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Space-time paraproducts for paracontrolled
calculus, 3d-PAM and multiplicative Burgers
equations

I. BAILLEUL] F. BERNICOTP and D. FREYf

ABSTRACT. We sharpen in this work the tools of paracontrolled calculus in order to pro-
vide a complete analysis of the parabolic Anderson model equation and Burgers system
with multiplicative noise, in a 3-dimensional Riemannian setting, in either bounded or
unbounded domains. Aiming that, we introduce a pair of intertwined space-time para-
products on parabolic Holder spaces, with good continuity. This constitutes to a first
step in building a higher order paracontrolled calculus via semigroup methods.
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1
Introduction

It is probably understated to say that the work [23] of Hairer has opened a new
era in the study of stochastic singular parabolic partial differential equations. It
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provides a setting where one can make sense of a product of a distribution with
parabolic non-positive Holder regularity index, say a, with a function with non-
negative regularity index, say b, even in the case where a + b is non-positive, and
where one can make sense of and solve a large class of parabolic stochastic singular
partial differential equations by fixed point methods. The parabolic Anderson model
equation (PAM)

(0t + L)u = ud, (1.1)
studied in Section [5] in a 3-dimensional unbounded background, is an example of
such an equation, as it makes sense in that setting to work with a distribution (
of Holder exponent o — 2, for some o < %, while one expects the solution u to the
equation to be of parabolic Holder regularity «, making the product u¢ undefined
since a + (o —2) < 0.

The way out of this quandary found by Hairer has its roots in Lyons’ theory of
rough paths, which already faced the same problem. Lyons’ theory addresses the
question of making sense of, and solving, controlled differential equations

dz = Vi(z) dX} (1.2)
in R? say, driven by an Rf-valued %—Hélder control X = (Xl, A Xé), with p > 2,

and where V; are sufficiently regular vector fields on R¢. Typical realizations of a
Brownian path are %—Hélder continuous, with p > 2, for instance. One expects a

solution path to equation (1.2)) to be %—Hélder continuous as well, in which case

the product V;(z)dX}, or the integral Sé Vi(zs) dX!, cannot be given an intrinsic
meaning since 1% + (1% — 1) < 0. Lyons’ deep insight was to realize that one can make
sense of, and solve, equation if one assumes one is given an enriched version
of the driving signal X that formally consists of X together with its non-existing
iterated integrals. The theory of regularity structures rests on the same philosophy,
and the idea that the enriched noise should be used to give a local description of the
unknown u, in the same way as polynomials are used to define and describe locally

C* functions.

At the very same time that Hairer built his theory, Gubinelli, Imkeller and
Perkowski proposed in [19] another implementation of that philosophy building on
a different notion of local description of a distribution, using paraproducts on the
torus. The machinery of paracontrolled distributions introduced in [19] rests on a
first order Taylor expansion of a distribution that happened to be sufficient to deal
with the stochastic parabolic Anderson equation on the 2-dimensional torus,
the stochastic additive Burgers equation in one space dimension [19], the <I>§L equation
on the 3-dimensional torus [11, [37] and the stochastic Navier-Stokes equation with
additive noise [35 B6). The KPZ equation can also be dealt with using this setting
[21]. Following Bony’s approach [9], the paraproduct used in [19] is defined in terms
of Fourier analysis and does not allow for the treatment of equations outside the flat
background of the torus or the Euclidean space, if one is ready to work with weighted
functional spaces. The geometric restriction on the background was greatly relaxed
in our previous work [4] by building paraproducts from the heat semigroup asso-
ciated with the operator L in the semilinear equation. A theory of paracontrolled
distributions can then be considered in doubling metric measure spaces where one
has small time Gaussian estimates on the heat kernel and its 'gradient’ — see [4].
This setting already offers situations where the theory of regularity structures is not
known to be working. The stochastic parabolic Anderson model equation in a 2-
dimensional doubling manifold was considered in [4] as an example. The first order



"Taylor expansion’ approach of paracontrolled calculus seems however to restrict a
priori its range of application, compared to the theory of regularity structures, and
it seems clear that a kind of higher order paracontrolled calculus (see the last para-
graph of Section [2)) is needed to extend its scope. We tackle in the present work the
first difficulty that shows off in this program, which is related to the crucial use of
commutator estimates between the heat operator and a paraproduct, which is one of
the three workhorses of the paracontrolled calculus method, together with Schauder
estimates and another continuity result on some commutator.

Working in unbounded spaces with weighted functional spaces requires a careful
treatment which was not done so far. We shall illustrate the use of our machinery
on two examples: The parabolic Anderson model (PAM) equation in a (even-
tually unbounded) 3-dimensional Riemannian manifold, and Burgers equation with
multiplicative noise in the 3-dimensional bounded Riemannian manifold. Hairer and
Labbé have very recently studied the (PAM) equation in R? from the point of view
of regularity structures [25] — see also the work [27] of Hairer and Pardoux. They
had to introduce some weights w to get a control on the growth at spatial infin-
ity of quantities of interest. A non-trivial part of their work consists into tracking
the time-behavior of their estimates, with respect to the time, which requires the
use of time-dependent weights — see Section [3.4] for details about them. We also
need to use weighted spaces, for the same reasons, and working with the weights of
[277, 25] happens to be convenient. Our treatment is however substantially easier,
as we do not need to travel backwards in time such as required in the analysis of
the reconstruction operator in the theory of regularity structures. As a matter of
fact, our results on the (PAM) equation give an alternative approach, and provide a
non-trivial extension, of the results of [25] to a non-flat setting, with a possibly wider
range of operators L than can be treated presently in the theory of regularity struc-
tures. As for Burgers equation with multiplicative noise, it provides a description
of the random evolution of a velocity field subject to a random rough multiplicative
forcing, and whose dynamics reads

(0 + L)u + (u-V)u = Mcu, (1.3)
where ( is a 3-dimensional white noise with independent coordinates, and
MC’LL = (<1u17 CZ,LLQ’ C3u3)’

for the velocity field u = (ul,u2,u3) . M3 — R3. With zero noise ¢, this 3-
dimensional Burgers system plays a very important role in the theory of PDEs
coming from fluid mechanics, and later from condensed matter physics and statis-
tical physics. It has been proposed by Burgers in the 30’s as a simplified model
of dynamics for Navier-Stokes equations. A change of variables, called after Cole
and Hopf, can be used to reduce the deterministic quasilinear parabolic equation
to the heat equation, thus allowing the derivation of exact solutions in closed form.
Despite this fact, the study of Burgers system is still very fashionable as a bench-
mark model that can be used to understand the basic features of the interaction
between nonlinearity and dissipation. Motivated by the will to turn Burgers equa-
tion into a model for turbulence, stochastic variants have been the topic of numerous
recent works [8, 28, 29, 23| [19, 21], where a random forcing term is added in the
equation, mainly in one space dimension, with an additive space-time white noise
— that is with a space-time white noise instead of M¢u with ( space white noise.
The Cole-Hopf transformation can formally be used again, and turns a solution to
the 1-dimensional stochastic Burgers equation with additive space-time noise to the



heat equation with multiplicative space-time noise, with a very singular noise, such
as detailed in [2I]. A similar change of variable trick can be used for the study
of the above multidimensional stochastic Burgers system with multiplicative noise
; we shall analyse it in Section Also, one can consider the study of this ex-
ample as a first step to understanding the dynamics of the 3-dimensional stochastic
incompressible Navier-Stokes equation, with multiplicative noise, where the incom-
pressibility brings the additional difficulty to deal with the Leray projector to keep
the vanishing divergence property. In any case, equation seems not to have
been studied so far, to the best of our knowledge.

