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Abstract

The framework of this paper is the improvement of direct-forcing immersed boundary methods in presence of moving
obstacles. In particular, motivations for the use of the Direct Forcing (DF) method can be found in the advantage of a
fixed computational mesh for fluid-structure interaction problems. Unfortunately, the direct forcing approach suffers
a serious drawback in case of moving obstacles: the well known spurious force oscillations (SFOs). In this paper,
we strengthen previous analyses of the origin of the SFO through a rigorous numerical evaluation based on Taylor
expansions. We propose a remedy through an easy-to-implement regularization process (regularized DF). Formally,
this regularization is related to the blending of the Navier-Stokes solver with the interpolation, but no modification of
the numerical scheme is needed. This approach significantly cuts off the SFOs without increasing the computational
cost. The accuracy and the space convergence order of the standard DF method are conserved. This is illustrated on
numerical and physical validation test cases ranging from the Taylor-Couette problem to a cylinder with an imposed
sinusoidal motion subjected to a cross-flow.

Keywords: Immersed Boundary Method, Direct Forcing method, Moving body, Spurious force oscillations, Second
order accurate numerical method, Fluid-structure interaction problems

1. Introduction

Fluid-structure interaction (FSI) problems are widely present in industrial applications as aircraft wings, heat-
exchanger tube bundles, bridges, off-shore platforms, . . . But they are tricky to simulate due to the complexity of the
physical phenomena at stake and the presence of time varying geometries. For instance, the heat-exchanger tube
bundles of the nuclear industry are subject to fluid-elastic coupling forces, which depend on the bundle geometry, the
fluid nature (single-phase or two-phase) and on the fluid velocity. To manage numerically these complex problems,
it would be tempting to use the well-known body-fitted approach. In this case, the boundary conditions (BC), that
are critical for FSI issues, are exactly imposed on the fluid-structure interface. The Arbitrary Lagrangian Eulerian
framework is a prototype of this class of methods, see for instance [1, 2]. However accurate this approach may be,
it is sometimes not possible to use it to handle complex industrial problems involving large motions and/or deforma-
tions of the bodies, eventually with topological changes, which require complex numerical schemes to deal with the
re-meshing issue and particular geometries.

Another approach consists in using Fictitious Domain Methods [3]. The general idea is to consider only a fluid
domain in which the solid boundaries are immersed. This can be done by the local modification of the computational
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scheme or by adding a supplementary term in the governing equations of the fluid. For the former class of methods,
we can cite the Immersed Interface Method [4], the “Cut-Cell” or Cartesian Grid methods [5, 6] and the Jump Embed-
ded Boundary Condition approach [7, 8]. Among other ones, well known methods of the second class of methods are
the Immersed Boundary (IBM) [9] and the Ghost Cell Methods [10, 11], the Fictitious Domain Method based on the
explicit use of Lagrange multipliers [12], the Penalty methods [13, 14, 15, 16], the FAT boundary method [18] and the
Finite Cell Method [17]. These techniques greatly reduce the computational cost because re-meshing is in principle
not required as there is only fluid cells. Concerning the IBM, this class of non-boundary conforming techniques has
been first introduced by Peskin [9] in order to simulate the incompressible blood flow in a human heart by adding a
vectorial supplementary term, referred to as the forcing term. This continuous term is based on a Dirac delta function
smeared over a stencil of few Cartesian nodes, in the continuous Navier-Stokes equations. Following Peskin’s works
about elastic structures, several IB-like methods for the Immersed Boundaries (IB), with different kinds of forcing
terms have been proposed in the literature, such as the continuous Feedback Forcing (FF) of Goldstein & al. [19]. In
this virtual-boundary method, the forcing term is spread over the immersed boundary and can be viewed as a force
density. However, the FF term depends on the flow history and, due to large values of the stiffness coefficients, its
application is limited when considering BC on rigid structures. The Direct Forcing (DF) method is an alternative
approach proposed by Mohd-Yusof [20] and then adapted by Fadlun & al. [21]. It consists in directly applying the
desired boundary conditions on the Cartesian nodes in the fluid near the fluid-solid interface (through the character-
istic function of the solid), leading to a sharp representation. Thanks to this formulation, the forcing term can be
easily computed as it does not depend on the flow history [21]. The accuracy of this method lies in the direct forcing
numerical scheme itself because the calculation of the forcing term is based on the discretized form of the governing
equations. Since Mohd-Yusof, the DF method has been successfully applied to various FSI problems, cf. [22]-[32]
and [34]-[38] for instance. As we would like to simulate complex FSI problems, such as the fluid-elastic instability
of the heat-exchanger tube bundles, we have adopted the DF approach due to its simplicity of implementation and the
low associated computational cost.

One undesirable property of IBM is the generation of spurious force oscillations (SFOs) [24, 28, 29, 30, 31, 34,
38, 36] when dealing with moving bodies on a fixed computational grid. It is observed for all type of IBM, including
discrete [29] and distributed [38] forcing term methods or ghost-cell methods [30, 31, 36]. SFOs degrade the quality
of solutions and the computation of the stress forces near the fluid-solid interface. Therefore, whatever the considered
IBM, one has to deal with these SFOs in order to simulate moving bodies under prescribed or flow induced movement.
In the literature, it is reported that the main source of the SFO is the temporal discontinuity in the velocity at the grid
points, called dead cells, where fluid becomes solid due to the body motion [34, 38]. The magnitude of the spurious
force oscillations, mainly attributed to the pressure (through the velocity divergence), are said to decrease with the
decrease of the space-step ∆x and the increase of the time-step ∆t as O( ∆xα

∆t ) with α a power-law coefficient [34, 36].
Magnitude of the SFO also decreases when using a carefully designed discrete delta function [24, 28]. Forcing into
the solid (including dead cells) [29] are known to reduce the SFO without suppressing them.
Few techniques have been proposed to reduce these spurious force contributions and can be classified in two cate-
gories. On the one hand, one preferentially works on the immersed boundary conditions of the momentum balance
equation. With the solid volume fraction as weight, Kajishima & al. [22] avoid the spurious pressure oscillations.
Using a referential linked to the solid, Kim & Choi [25] eradicate the SFO, but their technique is devoted to a unique
solid. Luo & al. [30, 31] propose an implicit hybridization (through an iterative method) of the flow-solver nu-
merical scheme and of the IBM in order to deal with the free-dead cell transitions and Chiu & al. [32] replace the
algebraically-interpolated method by a differentially interpolated method. On the other hand, one may prefer working
on the immersed boundary conditions of the mass balance equation. Kim & al. [33] and Lee & al. [34] combine a
DF approach and an extra mass source term in the mass balance equation. This minimizes the pressure oscillations
coming from the spatial discontinuities of the pressure near the IB when fresh cells (cells in the fluid and previously in
the obstacle) are released. Seo & al. [36] conjointly use a DF ghost-cell method [35] for the Navier-Stokes equations
and a cut-cell approach to design the pressure solver. Lee & You [37] combine the same ghost-cell method and the
Kim & al. approach.

This work is twofold. First, it is devoted to the analysis of the SFO. Through numerical experiments and theoreti-
cal analysis, we confirm previous findings [34, 38] that designate the dead-cell contribution as the main source of the
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SFO. This is stated too from the confrontation of the SFOs and the fresh-cell apparition occurrences. We propose in
this paper a more formal derivation of the magnitude order of the SFO as O( ∆x2

∆t ) +O(∆x) for a first-order in space in-
terpolation. Using rigorous numerical evaluations based on Taylor expansions, we produce the specific contributions
depending on the kind of considered cells (dead, fresh or unchanged). Secondly, this work provides a practical remedy
to SFOs using a regularization technique for the DF method. In the philosophy of the hybridization approach pro-
moted by Luo & al. [30, 31] or of the differentially interpolated method [32], we realize an explicit weighted mixing
between the interpolation scheme and a blind version (without obstacles) of the flow solver. In fact, our method differs
from that of Luo & al. by an explicit forcing term (no iteration), leaving the native numerical scheme unchanged, and
by the determination of the weight. The former property is very useful to introduce the DF method in previously
existing industrial codes. Formally, it leads to a weighting of the forcing term that can be understood as the definition
of a regularized characteristic function of the solid. Unlike [22], this weighting is not restricted to the solid volume
fraction only. Its design is mainly led by the search of a smooth transition between the Navier-Stokes velocities and
the forced velocities in the vicinity of the IB. As in [30, 31], the method retains the sharp-interface representation of
the solid body surface.
In practice, we only modify the characteristic functions of the obstacles and consider the standard explicit DF method.
Under CFL restriction, only one strip of fresh or dead cells can appear during a time step. All the cells inside the
obstacles are forced. Moreover using a non-incremental projection scheme [41, 42], we compute the pressure and the
velocity correction through all the fictitious domain (fluid and solid).
For clarity purpose, our presentation is done in 2-dimension space. But, that does not constitute a restriction of the
method which is actually carried out in 3-D.

