedded word frequency
and item type were not significadt?(2) = 2.24,p = .326:X%2) = 0.96,p = .619). To
examine whether or not semantics influenced thigatwn of the embedded word, we tested
the interaction between embedded word frequency&Adsemantic overlap, which turned
out to be non-significantf(1) = 2.05,p = .152). Finally, there was a significant maireeff
of embedded word duratiof4(1) = 42.23p < .001), showing that response times increased
with increasing stimulus durations. No other effagkre significant.

-Figure 2-

In the error analyses, the final linear mixed-efffmodel included two fixed effects
factors (whole-word frequency, number of phonenfae@whole word), and random
intercepts for participants and items. The reshitswved that participants made less errors
responding to high frequency than low frequencydsdz = 3.61,p < .001) and less errors
responding to shorter than longer words 2.56,p = .011).

-Table 3-

3.2.1.2. Nonwords.

In the reaction time analyses, the final linearedbeffect model included one fixed
effects factor (list order), random interceptsgarticipants and items, and random slopes for
list order by participants. The results revealedagiginal main effect of list ordet € 1.72,p
=.099), suggesting that participants were gragluddle to more rapidly reject nonwords in
the second and third experimental list compardtiedirst list. There were no other
significant effects.

In the error analyses, the final linear mixed-effeodel included two fixed effects

factors (item type; list order), random intercejpisparticipants and items, and random slopes
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for item type by participants. There was a sigafficeffect of item typez(= 7.51,p < .001),
showing that participants made more errors rejgcirffixed nonwords than non-suffixed
nonwords. There was also a significant main efbédist order ¢ = 4.84,p < .001), indicating
that participants gradually made less errors irstend and third experimental list compared
to the first list, which is consistent with theitiag effect seen in the reaction time data.

-Table 4-

3.2.1.3. Words vs. nonwords.

In the reaction time analyses, the final modeludeld two fixed effects factors
(lexicality; item type), their interaction, randantercepts for participants and items, and
random slopes for lexicality by participants. Reactime analyses revealed a marginal main
effect of lexicality §*(1) = 3.57 p = .059), suggesting that participants were onayefaster
at responding to words than to nonwords. Therealssa significant interaction between
lexicality and item typeX?(2) = 37.44p < .001), suggesting that the "word-advantage" was
greater in the truly suffixed and pseudo-suffixedditions than in the non-suffixed condition
(t=6.47,p<.001;t =6.51,p<.001), whereas the word-advantage was equatig lia the
suffixed and pseudo-suffixed conditionis=(0.01,p < .992). No other effects were significant.

In the error analyses, the final model included fixed effects factors (lexicality; list
order), random intercepts for participants and #eamd random slopes for lexicality by
participants. The main effect of lexicality£ 6.12,p < .001) showed that overall participants
made more errors responding to words than to natsyevhich indicates that the lexicality
main effect in the RT data is due to an accura@edprade off. There was also a significant
effect of list orderZ = 2.08,p = .038), indicating that participants graduallydedess errors

in the second and third experimental lists compé&rdte first list.

3.2.2. ERP analyses
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Response contingent analyses were performed ondaRPThroughout the ERP analyses,
TO was shifted to the end of the embedded stem os@udo-stem.

3.2.2.1. Words.

Figure 3 presents the scalp maps of the actiwigy tme, from -200 to 700ms for
each word condition; each scalp map presents tlaa metivity in a 100ms time window. In
addition, a plot of the Global Field Power (GFPath condition was plotted from -200 to
700ms. The GFP is the spatial root mean squarassaeatbelectrodes and provides a global
measure of the electric activity at the level dlpqSkrandies, 1990). One of the main
advantages of GFP is that it yields a general eséiraf electric activity that does not suffer
from spatial bias, from the variations in the laties of peaks activity that can be observed
across different electrodes (Michel et al., 206#te, the GFP provides a clear picture of the
difference and similarity in the time-course ofigity for the truly suffixed (TS), pseudo-
suffixed (PS) and non-suffixed (NS) conditions. IBdte scalp maps and the GFP plots of the
three word conditions demonstrate the similarityneen the truly suffixed and pseudo-
suffixed conditions over the entire trial, as wasdlthe divergence of the NS condition activity
at a later time window spanning 400 to 600ms.

- Figure 3 -

To determine when and over which brain regionsedéiices emerge, without having
to define temporal windows or electrodes of inteeegriori, the participant-level grand-
average ERP data were subjected to a permutasowith cluster-based correction (Maris &
Oostenveld, 2007) for each pairwise comparisonI. NS, PS vs. NS, TS vs. PS). This
analysis was carried out using the Matlab toollboeldTrip (Oostenveld, Fries, Maris, &
Schoffelen, 2011). The cluster-corrected permutatiest simplifies the resolution of the
multiple comparison problem by correcting at thesleof clusters formed on the basis of
spatio-temporal adjacency. To calculate the pernauntaistribution, 2000 random partitions

were computed and only those samples with a petiontp-value below the critical cluster
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alpha-level p < .05) were selected. Clusters were formed frometlsasnples based on an
adjacency criterion at the spatio-temporal levpht®-temporal adjacency was established on
the basis of a minimum of 3 electrodes, and neighibg electrodes were defined using the
triangulation algorithm implemented in FieldTrign&lly, those clusters with a Monte-Carlo
p-value less than .025 (two-tailed test) were netdj a two-tailed test was carried out as we
were interested in both negative and positive timas. The cluster-corrected permutation
test was carried out for all time points (2ms twierdows), however to facilitate

visualisation, the results of the test are preskasetopographies over time in 100ms time
steps.

A cluster-corrected permutation test revealed thathe NS-TS difference was
statistically significant from 300-500ms and the NS difference was statistically
significant from 400-500ms and that these differences were concentratedagreral and
parietal regions (Figure 4). The TS vs. PS compardid not reveal any significant
differences according to the permutation test.

-Figure 4 -

The effect of item type on the grand average ERRifcis further highlighted in
Figures 5a, 5b, and 5c. Significant differenceswben the NS vs. TS and NS vs. PS
comparisons emerged over central and posteriotretixs of the right and left hemispheres.
Figures 5a, 5b and 5c present a subset of thesteogles (C3, Cz, C4, P3, Pz, P4, PO3, POz,
PO4). Taken together, the results of the spatigteali analysis (cluster-corrected
permutation test) and the analysis of the ERP slag@est that non-suffixed words elicited a
significantly greater negativity than both trulyffsxed and pseudo-suffixed words over
central and parietal electrodes from 300-500msoWahg stimulus onset. There were no
significant differences between the truly suffixat pseudo-suffixed conditions (Figure 5c).

- Figures 5a, 5b and 5c¢ -



Spoken complex word recognition 23

In addition, we investigated the possible varianbiERP amplitude as a function of
word frequency and uniqueness point, which have baend to influence ERP amplitude
and in particular N400 amplitude (e.g., Dufour, Bzlliére, & Frauenfelder, 2013; O'Rourke
& Holcomb, 2002). We applied an ERP-image visuéilisamethod developed by Delorme,
Miyakoshia, Jung, and Makeiga (2015), which rev@ale significant variation of ERP-

activity as a function of spoken word frequencynrgueness point.