Contrary to the theory of regularity structures, whose introduction requires to
set up a whole new algebraic-analytic setting, the analytic part of paracontrolled
calculus is based only on classical ingredients, and its use in solving some singular
stochastic partial differential equation involves an elementary reasoning. This ma-
chinery is described in simple terms in Section [2] which serves as a baseline for the
study of the parabolic Anderson and Burgers equations in Section

The geometric and functional settings in which we lay down our study are de-
scribed in Section In short, we work on a doubling metric measure manifold
(M,d, 1), equipped with a Riemannian operator L given by the finite sum of squares
of vector fields. The heat semigroup of the operator L is assumed to have a ker-
nel that satisfies Gaussian pointwise bounds, together with its iterated derivatives;
precise conditions are given in the item Conditions in the beginning of Section [3.1
Such a setting covers a number of interesting cases. One can use the semigroup to
construct in an intrinsic way the scale of spatial Holder spaces C*(M) on M and a
scale of parabolic Hélder spaces C*([0,T] x M) in which the (PAM) and Burgers
equations will eventually be solved. Some Schauder-type regularity estimates for the
heat semigroup, proved in Section [3.4] will be instrumental for that purpose. We
call resolution map of the heat semigroup the map that associates to a distribution
f the solution to the equation (¢ + L)v = f, with zero initial condition. One of our
main contributions is the introduction of a pair of paraproducts built from the heat
semigroup, intertwined via the resolution map, that are used to get exact formulas
where formulas with a remainder were used previously [19, 21} [4]. These two para-
products share the same algebraic structure and the same analytic properties, most
importantly a cancellation property that we introduce in Section It allows in
particular to set the stage in a more natural function space than previously done.
They consist in some sense of space-time paraproducts in the parabolic variable.
The powerful relies on a suitable combination of the Schauder estimates with these
space-time new paraproducts, which allows us to obtain the expected and desired
estimates in L CY(M) spaces (see Remark [17] for more details).

The technical core of the paracontrolled calculus, such as defined by Gubinelli,
Imkeller and Perkowski, is a continuity estimate for a corrector that allows to make
sense of an a priori undefined term by compensating it by another potentially un-
defined term with a simpler structure, and to separate analytic from probabilistic
considerations. We prove in Section [£.2] that this result holds in our general setting
as well. As a result, we are able to prove the following kind of results on the (PAM)
in a 3-dimensional (unbounded) measured manifold (M, d, 1) that is Ahlfors regular,
working with a second order differential operator L that satisfies some mild assump-
tions stated in Section We also study the multiplicative Burgers equations in
bounded ambiant space. In statements below, £ stands for a space white noise on
(M, p), and &° := (e_EL)§ stands for its regularization via the heat semigroup. Full
details on the mathematical objects involved in the statements will be given along



the way. The notion of solution to the (PAM) equation (1.1)) depends on a notion
of (PAM)-enhancement ¢ of a distribution ¢ € C*~2(M). To every such enhance-
ment of ¢ is associated a Banach space D(@ of distributions within which one can

make sense of the equation and look for the solution to it — this is the space of
paracontrolled distributions; see Sections [2| and

Theorem 1. Given aw€ (£,1), and a (PAM)-enhancement of a distribution ¢ € C*2,
the parabolic Anderson model equation on M (a 3d space) has a unique paracontrolled
solution in D(@ Moreover, the space white noise & has a natural (PAM)-enhancement,
and there exists a sequence ()\E)0<€<1 of time-independent and deterministic functions

such that for every finite positive time horizon T and every initial data ug € Cy(M),
the solution u® of the renormalized equation

o + Luf = u® (£ — X°), u®(0) = ug

converges in probability to the solution u € Cff,([O,T] X M) of the parabolic Anderson
model equation on M associated with the natural enhancement of £&. The result holds
with w =1 and T' = oo if u(M) is finite.

Let emphasize that uniqueness has to be understood as the unique solution in
the suitable class of paracontrolled distributions, in which we solve the problem.
Note also that we use weighted spatial and parabolic Holder spaces to deal with
the unbounded nature of the ambient space M. In R3, one can typically work with
the weights w(z, 7) = e"*1*) and wy(z) = w(z,0) a constant — these weights were
already used by Hairer and Labbé in [25]; see section Hairer and Labbé [25] are
able to work in the range —% < a < 0, in the setting of regularity structures; we do
not know how to deal with such a situation in our setting. Note on the other hand
that we described in the appendix of [4] how to extend the paracontrolled calculus
to a Sobolev setting. Together with the present work, this allows to solve the
(PAM) equation in Sobolev spaces WP for a large enough finite positive exponent
p. The above Holder setting corresponds to working with p = co. The robustness
of our framework in terms of the operator L or the ambient geometry is useful,
at least insofar as the tools of regularity structures have not been adapted so far
in a non-flat setting. Moreover, as explained before, it is easier to deal with the
time-dependent weight through the current paracontrolled approach than via the
regularity structures theory, as done in [25].

As we shall see, the computations needed to handle the (PAM) equation and
multiplicative Burgers system involve almost the same quantities. As far as the
latter is concerned, we can prove the following result, under the same conditions on
the ambient geometry and the operator L as above. We state the result here in the
same framework as (PAM) with the additional assumption that the ambiant space
M is bounded (a prototype of such framework is given by the torus or the sphere).
We identify in the renormalized equation below a symmetric matrix d with its
associated quadratic form. We can work in such a bounded domain with the weight
w: (x,7) — €7, for a large enough positive numerical constant . Note here that
the above mentioned notion of enhancement E of a distribution ¢ € C®~2 depends
on the equation under study, which is why we called it (PAM)-enhancement above
there.

Theorem 2. Given « € (%, %) and a (Burgers)-enhancement of ¢ € C®~2, the mul-

tiplicative Burgers equation (1.3) on M (a bounded 3d space) has a unique local in
time paracontrolled solution in D(@ Moreover, the space white noise £ has a natural



(Burgers)-enhancement, and there exists sequences of time-independent and deter-

ministic R3-valued functions ()\5)0<E<1 and (3 x 3)-symmetric-matrix-valued functions

(d‘€)0<8<1 on M, such that if one denotes by u® the solution of the renormalized equation
ou® + Lu® + (u° - V)u' = Mee_yeu® — d° (u°, uf) u®(0) = ug (1.4)

with initial condition ug € C*®, then u® converges in probability to the solution u € C®
of the multiplicative Burgers equation, locally in time.

All details on Theorems [I] and 2l can be found in Section Bl These statements are
two-sided, with the well-posedness of the paracontrolled version of the equations on
the one hand, and the link between this notion of solution and the convergence of
solutions to a renormalized regularized version of the initial equation on the other
hand. A full proof of these statements requires a renormalization step that will be
done in a forthcoming work.

Notations. Let us fix here some notations that will be used throughout the work.

e Given a metric measure space (M, d, ), we shall denote its parabolic version
by (M, p,v), where M := M x R is equipped with the parabolic metric

p((x,7), (y,0)) = d(z,y) ++/|7 — 0

and the parabolic measure v = p ® dt. Note that for (z,7) € M and small
radii > 0, the parabolic ball B ((:U, T), T) has volume

V(BM(($,T),T)> A ’I‘QM(B(SU,T)).