We first present in Section 2 the fluid governing equations, the numerical scheme, the DF method and, following
Introı̈ni & al. [39], the interpolation schemes used to implement it with order one or two in space. Then, the SFO
origins are numerically analyzed on the Seo and Mittal test case [36] in Section 3. The O( ∆x2

∆t ) + O(∆x) dependency,
coming from the dead cells, is theoretically demonstrated in an original way for the first-order in space version of
the standard DF. Following the results of this analysis, we propose in Section 4 what we call the regularized (RG)
approach. This approach, easy to implement, significantly cuts off the SFOs without increasing the computational cost
and conserves the accuracy and the space convergence order. With the same assumptions as before, we theoretically
show that the magnitude order of the SFO varies as O(∆x + ∆t) in the case of the RG DF. Confirming our analysis,
numerical and physical validations of the standard DF and RG DF approaches are conducted in Section 5 on various
test cases ranging from the Taylor-Couette problem to a cylinder with an imposed sinusoidal motion subjected to a
cross-flow.

2. Governing equations and numerical method

2.1. Governing equations

This paper deals with incompressible flows around moving solid obstacles. The full domain is named Ω = ΩF ∪

ΩS , where ΩF is the fluid domain and ΩS the solid one, and the fluid-solid interface is indicated by Σ, see Fig. 1.
The governing equations used to describe unsteady incompressible flows are given by:

∂u
∂t

+ ∇ · (u ⊗ u) +
1
ρ
∇p − ν∇2u = f in ΩF

∇ · u = 0 in ΩF (1)
u = uS on Σ

with initial condition in Ω and boundary conditions on ∂Ω. The variable u is the fluid velocity, ν the kinematic vis-
cosity, p the pressure, ρ the fluid density, f the volume force (taken to zero hereafter) and uS the fluid-solid interface
velocity.

3



ΩF

ΩS

Σ

Ω

Figure 1: Schematic representation of the computational domain Ω and the fluid-solid interface Σ = ∂ΩF ∩ ∂ΩS .

The knowledge of the local fluid force ρν(∇u + ∇tu) · n − pn or of its integration
�

ΩS
(ρν(∇u + ∇tu) · n − pn)dΣ

on the fluid-solid interface Σ allows to access the dynamic of the body if not prescribed. In turn, this body motion
induces a change in the flow structure. Although crucial for the fluid-structure interaction, this point is not discuss in
this paper.

2.2. Spatial discretization and numerical method
The equations are discretized on a uniform Cartesian mesh using a finite volume approach with a staggered grid

arrangement of the variables (u, P). As a result, the pressure degrees of freedom are located at the cell centers whereas
those of each velocity component are placed at the middle of the cell edges as presented in Fig. 2. The governing
Eqs. (1) are integrated over each control volume ensuring conservation of mass and momentum balance. Here, the
convection and diffusion terms are respectively approached by the QUICK and centered schemes [40].

Figure 2: Staggered arrangement of the unknowns on a 2-D Cartesian cell (i; j) with the CVs of pressure ((a), blue �) and the CVs of velocity
components ((b) and (c), red �).

A non-incremental fractional-step scheme is used to solve the incompressible Navier-Stokes equations. The frac-
tional step method or projection method was introduced by Chorin and Temam in 1968-1969 for incompressible
flows [41, 42]. On the basis of their work, several variants have been proposed and the reader is referred to Guer-
mond [43] for a recent overview of these methods. In L∞ norm, the rate of convergence in time of the non-incremental
version is theoretically first-order [43].

2.3. Direct Forcing Approach
As previously discussed in the introduction, there are several types of immersed boundary method (IBM) [9, 19,

20, 21]. They all consist in computing flows around complex geometrical shapes (static/moving/deforming bodies) by
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immersing the physical domain ΩF in a simpler fictitious one Ω. The presence of embedded time-varying geometry
ΩS in the computational domain Ω is taken into account thanks to a source term F IBM that is added in the Navier-
Stokes equations (1). In this work, the domain ΩS is discretized through a 3-D Lagrangian triangulation. At the end
of each time step, the Lagrangian mesh is moved following the fluid-solid interface velocity.
Following the direct forcing (DF) method developed in [20, 21], a discrete source term FDF imposes immersed
boundary conditions for the flow in the vicinity of the obstacles and is added in the discretized Navier-Stokes equations
(here, fully explicit for the sake of the presentation) as follows:

un+1 − un

∆t
+ ∇h · (un ⊗ un) +

1
ρ
∇h pn+1 − ν∇2

hun = FDF in Ω (2)

∇h · un+1 = 0 in Ω (3)

where the subscript •h stands for discrete operators (omitted hereafter). The source term FDF refers to a direct
forcing term [21] and is defined by:

FDF = χm
um − u?

∆t
in Ω, (4)

where u? is the predicted velocity of the fractional-step scheme without IB, χm is the characteristic function of the
imposed velocities domain Ωm

I , which is different depending on the considered model, and um = um(uS , u
?) is the

imposed velocity resulting from the adopted reconstruction model. Following the authors, the reconstruction model
may be Lagrange interpolations following the grid directions [21] or in a multi-direction approach [33], the normal
direction to the body surface [26], power law interpolations [27] or least squares interpolations [44]. In the rest of
the paper, the subscript m means ”model” that can be ”base” (first order in space model) or ”linear” (second order in
space model).

The resolution of Eq. (2-3) is split according to the following algorithm:

Step 1: Computation of the predicted velocity u? without taking into account the immersed boundary conditions:

u? − un

∆t
+ ∇ · (un ⊗ un) − ν∇2un = 0 in Ω (5)

Step 2: Computation of the imposed velocity and the forcing term (see Sec. 2.3.1 and 2.3.2):

um = um(uS , u
?) ; FDF = χm

um − u?

∆t
(6)

Step 3: Addition of the direct forcing term:
ũ = u? + ∆tFDF (7)

Step 4: Projection:
1
ρ

∆pn+1 =
1
∆t
∇ · ũ in Ω (8)

Step 5: Correction:

un+1 = ũ −
∆t
ρ
∇pn+1 in Ω (9)

In the following section we detail the interface models used to calculate the imposed velocities.

2.3.1. The base model
The simplest approach to implement this IBM is to consider a first order accurate in space method. As for the

ghost cell approach [10], we choose to only force velocities that are inside the solid domain, depicted by red points in
the Fig. 3. Due to this formulation, Ωbase

I = ΩS and χbase is defined as follows:

χbase(x) =

{
1 if d(x) ≥ 0
0 otherwise.
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where d(x) is the signed distance function to the fluid-solid interface with d(x) ≥ 0 inside ΩS . At the beginning of
the time step, the signed distance is computed in 3-D using the barycenters and the external normal vectors of the
Lagrangian-mesh faces. In this formulation, the imposed velocity is the solid velocity:

ubase(x) := uS (x). (10)

With a Cartesian grid, the base model leads to a stepwise description of the immersed interface Σ.

2.3.2. The linear model
A way to improve the spatial order of the method is to use an interpolation scheme to reconstruct the velocity

field near the interface. This is the most widely employed approach in the literature [21] and we have adopted the
procedure developed by Introı̈ni & al. [39]. The linear model consists in using an interpolation scheme to calculate
the fluid velocities located near Σ. More precisely, Ωlinear

I is divided into two sub-domains as depicted in Fig. 3. The
first one is made up of the velocities located inside ΩS that are forced to uS as for the base model. The second one
must contain at least the fluid velocities having a neighbour in ΩS and are forced using an interpolation scheme to
guaranty the second order global accuracy. Such a domain can be defined by adding a ∆x-thickness layer to the solid
domain, leading to the following expression of χlinear:

χlinear(x) =

{
1 if d(x) ≥ −∆x
0 otherwise.

where ∆x is the cell length. Then, ulinear takes the following form:

ulinear(x) :=
{

uint(x) if − ∆x ≤ d(x) < 0
uS (x) if d(x) ≥ 0 (11)

where uint is the velocity obtained with a linear interpolation scheme, second order accurate in space. In this interpo-
lation scheme, the fluid contribution is built through an averaged reconstruction of the velocity gradient near Σ and
the solid contribution is determined by means of a minimization problem, see [39].

This model is illustrated in Fig. 3, where the red velocities are forced to the solid velocity (as for the base model)
and the green one to interpolated velocities (these velocities are free when considering the base model).

Σlinear
I = {x, d(x) = −∆x}

Σ = Σbase
I = {x, d(x) = 0}

Figure 3: Schematic representation of the base and the linear model on a staggered grid. The red diamonds represent the velocities forced to the
solid velocity and the green triangles are the ones forced to the interpolated velocity for the linear model.
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3. An analysis of the Spurious Force Oscillations

This part is dedicated to the analysis of the origin of the SFO and to the mathematical evaluation of its magnitude.
First of all, we introduce the SFO through the Seo and Mittal test case [36]. As already mentioned, without restriction
on the space dimension d, dependency on O( ∆x2

∆t ) was notified by Lee & al. [34] through a second-order interpolation.
Considering only the mass balance equation, Seo and Mittal theoretically demonstrated dependency on O( ∆xd

∆t ) [36].
In this work, we mainly focus on the momentum balance equation. Then using Taylor expansions of the forcing term
and of the velocity near the IB, we quantify each specific contribution to the SFO magnitude coming from the dead,
fresh or unchanged cells. Finally numerical studies give confirmation of this power-law.