3.2.2.2. Words vs. nonwords.

Grand-average ERPs at all electrodes comparingsagord nonwords for each word
type were calculateds in the word analyses, TO was shifted to the eraf the embedded
stem or pseudo-stemTo determine time windows presenting significarfitedences, three
pairwise comparisons were carried out for each wypd by applying a permutation test with
FDR correctionf§ < .05) on the grand-average ERP data: non-sufimeavords (nonword-
NS) vs. suffixed nonowords (nonword-S), words \@-suffixed nonwords and words vs.
suffixed nonwords (see Figures 6, 7, and 8). Wihigepermutation test did not reveal any
statistically significant differences between the types of nonwords (nonword-NS vs.
nonword-S), it did reveal a significant differertmetween words and nonwords. The word-
nonword difference emerged between 300-700ms itrtiesuffixed and pseudo-suffixed
conditions (Figures 6 and 7) and between 400-706arttee non-suffixed condition (Figure 8).
In addition, the statistical analysis revealed thdhe non-suffixed and pseudo-suffixed
conditions the difference between non-suffixed nords and words (e.fprtaquevs.
fortung emerged slightly earlier than the difference lestw suffixed nonwords and words
(e.g.forteur vs.fortune.

-Figures 6, 7, and 8 -
To obtain insight into the spatial and temporatrihsition of the word-nonword

differences observed in the grand-average ERHasteccorrected permutation tepk(.025,
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two-tailed) was carried out on the participant-leymnd-average data (see Figure 9).
Consistent with the ERP results in Figures 6, @, &rthe results revealed an enhanced
negativity for nonwords compared to words acrobwald types, in a time window between
300 — 700ms. This N400 effect was widely distriloiitgpanning frontal, central and parietal
regions, for the truly-suffixed and pseudo-suffixamhditions in particular. Interestingly, the
spatial-temporal analysis revealed that the latefi¢kis late effect was not uniform across
the three conditions (see Figure 9): its onset wedwearliest in the truly-suffixed condition
(300ms after stimulus onset), second in the psesudfo<ed condition (300-400ms after
stimulus onset) and latest in the non-suffixed doom (400-500ms after stimulus onset).
Nonwords showed a sustained negative deflectiarsaall item types (see Figures 6, 7, and
8).

- Figure 9 -

It is noteworthy, however, that the earlier difference observed for the non-
suffixed condition over the 0-200ms time window didhot reach statistical significance
within the two-tailed cluster-corrected permutation test, given the parameters set for its
calculation (in particular, the requirement of a minimum of 3 electrodes to establish
spatial adjacency). Only when we carried out stattgcal analysis for individual
electrodes p < .05, fdr corrected) did we find a significant effet for a limited number of
electrodes, which was concentrated over the left pterior region (see Figure 10).

- Figure 10 —

4. Discussion
The aim of the present study was to examine moqgical processing during
spoken word recognition using ERP recordings inlmoation with an auditory lexical
decision task. To this end, truly suffixed words@&veompared to pseudo-suffixed and non-

suffixed words, and pseudo-suffixed to non-suffixetwordsTO was shifted to the end of
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the embedded stem or pseudo-stem throughout the ERfhalyses. The results can be
summarised as two key findings, which we discuss logv.

First, both EEG and behavioural results clearly disociate the two
morphological conditions from the non-morphologicalcondition, thus providing
evidence for a robust morpheme facilitation effectParticipants responded more slowly to
non-suffixed words than to truly suffixed and psewsdffixed words, but no difference was
found between the two suffixed conditions. Thigisine with previous evidence from
spoken word recognition, demonstrating that auijtpresented morphologically complex
words are easier to classify than non-suffixed wpbgcause hypothetically, access to the
affix and the stem facilitates word recognition (iams et al., 2015). In line with the
behavioural findings, the ERP waveforms of the swtfixed conditions did not significantly
differ from each other (see Figure 5c). The presari@n affix in the truly suffixed and
pseudo-suffixed words led to a reduction in N4AO@Hnnde relative to the non-suffixed
control condition (see Figures 5a and 5b), thusidnog evidence for morphological
processing operatingdependentlyf semantics (Lavric et al., 2012).

One explanation for this pattern of results is thatspoken word recognition system
benefits fronthe principle of full decompositionombined withthe principle of edge-aligned
embedded word activatiq®rainger & Beyersmann, 2017), suggesting that wecdgnition
is facilitated when the whole letter string cancbenpletely divided into potential constituent
morphemes. For examplayntercan begyarsedinto huntander, cornercan begarsedinto
corn ander, but for non-suffixed words likeashewthe principle of full decomposition fails,
because the edge-aligned embedded waash) cannot be combined with another morpheme
(cash+ ?) to create an exhaustive decomposition ofuthevord. The principle of full
decomposition has been previously described ascaanesm underlying visual word
recognition and can account for a wide range afifigs from visual lexical decision and

masked priming (e.g., Grainger & Beyersmann, 20Adnte, Say, Clahsen, Schiltz, & Kutas,
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1999; Stockall & Marantz, 2006; Taft & Forster, 59.7Here we propose to extend the

principle of full decomposition to spoken word rgadion, as it unambiguously explains why
the morpheme facilitation effect is observed inttidy suffixed and pseudo-suffixed
conditions, but not in the non-suffixed control daron (for a related proposal on auditory
prefixed word processing, see Wurm, 1997).

The second key finding, which is complementary tde first one, is that the
reduction of the N400 amplitude in the truly suffixed relative to the non-suffixed
condition emerged slightly earlier (from 300ms onwals; see Figure 5a) than in the
pseudo-suffixed condition (from 400ms onwards; Fige 5b). This result is further
enhanced by the fact that we also found an enhanceaid sustained N400 amplitude for
nonwords compared to words which variedetween the three experimental conditions: the
word-nonword difference occurred earliest in thaytsuffixed condition (e.gpochettevs.
pochure/pochiqueFigure 6), slightly later in the pseudo-suffixezhdition (e.g.mouettevs.
mouesse/mouip&igure 7) and latest in the non-suffixed condit{e.g. fortunevs.
forteur/fortaque Figure 8).Thus, although the difference between the truly anghseudo-
suffixed conditions was not significant in the 30@&00 ms time window, the permutation
and word-nonword analyses appear to provide cumulate evidence for an effect of
semantic transparency which is coupled with the seamtically blind morphological
parsing effect seen in the two morphological conddns with word stimuli. In other
words, the here observed N400 appears to be a raften of not just one, but two
additive effects: a semantically blind morpheme fattation effect and as well as a
semantic transparency effect. The reason why the$&o effects emerge nearly
simultaneously can be explained by the interplay lhe&veen a purely form-based
morphological parsing mechanism and the added inflence of semantics. We
hypothesise that both truly suffixed (e.g.hunt + er) and pseudo-suffixed words (e.g.,

corn + er) are exhaustively decomposed into morphemic sub-ua (e.g., Rastle & Davis,
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2008; Rastle et al., 2004), and that this decomptien process facilitates the activation of
the corresponding whole wordstjunter and corner) and the herewith associated lexical
decision response. The morpheme facilitation effetiherefore explains the processing
advantage in the two morphological conditions compad to the non-suffixed condition.
The semantic transparency effect on the other hansuggests that the semantic
transparency of truly suffixed words provides an adlitional boost in activation to the
whole word representation, which could be the causef the earlier onset of effects seen
with semantically transparent words. While semantially transparent complex words
like hunter benefit from feedback connections from the semarttilevel to the lexical level,
semantically opaque words likecorner do not benefit from semantic support
(Diependaele, Sandra, & Grainger, 2009; Grainger 8Beyersmann, 2017). The spoken
word recognition system might use semantic feedbadk more efficiently evaluate the
morphological segmentation process, which would eign why the N400 effect emerged
slightly earlier in the truly suffixed condition, compared to the other two conditions.
This complex interplay between the semantic transpancy and morpheme
facilitation effects also fits with the renowned cmplexity of the N400 component, with
difficulty in processing and amount of semantic actation being two likely contributions
to variations in N400 amplitude. The N400 componenrs commonly associated with
semantic influences on word recognition (Holcomb &leville, 1990), but is also thought
to reflect word form processing difficulty (e.g., Rrre et al., 2009; Winsler, Midgley,
Grainger, & Holcomb, 2018), with N400 amplitude inceasing with an increased
difficulty in identifying words and associating theword identities with meaning (see
Grainger & Holcomb, 2009, for a review of the evidece). Of course, in sentence
comprehension experiments, other factors, such asxically-based prediction (e.g.,
Frank & Bod, 2011) and orthographically guided lexcal prediction (e.g., Kim & Lali,