We shall denote by e a generic element of the parabolic space M.

e Given an unbounded linear operator L on L*(M), we denote by Do(L) its
domain. We give here the definition of a distribution, as it is understood in
the present work. The definition will always be associated with the operator
L described in Subsection [3.1] below.

Fix a point 0 € M and then define a Fréchet space S, of test functions f
on M requiring that

(0 1) (14 dto, ) oz <o
,dv
for all integers aq,...,aq; we equip S, with the metric
I7l:= sup LA (L) (L +dlo, )Ly

a1,a2,a3,a64€N 2,dv

A distribution is a continuous linear functional on S,; we write S!, for the set
of all distributions.

(Let us point out that the arbitrary choice of the point o € M is only
relevant in the case of an unbounded ambient space M; even in that case,
the space S, does not depend on o, for o ranging inside a bounded subset of

e As a last bit of notation, we shall always denote by K¢ the kernel of an
operator @, and write <p for an inequality that holds up to a positive mul-
tiplicative constant that depends only on T.



e Spatial Holder spaces C7 and parabolic Space-time Holder spaces C7 will be
rigorously defined in Section [3.3] and the weights w and p, will be introduced
in Section To deal with remainder terms in some paracontrolled expan-
sions, we shall use the following notation. For v € R and ¢ a non negative
integer, we shall denote by (7). an element of CZp,,, and by (v )% an element

of LYCLp..-

2

Paracontrolled calculus in a nutshell

The theories of regularity structures and paracontrolled calculus aim at giving
a framework for the study of a class of classically ill-posed stochastic parabolic
partial differential equations (PDEs), insofar as they involve illicit operations on the
objects at hand. This is typically the case in the above parabolic Anderson model
and Burgers equations, where the products u¢ and M¢u are a priori meaningless,
given the expected regularity properties of the solutions to the equations. So a
regularization of the noise does not give a family of solutions to a regularized problem
that converge in any reasonable functional space to a limit that could be defined
as a solution to the original equation. To bypass this obstacle, both the theory
of regularity structures and paracontrolled calculus adopt a point of view similar
to the point of view of rough paths analysis, according to which a good notion of
solution requires the enhancement of the notion of noise into a finite collection of
objects/distributions, built by purely probabilistic means, and that a solution to
the equation should locally be entirely described in terms of these objects. This
collection of reference objects depends on the equation under study, and plays in
the setting of regularity structures the role played by polynomials in the world of
C* maps, where they provide local descriptions of a function in the form of a Taylor
expansion. Something similar holds in paracontrolled calculus. In both approaches,
the use of an ansatz for the solution space allows to make sense of the equation
and get its well-posed character by deterministic fixed point methods, and provides
as a consequence solutions that depend continuously on all the parameters in the
problem.

To be more concrete, let us take as an introduction to these theories the example
of the 2-dimensional (PAM) equation, fully studied in [23| [19, 24 4]. The space
white noise ¢ is in that case (—17)-Holder continuous, and the intuition suggests
that the solution u to the (PAM) equation should be (17 )-Hdélder continuous, as a
consequence of the regularizing effect of the heat semigroup. So at small time-space
scales, u should essentially be constant, as a first approximation. This could sug-
gest to try a perturbative approach in which, if one denotes by Z the solution to
the equation (0, + A)Z = (, with null initial condition, one looks for a distribu-
tion/function v := u — Z with better regularity than the expected regularity of w,
so as to get a well-posed equation for v. Such an attempt is bound to fail as v needs
to satisfy the same equation as u. The same trick invented by Da Prato-Debbusche
in their study of the 2-dimensional stochastic quantization equation [I4], also fails
in the study of 3-dimensional scalar <I>§ equation, but a local ’version’ of this idea
is at the heart of the theory of regularity structures, while a tilted version of that
point of view is also the starting point of paracontrolled calculus. Both make sense,
with different tools, of the fact that a solution should locally “look like” Z. Whereas
'usual” Taylor expansions are used in the theory of regularity structures to compare
a distribution to a linear combination of some given model distributions constructed



by purely probabilistic means, such as the a priori undefined product Z(, the para-
controlled approach uses paraproducts as a means of making sense of the sentence
“u looks like Z at small scales”, such as given in the definition below. For readers
unfamiliar with paraproducts, recall that any distribution f can lle described as an
infinite sum of smooth fun(:uions fi with the Fourier transform f; of f; essentially
equal to the restriction of f on a compact annulus depending on 7. A product of
two distributions f and g can thus always be written formally as

fo=> figi= D, figi+ >, figi+ > figj

i<j—2 li—jl<1 j<i—2 (2.1)
=: I (g) + 1(f, 9) + y(f).

The term II¢(g) is called the paraproduct of f and g, and the term II(f, g) is called
the resonant term. The paraproduct is always well-defined for f and ¢ in Holder
spaces, with possibly negative indices « and (8 respectively, while the resonant term
only makes sense if a + 8 > 0. (The book [2] provides a gentle introduction to
paraproducts and their use in the study of some classes of PDEs.) This result of
Bony on paraproducts [9] already offers a setting that extends Schwartz operation
of multiplication of a distribution by a smooth function; it is not sufficient however
for our needs, even for the (PAM) equation in dimension 2, as u is expected there to
be 17 -Holder and ¢ is (—17)-Holder in that case. Needless to say, things are even
worse in dimension 3 and for Burgers system. However, the point is that we do not
want to multiply any two distributions but rather very special pairs of distributions.
A reference distribution Z in some parabolic Holder space C¢, defined later, is given
here.

Definition. Let 3 > 0 be given. A pair of distributions (f,g) € C* x C? is said to be
paracontrolled by 7 if

(f.9)F:= f —T0y(Z) e C**7.

The distribution g is called the derivative of f with respect to Z. The following
elementary remark gives credit to this choice of name. It also partly explains why
we shall solve the (PAM) equation in the way we do it here — using some kind of
Cole-Hopf transform. Assume « is positive, and write (2a) for a function in C2*
that may change from line to line. For a pair (f, f) paracontrolled by Z, one can
write f = eZg, for some function g in C2*. It suffices indeed to notice that Bony’s
decomposition gives

el f = I, z(f) + Hf(e_Z) + (2a)
=Tz (I1p(2)) + U (II_,-2(2)) + (20)
=,-2;(Z) —-2;(Z) + (20) = (200).

We used in the second and third equalities two elementary results on paraproducts
which are well-known in the classical setting, and proved below in the more general
setting of the present work.

The twist offered by this definition, as far as the multiplication problem of u by ¢
is concerned, is the following. Take for Z the solution to the equation (¢; +L)Z = (,
with null initial condition; the noise ¢ is thus here (o — 2)-Holder. From purely
analytic data, the product u( is meaningful only if @ + (o — 2) > 0, that is a > 1.