3.1. Seo and Mittal test case

In order to introduce the issue of the generation of spurious force oscillations, when using a DF approach for a
rigid moving body, the simple test case of Seo and Mittal [36] is considered. It consists in a circular cylinder centered
at the coordinates (xc, yc) of diameter D which oscillates sinusoidally along the x-direction in a fluid at rest :

{
xc(t) = xc(0) + X0(1 − cos(2π f0t))
yc(t) = yc(0)

where (xc(0), yc(0)) are the initial coordinates of the cylinder center, X0 is the amplitude of the oscillation and f0 is its
frequency (see the Fig. 4(a) for a schematic representation). The period of oscillation is T0 = 1

f0
.

The computational domain is a 4D× 4D square with the upper and lower boundaries set to no-slip walls, homoge-
neous Neumann conditions for the pressure and the velocity on the left and right sides, (xc(0), yc(0)) = (2D, 2D) and
X0 = 0.125D. Due to the cylinder motion, the cylinder maximum velocity is U0 = X02π f0, the Reynolds and Strouhal
numbers, respectively defined by Re =

U0D
ν

and S t =
f0D
U0

are set to 78.5 and 1.27.

(a)

-15

-10

-5

 0

 5

 10

 15

 1  1.2  1.4  1.6  1.8  2
  t/T

CDFCPCTCν

�
(b)

Figure 4: Seo and Mittal’s test case [36]: (a) geometry and computational grid (zoom around the obstacle) and (b) physical dimensionless coeffi-
cients time histories: CP, Cν, CT and CDF . Computation done with the DF base model, cf. subsection 2.3.1.

In SFO studies, we are interested in the temporal variations of the following physical dimensionless coefficients:
the pressure drag CP, the friction drag Cν and the total drag CT . They are the components along the x-axis of the
pressure, viscosity and the total force. In addition, we consider the total contribution of the direct forcing term CDF .
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These coefficients are defined as follow:

CP =

�
ΩS
−pndΣ

0.5ρD3 f 2
0

(12)

Cν =

�
ΩS
ρν(∇u + ∇tu) · ndΣ

0.5ρD3 f 2
0

(13)

CT = CP + Cν (14)

CDF =

∫∫∫
ΩS
ρFDF · exdΩ

0.5ρD3 f 2
0

(15)

By integrating the Navier-Stokes equations including the forcing term, CDF is linked to CT by the following
expression:

CT = −CDF +

(∫∫∫
ΩS
ρ
(
∂u
∂t + ∇ · (u ⊗ u)

)
dΩ

)
· ex

0.5ρD3 f 2
0

. (16)

The volume space integration of Eq. (15) or Eq. (16) is numerically done on the imposed-velocity domain Ωm
I and not

on the exact solid domain Ωs. We use the velocity control volumes of our FV scheme, cf. Fig. 2. The surface space
integration of Eq. (12) or Eq. (13) is not done on the exact interface ∂Ωs but on the approximated fluid-solid interface
Σm

I using the velocity-control-volume faces included in Σm
I . As the pressure and the Cauchy stress are defined on these

faces, we directly use the terms involved in the momentum balance equation.

To illustrate the SFO phenomena, the problem is first solved on a 642 uniform grid with a fixed time-step ∆t =

0.002 1
f0

= 0.002T0, corresponding to the following CFL number 0.025, where CFL =
U0∆t
∆x and ∆x is the grid spacing.

Considering this grid, the cylinder diameter is spanned by 16 grid points. The computation is performed with the DF
method described in subsection 2.3. The evolution over a period T0 of the dimensionless coefficients of interest are
presented in Fig. 4(b). It is important to point out that it is mainly the pressure drag component that is disturbed by the
spurious oscillations whereas the time history of the friction drag is almost regular. Therefore, the SFOs are in fact
due to the spurious pressure oscillations (SPO). Then, it is also interesting to notice that CDF is nearly equal to CT .

Then, the convergence in space is investigated by considering a fixed time-step ∆t = ∆t0 = 0.002T0, with four
uniform grids (642, 1282, 1922 and 2562 cells), leading to the following CFL numbers: 0.025, 0.05, 0.1 and 0.2. Thus,
on these four grids, the cylinder diameter D is spanned by 16, 32, 48 and 64 grid points, respectively.
The convergence in time is investigated by considering a 642-cell grid and the following time-steps ∆t = ∆t0, 2∆t0,
4∆t0 and 8∆t0, leading to the following CFL numbers: 0.025, 0.05, 0.1 and 0.2. Figs 5(a) and 5(b) display the CP time
histories over a period of time. Qualitatively, they demonstrate that the pressure oscillations decreases with decreasing
grid spacing and with increasing time-step, as mentioned in [34, 36].

3.2. Theoretical analysis of the SFO origin

We analyze the SFO origin in the case of the DF base model described in subsection 2.3.1. First of all, we assume
the origin is located in the forcing step (2. and 3.) between the prediction (1.) and the projection steps (4.) of this
algorithm. Indeed, due to the nature itself of the DF approach, the projections (4) and correction steps (5.) are blind to
the solid boundary as they do not take directly into account the solid boundaries for their computation. However, the
projection step spreads the pressure oscillations over all the computational domain via the source term of the Poisson
equation which can be disturbed because of the forcing step.

As previously shown on Seo and Mittal’s test case, CDF and CP are disturbed by equivalent spurious oscillations.
In order to quantify the amplitude of these oscillations, it is assumed a constant solid velocity in space and time (the
analysis remains valid for regular variations). This assumption allows Taylor expansions on the velocity field in time
and space. For the sake of simplicity, we assume a CFL number smaller than unity and the following hypothesis:

Ωn−1
s,h = Ωn

s,h , Ωn+1
s,h (17)
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Figure 5: CP time histories for the Seo and Mittal’s test case: (a) ∆t = ∆t0 = 0.002T0 for different grid spacing and (b) D/∆x = 16 for different
time-steps.

where Ωn
s,h is the set of velocities forced at the time-step n. Eq. (17) means that all the velocities forced at the

time-step n were already forced at the time-step n−1 even if that usually does not hold for two consecutive steps in real
life. But it enables a mere simplification of the analysis consistent with a limited-space presentation. However, it is
not essential to the computations as it will be stated below. This reduces the inventory of the different cells categories
following their history with respect to the forcing term. The velocity evolution between the time-steps n and n + 1 is
schematically described as follow:

un ∆tRHS n(un)
−−−−−−−−→
O(∆t)

u?,n
∆tFDF
−−−−→
O(∆t)

ũ
− ∆t

ρ ∇pn+1

−−−−−−−→
O(∆t)

un+1 ∆tRHS n+1(un+1)
−−−−−−−−−−−→

O(∆t)
u?,n+1 (18)

where ∆tRHS n(un) denotes the explicit Navier-Stokes solver of the prediction step (1.). One can measure the DF
term variation, between the time-steps n and n + 1, by calculating:
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∫
Ωn+1

s,h

Fn+1
DF dΩ −

∫
Ωn

s,h

Fn
DFdΩ =

∫
Ωn+1

s,h ∩Ωn
s,h

Fn+1
DF − Fn

DFdΩ+ (19)∫
Ωn+1

s,h �Ωn
s,h

Fn+1
DF dΩ −

∫
Ωn

s,h�Ωn+1
s,h

Fn
DFdΩ.

By expressing the integrals at the discrete level and writing the DF term expression, the above equation becomes:

∫
Ωn+1

s,h

Fn+1
DF dΩ −

∫
Ωn

s,h

Fn
DFdΩ =

∑
K∈Ωn+1

s,h ∩Ωn
s,h

uS − u?,n+1 − uS + u?,n

∆t
∆xd+ (20)

∑
K∈Ωn+1

s,h �Ωn
s,h

uS − u?,n+1

∆t
∆xd −

∑
K∈Ωn

s,h�Ωn+1
s,h

uS − u?,n

∆t
∆xd

where K is a mesh element and ∆xd the volume of a cell in d dimension. Denoting FC (fresh cell) the set of velocities
that became freshly fluid (K ∈ Ωn

s,h�Ωn+1
s,h ) and DC (dead cell) the set of velocities that became freshly forced

(K ∈ Ωn+1
s,h �Ωn

s,h), we get:

∫
Ωn+1

s,h

Fn+1
DF dΩ −

∫
Ωn

s,h

Fn
DFdΩ =

∆xd

∆t

 ∑
K∈Ωn+1

s,h ∩Ωn
s,h

(
u?,n − u?,n+1

)
+ (21)

∑
DC

(
uS − u?,n+1

)
−

∑
FC

(
uS − u?,n

) .
Forced Cells at n and n + 1.