2012; Laszlo & Federmeier, 2009) can also play ale
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The word-nonword differences in the two suffixeddiions (Figures 6 and 7)
emerged about the same time as the morphologifeaitefin these conditions (Figures 5a and
5b), presumably because of the linearity of thatanginput signal. Since the onset of every
auditory stimulus (without exception) was alwaysad (e.g.mouin mouette, mouessad
mouipg, participants had to delay their lexical decisi@as well as morphological processing
until the final part of the input signal, whichlikely why word-nonword differences and the
effect of morphology coincided in these data.

With respect to the timing of ERP responses in visal versus auditory lexical
decision, our study is only partially consistent wth the results of ERP studies that have
examined morphological processing in the visual madity. On the one handthe
reduction of N400O amplitude is comparable to resfutim visual word recognition, where
semantically blind morphological segmentation madras are typically found around 200-
500 ms after stimulus onset (e.g., Beyersmann |&liget al., 2016; Lavric et al., 2012,
Longtin et al., 2003; Quémart, Casalis, & Colé, R(Rastle & Davis, 2008; Rastle et al.,
2004). For instance, Beyersmann et al. (2014) teda reduction of the N400 amplitude
between 200-400 ms in the morphological conditiohrimt in the semantic or orthographic
control conditions. Lavric et al. (2007) found a@weed N400 amplitude between 340-460 ms
in both the morphological and pseudo-morphologicaiditions, but not in the non-suffixed
condition.On the other hand, our results deviate from visuaord recognition studies in
the sense that we did not observe any effects orrler ERP components. For instance,
Lavric and colleagues reported a study in which thg combined visual lexical decision
with ERP recordings, showing an early difference fom ~190 ms between suffixed and
pseudo-suffixed words compared to non-suffixed wo(Lavric et al., 2012). A masked
primed lexical decision study by Morris et al. (20@) revealed an N250 effect which was
significant in the truly suffixed but not in the pseudo-suffixed condition (see also Lavric,

Clapp, & Rastle, 2007). In contrast, we did not witess any ERP components of
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morphological processing that preceded the N400 efft. Morphological information

may be more readily available in visual compared tauditory word recognition, because
the visual system can perform a quick initial formbased analysis of the letter string. In
auditory word recognition, the acoustic signal unftds in time and is more variable (e.g.,
depending on the speaker’s voice and intonation) vith may constrain the speed by
which the listener is able to morphologically segnme any given input signal. In addition,
as Rastle (2018) pointed out, while printed morpheia sequences possess a high degree
of regularity (e.g. the suffix -ed denotes the past tense), the phonetic forms of
morphological units are considerably less consistée.g. the suffix -ed maps onto
multiple sound sequences/Id/,/3d/, andd/). The inconsistency in sound-to-morpheme
mappings is likely to provide a challenge to the mphological segmentation system in
the auditory domain and thus offers an explanatiorfor why the here observed
morphological effects emerge comparatively later copared to the visual domain.

An additional aspect of our findings, which prosdarther insights into the nature
of the morphological decomposition process, is shalitory lexical decision latencies
decreased with increasing whole-word frequenciesirfzreased with increasing embedded
word frequencies (see Figure 2). The interactidwéen embedded word frequency and LSA
semantic relatedness was not significant, sugggestat embedded words were activated
independently of whether or not they shared a sémamationship with the whole word. The
main effect of embedded word frequency is consistéth a growing body of evidence (e.qg.,
Amenta, Marelli, & Crepaldi, 2015; Beyersmann et 2015; Beyersmann, Cavalli, Casalis,
& Colé, 2016; Marelli & Amenta, 2018; Marelli, Amtn & Crepaldi, 2015; Taft, Li, &
Beyersmann, 2018), suggesting that embedded woedswaays activated independently of
whether they are accompanied by an affix (dgim + eror corn + er) or a non-affix (as in
cash + eW. The activation of embedded words (ecgsh then generates lexical competition

with the whole word (e.gcashew, thus leading to an increase in response timessc
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conditions (Grainger & Beyersmann, 2017). As thiedanel of Figure 2 shows, the greater
the frequency of the embedded word, the greatecdah®etition. Crucially, although the
embedded word frequency effect was observed aatb$sm types, our combined
behavioural and ERP data clearly demonstrate sstaharpheme segmentation effect in the
two morphological conditions compared to the ndixafl control. This indicates that
differences between (pseudo-)affixed and non-affwerds might depend on factors that are
not necessarilyelated to the stem. Instead, it seems to be the absdraceudfix in the non-
suffixed items that is driving differences in effazes across item types. The presence of a
suffix in the truly and pseudo-suffixed words woulave provided a boost in activation to the
whole stimulus, thus leading to faster responsegiand reduced N400 amplitudes in these
conditions.

Finally, the behavioural results showed that pgrdicts made more errors rejecting
pseudo-suffixed nonwords than non-suffixed nonwgttaiss replicating the classical
morpheme interference effect (Caramazza et al8;1B&8ft & Forster, 1975). The presence of
the embedded morphemic unit increases the ‘woetiks' of the nonword, which as a result
becomes harder to reject. The EEG data did noatevstatistically significant difference
between the pseudo-suffixed and non-suffixed nodwonditions. It is possible that the
morpheme interference effects in the behaviour dzlect later post-lexical processing
stages, which are not picked up in the ERP sidnalny case, it is worth noting that previous
ERP studies have not always confirmed the morphetaderence effect for complex
nonwords (e.g., Leinonen et al., 2009), suggeshagthis effect may not be as robust as the
morpheme facilitation effect that is typically saarthe word data.

In sum, the present data shed new light onto thehareésms involved in the
recognition of morphologically complex spoken worBlsth the behavioural and ERP data
concurrently suggest that not only words with & tmorphological structure, but also words

with a pseudo-morphological structure are decomgpage morphemic sub-units during
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spoken word recognitio.his indicates that morphemic units are automaticdy
identified, independently of semantics. The earlieonset of the morpheme facilitation
effect in the truly suffixed condition suggests, hoever, that feedback from semantics
can provide an additional activation boost in the pocessing of spoken words with a

genuine morphological structure.



Spoken complex word recognition 32

5. References

Amenta, S., & Crepaldi, D. (2012). Morphologicabpessing as we know it: an analytical
review of morphological effects in visual word idiication. Frontiers in Psychology,
3, 1-12.

Amenta, S., Marelli, M., & Crepaldi, D. (2015). Tfreitless effort of growing a fruitless tree:
Early morpho-orthographic and morpho-semantic éfat sentence readingournal
of Experimental Psychology: Learning, Memory andgd@oon, 4X5), 1587-1596.
doi:10.1037/xIm0000104

Andrews, S., & Lo, S. (2013). Is morphological pirign stronger for transparent than opaque
words? It depends on individual differences in lspgland vocabularyJournal of
Memory & Language, 68279-296.