For a distribution (u,u’) controlled by Z, with 8 = « say, the formal manipulation
u¢ = ILu(¢) + ¢ (u) + I(u, ¢)
= TL,(¢) + ¢ (u) + I(ILy (2), ¢) + (2], €)
=: I, () + ¢ (u) + C(Z,4', ) + ' II(Z,¢) + I1(( 2], €),

gives a decomposition of u{ where the first two terms are always well-defined, with
known regularity, and where the last term makes sense provided 2a + (o — 2) > 0,
that is a > % It happens that the corrector

C(Z, /', ¢) =111y (2),¢) — vII(Z,()

can be proved to define an (a+a+ (a—2))-Hélder distribution if o > 2, although the
resonant term II(IL,(Z),¢) is only well-defined on its own if @ > 1. So we see that
the only undefined term in the decomposition of u( is the product u'II(Z, ), where
the resonant term II(Z, () does not make sense so far. This is where probability
comes into play, to show that one can define a random distribution II(Z, () as a
limit in probability of renormalized quantities of the form II(Z¢,(%) — ¢, where
(¢ is a regularized noise, with associated Z¢, and ¢° is a deterministic function, a
constant in some cases. The convergence can be proved to hold in C**+(@=2) so
the product «'II(Z,() eventually makes perfect sense if a + (2o — 2) > 0, that

is a > % This combination of analytic and probabilistic ingredients shows that

one can define the product u{, or more properly (u,u’)(, for a > %, which is
definitely beyond the scope of Bony’s paradigm. Once the distribution ¢ has been
enhanced into a pair ¢ := (C JI(Z, ¢ )) with good analytic properties, one can define

the product (u,u’)( as above for a generic distribution paracontrolled by Z, and
reformulate a singular PDE such as the (PAM) equation in dimension 2 as a fixed
point problem in some space of paracontrolled distribution, and solve it uniquely by
a fixed point method. Note that the very notion of product, and hence the meaning
of the equation, depends on the choice of enhancement of ¢ into (.

The above reasoning will not be sufficient, however, to deal with the (PAM) and
multiplicative Burgers equations in dimension 3, for which a < %, and one needs
first to reformulate the equation differently to make it accessible to this first order
expansion calculus. In analogy with Lyons’ rough paths theory, and parallelly to
the logical structure of the theory of regularity structures, one may also consider
developing a higher order paracontrolled calculus where a collection of reference
functions (71, .., Zx), with increasing regularity (for example Z; of regularity i« for
some « > 0), are given, and used to give some sort of Taylor expansion of a function

f € C% of the form
(Fr 910 g0)F = f = (U, (Z1) + oo + 11 (Z1)) € CROHE,

for some tuple (g1, .., gx) of C* functions with similar expansions at lower order. We
shall develop this framework in a forthcoming work.

3

Geometric and functional settings

We describe in this section the geometric and functional settings in which we shall
construct our space-time paraproducts in Section [4, and provide a number of tools.
We shall work in a Riemannian setting under fairly general conditions; parabolic
Holder spaces are defined Section purely in terms of the semigroup generated by
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L. In Section [3.4] we prove some fundamental Schauder-type regularity estimates.
The cancellation properties put forward in Section are fundamental for proving
in Section [4] some continuity results for some iterated commutators and correctors.

3.1. Riemannian framework Our basic setting in this work will be a complete vol-

ume doubling measured Riemannian manifold (M, d, p);
all kernels mentioned in the sequel are with respect to the fixed measure . We are
going to introduce in the sequel a number of tools to analyze singular partial differ-
ential equations involving a parabolic operator on Ry x M

L:=0+ L,

with L built from first order differential operators (V;)i=1.¢4, on M. That is, L =
— 250:1 V2, with V; satisfying the Leibniz rule

Vi(fg) = fVilg) + gVi(f) (3.1)

for all functions f, g in the domain of L. Given a tuple I = (iy,...,i)in {1,..., 4},
we shall set |I] := k and
Vii=Vi - Vi.

Conditions. We shall assume throughout that

e the operator L is a sectorial operator in L?(M), L is injective on L?(M) (or the
quotient space of L?(M) by the space of constant functions if 4 is finite), it has
a bounded H*-calculus on L?(M), and —L generates a holomorphic semigroup
(€7 )e=0 on L*(M),

e D(L) < D(V?), V; satisfies the Leibniz rule (3.1)) on D(L), and L is given by

Lo
L=-YV?
i=1
on D(L),

o the heat semigroup is conservative, that is (e7*)(157) = 15 for every t > 0,
where 1,/ stands for the constant function on M — or in a weak sense that
L(1n) =0,

e the semigroup has regularity estimates at any order, by which we mean that
for every tuple I, the operators (t%l V1> et and e tE (t%‘ VI) have kernels

K (z,y) satisfying the Gaussian estimate

[Kiwy)| s s et (3.2
tYNS 5w .
#(B(z, V1))
and the following regularity estimate. For d(z, z) < v/t
d(y, z 1 e d@w)?
‘Kt(l',y) - Kt(Zuy)‘ < © 2) ’ (3.3)

Vi BV ©

for some constants which may depend on |I].

Let us point out that the regularity property (3.3) for |I| = k can be obtained from
(3.2) with k& + 1 writing the “finite-increments” formula

|Ki(z,y) — Ki(2,9)| S d(z,2) sup sup |X;Ki(w,y)|

J we(x,z)
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where (z,y) stands for a geodesic joining x to z and of length d(z,z), and (X;)
stands for a local frame field near (x,y), and it acts here as a first order differential
on the first component of K. As a matter of fact, it suffices for the present work to
assume that the semigroup has regularity estimates of large enough order. One can
keep in mind the following two examples.

(a) Euclidean domains. In the particular case of the Euclidean space, all of
the current work can be reformulated in terms of Fourier transform rather
than in terms of the heat semigroup; which may make some reasoning a bit
more familiar but does not really simplify anything. The case of a bounded
domain with its Laplacian associated with Neumann boundary conditions fits
our framework if the boundary is sufficiently regular. We may also consider
other kind of second order operator, like L = —div(AV) for some smooth
enough matrix-valued map satisfying the ellipticity (or accretivity) condition.

(b) Riemannian manifolds. Assume M is a parallelizable d-dimensional man-
ifold with a smooth global frame field V' = (V4,..., V). One endows M with
a Riemannian structure by turning V into orthonormal frames. The above
assumption on the heat kernel holds true if M has bounded geometry, that
is if

(i) the curvature tensor and all its covariant derivatives are bounded in the

frame field V,

(ii) Ricci curvature is bounded from below,

(iii) and M has a positive injectivity radius;
see for instance [13] or [34]. One can actually include the Laplace operator
in this setting by working with its canonical lift to the orthonormal frame
bundle, given by % Zle H?+ % Zl<j<k<d Vik, where the H; are the canonical
horizontal vector fields of the Levi-Civita connection, and the Vj; are the
canonical vertical vector fields on the orthonormal frame bundle, inherited
from its S O(Rd)—principal bundle structure. The bundle OM is parallelizable
and satisfies the assumptions Conditions if the Riemannian base manifold
M satisfies the above three conditions (i—iii).

3.2. Approximation operators and cancellation We introduce in this section a funda-
property mental notion of approximation op-
erators that will be the building blocks
for the definition and study of the paraproducts, commutators and correctors, used
in our analysis of singular PDEs. Some of them enjoy some kind of orthogonality,
or cancellation, property quantified by condition below. Note that we shall
be working in a parabolic setting with mixed cancellation effects in time and space.