(
u?,n − u?,n+1

)
is associated to the velocities forced at time-steps n and n + 1. Thanks

to Eq. (18), u?,n+1 = un+1 + O(∆t) = ũn + O(∆t) = uS + O(∆t). By doing the same analysis and thanks to the
assumption (17), u?,n = uS + O(∆t). Therefore:

u?,n − u?,n+1 = O(∆t). (22)

Dead Cells.
(
uS − u?,n+1

)
is associated to velocities free at n and forced at n + 1. As this velocity is forced at n + 1, it

has at least one forced neighbor at the previous time-step n as we assumed CFL < 1. In addition, the DF base model
is of order one in space, implying that u?,n+1 = u?,n+1

Forced neighbor + O(∆x) where u?,n+1
Forced neighbor = uS + O(∆t). Thus:

u?,n+1 − uS = O(∆x) + O(∆t). (23)

Fresh Cells.
(
uS − u?,n

)
is associated to velocities forced at n and free at n + 1. As these velocities were previously

forced at n − 1 due to the assumption 17, u?,n = un + O(∆t) = uS + O(∆t). Thus:

uS − u?,n = O(∆t). (24)

Conclusion. Finally, the number of FCs and DCs increases with the mesh size. These cells appear by a layer of
thickness adjacent to the boundary (dimension 1 in 2D and dimension 2 in 3D). Their number is proportional to
( D

∆x )d−1 = O( 1
∆xd−1 ). The number of cells forced at the time-steps n and n + 1 increases at the same rate as the mesh

elements proportional to ( D
∆x )d = O( 1

∆xd ). As last with the assumption 17:
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∫
Ωn+1

s,h

Fn+1
DF dΩ −

∫
Ωn

s,h

Fn
DFdΩ =

∆xd

∆t

(
O(

∆t
∆xd ) + O(

∆t + ∆x
∆xd−1 ) + O(

∆t
∆xd−1 )

)
= O(1)︸︷︷︸

K∈Ωn+1
s,h ∩Ωn

s,h

+O(∆x) + O(
∆x2

∆t
)︸               ︷︷               ︸

K∈DC

+O(∆x)︸︷︷︸
K∈FC

(25)

= O(1) + O(∆x) + O(
∆x2

∆t
).

This analysis can also be conducted without the assumption (17). But it would have been necessary to distinguish
the velocities free at n−1 that are forced at n and the velocities already forced at n−1. However for the sake of clarity
this development is not exposed as the conclusions are exactly the same.

As the value of the term O( ∆x2

∆t ) can be big, specially for small ∆t, we can guess that the DCs play the principal role
in the SFO. But as the coefficients of the various contributions are unknown, we cannot confidently predict whether
the DC or the FC are the main contribution to the SFO. To remove this uncertainty Fig. 6 displays the time history
of the forcing term maximum, the number of DCs and FCs with the numerical conditions of Section 3.1. Fig. 6(a)
shows that the forcing term oscillations occur at the same times as new cells enter in the solid domain and become
dead cells. Whereas, on Fig. 6(b) it can be noted that the fresh cells do not trigger significant oscillations as no time
coincidence can be found between the FC’s occurrence and the forcing term maximum. This means the DC are the
main source of pressure oscillations (at least for small time-steps). The FC contributions are commonly attributed to
space discontinuities of the velocity and the pressure [34]. Here the non-incremental pressure-projection scheme and
the computation of velocities and pressures over the whole fictitious domain should contribute to reduce this space
discontinuity for FCs.

Then thanks to Eq. (25), for small values of the time-step and the DF method with a first-order interpolation, SFOs
are proportional to O( ∆x2

∆t ). Through a more formal derivation, giving the specific contributions of each kind of cells
(dead, fresh or unchanged), we generalize here the Lee & al. expression O( ∆x2

∆t ) [34], based on simple considerations
concerning the velocity change for dead cells.

Theoretical analysis of the SFO magnitude using the linear DF was not conducted here. But the numerical exper-
iments described in Section 4.3 conduct to a power-law about O( ∆x3

∆t ) for small time-steps.
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Figure 6: Forcing term maximum for the Seo and Mittal’s test case (m/s2). DC and FC numbers on the left and right sides.
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3.3. Numerical validation on SFO
As above mentioned, Eq. (25) is consistent with the expression O( ∆xα

∆t ) found in the literature. However, it can
be interesting to point out that the biggest is the time-step the more the oscillations tend to be dependent on O(∆x)
instead of O( ∆x2

∆t ). Taking into account all the specific contributions, the present analysis brings an extra light into the
behavior of the SFO amplitude. This point is numerically illustrated here.
The pressure 2δ-discontinuity, noted C2δ

P and introduced by Seo and Mittal [36], is used to obtain quantitative results.
It is defined by the following equation:

C2δ
P = Cn+1

P − 2Cn
P + Cn−1

P (26)

where n is the time-step index. The maximum and the standard deviation values of C2δ
P , noted C2δ

P,Max and C2δ
P,σ, are

calculated over a period of time. Let us notice than C2δ
P,σ is bounded by C2δ

P,Max. Using the same numerical parameters
as in Section 3.1, the results are plotted in Figs 7(a) and 7(b) as a function of grid spacing and time-step size. A
power-law fitting gives:

C2δ
P,Max =

∆x1.9532

∆t0.9018 and C2δ
P,σ =

∆x1.5503

∆t0.472 . (27)

The result obtained for C2δ
P,Max is in very good agreement with Eq. (25). In Fig. 7(b), it is interesting to notice that

when the time-step increases (corresponding at the left side of the picture), C2δ
P,σ and C2δ

P,Max tend to decrease slower
with the time-step than for the smallest time-step (right side of the picture). This original result is well described by
our theoretical analysis summarized by Eq. (25), because the contribution of the DC is O(∆x) + O( ∆x2

∆t ). So when ∆t
increases, O( ∆x2

∆t ) decreases and the contributions in O(∆x) of the DC and FC become significant in comparison with
O( ∆x2

∆t ). At the opposite, when the time-step is very small the contribution in O( ∆x2

∆t ) of the DC is much higher than
the other ones.

C2δ
P,σ is quite close to the theoretical result also. It is necessary to have in mind that the maximum of C2δ

P quantify
mainly the oscillations triggered by the DC. This explains the behavior difference between C2δ

P,σ and C2δ
P,Max. Indeed,

as the main source of oscillations, the DC are at the origin of the biggest peaks (which are the maximums), whereas
the FC contribution is much lower. It is why C2δ

P,Max is rather close to the predicted DC variation O( ∆x2

∆t ). The stan-
dard deviation measures the dispersion of C2δ

P . Thus, C2δ
P,σ quantifies all the oscillations contributions (FC and DC).

Therefore, it cannot have a variation following exactly the one of the maximums.
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Figure 7: C2δ
P,σ and C2δ

P,Max for the Seo and Mittal’s test case versus: (a) grid spacing (∆t = 1
8 ∆t0) or (b) time-steps (D/∆x = 16).
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4. The direct forcing regularized formulation

Analysis of Section 3 done with the base model predicts a SFO behavior in O( ∆x2

∆t ) + O(∆x) due to dead cells.
Considering coarse to moderate grids and small to moderate time-steps (precisely the configuration where the SFOs
are annoying) the power-law is O( ∆x2

∆t ). Numerical studies give confirmations of this power-law. A simple way to
tackle the oscillations would be to decrease the grid-spacing and increase the time-step. However, that would be at
the expense of the computational time when decreasing the grid-spacing and at the expense of the precision when
increasing the time step. Consequently it cannot be an end in itself. To reduce the DC contributions to the spurious
pressure oscillations, the mass balance can be corrected (e.g. [33, 36]) or the imposed velocities can be carefully com-
puted taking into account the Navier-Stokes solver (e.g. [30, 31]). These methods (cut-cell method for mass balance,
fully-implicit hybridization of interpolated and Navier-stokes velocities, . . . ) are efficient but quite invasive consid-
ering for instance an industrial computer code already using a standard DF method. That is why a regularized (RG)
formulation of the direct forcing, called the RG DF approach, easy to implement and capable of cutting off efficiently
the oscillations without any extra computational time, is presented.
Through a regularization process, it is possible to reduce the SFO by roughly an order of magnitude in comparison
with the original DF approach. Moreover, the O(∆x) + O( ∆x2

∆t ) dependency of the SFO amplitude, with first-order in
space interpolation, is changed to O (∆x) + O (∆t). This change in the power-law is very interesting for small time-
steps. To the knowledge of the authors, it was not achieved by the past (e.g. the power-law is not changed when using
the method described in [36]).
First, we focus on the numerical method and analyze its impact on the spurious force oscillations. Then, we numeri-
cally study the space and time convergence of the oscillation amplitude on the Seo and Mittal’s test case using the RG
DF.

4.1. Numerical Method
In the standard DF method, the added force FDF is defined through the use of a Heaviside-like generalized func-

tion for χm, cf. Eq (4), resulting in a ”all or nothing” method and a sharp transition of the forcing term through the
free-to-forced velocity interface. Moreover, when a free-velocity grid point is crossed by this interface, unless a spe-
cific treatment, no consistency in time is guaranteed between the previous Navier-Stokes solver value and the new
interpolated one, contributing to the SFO apparition. Luo & al. [30, 31] and Chiu & al. [32] propose such kind of
treatment to improve this time consistence for a ghost cell method, taking into account the Navier-Stokes solver in the
design of the interpolation scheme. Here, the key idea of the RG DF formulation is, for a new given forced-velocity
point, to smooth the transition between the values given by the Navier-Stokes solver and by the interpolation (or af-
fectation) scheme.