Baayen, R. H. (2008Analyzing linguistic data: A practical introductidn statistics using R
Cambridge: Cambridge University Press.

Baayen, R. H., Davidson, D. J., & Bates, D. M. @0Mixed-effects modeling with crossed
random effects for subjects and itendsurnal of Memory and Language, ,5390—
412.

Balling, L. W., & Baayen, R. H. (2008). Morphologiceffects in auditory word recognition:
Evidence from Danish.anguage and Cognitive Processes, 2B59-1190.

Bates, D., Maechler, M., Bolker, B., & Walker, 20(4). Ime4: Linear mixed-effects models

using Eigen and S4. R package version 1.1-5. HRAN.R-

project.org/package=Ilme4. Retrieved from

Bell, A. J., & Sejnowski, T. J. (1995). An infornm@at-maximization approach to blind
separation and blind deconvolutidteural computation, (6), 1129-1159.
Beyersmann, E., Casalis, S., Ziegler, J. C., & &yai, J. (2015). Language proficiency and

morpho-orthographic segmentatidtsychonomic Bulletin & Review, 2P054-1061.



Spoken complex word recognition 33
Beyersmann, E., Cavalli, E., Casalis, S., & Col&§2016). Embedded Stem Priming Effects

in Prefixed and Suffixed Pseudowor@&ientific Studies of Reading, (3] 220-230.
doi:10.1080/10888438.2016.1140769

Beyersmann, E., lakimova, G., Ziegler, J. C., &€& d*. (2014). Semantic processing during
morphological priming: An ERP studBrain Research, 1579%45-55.

Beyersmann, E., Ziegler, J. C., Castles, A., CalthéM., Kezilas, Y., & Grainger, J. (2016).
Morpho-orthographic segmentation without semantiesychonomic Bulletin &
Review, 23533-539. do0i:10.3758/s13423-015-0927-z

Caramazza, A., Laudanna, A., & Romani, C. (19882xital access and inflectional
morphology.Cognition, 28 297-332.

Cavalli, E., Cole, P., Badier, J. M., Zielinski,,Chanoine, V., & Ziegler, J. C. (2016).
Spatiotemporal Dynamics of Morphological Processmyisual Word Recognition.
Journal of Cognitive Neuroscience,(88 1228-1242.

Delorme, A., & Makeig, S. (2004). EEGLAB: an opeyurce toolbox for analysis of single-
trial EEG dynamics including independent componertalysis. Journal of
Neuroscience Methods, 134, 9-21.

Delorme, A., Miyakoshia, M., Jung, T.-P., & Makejga (2015). Grand average ERP-image
plotting and statistics: A method for comparingiahility in event-related single-trial
EEG activities across subjects and conditidasirnal of Neuroscience Methods, 250
3-6.

Diependaele, K., Sandra, D., & Grainger, J. (20@9mantic transparency and masked
morphological priming: The case of prefixed worl#emory & Cognition, 37895-
908.

Dominguez, A., De Vega, M., & Barber, H. (2004).eBt+related brain potentials elicited by
morphological, homographic, orthographic, and sdmamriming. Journal of

Cognitive Neuroscience, (@, 598-608.



Spoken complex word recognition 34
Dufour, S., Brunelliere, A., & Frauenfelder, U. ¥2013). Tracking the Time Course of

Word-Frequency Effects in Auditory Word Recognitiowith Event-Related
PotentialsCognitive Science, 83), 489-507.

Emmorey, K. D. (1989). Auditory morphological primgi in the lexicon.Language and
Cognitive Processes(2), 73-92.

Ettinger, A., Linzen, T., & Marantz, A. (2014). Thwle of morphology in phoneme
prediction: Evidence from ME@rain and Language, 1294-23.

Feldman, L. B., Milin, P., Cho, K. W., Moscoso O@étado Martin, F., & O'Connor, P. A.
(2015). Must analysis of meaning follow analysisf@m? A time course analysis.
Front Hum Neurosci, 9111. doi:10.3389/fnhum.2015.00111

Feldman, L. B., O'Connor, P. A., & Moscoso del FraMartin, F. (2009). Early
morphological processing is morpho-semantic andgsmoply morpho-orthographic: A
violation of form-then-meaning accounts of wordagwition. Psychonomic Bulletin
& Review, 1(4), 684-691.

Frank, S. L., & Bod, R. (2011). Insensitivity ofetthuman sentence-processing system to
hierarchical structure.  Psychological Science, @, 829-834.
doi:10.1177/0956797611409589

Frost, R., Kugler, T., Deutsch, A., & Forster, K.(R005). Orthographic structure versus
morphological structure: Principles of lexical ongaation in a given language.
Journal of Experimental Psychology: Learning, Memaand Cognition, 311293—
1326.

Gonnerman, L. M., Seidenberg, M. S., & Andersen,SE.(2007). Graded semantic and
phonological similarity effects in priming: Evidendor a distributed connectionist
approach to morphologylournal of Experimental Psychology: General, 13@3-

345.



Spoken complex word recognition 35

Grainger, J., & Beyersmann, E. (2017). Edge-aligeetbedded word activation initiates
morpho-orthographic segmentation. In B. H. Ross)(Hthe Psychology of Learning
and Motivation(pp. 285-317).

Grainger, J., & Holcomb, P. J. (2009). Watching therd go by: On the time-course of
component processes in visual word recogniti@nguage and Linguistics Compass,
3, 128-156.

Gwilliams, L. E., Monahan, P. J., & Samuel, A. @015). Sensitivity to morphological
composition in spoken word recognition: Evidencenir grammatical and lexical
identification tasks.Journal of Experimental Psychology: Learning, Meyand
Cognition

Holcomb, P. J., & Neville, H. J. (1990). Auditoryda visual semantic priming in lexical
decision: A comparison using event-related braiteipitals.Language and Cognitive
Processes,(d), 281-312. doi:10.1080/01690969008407065

Jared, D., Jouravlev, O., & Joanisse, M. F. (20TIkg effect of semantic transparency on the
processing of morphologically derived words: Eviderirom decision latencies and
event-related potentialdournal of Experimental Psychology: Learning, Meynand
Cognition, 43 422-450. doi:10.1037/xIm0000316

Kim, A., & Lai, V. (2012). Rapid interactions betem lexical semantic and word form
analysis during word recognition in context: Evidenfrom ERPs.Journal of
Cognitive Neuroscience, &), 1104-1112.

Kliegl, R., Masson, M. E. J., & Richter, E. M. (21 A linear mixed model analysis of
masked repetition priming. Visual Cognition, 16), 655-681.
doi:10.1080/13506280902986058

Kuznetsova, A., Brockhoff, P. B., & Christensen,HR B. (2014)ImerTest: Tests for random
and fixed effects for linear mixed effect modetse(l objects of Ime4 packageR

package version 2.0-6. http://CRAN.R-project.orgkzme=ImerTest.




Spoken complex word recognition 36

Landauer, T. K., & Dumais, S. T. (1997). A solutimnPlato’s problem: The latent semantic
analysis theory of acquisition, induction, and esgntation of knowledge.
Psychological Review, 10211-240.

Laszlo, S., & Federmeier, K. D. (2009). A beautitidy in the neighborhood: An event-
related potential study of lexical relationshipsdgrediction in contextJournal of
Memory & Language, §B8), 326-338. doi:10.1016/}.jml|.2009.06.004

Lavric, A., Clapp, A., & Rastle, K. (2007). ERP dgnce of morphological analysis from
orthography: A masked priming studjournal of Cognitive Neuroscience, ,1866-
877.