All computations below make sense for a choice of large enough integers b, {1
that will definitely be fixed at the end of Section to ensure some continuity
properties for some useful operators. Recall that generic elements of the parabolic
space M = R x M are denoted by e = (x,7) or €’ = (y,0), and that ¢ stands for a
scaling parameter. The following parabolic Gaussian-like kernels (G;)o<t<1 will be
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used as reference kernels in this work. For 0 <t < 1 and o < 7, if d(z,y) < 1, set

517). (5.0)) = ! p(<w>,<y,o>>2>“

otherwise we set

gt((xv T)v (y,g)) =

V(BM((;T)’ID <1 N ’T;a\>—fl <1+ d(w;y)2>—41 - (_CW>

for d(z,y) > 1, and G, = 0 if 7 < 0. We do not emphasize the dependence of G on
the positive constant ¢ in the notation for the ’Gaussian’ kernel, and we shall allow
ourselves to abuse notations and write G; for two functions corresponding to two
different values of that constant. This will in particular be the case in the proof of
Lemma We have for instance, for two scaling parameters s,t € (0,1), the estimate

J G; (e, e') G, (e’, e”) v(de') < Gys (e, e”). (3.4)
M

(Indeed, the space variables and the time variables are separated in the kernel G;.
Then both in space and time variables, the previous inequality comes from classical
estimates for convolution of functions with fast decay at infinity, such as done in [4]
Lemma A.5] for example.) This somewhat unnatural definition of a Gaussian-like
kernel is justified by the fact that we shall mainly be interested in local regularity
matters; the definition of G in the domain {d(x,y) > 1} is only technical and will
allow us to obtain global estimates with weights. Presently, note that a large enough
choice of constant ¢; ensures that we have

sup sup J Gi(e, ) v(de') < (3.5)
te(0,1] eeM

so any linear operator on a function space over M, with a kernel pointwisely bounded
by some G; is bounded in LP(v) for every p € [1, 0].

Definition. We shall denote throughout by G the set of families (P;)o<i<1 of linear
operators on M with kernels pointwisely bounded by

‘Kpt (e, e’)‘ < Gile, €).

The letter G is chosen for ’Gaussian’. A last bit of notation is needed before we
introduce the cancellation property for a family of operators in a parabolic setting.
Given a real-valued integrable function m on R, define its rescaled version as

1 .
()= (7))

the family (m;)o<i<1 is uniformly bounded in L'(R). We also define the “convolu-

tion” operator m* associated with m via the formula

m%ﬂvwzﬁ)mu_aywma

Note that if m has support in R, then the operator m* has a kernel supported
on the same set {(a, T);0 < 7'} as our Gaussian-like kernel. Moreover, we let the
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reader check that if mq,ms are two L!-functions with mgy supported on [0, c0), with
convolution mq * ms, then we have
(m1 = ms)" = m} om3.
Given an integer b > 1, we define a special family of operators on L?(M) setting
=(b—1)! and
ng) = ’ybfl(tL)be*tL and — to P, Qt ,

with Péb) = Id, so Pt(b) is an operator of the form py(tL)e™**, for some polynomial
pp of degree (b — 1), with value 1 in 0. Under the above Conditions assumptions,

the operators Pt(b) and ng) both satisfy the Gaussian regularity estimates (3.2)) at
any order

1 e d(:s;y)2

(fﬂ y)‘ 7H(B(x7\/¥))e : (3.6)

K
tQVIR( )

with R standing here for P or th).

The parameters b and ¢; will be chosen large enough, and fixed throughout the
paper. See Proposition [15|and the remark after Proposition [16|for the precise choice
of b and ¢;.

Definition. Let an integer a € [0, 2b] be given. The following collection of families of
operators is called the standard collection of operators with cancellation of order
a, denoted by StGC“. It is made up of all the space-time operators

((t% V) (D)= P @m; )

where k is an integer with 2k + |J| < a, and ¢ € [1,b], and m is any smooth function

supported on [%,2] such that

\J\

0<t<1

J 'm(r)dr =0, (3.7)

for all 0 < @ < k — 1, with the first b derivatives bounded by 1. These operators are
uniformly bounded in LP(M) for every p € [1, 00|, as functions of the scaling parameter
t. So a standard collection of operators QO can be seen as a bounded map Q : t — O
from (0, 1] to the set B(LP) of bounded linear operators on LP(M). We also set

StGClo2t] U StGCe.

0<a<2b

The cancellation effect of such operators is quantified in Proposition [3] below;
—1J |

note here that it makes sense at an intuitive level to say that L” encodes
cancellation in the space-variable of order a —|J|—2k, that V; encodes a cancellation
in space of order |J| and that the moment condition encodes a cancellation
property in the time-variable of order k for the convolution operator m;. Since
we are in the parabolic scaling, a cancellation of order k in time corresponds to a
cancellation of order 2k in space, so that VJL e t(c) ® m; has a space-time
cancellation property of order a. We invite the reader to check that each operator
(t%lvj) (tL)a_m_Qk Pt(c) ® my in the standard collection has a kernel pointwisely
bounded from above by some G;. This justifies the choice of name StGC? for this
space, where St stands for ’standard’, G for ’Gaussian’ and C for ’cancellation’.
The paracontrolled analysis, that we are going to explain, is based on these specific
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operators. We emphasize that because of the Gaussian kernel G; and the function
m, all of these operators have a support in time included in

{(1,0), T =0}

In particular, that means that we never travel backwards in time through these
operators. This fact will be very important, to deal further with the weight ww, which
will depend on time. We give one more definition before stating the cancellation

property.
Definition. Given an operator @) := V; ¢(L), with |I| > 1, defined by functional calculus
from some appropriate function ¢, we write Q° for the formal dual operator

Q* = ¢(L)Vr.
For I = ¢J, and @Q = ¢(L), we set Q* := Q. For an operator () as above we set
(Q@m*). =Q'®m”.

Note that the above definition is not related to any classical notion of duality, and
let us emphasize that we do not assume that L is self-adjoint in L?(x). This notation
is only used to indicate that an operator @), resp. °, can be composed on the right,
resp. on the left, by another operator ¢(L), for a suitable function v, due to the
functional calculus on L. In the setting of analysis on a finite dimensional torus, the
operators ng) are given in Fourier coordinates A, as the multiplication operators
by (t|A]2)be~tM*; as this function is almost localized in an annulus |A| ~ 73, the

operators ng) and ng) are almost orthogonal if # is either very small or very big.
This is encoded in the elementary estimate

t 1 d*(z,

i ) exp <—c M) . (3.8)

2
K zy)| <
’ Q§b>OQ§b)( v) ((s+t)2) pw(B(z,+/s +t t+s
The frequency analysis of the operators ng) is not very relevant in the non-homogeneous

parabolic space M. We keep however from the preceeding analysis the idea that
relation (3.8) encodes some kind of orthogonality, or cancellation effect.

Proposition 3. Consider Q' € StGC% and Q2 e StGC* two standard collections with
cancellation, and set a := min(aj,az). Then for every s,t € (0,1], the composition
Q! o0 Q?* has a kernel pointwisely bounded by

/ ts % /
KQ%OQ?' (6, (& )‘ s <(5—|—t)2) gt+3(€, (& ) (39)

Proof — Given

a1—j1—2k1 ag—jo—2ko

Q! = 53V (sL)™ 5 P @ml* and Q2 = (tL)* 3 PV, @ m2*

a standard operator and the dual of another, we have

a1—2ky ag—2ko a1 —j1—2k1+ag—jo—2ko
2

0lo Q2 — "5y, I PPV, @ (mh«m?)*.