Considering a fluid forced-velocity point in Ωm
I , we propose the following new formulation for the discretized

imposed velocity, now denoted by ui to distinguish from the interpolated one um:{
ui = ξmum + (1 − ξm)u?

FRG =
ui−u?

∆t

(28)

where ξm(x) is a regular function of the signed distance d(x). This formulation is named ”regularized” (RG) because,
for the degrees of freedom with 0 < ξm < 1, the new imposed velocity ui is regularized through a linear combination
of the blind Navier-Stokes solver velocity u? and of the interpolated velocity um.
We choose to define ξm(x) in such a way that it varies linearly from 0 to 1 across a layer of thickness ∆d centered on
the iso-distance dm

0 . But different functions ξm(x) can be addressed. In this work, dm
0 is defined as the signed distance

of the forced-free interface Σm
I (depending of the considered model m) and ∆d = ∆x. Hence the function expression

can be interpreted as the forced-velocity domain fraction τm(x) in the control volume of the forced-velocity point and
reads as

ξm(x) =
∆x + 2[d(x) − dm

0 ]
2∆x

≡ τm(x). (29)

This is graphically represented on Fig. 8 in 1D. As the forced-free interface Σbase
I of the base model coincides with

Σ (dbase
0 = 0, cf. Fig. 3), this definition leads to the solid domain fraction ξbase =

∆x+2d(x)
2∆x ≡ τ(x). This phase-mean
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approach can be found in [22] for a first-order in space direct forcing method. For the linear model, the signed distance
of the forced-free interface Σlinear

I is dlinear
0 = −∆x, cf Fig. 3. Then, the function ξlinear is similar to the function ξbase

shifted by −∆x.
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Figure 8: Representation of χm(x) and ξm(x) =
∆x+2[d(x)−dm

0 (x)]
2∆x ≡ τm(x) in 1D.

From a continuous-geometry point of view, there is no difference between the standard DF method and the reg-
ularized one.From a discrete-geometry point of view, the difference lies in the discretization of the indicator of the
imposed-velocity region, leading to the corresponding discretized forcing term FRG:

FRG = ξm
um − u?

∆t
. (30)

that is the standard DF forcing term FDF with the generalized function χm replaced by the regular function ξm. In
particular, FRG has exactly the same expression as FDF of the original formulation when the control volume of the
fluid velocity is entirely in the forced domain (i.e.: ξm = χm = 1).
In a certain way, considering this ξm-weighting of the force, we can found some links with the volume-weighting of
Kajishima and Takiguchi [22] or the Uhlmann method [24] leading also to a weighting of the discrete force term on
the Cartesian grid. But, in the proposed regularized DF, the weighting is not restricted to the only solid volume frac-
tion and a sharp interface is considered. In another way, similarities can be found with the Luo & al. method [30, 31]
in which an implicit hybridization of the flow-solver numerical scheme and of the velocity interpolation scheme is
done. But here, this hybridization is explicit in time and it saves us to modify the discrete operators to include the
interpolated velocity.

Practically, the implementation of Eq. (28) is:

ui =


um if ξm = 1
ξmum + (1 − ξm)u? if 0 < ξm < 1
u? if ξm = 0.

(31)

Thereby, when the solid is in motion, the fluid velocity will be forced progressively (and not abruptly as in the original
DF approach) to the interpolated forced velocity um as it enters in the forced domain Ωm

I , smoothing the temporal
discontinuity of the velocity through the interface. This procedure is illustrated on Fig. 9(a) with ξm = τm. The black
dashed-line square denotes a control volume occupied by a fraction τn

m (in grey) of the forced domain. Thus, the
correspondent imposed velocity is proportional to this fraction. At the next time-step, cf Fig. 9(b), the forced domain
has been vertically translated and the control volume is now occupied by a more consequent fraction τn+1

m > τn
m. Thus,

the imposed velocity is forced proportionally to this new forced domain fraction.
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Ωm
I

(a)

Ωm
I

(b)

Figure 9: Schematic representation of the regularized formulation: a) time step n and b) time step n + 1. The fluid velocities located in the free
domain are in green and those in the forced domain Ωm

I are in red. The forced-free interface Σm
I is a red line and the velocities where their control

volumes are occupied by a fraction of the forced domain are in purple.

All the other steps of the resolution of the incompressible Navier-Stokes equations are solved as previously ex-
posed. As anyone can notice, the above formulation does not increase the computational time cost and is very easy to
implement.

Finally, let us focus on the cut-cell mass/volume conservation with the RG approach. Including the definition (28)
of the imposed-velocity ui in the discrete ũ-velocity divergence of the cut cell K, ∇ · ũ|K = 1

|K|
∑

f | f | ui f · n f , we get:

∇ · ũ|K =
1
|K|

∑
f /ξm f =0

| f | u? f · n f +
1
|K|

∑
f /ξm f>0

| f | (ξm f um f + (1 − ξm f ) u? f ) · n f (32)

where |K| stands for the measure of the cut cell and f for a face of the cell of measure | f |. Then, this expression can
be recast into a no-weighting contribution and a correction q:

∇ · ũ|K =
1
|K|

[ ∑
f /ξm f =0

| f | u? f · n f +
∑

f /ξm f>0

| f | um f · n f

]
− q (33)

q =
1
|K|

∑
f /ξm f>0

| f | (1 − ξm f ) (um f − u? f ) · n f . (34)

The term with the brackets in the RHS of (33) corresponds to ∇·ũ|K in case of the standard DF. Hence, we can consider
that the RG formulation formally modifies the RHS of the pressure equation (8) by adding the source/sink term q. It
differs from the Kim & al. correction [33] on the solid velocity. Considering ξm = τm, (34) can be viewed as a fluid
correction proportional to the fluid fraction (1 − τm f ) of the cut-cell faces.

4.2. Impact on the oscillations

In order to evaluate the temporal variation of the forcing term with the RG formulation, we repeat the analysis
conducted on the base model in the subsection 3.2 by replacing FDF by FRG in Eq (19)

∫
Ωn+1

s,h

Fn+1
RG dΩ −

∫
Ωn

s,h

Fn
RGdΩ =

∫
Ωn+1

s,h ∩Ωn
s,h

Fn+1
RG − Fn

RGdΩ+ (35)∫
Ωn+1

s,h �Ωn
s,h

Fn+1
RG dΩ −

∫
Ωn

s,h�Ωn+1
s,h

Fn
RGdΩ

taking into account ξbase ≡ τ in Eq (30). Ωn
s,h is the set of velocities forced at the time step n. It can be divided into

two subsets. The first one is the subset of the velocities with τn = 1 and the second one is the subset of the velocities
with 0 < τn < 1. Again Ωn+1

s,h ∩ Ωn
s,h is the set of velocities forced at the time-steps n and n + 1 and Ωn+1

s,h �Ωn
s,h is the
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set of velocities that were free at the time-step n (τn = 0) but that are forced at the time-step n + 1 (0 < τn+1 ≤ 1).
Similarly Ωn

s,h�Ωn+1
s,h is the set of velocities that were forced at the time-step n (0 < τn ≤ 1) and that become free at

the time-step n + 1 (τn+1 = 0).
By expressing the integrals at the discrete level and by writing the regularized forcing term expression, one gets:

∫
Ωn+1

s,h

Fn+1
RG dΩ −

∫
Ωn

s,h

Fn
RGdΩ =

∑
K∈Ωn+1

s,h ∩Ωn
s,h

τn+1
(
uS − u?,n+1

)
− τn

(
uS − u?,n

)
∆t

∆xd+ (36)

∑
K∈Ωn+1

s,h �Ωn
s,h

τn+1 uS − u?,n+1

∆t
∆xd −

∑
K∈Ωn

s,h�Ωn+1
s,h

τn uS − u?,n

∆t
∆xd

Using the notations introduced before, it comes:

∫
Ωn+1

s,h

Fn+1
RG dΩ −

∫
Ωn

s,h

Fn
RGdΩ =

∆xd

∆t

 ∑
K∈Ωn+1

s,h ∩Ωn
s,h

τn+1
(
uS − u?,n+1

)
− τn

(
uS − u?,n

)
+ (37)

∑
DC

τn+1
(
uS − u?,n+1

)
−

∑
FC

τn
(
uS − u?,n

) .
Dead Cells. τn+1

(
uS − u?,n+1

)
is associated to the dead cells. That means that the velocity was free at the time-step

n (τn = 0) and is forced for the first time at the time-step n + 1. We consider the most penalizing case where the
fraction of forced domain in the control volume is maximum while it was zero at the previous time step. This occurs
when d = −∆x/2 at time n, see Fig. 10(a). Indeed, the distance at time n + 1 is d = −∆x/2 + |uS |∆t, see Fig. 10(b).
Considering τ = ∆x+2d

2∆x (see Fig. 8), we obtain τn+1 =
Us∆t
∆x ∝ CFL. A freshly forced velocity has at least one forced

neighbor (located at a few ∆x) entirely forced at the previous time-step. For the base model (first order in space), this
implies that: u?,n+1 = u?,n+1

Entirely f orced neighbor︸                   ︷︷                   ︸
uS +O(∆t)

+O (∆x). Then:

τn+1
(
uS − u?,n+1

)
= O

(
∆t
∆x

)
(O (∆x) + O (∆t)) .