Lavric, A., Elchlepp, H., & Rastle, K. (2012). Tkaeg hierarchical processing in
morphological decomposition with brain potential3ournal of Experimental
Psychology: Human Perception and Performancé43&811-816.

Lavric, A., Rastle, K., & Clapp, A. (2011). What ddly visible primes and brain potentials
reveal about morphological processiiRg/chophysiology, 4&76-686.

Lehtonen, M., Cunillera, T., Rodriguez-Fornells, Hultén, A., Tuomainen, J., & Laine, M.
(2007). Recognition of morphologically complex wsrth Finnish: Evidence from
event-related potentialBrain Research, 114823-137.

Lehtonen, M., Monahan, P. J., & Poeppel, D. (20Byidence for early morphological
decomposition: Combining masked priming with mageatephalographylournal
of Cognitive Neuroscience, @3), 3366-3379.

Leinonen, A., Gronholm-Nyman, P., Jarvenpaa, MdeBloolm, C., Lappi, O., Laine, M., &
Krause, C. M. (2009). Neurocognitive processin@uaditorily and visually presented
inflected words and pseudowords: evidence from aphwogically rich language.
Brain Research, 127%4-66. doi:10.1016/j.brainres.2009.03.057

Leminen, A., Leminen, M., & Krause, C. M. (2010)mE course of the neural processing of

spoken derived words: an event-related potentialysiNeuroReport, 21948-952.



Spoken complex word recognition 37

Leminen, A., Leminen, M., Kujala, T., & Shtyrov, ¥2013). Neural dynamics of inflectional
and derivational morphology processing in the huitmam.Cortex, 49 2759-2771.

Leminen, A., Leminen, M., Lehtonen, M., Nevalainen, Ylinen, S., Kimppa, L., . . . Kujala,
T. (2011). Spatiotemporal dynamics of the procegsinspoken inflected and derived
words: A combined EEG and MEG studirontiers in Human Neuroscience, 66.
doi:10.3389/fnhum.2011.00066

Lewis, G., Solomyak, O., & Marantz, A. (2011). Theeural basis of obligatory
decomposition of suffixed wordBrain and Language, 11818-127.

Longtin, C. M., Segui, J., & Hallé, P. A. (2003). okphological priming without
morphological relationshi.anguage and Cognitive Processeq3)8313-334.

Marelli, M., & Amenta, S. (2018). A database ofhmgraphy-semantics consistency (OSC)
estimates for 15,017 English worddhavior Research Methods, (8] 1482-1495.
doi:10.3758/s13428-018-1017-8

Marelli, M., Amenta, S., & Crepaldi, D. (2015). Samtic transparency in free stems: The
effect of orthography-semantics consistency on wembgnition.Quarterly Journal
of Experimental Psychology, @, 1571-1583. doi:10.1080/17470218.2014.959709

Maris, E., & Oostenveld, R. (2007). Nonparamettatistical testing of EEG-and MEG-data.
Journal of Neuroscience Methods, B4 177-190.

Marslen-Wilson, W., Tyler, L., Waksler, R., & Olddr. (1994). Morphology and Meaning in
the English Mental LexicorRsychological Review, 103-33.

Meunier, F., & Longtin, C. M. (2007). Morphologicacomposition and semantic integration
in word processinglournal of Memory and Language,,3%7-471.

Meunier, F., & Seqgui, J. (1999). Frequency effécstauditory word recognition: The case of
suffixed wordsJournal of Memory & Language, 4327-344.

Michel, C. M., Murray, M. M., Lantz, G., Gonzaleg,, Spinelli, L., & Grave de Peralta, R.

(2004). EEG source imagin@linical Neuropsysiology, 112195-2222.



Spoken complex word recognition 38

Morris, J., Frank, T., Grainger, J., & Holcomb, P.(2007). Semantic transparency and
masked morphological priming: an ERP investigatiBsychophysiology, 44506-
521.

Morris, J., Grainger, J., & Holcomb, P. J. (2008n electrophysiological investigation of
early effects of masked morphological priminganguage and Cognitive Processes,
23(7/8), 1021-1056.

Morris, J., Grainger, J., & Holcomb, P. J. (2018Bjacking the consequences of morpho-
orthographic decomposition using ERBsain Research, 15292-104.

Morris, J., Holcomb, P. J., & Grainger, J. (2008n electrophysiological investigation of
early effects of masked morphological priminganguage and Cognitive Processes,
23(7/8), 1021-1056.

Morris, J., Porter, J. H., Grainger, J., & Holconikb,J. (2011). Effects of lexical status and
morphological complexity in masked priming: An ER$udy. Language and
Cognitive Processes, @66), 558-599.

Minte, T. F., Say, T., Clahsen, H., Schiltz, K., Kutas, M. (1999). Decomposition of
morphologically complex words in English: Evidené®m event-related brain
potentials Cognitive Brain Research, 241-253.

New, B., Brysbaert, M., Veronis, J., & Pallier, @007). The use of film subtitles to estimate
word frequenciesApplied Psycholinguistics, 2861-677.

New, B., Pallier, C., Brysbaert, M., & Ferrand, (2004). Lexique 2: A new French lexical
databaseBehavior Research Methods, Instruments, & CompuB&$16-524.

O'Rourke, T., & Holcomb, P. J. (2002). Electropbisgical evidence for the efficiency of
spoken word processinBiological Psychology, 6121-150.

Oostenveld, R., Fries, P., Maris, E., & Schoffeldn,M. (2011). FieldTrip: open source
software for advanced analysis of MEG, EEG, an@sixe electrophysiological data.

Computational Intelligence and Neuroscience, 1



Spoken complex word recognition 39
Perre, L., Midgley, K., & Ziegler, J. C. (2009). &t beef primes reef more than leaf:

Orthographic information affects phonological pmgiin spoken word recognition.
Psychophysiology, 48), 739-746.

Plaut, D. C., & Gonnerman, L. M. (2000). Are nommsstic morphological effects
incompatible with a distributed connectionist a@mio to lexical processing?
Language and Cognitive Processes, 445—485.

Quémart, P., Casalis, S., & Colé, P. (2011). The obform and meaning in the processing of
written morphology: A priming study in French dewsihg readers.Journal of
Experimental Child Psychology, 1,0978-496.

Rastle, K. (2018). The place of morphology in l&gnto read in English.Cortex

doi:https://doi.org/10.1016/j.cortex.2018.02.008

Rastle, K., & Davis, M. H. (2008). Morphological aenposition based on the analysis of
orthographyLanguage & Cognitive Processes,, 232-971.

Rastle, K., Davis, M. H., Marslen-Wilson, W., & Byl L. K. (2000). Morphological and
semantic effects in visual word recognition: A thomurse studylLanguage and
Cognitive Processes, B5), 507-537.

Rastle, K., Davis, M. H., & New, B. (2004). The tran my brother's brothel: Morpho-
orthographic segmentation in visual word recogniti®sychonomic Bulletin &
Review, 111090-1098.

RDevelopmentCoreTeam. (200&: A language and environment for statistical cotimm

R package version 1.1-5. http://CRAN.R-project.pagkage=Ime4.