Assume, without loss of generality, that 0 < s < t. Then the kernel of the
(1) (2

time-convolution operator mg’ * m,;”’ is given by

K2 (T —0) = Jml (T_ )\> m? <)\_ U) @
st s t st
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Since m! has vanishing k1 first moments, we can perform k; integration by parts
and obtain that

strol < () [t (52 e (45) 5
myEmy t st

where we slightly abuse notations and write d~¥1m! for the k%h primitive of m!
null at 0. Then we get

s\ k1 R A=\ d)
it < () [(1+5220)  (10257) G
e T —al\™" -1
< (2 1+ — t
”(t) < * s+t> (s+1)

a1 —j1—2k1+ag—jo—2ko

In the space variable, the kernel of V, L 2 PS(01)Pt(C2)VJ2 is bounded
above by

—aq+2ky—ag+2ko

(s+t)— =z ,u(B(:):, \/m)>_1 exp (—COW> ,

s+t

as a consequence of the property (3.6). Altogether, this gives

kl a1—2ky ag—2ko —aq+2ky—ag+2ko
Koorle)| < (3) ™2 152 s+ )70 77 Gu(es)
71
) gt+see/)

< (3
<() Grys(e e,
<

where we used that s <t and a <

>

Definition. Let 0 < a < 2b be an integer. We define the subset GC® of G of families
of operators with the cancellation property of order a as the set of elements Q of
G with the following cancellation property. For every 0 < s,t < 1 and every standard
family S € StGC¥, with o’ € [a,2b], the operator Q; o S* has a kernel pointwisely
bounded by

/ t % /
‘KQtoSg(eae )‘ < ((S‘it)2> Grys(e,€). (3.10)

Here are a few examples. Consider a smooth function m with compact support
in [271,2], an integer ¢ > 1, and a tuple I of indices.
e 1] .
e The families ( i"’) ®m;) and (t% VIPt(C) ®m;) belong to GC* if
0<t<1 0<t<1
lI| > a
o If§ ™®m(7) dr = 0 for all integer k = 0, ...,a—1, then we can see by integration

by parts along the time-variable that (Pt(c) ® my )0< <1 € GCe.
o If {7*m(7)dr = 0 for all integer k = 0,...,as with a; + a2 = a, then the

a

families (Qt ®m;) and (t% V[Pt(c) ®mt*) , where |I| = ay, both
0<t<1 0<t<1
belong to GC?.
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We see on these examples that cancellation in the parabolic setting can encode
some cancellations in the space variable, the time-variable or both at a time.

We introduced above the operators ng) and Pt(b) acting on the base manifold M.
We end this section by introducing their parabolic counterpart. Choose arbitrarily
a smooth real-valued function ¢ on R, with support in [%, 2], unit integral and such
that for every integer k = 1,...,b, we have

JTkgo(T) dr = 0.

Set
73,5(1)) = Pt(b) ® ¢f and ng) = —t@tpt(b),

Denote by M, the multiplication operator in R by 7. An easy computation yields
that

b b . b
Qg):Qg)@)% +Pt()®¢t
where ¥(0) := p(0)+0o¢'(0). (For an extension of the present theory to the setting of

Sobolev spaces, such as done in the appendix B of [4], it would be convenient to work
with ¢ * ¢ rather than ¢.) Note that, from its very definition, a parabolic operator

ng) belongs at least to GC2, for b > 2. Remark that if ¢ is a time-independent
distribution then Q,(:b)c = ng)g . Note also that due to the normalization of ¢, then
for every f e LP(R) supported on [0,0) then

902(f)§>f in LP.

So, the operators P; tend to the identity as t goes to 0, on the set of functions
f € LP(M) with time-support included in [0, 00), whenever p € [1,00), and on the
set of functions f € C°(M) with time-support included in [0,00). The following
Calderén reproducing formula follows as a consequence. For every continuous
function f € L*(M) with time-support in [0, c0), we have

1
=] QPSP (311)
0

This formula will play a fundamental role for us. Noting that the measure % gives
unit mass to intervals of the form [2_(”1), 2_i], and considering the operator ng) as

a kind of multiplier roughly localized at frequencies of size t_%, Calderén’s formula
appears as nothing else than a continuous time analogue of the Paley-Littlewood
decomposition of f, with % in the role of the counting measure.

3.3. Parabolic Holder spaces We define in this section space and space-time weighted

Holder spaces, with possibly negative regularity index,
and give a few basic facts about them. The setting of weighted function spaces is
needed for the applications to the parabolic Anderson model and multiplicative
Burgers equations on unbounded domains studied in Section [5| The weights we use
were first introduced in [25].

Let us start recalling the following well-known facts about Holder spaces on M,
and single out a good class of weights on M. A function w : M — [1,00) will be
called a spatial weight if one can associate to any positive constant ¢y a positive
constant ¢y such that one has

w(z) e 1@ < ey w(y), (3.12)
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for all z,y in M. Given 0 < o < 1, the classical metric Holder space H is defined as
the set of real-valued functions f on M with finite H{-norm, defined by the formula

@ -1l _

=1
| lerg o= ™ ] oo ary + O<d(l£)<1 w(z)d(z,y)*

Distributions on M were defined in [4] using a very similar definition as in the end
of Section (1}, where their parabolic counterpart is defined.

Definition. For a € (—3,3) and w a spatial weight, define C§ := C$(M) as the set of
distributions on M with finite C-norm, defined by the formula

Iflce == Hwil *LfH + sup t72 winga)fHLoo(M)

L*(M)  o<t<l

and equip that space with the induced norm. The latter does not depend on the integer

a> % and one can prove that the two spaces H;; and C; coincide and have equivalent
norms when 0 < a < 1 — see [4].

These notions have parabolic counterparts which we now introduce. A space-
time weight is a function w : M — [1,00) with w(z, -) non-decreasing function of
time, for every x € M, and such that there exists two constants ¢; and co with

w(zx, 1) eard(zy) < cow(y,T), (3.13)

for all pairs of points of M of the form ((z,7),(y,7)). The function w; := w(-,7)
is in particular a spatial weight for every time 7. For 0 < a < 1 and a space-time
weight w, the metric parabolic Holder space HE = HE (M) is defined as the set of
all functions on M with finite HJ-norm, defined by the formula

1l = o™ fl oo gy + sup |f(x,7) — f(y,0)| _
0<p((:’3»7)»(y70))<1§720 W(ﬂ?, T) p((iU, T)’ (y7 U))

As in the above spatial setting, one can recast this definition in a functional setting,
using the parabolic standard operators. This requires the use of the following ele-
mentary result. Recall that the kernels G; depend implicitly on a constant ¢ that
may take different values with no further mention of it. We make this little abuse
of notation in the proof of this statement.

Lemma 4. Let A be a linear operator on M with a kernel K4 pointwisely bounded by
a Gaussian kernel G, for some t € (0,1]. Then for every space-time weight w, we have

”w_lAfHLOO(M) < Hw_lfHLoc(M)

€ M we have

7)
(Af)(z,7) f ,a))“’(y’”

Proof — Indeed, for every (z,

1 ) [f@.o)
w(zx,T) w(z,7) w(y,o) (dydo)
T -

<[ a >wwﬂﬂigbwww

where
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e we used in the second inequality the fact that the function w(z,-) of time
is non-decreasing, and G; is null if o > 7,

e the implicit constant in G; was changed in the right hand side of the third
inequality, and we used the growth condition (3.13) on w as a function of
its first argument here,

e we used the uniform bound (3.5) on a Gaussian integral in the last line.
>

Recall that distributions were introduced in the end of Section [1l

Definition. For a € (—3,3) and a space-time weight w, we define the parabolic Holder
space C2 := CZ(M) as the set of distributions with finite C%-norm, defined by

Iflce := sup [w™tQi(f) + sup sup ¢t 2 w O (f) ,

“ QesStGCk H HLOO(M) gestcck  0<t<1 H HLOO(M)
0<k<2b la|<k<2b

equipped with the induced norm.