Fresh Cells. τn
(
uS − u?,n

)
is associated to the fresh cells. That means the velocity was last forced at time-step n and

will be free at n + 1. There are three possible histories for the FC. Either there exists a time-step n − N where this
velocity was entirely forced (τn−N = 1). Or this time-step does not exist and there remains two possibilities: either it
has always been partially forced, either there exists a time-step n − N where it has been a DC.

Let’s consider the first possible history. That means u?,n−N+1 = uS + O (∆t) by using Eq (18). We reconstruct the
history as follows:



u?,n − uS =
(
1 − τn−1

) (
u?,n−1 − uS

)
+ O (∆t)

... = ...

u?,n+2−N − uS =
(
1 − τn−N+1

) u?,n−N+1 − uS︸          ︷︷          ︸
O(∆t)

 + O (∆t)

and we get:

u?,n − uS = O (∆t)
N−1∏
i=1

(
1 − τn−i

)
+ O (∆t)

1 +

N−3∑
k=0

k∏
j=0

(
1 − τn−1− j

) .
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Figure 10: Schematic representation of a dead cell.

As τ < 1 due to its definition,
∏N−1

i=1

(
1 − τn−i

)
< 1 = O (1) and

(
1 +

∑N−3
k=0

∏k
j=0

(
1 − τn−1− j

))
< (1 + (N − 2)) = O (1),

then: (
u?,n − uS

)
= O (∆t) .

Now, let’s consider the second and third possibilities. As this velocity has been forced at n, it has at least one
neighbor (at a distance of a few ∆x) entirely forced at n. Thanks to the fact the base model with the RG approach is
first order in space, we have:

un = O (∆x) + un
Entirely f orced neighbor︸                   ︷︷                   ︸

uS +O(∆t)

and therefore by using Eq (18): (
u?,n − uS

)
= O (∆x) + O (∆t) .

Finally, we conclude that
(
u?,n − uS

)
= O (∆t) + O (∆x) for every FC. Regarding τn and using again the CFL

condition, we found that τn is O
(

Us∆t
∆x

)
by similar considerations to those made for the Fig. 10 ( Us∆t∆x

∆x2 is the maximum
added or removed solid fraction of a control volume in one time-step). Eventually, we get:

τn
(
u?,n − uS

)
= O

(
∆t
∆x

)
(O (∆t) + O (∆x)) .

Forced Cells at n and n + 1. τn+1
(
uS − u?,n+1

)
− τn

(
uS − u?,n

)
is associated to the velocities forced at the time-steps

n and n + 1. The set Ωn+1
s,h ∩ Ωn

s,h can be divided into three distinct subsets. The first one is the subset of the velocities
with τn−1 = τn = τn+1 = 1. The second subset is composed of the velocities with 0 < τn−1 < 1, 0 < τn ≤ 1 and
0 < τn+1 ≤ 1. Finally the third subset is composed of the velocities that were fluid at n− 1 and freshly forced at n (that
are in fact the DC at n).

For the first subset, we are exactly in the same case as for the DF base model:
(
uS − u?,n+1

)
−

(
uS − u?,n

)
=(

u?,n − u?,n+1
)
. Consequently, the analysis previously conducted is still valid:

(
u?,n − u?,n+1

)
= O (∆t).

Let’s consider the second subset. We apply exactly the same analysis as for the FC:
(
u?,n − uS

)
= O (∆t) + O (∆x)

and then we get:

τn+1
(
uS − u?,n+1

)
− τn

(
uS − u?,n

)
= O

(
∆t
∆x

)
(O (∆t) + O (∆x)) .
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Finally the velocities of the third subset are DC at the time-step n. As previously done, we get:
(
u?,n − uS

)
=

(O (∆t) + O (∆x)) that leads to:

τn+1
(
uS − u?,n+1

)
− τn

(
uS − u?,n

)
= O

(
∆t
∆x

)
(O (∆t) + O (∆x)) .

Conclusion. For the same reasons previously exposed, concerning the number of DF and DC, we obtain:

∫
Ωn+1

s,h

Fn+1
RG dΩ −

∫
Ωn

s,h

Fn
RGdΩ =

∆xd

∆t

[
O

(
∆t

∆xd

)
+ O

(
∆t
∆x

(∆t + ∆x)
∆xd−1

)
+ O

(
∆t
∆x

(∆t + ∆x)
∆xd−1

)
+ O

(
∆t
∆x

∆t
∆xd−1

)]
= O (1) + O (∆t) + O (∆x)︸                        ︷︷                        ︸

K∈Ωn+1
s,h ∩Ωn

s,h

+O (∆t) + O (∆x)︸             ︷︷             ︸
K∈DC

+O (∆t)︸︷︷︸
K∈FC

= O (1) + O (∆t) + O (∆x) . (38)

Comparing this relation to Eq 25, one can notice that the term associated to the DC no longer depends on 1
∆t and

that the dependency on ∆x is linear instead of quadratic.

4.3. Numerical validation on SFO

As in the previous subsection 3.3, the impact of the RG formulation is investigated on the convergence in space
and time of the SFO with the Seo & Mittal’s test case [36]. Here we consider the base and linear models.

4.3.1. Regularized base model
The results of the RG base model in comparison of the standard base model for the DF are displayed on Fig. 11.

It is quite obvious to notice the dramatic decrease of the SFO by using the RG formulation instead of the original
approach.

As previously, C2δ
P is used to quantify the SPO amplitude, cf. Eq (26). Fig. 12 shows |C2δ

P | plotted as a function of
grid spacing and time-step for both the RG and standard DF base models. It is noted that there is at least a difference
of one order of magnitude between both the formulations at a given time-step and grid spacing. Then, C2δ

P,σ and C2δ
P,Max

are plotted as a function of grid spacing in Fig. 13 and time-step in Fig. 14. We denote these quantities by Cp2δ
?,σ and

Cp2δ
?,Max where ? stands for the standard or regularized version. When considering time and space variations around

∆t = ∆t0, cf. Fig. 13(a), and D/∆x = 16, cf. Fig. 14(a), they can be fitted by the following power-law:

Cp2δ
RG,σ = ∆t0.377∆x0.9493 and Cp2δ

RG,Max = ∆t−0.0055∆x1.1782. (39)

In subsection 3.3, we concluded that, in the configurations where the SFO can have a large amplitude (coarse grid
spacing, little time-steps), the main term is of order O

(
∆x2

∆t

)
and well represented by Cp2δ

DF,Max. Here, we expect that

this dependence will be changed in O
(

∆t
∆x

∆x2

∆t

)
= O (∆x) due to the introduction of τ ∝ ∆t

∆x .
This dependence is confirmed concerning the space convergence on Figs 13(a) to 13(c) for various fixed time-

steps, and concerning the time-step convergence on Figs 14(a) and 14(b) for various fixed grid spacing. Indeed, the
pressure peaks, measured by C2δ

P,Max, have no more dependence in the time-step when the grid spacing is coarse,
explaining the null time-step and the one spatial order convergences for Cp2δ

RG,Max.
Concerning Cp2δ

RG,σ, the spatial convergence order is conform to the analysis, but the time-step order do not follow
particularly Eq. (38). However, Eq. (38) shows a contribution proportional to O (∆t) leading to a time-step dependence
of Cp2δ

RG,σ as it measures all the contributions (FC and DC) to the SPO. This is the case in Fig. 14(a) - 14(b), even if
the order is lower than one precisely because all the contributions are not proportional to O (∆t).
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Figure 11: CP time histories for the Seo and Mittal’s test case and the base model: (a) ∆t = ∆t0 = 0.002T0, for different grid spacing and (b)
D/∆x = 16 for different time-steps. DF base: standard DF. RG base: regularized DF.

4.4. Regularized linear model

This subsection is devoted to the study of the impact of the linear-interpolation scheme on the pressure spurious
oscillations. Even tough this procedure enables to gain one order of numerical rate of convergence in space leading in
theory to more precise physical results for a same mesh refinement, it is necessary to assess its impact on the SFO by
using once again the Seo and Mittal test case.

The results are presented on the Fig. 15 for the standard and the RG versions of the DF. It can be noted that
the linear interpolation procedure leads to Cp2δ

DF,linear,Max values smaller than the Cp2δ
DF,base,Max ones. As for the base

model, the RG process decreases the C2δ
P,Max values for the linear interpolation also. But this regularization is far away

more efficient for the base model than for the linear model. Hence, the Cp2δ
RG,base,Max values are the smallest ones.