Royle, P., Drury, J. E., Bourguignon, N., & Steinbg K. (2012). The temporal dynamics of
inflected word recognition: a masked ERP priminqudgt of French verbs.
Neuropsychologia, §04), 3542-3553. doi:10.1016/j.neuropsychologia2202.007

Schmidtke, D., Matsuki, K., & Kuperman, V. (2018urviving blind decomposition: A

distributional analysis of the time-course of coexpWword recognitionJournal of



Spoken complex word recognition 40

Experimental Psychology: Learning, Memory and Cobgnj 4311), 1793-1820.
doi:10.1037/xIm0000411

Skrandies, W. (1990). Global field power and topgdpic similarity.Brain Topography, @),
137-141.

Solomyak, O., & Marantz, A. (2009). Evidence forlganorphological decomposition in
visual word recognitionJournal of Cognitive Neuroscience,(22, 2042-2057.

Solomyak, O., & Marantz, A. (2010). MEG evidence éarly morphological decomposition
in visual word recognition: A single-trial corralatal MEG study. Journal of
Cognitive Neuroscience, 22042-2057.

Stockall, L., & Marantz, A. (2006). A single routdull decomposition model of
morphological complexity: MEG evidencBhe Mental Lexicon Journal(1), 85-123.

Taft, M., & Forster, K. I. (1975). Lexical storagad retrieval of prefixed worddournal of
Verbal Learning and Verbal Behavior, 1838-647.

Taft, M., Li, S., & Beyersmann, E. (2018). What ssanorphemic letter transposition in
derived nonwords tells us about lexical processidgurnal of Cognition, ).
doi:10.5334/joc.39

Van Heuven, W. J. B., Mandera, P., Keuleers, EBrgsbaert, M. (2014). SUBTLEX-UK: a
new and improved word frequency database for Briaglish.Quarterly Journal of
Experimental Psychology, @), 1176-1190. doi:10.1080/17470218.2013.850521

Vartiainen, J., Aggujaro, S., Lehtonen, M., Hultén, Laine, M., & Salmelin, R. (2009).
Neural dynamics of reading morphologically complrrds. Neuroimage, 4(4),
2064-2072. doi:10.1016/j.neuroimage.2009.06.002

Velan, H., & Frost, R. (2011). Words with and witlianternal structure: what determines the
nature of orthographic and morphological procesai@ggnition, 118), 141-156.

doi:10.1016/j.cognition.2010.11.013



Spoken complex word recognition 41

Winsler, K., Midgley, K., Grainger, J.,” & Holcoml®. J. (2018). An electrophysiological
megastudy of spoken word recognitionanguage, Cognition and Neuroscience,
33(8), 1063-1082.

Wurm, L. (1997). Auditory Processing of Prefixedgish Words Is Both Continuous and
DecompositionalJournal of Memory & Language, 3438—461.

Wurm, L. (2000). Auditory processing of polymorphemseudowordsJournal of Memory
and Language, 4255-271.

Wurm, L., & Ross, S. E. (2001). Conditional rootgueness points: Psychological validity
and perceptual consequencdsurnal of Memory and Language, (4% 39-57.

doi:10.1006/jmla.2000.2758



Appendix A

All variables were extracted from the Lexique datd(New et al., 2004). Mean word
frequencies are given as Zipf values (log10 ocaowes per billion). Standard deviations are
shown in parentheses. Freq = frequency; N = neigititomd size; OLD 20 = Orthographic
Levenshtein distance; PLD 20 = Phonological Levaishdistance; TS = truly suffixed; PS
= pseudo-suffixed; NS = non-suffixed. The semargiatedness proportion between whole
words and embedded words was extracted from L&emiantic Analysis Web facility
(http://Isa.colorado.edu; Landauer & Dumais, 19%ased on the semantic space ‘Francais
Total’. Thep-values of the pair-wise comparisons (t-tests) betwitem types (TS, PS, and
NS) are provided in the final three columns.

: TSvs. PSvs. TSvs.
Properties TS PS NS NS NS PS

Whole words

Written word frequency 3.54 (0.64) 3.71(0.61) 3691) .730 .365 .183
Subtitle word frequency 2.69 (0.71) 2.82(0.81) 42@77) .321 .878 419

Number of letters 7.08 (1.06) 7.10(1.04) 7.0219.9 .763 .686 925
Number of phonemes 5.06 (0.76) 5.02(0.99) 5.186(0. .716 595 .823
Number of syllables 2.08(0.39) 2.06(0.51) 2.13%) .584 487 .827
Orthographic N 1.88(1.83) 1.65(1.67) 1.63(2.02).506 .958 499
Phonological N 6.18 (6.04) 6.59 (5.02) 4.61(5.52).174 .070 .709
OLD 20 1.98(0.34) 1.91(0.26) 2.04(0.41) .412 206 .261

PLD 20 1.57 (0.46) 1.56(0.40) 1.71(0.44) .122 0.08 .918

Unigueness point 451 (0.95) 4.65(0.84) 4.82(0.99.106 .336 441
Ending length 3.12(0.77) 3.18(0.82) 3.16(0.90)813. .909 .708

Embedded words

Written word frequency 4.25 (0.72) 4.08 (0.79) 64Q.92) .583 .617 244
Subtitle word frequency 3.59 (0.75) 3.47 (0.83) 63@.90) .422 .954 436

Number of letters 4.67 (0.77) 4.73(0.90) 4.53%p.8 .403 .268 122
Number of phonemes 3.25(0.52) 3.24(0.71) 3.089(0. .079 161 .874
Number of syllables 1.06 (0.24) 1.04(0.20) 1.1GQ@p .466 244 .650
Orthographic N 8.78 (4.65) 9.31(5.19) 8.65(5.56).893 532 .589
Phonological N 17.27 (9.26) 18.90 (9.3520.80 (9.01) .054 .298 379
OLD 20 1.35(0.25) 1.32(0.26) 1.37(0.29) .726 7.39 .588
PLD 20 1.15(0.22) 1.11(0.20) 1.08(0.19) .113 7.55 .312
Unigueness point 3.24 (0.74) 3.24(0.71) 3.04 (0.69.169 161 1.00

Semantic relatedness proportions between wholesiaimd embedded words
LSA 240 (.213) .112(.134) .142(.140) .008 291 .00&




Truly suffixed (TS) condition:

Appendix B

suffixed word

suffixed nonword

non-suffixed nomao

embedded stem

OO ~NOO”ULS,WNPE

A D WWWWWWWWWWNDNDNDNNNMNNDNNNNMNRPERPRERPEPRPRPRPERPERPERRERERE
PO OWoO~NOOUGPRRWDNPFPOOO~NOOUDRWNEPRPOOO~NOOGPM~WDNEO

polaire
notaire
lunaire
fétard
caveau
barreau
bandeau
fronteau
plateau
tourteau
pruneau
dentier
sagesse
richesse
finesse
poulet
filet
signet
muret
pochette
mallette
noisette
bichette
boulette
biquette
roulette
cuvette
voilette
fillette
skieur
longueur
largeur
portier
laitier
fermier
casier
pommier
palmier
soumission
tonneau
logement

polesse
notier
lunet
fétette
cavon
barresse
bandard
frontet
plataire
tourteur
prunon
dentesse
saget
richon
finette
pouleau
filesse
signesse
mureau
pochure
malleau
noison
bichier
boulion
biquon
roulesse
cuveur
voileau
filleur
skiette
longuier
largette
portesse
laitette
fermeau
caseau
pommeur
palmon
soumissette
tonnette
logerie

polige
notine
lunepe
fétin
cavice
barrime
bandaste
frontonne
platisse
tourtan
prunaste
dentil
sagule
richie
finine
poulise
filige
signise
muruque
pochique
mallare
noisou
bichine
boulue
biquotte
roulache
cuverge
voilouse
fillare
skiache
longune
largine
portipe
laitine
fermole
caseme
pommenne
palmune
soumissate
tonniche
logereuil

péle
note
lune
féte
cave
barre
bande
front
plat
tourte
prune
dent
sage
riche
fine
poule
fil
signe
mur
poche
malle
Noix
biche
boule
bique
roule
cuve
voile
fille
ski
longue
large
porte
lait
ferme
case
pomme
palme
soumis
tonne
loge