The restriction o € (—3,3) is irrelevant and will be sufficient for our purpose in
this work; taking b large enough we can allow regularity of as large an order as we
want. Building on Calderén’s formula (3.11)), one can prove as in [4] that the two
spaces ‘HS and C coincide and have equivalent norms, when 0 < a < 1.

Proposition 5. For a € (0,1) and every space-time weight w, the two spaces H¢ and
C& coincide and have equivalent norms.

Proof — We first check that H is continuously embedded into CS. So fix a function
f € HS, then by Lemma [4] we easily deduce that

Sup H“’_lgl(f)HLw(M) S ||w_1f||L°O(M)'
ke

For the high frequency part, we consider ¢ € (0,1] and Q € StGC* with o < k <
2b. Then O; has at least a cancellation of order 1, hence

Qi(f)(e) = Qu(f — f(e))(e)
_ J Ko, (e.¢') (f(¢) — £(e)) v(de).

Due to the kernel support of Q, the integrated quantity is non-vanishing (and
so relevant) only for 7 > o, with e = (z,7) and €' = (y,0). If p(e,e’) < 1, then
by definition
|F(e") = fle)| < wle)ple, )| fllng
and if p(¢/,e) = 1, then by the property of the weight we have
F() = £()] < (w(e) + ()] F] o (0

Hence

12/)(@)] < wle) { Gule, e v(ae)
P

N Gite.e) (14240 ) vt 11

p=1 w(e)
S w(@)t?| g,

uniformly in e € M and t € (0,1); this concludes the proof of the continuous
embedding of H into C.
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To prove the converse embedding, let us start by fixing a function f € CZ. The
low frequency part of f is easily bounded, using Calderén’s reproducing formula

Wl S [P g + [ 2]
o Hlroouy = Lo (M) w Qs oM £
< Hchs,
since & > 0. Now fix e = (z,7) and € = (y,0) in M, with p := p(e,e’) <1 and

T = 0. We again decompose

! dt
=P+ | o

For t < p?, we have

o

QY 1) < t3 (@) fles

M \

and

05| 5 tl@)1 ez < tw(@)]fles

where we used that the weight is increasing in time and then that d(z,y) < p <1
with the property of the weight. So we may integrate over ¢ < p? and we have

fppwﬂ@—gwﬂ&‘”s(f f)(ﬂm@
0 0

< pPw(e)] fles-

For the low frequency parts, le) with p? <t <1or 731(1), we use that

a®%m00<%3®%@00

a—1
Spw(@, )tz || fleg
where we used that p < 1 with the fact that the two collections of operators
(téTQIEl))o<t<1 and (Q,gl))kt<1 are of type StGC!, that is have cancellation of
order at least 1, and that the weight is non-decreasing in time. Similarly we can

estimate the variation in space with the assumed finite-increment representation

(3.3), where one considers a local frame field (X;) in a neighbourhood of a
geodesic (z,y) from x to y. This gives

~

]Q@fwﬁ>¢”ﬂmaﬂshoﬁ<sw

ce(o,T)

V1@, o) - oV f(y. 0)| < d(a,y) “P’ngﬂzﬂ

z€(z,y)

< pw(@, 7T | fleg.

d P d
Feo(] e T ) wtensles

s ptw(e) | fles
(1)

.~ ends the proof of continuous embed-

So we get
1
J,

because o < 1. A similar estimate for P
ding of CS into HS.

M) — oM (e

>



20

The next proposition introduces an intermediate space whose unweighted version
was first introduced in the setting of paracontrolled calculus in [19], and used in [4].

To fix notations, and given a space-time weight w, we denote by (C? Lf)(w) =

(LgoCT% ) (w) the set of parabolic distributions such that

a < O
C2

sup |16 ) os e

Also <L;‘.OC§> (w) stands for the set of parabolic distributions such that

Sup “f(‘vT)HcsT(M) < %

Proposition 6. Given « € (0,2) and a space-time weight w, set

&
2

£ = (CT L;;O)(w) A (Lgoog)(w).

Then &S is continuously embedded into C¢. Furthermore, if a € (0,1), the spaces
ES,CS and HE are equal, with equivalent norms.

Proof — We first check that £ is continuously embedded into CS, and fix for that
purpose a function f € £7F. As done in [4, Proposition 2.12], we know that for
all integers k, j with k + 4 > § and every space function g € C*(M), we have

1 k_—tL [
V(1L H < 13 gl gaan,
J(tL) e g e lgllce(ar)

for any subset of indices J with |J| = j. So consider a generic standard fam-
ily (t%{/}(tL)%_th(c) ®m;> in StGC% with 3 < a < b, and a smooth

0<t<1
function m with vanishing first £ moments. If k£ = 0 we have seen that we have

| 1)y
for every 7, so

since m} is a L®(R)-bounded operator as a convolution with an L!'-normalized
function.

S VD) T RO S

a—j
2

w3V (tL)

PO@m(f)| | <tiflrecsw

LP(M)

If k=1 (or k > 1), the same reasoning shows that we have

@)t mi ()| <t ()]

LoRy) C2 ) Ry)

for every x € M, since § € (0,1), and m encodes a cancellation at order 1 in
time as it has a vanishing first moment. Hence

PO @m0, ., < 1]

Hw—lt%vj(tL)%j

L CF LW

which concludes the proof of the embedding £ < CJ. The remainder of the
statement is elementary since CS = H¢, is embedded in £F.
>

Before turning to the definition of an intertwined pair of parabolic paraproducts,
we close this section with two other useful continuity properties involving the Holder
spaces CJ.
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Proposition 7. Given o € (0,1), a space-time weight w, some integer a > 0 and a
standard family P € StGC?, there exists a constant ¢ depending only on the weight w,
such that

w(e) )| (Pif) () = (Puf) () D flgg,

uniformly in s,t € (0,1] and e = (z,7) and ¢’ = (y,0) € M, with 7 > 0.

(=1
2

< (s+t+plee)?)

Proof — We explain in detail the most difficult case corresponding to P € StGC’, so
P encodes a priori no cancellation. Then P; takes the form

Pt = Pt(c) ®m:

for some integer ¢ > 1 and some smooth function m. There is no loss of gen-
erality in assuming that {m(7)dr is equal to 1, as P is actually an element of
StGC! if m has zero mean — this case is treated at the end of the proof.