We can notice that, for the linear interpolation scheme, we obtain space convergence orders of C2δ
P,Max higher than

for the base scheme. This stands for the standard and the regularized DF. Without a theoretical analysis as done for
the base scheme, we can only conjecture a link with the fact that the standard and RG DFs equipped with a linear
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Figure 12: |C2δ
P | time histories for the Seo and Mittal’s test case and the base model: (a, b) ∆t = ∆t0 = 0.002T0 for different grid spacing and (c, d)

D/∆x = 16 for different time-steps. RG (resp. DF) denotes the regularized DF method (resp. the standard DF method).

formulation are second order accurate in space, cf. Section 5.1.

4.5. Conclusion

By comparing our results to the literature and particularly to Fig. 14 in [36], it is found that the C2δ
P,σ is decreased

by roughly one order of magnitude when using the standard DF base model (Fig. 13(a) and 14(a)) in comparison with
their original method. Then, using the RG base model enables to gain at least one (or two; depending on the space
and time resolutions) additional order of magnitude leading to similar level of SFO in comparison with their cut cell
method. The main difference lies in the implementation as the RG base model is far more easy to implement than a
cut-cell method.
Also, let us notice that the present results compare well with the ones of Lee & al. (Fig. 15 in [34]). They consider
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Figure 13: C2δ
P,σ and C2δ

P,Max for the Seo and Mittal’s test case versus grid spacing: (a) ∆t = ∆t0 = 0.002T0, (b) ∆t = 1
4 ∆t0 and (c) ∆t = 1

8 ∆t0.

only the space-step evolution of the SFO’s RMS. For common ∆X/∆X0 ∈ [0.16; 0.64], our RG base-model results
(C2δ

P,σ, Fig. 13) as well as our RG linear-model results (C2δ
P,σ ≤ C2δ

P,Max, Fig. 15) are in the same range of values as that
of Lee & al. (or lower).

5. Numerical and physical validation

This section is devoted to the numerical and physical validation of the RG base and linear models and the compar-
ison with the results of the standard DF ones. Three cases have been selected by increasing gradually the complexity
of the physical phenomena at stake from a laminar cylindrical Couette flow to a cylinder with an imposed sinusoidal
motion subjected to a cross-flow.

5.1. Numerical Validation

Our goal is to assess the numerical rate of convergence of the standard and the proposed RG DF methods without
(base model) and with the interpolation scheme, by doing a grid convergence study. A cylindrical Couette flow is
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Figure 14: C2δ
P,σ and C2δ

P,Max for the Seo and Mittal’s test case versus time-steps: (a) D/∆x = 16 and (b) D/∆x = 32.

 0.01

 0.1

 1

 10

1/4 1/3 1/2 1

C
p2δ

∆ x / ∆ x0

DF base
Order 2.12
RG base
Order 1.38
DF linear
Order 2.70
RG linear
Order 1.96

(a) Space convergence of C2δ
P,Max for ∆t0 = 0.002T0.

 0.1

 1

 10

 100

1/8 1/4 1/2 1 2 4

C
p2δ

1/(∆ t/∆ t0)

DF base
Order 0.81
RG base
Order -0.07
DF linear
Order 0.79
RG linear
Order 0.50

(b) Time convergence of C2δ
P,Max for ∆x0 = D/16.

Figure 15: Cp2δ
Max for the base and the linear interpolation schemes for both the DF and RG formulations.

considered and the results compared to the analytic solution by calculating the relative L2(Ω f ) norm ε2 of the error
given by:

ε2 =

√√√√∑N f

i=0(ui − ui
re f )

2∑N f

i=0 ui
re f

2 (40)

where the superscript i denotes the i-th face of the Eulerian grid, ui
re f a reference velocity calculated on the i-th face

thanks to the analytic solution and N f the total number of faces in the fluid region Ω f .
This problem has already been considered in the frame of IBMs [39, 44, 45]. It allows to numerically estimate the

order of spatial accuracy of the proposed methods on problem involving rotating geometries.
Fig. 16(a) presents the geometrical features of the computational domain Ω = [0, L]× [0, L] composed of the solid

and fluid domains: Ω = Ωs ∪ Ω f . The immersed boundaries Σ1 and Σ2 mimic the inner and outer cylinders of radius
r1 and r2. The inner cylinder rotates clockwise (ω1 > 0) while the outer cylinder rotates in the counterclockwise
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Figure 16: Cylindrical Taylor-Couette problem : (a) computational domain and (b) relative L2(Ω f ) norm of the error vs the ratio of the domain
length L over the number of elements. The CFL number is set to 1. Comparison of the base model with the interpolation model for both the
standard and the regularized direct forcing.

(ω2 < 0). In all calculations, we assume the Reynolds number Re =
|ω1 |r2

1
ν

to be set to 1. Then, the Taylor number

Ta = 0.5Re2 (r1+r2)(r2−r1)3

r4
1

is 3
2 < Tac where Tac ≈ 1.712 is the critical Taylor number [46]. This assumption implies a

strictly 2D flow.
Fig. 16(b) presents the L2(Ω f ) norm ε2 defined by the Eq. (40). A quasi-linear numerical rate of convergence is

obtained for the base model and a quasi-quadratic rate for the linear interpolation scheme for both the DF and the RG
formulations. These results confirm the enhancement of accuracy expected with the linear interpolation model, and
show that the regularization method do not deteriorate the convergence order.

5.2. Physical Validation

A static cylinder in a cross-flow with Re = 100 and an imposed sinusoidal-motion cylinder subjected to a cross-
flow of Reynolds number Re = 185 have been selected for the physical validation. Here we focus on physical
parameters such as hydrodynamic coefficients.

5.2.1. Static cylinder in a cross-flow
We consider in this subsection the classic test case of a static circular cylinder in a cross-flow. The flow is char-

acterized by the Reynolds number Re = UD
ν

where U is the incoming velocity, D the cylinder diameter and ν the
kinematic viscosity of the fluid. The simulations are performed in the unsteady laminar regime with Re = 100. The
computational domain Ω, illustrated in the Fig. 17(a), corresponds to a square of length L with a centered immersed
cylinder. The boundaries of the computational domain ∂Ω must be located sufficiently far enough to reduce the im-
pact of boundary conditions on vortex development behind the cylinder. Thus, the ratio L/D is set to 60. Symmetry
conditions are prescribed on ΓS , imposed velocity at the inlet and imposed pressure at the outlet. The hydrodynamic
coefficients considered in this study are the drag CD = Fx

0.5ρU2D and the lift CL =
Fy

0.5ρU2D with (Fx, Fy)t the fluid
mechanical constraint integrated on Σ. The results are compared quantitatively in terms of these hydrodynamic coef-
ficients and confront with Introı̈ni & al. [39] that developed a penalized direct forcing method, quite similar to ours,
of order 2 in space. Three uniform Cartesian grids are set, ranging from D/∆x = 12.5 to D/∆x = 50 with ∆x the size
of the Cartesian cells.

Fig. 17(b) gives an illustration of the type of CD and CL signals obtained by the simulations with D/∆x = 12.5
and the standard base-model DF method. The streamlines and the vorticity are displayed on Figs 17(c) and 17(d).
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The periodic regime is reached after roughly 25 periods. Consequently, the computation of the time average C? and
the amplitude C

′

? of the signal C? is systematically done after 30 periods. They are calculated thanks to the standard
deviation σC?

by the following relation: C
′

? =
√

2σC?
as CD and CL are harmonic signals. Tab. 1 presents the results

of the linear interpolation schemes for D/∆x = 25 and Fig. 18 in their entirety.
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(c) (d)

Figure 17: Static cylinder in a cross-flow with Re = 100: (a) schematic representation of a fictitious computational domain Ω on a Cartesian grid
with the solid domain ΩS , the liquid domain Ω f and the immersed boundary Σ, (b) time history of the hydrodynamic coefficients CD and CL, (c)
streamlines and (d) vorticity. Standard base-model DF method with a computational domain and grid spacing ratio of L/D = 60 and D/∆x = 25.

Stand. linear Relat. deviation RG linear Relat. deviation Introı̈ni & al. [39] Range [39]
vs [39] (%) vs [39] (%)

D/∆x = 25 and L/D = 60 D/∆x = 50
and L/D = 60

CD 1.3890 3.1 1.3777 2.3 1.347 1.317 - 1.392
C
′

D 0.01013 12.6 0.009512 5.7 0.009 0.009 - 0.012
CL
′ 0.3429 5.2 0.3338 2.4 0.326 0.303 - 0.349

S t 0.165 < 0.2 0.165 < 0.3 0.165 0.164 - 0.172

Table 1: Hydrodynamic coefficients associated with the problem of unsteady flow around a static cylinder, Re = 100 and D/∆x = 25.