42 peuplement peuplerie peuplenure peuple
43 raton rateur ratille rat

44 piéton piétette piétotte pied

45 veston vestette vestipe veste
46 ourson oursier ourseille ours

47 cruchon crucheur cruchope cruche
48 fiston fistet fistiot fils

49 blouson blouseur blousure blouse
50 cordon cordette cordope corde
51 épicerie epicement epicereuil épice

Pseudo-suffixed (PS) condition:

suffixed word

suffixed nonword

non-suffixed nomao

embedded stem

calcaire
libraire
salaire
foulard
couteau
biseau
rameau
pinceau
poireau
moineau
roseau
paresse
prouesse
caresse
palier
parquet
fouet
bolet
criquet
étiquette
carpette
bavette
mouette
cassette
fauvette
coquette
vignette
chouette
reinette
couette
31 valeur
32 secteur

O o0 ~NO UL WNPE

WNNNNNNMNNNNMNNRPRRRRPRPRRRERR
OO ~NOURWNRPOOOMNODURNWNPRO

calqueau
libreau
salette
foulette
coutier
biseur
ramesse
pinceur
poiron
moinette
rosaire
pareau
proument
carette
palard
parquesse
fouure
bolon
criqueau
étiquon
carpon
baveau
mouesse
casseau
fauvon
coqueur
vigneau
chouon
reinon
courie
valier
sectette

calquice
librache
salige
foulose
coutise
bisule
ramil
pincisse
poirule
moinan
rosonne
parine
prougle
carige
palose
parquise
fouie
bolie
criquie
étiquare
carpique
bavou
mouipe
cassotte
fauvine
coquache
vignerge
chouole
reinue
counure

valune

secteche

calque
libre
salle
foule
colt
bise
rame
pince
poire
moine
rose
part
proue
car
pale
parc
fou
bol
crique
etique
carpe
bave
mou
casse
fauve
coque
vigne
chou
reine
cou
val
secte



33 terreur terrette terrache terre
34 sanglier sanglette sanglille sangle
35 gravier gravette gravole grave
36 collier collesse collenne colle

37 sommier sommette sommile somme
38 tablier tablerie tablalot table

39 passion passette passeque passe
40 panneau pannon pannestre panne
41 chatiment chatirie chatalot chat

42 département départerie départerope départ
43 mouflon mouflaire mouflaque moufle
44 dragon dragueau draguine drague
45 flacon flaquette flacule flaque
46 guidon guidure guidige guide
47 pompon pompesse pompache pompe
48 prison prisette prisipe prise

49 grillon grillette grillate grille

50 faucon fauquette fauquin faux

51 batterie batture battige batte

Non-suffixed (NS) condition:

suffixed word

suffixed nonword

non-suffixed nomao

embedded stem

O©oO~NOO”ULDS,WNPE

NNNNRPRRRRPRRRRRR
WNRPOOWO~NOOUNWNERO

*machine
vertige
*loupiot
*bourrin
fourmi
*marquise
confit
couronne
rotule
boucan
saucisse
*bougie
sourcil
caprice
tournure
combat
*garrot
ventouse
*bétise
boutique
tartare
caillou
principe

macheau
verteau
loupesse
bourresse
fourment
marqueau
conment
couresse
roteau
boucaire
sauceau
bougeau
sourcesse
caprette
touraire
combesse
garette
ventier
bétette
boutet
tartet
caillon
princet

machipe
vertine
loupise
bourrige
fournure
marquin
conreuil
courule
rotonne
boucare
saucil
bougule
sourcisse
caprou
tourmil
combouse
garure
ventise
bétache
boutice
tartipe
cailline
princan

mache
vert
loup
bourre
four
marque
con
cour
rét
bouc
sauce
bouge
source
capre
tour
combe
gare
vent
béte
bout
tarte
caille
prince



24 mascotte mascette mascerge masque
25 *massue massier massule masse
26 pistache pistette pisteille piste
27 auberge aubon aubine aube
28 *bassine bassier bassique basse
29 bulletin bullement bullenure bulle
30 corneille corneau cornotte corne
31 fortune forteur fortaque fort

32 *patin pateur pateuil pate

33 bourgeon bourjette bourjenne bourg
34 *matin matette matole mat

35 gondole gondon gondaque gond
36 baleine ballesse balline balle
37 chalut chalon chaline chéale
38 gratin gratette gratule gras
39 pirate pirion pirique pire

40 *routine roution routate route
41 écureuil écureur ecurosse ecu
42 magister magiment magierache magie
43 lentille lentier lentache lent

44 aveugle aveument aveustre aveu
45 cachalot cachesse cachille cache
46 goulot goulon gouluche goule
47 escalope escalon escalune escale
48 boisson boisseur boissule bois
49 pharaon pharier pharille phare
50 potasse potette potile pot

51 baraque barrier barope bar




Tablel

Table 1. Mean item duration (in ms) for the whole stimulus and the embedded word within

each condition.

TS condition PS condition NS condition

M ean duration of whole stimulus

words 590 578 630
pseudo-suffixed nonwords 618 603 608
non-suffixed nonwords 681 649 691

pseudo-suffixed nonwords 296 280 293

non-suffixed nonwords 299 277 298




Table?2

Table 2: Summary of the total number of trials per condition and the average proportion of
the trials retained over al 22 participants (n=22) for words, pseudo-suffixed nonwords and
non-suffixed nonwords within the truly suffixed (TS), pseudo-suffixed (PS) and non-suffixed
(NS) conditions. Standard deviations are presented in parentheses.

TS condition PS condition NS condition

Total Epoch Number (n=22)

words 817 846 800
pseudo-suffixed nonwords 884 854 894
non-suffixed nonwords 934 926 930

words 70 (11.6) 72 (11.9) 64 (10.2)
pseudo-suffixed nonwords 75 (15.3) 73(13.1) 76 (12.4)
non-suffixed nonwords 80 (10.7) 79 (11.9) 81 (11.8)

Stimuli examples
'words  pochette = mouette fortune
pseudo-suffixed nonwords pochure mouesse forteur

non-suffixed nonwords pochique moulipe fortaque




Table3

Table 3: Mean lexical decision times and error rates for word targets averaged across
subjects. Standard deviations are shown in parentheses.

Item type Reaction times (ms) Error rates (%)
Truly suffixed 959 (74) 14.1 (6.4)
Pseudo-suffixed 943 (70) 12.4(8.7)

Non-suffixed 1012 (84) 14.8 (8.9)




Table4

Table 4: Mean lexical decision times and error rates for nonword targets averaged across
subjects. Standard deviations are shown in parentheses.

Item type Reaction times (ms) Error rates (%)

Pseudo-suffixed nonwords 1042 (114) 7.0 (7.8)
Non-suffixed nonwords 1034 (95) 2.8 (5.3)
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Figure 1: Distribution of semantic relatedness val ues across Item Types, based on the Latent
Semantic Analysis Web facility (Landauer & Dumais, 1997).