Qualitatively, both the standard and the RG formulations of the (base or linear) DF method have the same trend
when refining the mesh. That is coherent with the way the RG formulation is implemented. Quantitatively, whatever
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Figure 18: Static cylinder in a cross-flow with Re = 100: (a) time-averaged drag, (b) drag amplitude and (c) lift amplitude for both the standard
and the RG formulations. Comparison with the results of Introı̈ni & al. [39] (L/D = 60 and D/∆x = 50).

formulation is considered (standard or RG linear), the time-averaged drag and the drag and lift amplitudes are well
calculated with less than 2%-5% of relative deviation for the finest mesh.

Given the results obtained for this test case, it can be emphasized that the RG formulation does not alter the
hydrodynamic coefficients values. In fact, the RG linear DF provides even better results than the standard linear DF.

5.2.2. Oscillating cylinder in cross-flow
The effect of the cylinder motion on the hydrodynamic coefficient values is investigated on this test case. We

expect that the RG formulation should improve the results in comparison with the original one as it cut off the force
oscillations. This test case consists in one of the numerical experiments conducted by Guilmineau and Queutey [47]:
a circular cylinder with an imposed harmonic motion. As for the static cylinder, the flow is characterized by the
Reynolds number Re = UD

ν
. The simulations are performed in the unsteady laminar regime with Re = 185. The

boundary conditions and the computational domain are the same as for the static cylinder test case.

The imposed sinusoidal motion is defined by:{
xc(t) = xc(0) + Aecos(2π fet)
yc(t) = yc(0)

where (xc(0), yc(0))t are the initial coordinates of the cylinder, Ae the amplitude of the oscillation and fe its frequency.

Simulations are performed for ratios of Ae/D = 0.2 and fe/ f0 = 1.1 where f0 is the natural shedding frequency
from the stationary cylinder at Re = 185. From [47], we set S t0 =

f0D
U ≈ 0.19 with U the incoming velocity. Then our

reference Strouhal number is S tre f = 1.1 S t0 ≈ 0.209. Here again, three uniform Cartesian grids are set characterized
by: D/∆x = 12.5, D/∆x = 25 and D/∆x = 50. Figs 19(a) and 19(b) give an illustration of the flow physic, displaying
the stream lines and the vorticity around the circular cylinder when it reaches its upper position. The results are
compared quantitatively in terms of hydrodynamic coefficients and confront with the results from Guilmineau and
Queutey [47]. In this test case, the time-averaged drag coefficient CD and the standard deviations CD,σ and CL,σ of the
drag and lift are considered.

Fig. 20 does a comparison between the standard and the RG methods equipped with the base model in term of
force oscillations for the coarsest space-step D/∆x = 12.5. It can be clearly noticed that the RG formulation decreases
drastically the force oscillations without altering the physics. This is qualitatively confirmed by a comparison between
the drag and lift coefficients over a few periods of time obtained by the RG-linear DF method and by Guilmineau and
Queutey, cf Fig. 21.
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(a) (b)

Figure 19: Unsteady flow around a cylinder in a harmonic motion: (a) stream lines and (b) vorticity for the RG linear formulation when the cylinder
is at its upper position. The stream lines are colored in function of the velocity along the x axis value. The vorticy red lines are negative and the
blue one are positive.
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Figure 20: Time history of the drag and lift coefficients over a period of time for (a) the standard linear and (b) the RG linear formulations with a
computational domain of L/D = 60 and a grid spacing ratio of D/∆x = 12.5; T = 1/ fe.

Stand. linear Relative deviation RG linear Relative deviation Guilmineau & al. [47]
vs [47] (%) vs [47] (%)

L/D = 60 L/D = 50
CD 1.415 0.4 1.366 3.8 1.42

CD,σ 0.134 10 0.119 20 0.149
CL,σ 0.844 5.9 0.840 6.4 0.897
S t 0.203 2.9 vs S tre f 0.206 1.4 vs S tre f 0.214

Table 2: Hydrodynamic coefficients associated with the problem of unsteady flow around a cylinder in a harmonic motion [47], Re = 185 and
D/∆x = 25. Our reference Strouhal number is S tre f = 1.1 S t0 ≈ 0.209.

Tab. 2 shows the values of the hydrodynamic coefficients computed with the linear model and a grid spacing ratio
of D/∆x = 25. The results for all the mesh sizes and both the formulations are displayed on Fig. 22. As a whole,
for a given hydrodynamic coefficient, all the computations converge in space toward the same value as expected. The

26



(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 200  205  210  215  220  225  230  235  240

A
di

m
en

si
on

al
iz

ed
 c

oe
ffi

ci
en

ts

t/T

RG linear

Drag
Lift

(b)

Figure 21: Comparison of the drag and lift coefficients over a few periods of time: (a) picture from the article of Guilmineau and Queutey [47] and
(b) results from the RG-linear formulation with a computational domain of L/D = 60 and a grid spacing ratio of D/∆x = 25. T = 1/ fe.

standard and RG DF formulations retain the same behavior when decreasing the grid size. We conclude that the RG
formulation is able to reduce the SFO while providing good results in comparison with the literature. The relative
deviation of the hydrodynamic coefficients remains lower than 3% (resp. 9%) for CD and CL,σ (resp. CD,σ).
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Figure 22: Unsteady flow around a cylinder in a harmonic motion [47]: (a) time-averaged drag, (b) drag standard deviation and lift standard
deviation for both the standard and the RG formulations of the DF method (base and linear models) in comparison with results from Guilmineau
and Queutey [47].

6. Summary

The main goal of this article was twofold. First, we have driven a theoretical analysis of the dependency to space
and time steps of the SFO magnitude observed in the simulations of moving boundary problems with sharp-interface
IBM. The SFO decreases by decreasing the grid spacing and increasing the time-step. Second, we have presented a
regularized formulation of the DF method, capable of cutting off the SFO. As the standard DF, it consists in solving
the Navier-Stokes equations on a Cartesian grid by adding a direct forcing term that mimicks the presence of the solid.
But here, the forcing term is regularized through an appropriated weighting. Contrary to the simple solid volume frac-
tion weighting, the expresion of the regularizing function of the forcing term is carefully chosen to smooth the fluid
temporal discontinuity through the fluid-solid interface leading to a dramatic reduction of the SFO without altering
the physical phenomena at stake. Concerning the design of the immersed boundary condition for the velocity, the RG
formulation introduces an explicit-in-time weighting between the values resulting from the interpolation scheme and
from the flow-solver numerical scheme. This velocity mixing is explicit: that is no iteration is run to get an implicit
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mixing between the two velocities as in [30, 31], leaving the native numerical scheme of a given code unchanged.
Here, two interpolation schemes have been considered: the direct solid velocity affectation and the linear interpolation
from [39].

To assess the spatial and time dependencies of the oscillation amplitude, an analysis has been conducted to pre-
dict the variation of the forcing term for the standard and RG DF methods with a first-order interpolation model.
Concerning the standard DF method, the SFO behavior is found in O( ∆x2

∆t ) + O(∆x) due to the DCs that bring the
main contribution. For small time-steps, this is in good agreement with the literature: O( ∆x2

∆t ) [34] or O( ∆xd

∆t ) [36].
Concerning the RG DF method, the SFO behavior is found in O(∆t) + O(∆x). As the term O( ∆x2

∆t ) is replaced by
O(∆t), it comforts the fact that the RG formulation decreases the spurious force oscillations. Then, the analysis results
have been confronted to the numerical test case of Seo & Mittal [36], an oscillating cylinder in a fluid at rest with a
Reynolds number of about 78, using both the original and the RG approaches, by quantifying the SFO thanks to the
pressure-drag 2-δ discontinuity. The numerical spatial and time dependencies of the oscillations are very close to the
theoretical ones predicted by our analysis for the standard and the RG DF methods.
From a general point of view, the RG approach decreases the oscillations by at least one to two orders of magnitude
over a large range of grid spacing and time-step without increasing the computational cost. The results obtained in
this matter are quite similar to [36] that used a cut-cell method that is much more complicated to implement.

Through the numerical simulation of the academical test case of the laminar cylindrical Taylor-Couette flow [39],
it results that the quadratic numerical rate of convergence in L2 norm of the linear DF method is kept by the RG DF
method.
At last, two numerical experiments have been conducted to assess the physical validity of the RG formulation: a
static cylinder subjected to a cross-flow with a Reynolds number of 100 and a cylinder with an imposed sinusoidal
motion subjected to a cross-flow of Reynolds number 185. When the solid is in motion, the RG formulation de-
creases dramatically the force oscillations especially when the time-step and/or the mesh refinement are quite low
(i.e. 10 < D/∆x < 20). Generally speaking, considering the hydrodynamic coefficients, the behaviour of the original
method tends to be the same as the RG formulation as expected when refining the mesh. It is coherent with their
implementations.
These results are quite in good agreement with the literature and prove that the RG linear method is capable of com-
puting complex fluid flows around moving boundaries.

Concerning our field of applications, this work constitutes a first step toward more complicated FSI problems in
two-phase flows such as the fluid-elastic instability of moving tubes in a tube bundle subjected to a transverse two-
phase flow. Indeed, the regularized direct forcing approach adopted in this article is easy to couple with ingredients
for this kind of simulations as level-set methods using, for instance, the Desprès-Lagoutière scheme for advection [48]
on the fluid density.
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