Figure 10
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Figure 10. Topographies of the log normalized (-logio(p)) p-values over the 0-200mstime
window resulting from the (top) non-suffixed nonword vs. word and (bottom) suffixed
nonword vs. word comparisons carried out by permutation test with FDR correction for
individual electrodes.
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Figure 2: Inverse reaction times (RT) as a function of embedded word frequency (left panel)
and whole word frequency (right panel). The non-suffixed condition is displayed in green, the
truly suffixed condition in red, and the pseudo-suffixed condition in blue. Frequency
measures were subtitle word frequencies extracted from the Lexique database (New, et al.,
2004, 2007), transformed into Zipf frequencies (Van Heuven, et a., 2014) and centered to
avoid spurious correlations.
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Figure 3: (Top) Scap maps of the mean activity over 100ms time windows from -200 to
700ms for the truly-suffixed (TS), pseudo-suffixed (PS) and non-suffixed (NS) condition.
(Bottom) A plot of the Global Field Power (GFP) of the three word conditions. We can see
clearly that, according to the GFP, the NS activity diverges from that of the TS and PS
conditions over atime window spanning 400 to 600ms.



Figure4

+uV

0-100 100-200 200-300 300-400 400-500 500-600 600-700ms

NS-TS
(e.qg. fortune - pochette)

\ NS-PS
) (e.g. fortune - mouette)

\ PS-TS
(e.g. mouette - pochette)

Figure 4: Results of the cluster-corrected permutation frlashon-suffixed vs. truly-suffixed
words (NS vs. TS) , non-suffixed vs. pseudo-sulfixeords (NS vs. PS) and pseudo-suffixed
vs. truly-suffixed words (PS vs. TS). For all tareomparisons, the topographies of the raw
effect (NS — TS, NS — TS, PS-TS) are presented towerin 100ms time steps. Those spatio-
temporal points presenting statistically significgm< .025, two-tailed) differences according
to the cluster-corrected permutation test indicated white dots. The results reveal
statistically significant differences over centald parietal electrodes bilaterally in the 300ms
to 500ms time window for NS vs. TS and the 400m5G0ms time window for NS vs. PS.
The cluster-corrected permutation test did notaksay statistical difference for PS vs. TS.



Figure 6

Word - nonword comparisons in the truly-suffixed (TS) condition
(e.g. pochette - pochure - pochique )
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Figure 6: Grand-average ERPs of words (Word), non-suffixed nonwords (Nonword-NS) and
suffixed nonwords (Nonword-S) for the truly-suffixed condition. Nine individual electrodes
from frontal (F3, Fz, F4), central (C3, Cz, C4) and parietal (P3, Pz, P4) regions are presented
and 95% confidence intervals (Cl) are shown. For each electrode, time windows presenting a
significant difference (p< .05) between word and both suffixed and non-suffixed nonwords
according to a permutation test with FDR correction are highlighted. The mean offset times
for words, suffixed nonwords and non-suffixed nonwords are indicated by ared, green and
blue arrow, respectively.



Figure7

Word - nonword comparisons in the pseudo-suffixed (PS) condition
(e.g. mouette - mouesse - mouipe )
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Figure 7: Grand-average ERPs of words (Word), non-suffixed nonwords (Nonword-NS) and
suffixed nonwords (Nonword-S) for the pseudo-suffixed condition. Nine individual electrodes
from frontal (F3, Fz, F4), central (C3, Cz, C4) and parietal (P3, Pz, P4) regions are presented
and 95% confidence intervals (Cl) are shown For each electrode, time windows presenting a
significant difference (p< .05) between word and both suffixed and non-suffixed nonwords
according to a permutation test with FDR correction are highlighted. For the non-suffixed
nonword vs. word comparison, a significant difference emerges 300ms after the TO point and
continues until 700ms, this is highlighted in yellow. However, for the suffixed-nonword vs.
word comparison a significant difference emerges later at 400ms and continues until 700ms;
thistime interval is highlighted in gray. The mean offset times for words, suffixed nonwords
and non-suffixed nonwords are indicated by ared, green and blue arrow, respectively.
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Word - nonword comparisons in the non-suffixed (NS) condition
(e.g. fortune - forteur - fortaque )
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Figure 8: Grand-average ERPs of non-suffixed words (Word), non-suffixed nonwords
(Nonword-NS) and suffixed nonwords (Nonword-S). Nine individual electrodes from frontal
(F3, Fz, F4), central (C3, Cz, C4) and parietal (P3, Pz, P4) regions are presented and 95%
confidence intervals (Cl) are shown. For each electrode, time windows presenting a
significant difference (p< .05) between word and both suffixed and non-suffixed nonwords
according to a permutation test with FDR correction are highlighted. For the non-suffixed
nonword vs. word comparison, a significant difference emerges 400ms after the TO point over
frontal electrodes and continues until 700ms, this is highlighted in yellow. However, for the
suffixed-nonword vs. word comparison a significant difference emerges later at 500ms and
continues until 700ms; this time interval is highlighted in gray. The mean offset times for
words, suffixed nonwords and non-suffixed nonwords are indicated by a red, green and blue
arrow, respectively.



Figure 5a

Word: Truly-Suffixed (TS) vs. Non-Suffixed (NS)
(e.g. pochette - fortune)
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Figure 5a: A comparison of the grand-average ERPs of truly-suffixed and non-suffixed
words. Nine individual electrodes from frontal (C3, Cz, C4), central (P3, Pz, P4) and parieta
(POS, POz, PO4) regions are presented and 95% confidence intervals (Cl) are shown. For
each electrode, time windows (with a minimum duration of 10ms) presenting a significant
difference (p< .05) according to a permutation test with fdr correction are highlighted. The
mean stimulus offset time of TS and NS words are indicated by a red and green arrows,
respectively.



Figure 5b

Word: Pseudo-Suffixed (PS) vs. Non-Suffixed (NS)
(e.g. mouette - fortune )
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Figure 5b: A comparison of the grand-average ERPs of pseudo-suffixed and non-suffixed
words. Nine individua electrodes from frontal (C3, Cz, C4), central (P3, Pz, P4) and parietal
(PO3, POz, PO4) regions are presented and 95% confidence intervals (Cl) are shown. For
each electrode, time windows (with a minimum duration of 10 ms) presenting a significant
difference (p< .05) according to a permutation test with fdr correction are highlighted. The
mean stimulus offset time of PS and NS words are indicated by a red and green arrows,
respectively.



Figure 5¢

Word: Truly-Suffixed (TS) vs. Pseudo-Suffixed (PS)
(e.g. pochette - mouette)
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Figure 5c: A comparison of the grand-average ERPs of trulu-suffixed and pseudo-suffixed
words. Nine individual electrodes from frontal (C3, Cz, C4), central (P3, Pz, P4) and parieta
(PO3, POz, PO4) regions are presented and 95% confidence intervals (CI) are shown. For all
electrodes, no time-window presents significant (p< .05) differences according to a
permutation test with fdr correction. The mean stimulus offset time of TS and PS words are
indicated by ared and green arrows, respectively.



Figure 9

Word - nonword comparisons in the truly-suffixed (TS) condition
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Word - nonword comparisons in the pseudo-suffixed (PS) condition
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Figure 9: Comparisons of suffixed nonwords, non-suffixed words, and words (TS, PS,
NS). For each word condition, a non-suffixed nonword werd and suffixed nonword vs.
word comparison was carried out by applying a elusbrrected permutation test over the
post-stimulus interval (0-700ms) and over all 64c#abdes. For each comparison,
topographies of the raw effect (e.g. non-suffixeohword — truly suffixed word) are
presented as a function of time in 100ms time sté€pese spatio-temporal points presenting
statistically significant differencep €.025, two-tailed) are indicated by white dots.