In this setting, since f is bounded and continuous, we have the pointwise identity
=1 :
f=lmP(f)

(i) Consider first the case where p(e,e’) < 1,, with e = (z,7) and € = (y,0).
Decompose

w(©) | (Pf) €)= (Pup)()
< w(e)f(e) = F(e)] +wle) | (Puf)(e) = fle)
o) (Puf) ()~ £()
Sw(e) ! [F&) = FEN + o™ Pef = ) o pny + |7 PsF = ) | oo any-
We have
w(e) 1) = F(e)] < plese)* | flug < ples ) f s

For the two other terms, we use that

du

|l (Pf — £) HLOC(M) < Lt Hw_luaupuf’mow) u

Y

and note that
u@y Py = QYY) @ my + P9 @ ky
with k(7) = 0, (7m(7)), is actually the sum of two terms in StGC>' since it is

clear for the first one and the function k£ has a vanishing first moment. It follows
by definition of the Holder spaces with a < 1, that we have

a du

t
o Per = Doy = ([ 4% %) 1les < 2315l

u

A similar estimate holds by replacing ¢ by s, which then concludes the proof in
this case.
(ii) In the case where p(e, €’) = 1, we do not use the difference and use condition
(3.13)) on the weight w to write

1

w(z, 7)™ Sw(z,0) 7 Swly, o)
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and obtain as a consequence the estimate
w(©) (P () = (Pu) ()] < wle) | (Pr) )] + wle) | (Pus) (€)
< [T P o gy + (s 0)” MPJxa>
™ Pefl e gagy + €PN P o g

for some positive constant c. Since we know by Lemma |§| that P, and 733 are
bounded in L*(w), we deduce that

w(©) | (Pf) () = (Pof) ()| < ¢

7y)Hw—1f

< )| flcg,

e

since C§ < LY, given that @ > 0. The expected estimate follows from that
point.

e In the easier situation where P € StGC? for some integer a > 1, we can perform
the same reasoning and use in addition the fact that

}E;% Pt(f) = 07

which makes the case easier since we do not have to deal with the first term

fle) = f(e).

>

With an analogous reasoning (indeed simpler) we may prove the following.

Proposition 8. Given o € (—3,0), a space-time weight w and a standard family P €
StGC?, one has .

1Pefllremy < 2] flles,
uniformly in ¢ € (0,1].

Proof — The proof follows the same idea as the the proof of Proposition [7] Indeed,
we use the fact that since P is a standard family then

1
Pef = J; (*Sasps)f % +P1f.

The key point is that (—sdsPs)s can be split into a finite sum of families of
StGC>!, which allows us to conclude as previously.
>

3.4. Schauder estimates We provide in this subsection a Schauder estimate for the

heat semigroup in the scale of weighted parabolic Hélder
spaces. This quantitative regularization effect of the heat semigroup will be instru-
mental in the proof of the well-posedness of the parabolic Anderson model (PAM)
and multiplicative Burgers equations studied in Section 5| Define here formally the
linear resolution operator for the heat equation by the formula

R(v) = J e~ =Ly, do. (3.14)
0

We fix in this section a finite positive time horizon T" and consider the space
Mrp =M x [0,T],

equipped with its parabolic structure. Denote by LT the corresponding function
space over [0,T]. We first state a Schauder estimates that was more or less proved
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in the unweighted case in [19 4] — see Lemma A.9 in [I9] and Proposition 3.10 in
4.

Proposition 9. Given 5 € (—2,0) and a space-time weight w, we have

[R@)]eg+2 <o [0 (L5cf) W)

We shall actually prove a refinement of this continuity estimate in the specific
case where w has a special structure motivated by the study of the (PAM) and
multiplicative Burgers equations done in Section [5] These special weights were first
introduced by Hairer and Labbé in their study of the (PAM) equation in R? and R3,
via regularity structures [24], 25]. Let o = oy be the reference point in M fixed and
used in the definition of S, at the end of Section [I] and set

pa(z) := (1 + d(0rer, z))*, w(x,7) = eme(HT)(Hd(Oref’w)), (3.15)

for 0 < a < 1 and a positive constant k. (The introduction of an extra exponential
factor €7 in our space-time weight w will allow us to get around an iterative step
in the forthcoming application of the fixed point theorem used to solve the (PAM)
and multiplicative Burgers equations, as done in [24], 25].) For 7 > 0, we use the
notation
wr: v €M w(x,T)

for the spatial weight. The space-time weight w satisfies condition on [0,T] x
M, uniformly with respect to k > 0. The above special weights satisfy in addition
the following crucial property, already used in [24], 25]. We have

po(z)w(x,0) S K (T —0) " Fw(x, 1), (3.16)

for every non-negative real number £ small enough, uniformly with respect to = €
M,k >0and 0 < o <7 <T. The next improved Schauder-type continuity estimate
shows how one can use the above inequality for the specific weights to compensate
a gain on the weight by a loss of regularity.

Proposition 10. Given 3 e R, a € (0,1) and ¢ € [0, 1) small enough such that a+e < 1,
we have the continuity estimate

HR(U>H (L‘IPCEHO*“*E))(w) S H_5||UH(L$CJ€)(WPQ)'
Moreover if —2 4 2(a+¢) < 3 <0, then

”R(U) Hcg”—Q“—QE Sk HUH (L%Cf) (wpa)”

Proof — Let us first check the regularity in space. So consider an integer ¢ > @ +1

and a parameter 7 € (0,1]. Then for every fixed time 7 € [0, 7] we have

QY (R(v),) = f Qe (=DLy_do.
0

By using the specific property (3.16) of the weights p, and w, one has

Hw;lQ@ef(f—a)L%HLOO(M) < (H:_O_) [ '@t —ove | o ary

c
s (=) =t - gy,
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So by integrating and using that c is taken large enough, we see that

=7 Q1 (R(v),)

L (M)

—€ ! L ‘ o % _ —a—¢
s [ (L) oo —or o ol )

e Biq_a4—
< kK ergtl-a EHUH(LQO‘?CQ)(paw).

This holds uniformly in r € (0,1] and 7 € [0, 7] and so one concludes the proof
of the first statement with the global inequality

< —& . —CL—Ed
LOO(M) ~ k {JO (T U) U} HUH(L%:C;?)(])@W)

< I{—sTl—a—a HUH (

HwT_IR(v)T

ngcc/cj) (Paw) '

For the second statement, we note that for 0 < o0 < 7 < T we have

R(0); = R(v)s = (e~ 1) R(w) + [ & o, ar

f QYR (), dr + f ey, dr.
0 r o

We have by the previous estimate

T—0O T—0 d
walf le)R(U)g ﬁ <K E <J r§+lfa*€ T) ||R(’U)O—HC[—3+2—2a—25
0 r 0 r ik

L (M)

<K (- U)%"'l_a_EHUH (L%OCf)(w)

where we used that w, > w, for ¢ < 7. Moreover, since 3 is negative, we also
have

'w;l f e~ Ty, dr

o

< Ii_EJ‘ ( > dr

o Lo(M)
—€ < T —a—¢ ' g ds —a—e| ,—L d

K< i HUTHCﬁam (r—r) . 57—+ (r—r) e " (v) or T

Lo (M)

1
ds
_y—a—e|, —a_—1(1) ” -1 _-L
J;_T(’T T) p ‘w, Qs v, Lo s + |w, e (vr)

p

L G Ll L P00 P

where we used (3.16]) and g +1—a—e>0.

The following result comes as a consequence of the proof, combined with Lemma
we single it out here for future reference.

Lemma 11. Let A be a linear operator on M with a kernel pointwisely bounded by G;
for some t € (0,1]. Then for every a + ¢ € (0,1), we have

ALz, (ML) S &Y

Schauder estimates can also be extended to spaces of positive regularity.
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Proposition 12. Given § € (0,2), a € (0,1) and € € [0,1) small enough such that
a + e < 1, we have the continuity estimate

HR(’U)HCgufzafzs < H_‘EH’UHCB .

wpa

Proof — This follows from Proposition For v € Cgpa c (L%OCf )(w@pa), it is
known that Lv € (Lé‘? Cf _2) (wpa), to which Proposition |10 can be applied since
B —2 < 0. Now use that R and L commute to deduce that L(Rv) € co2am2e
hence Rv € (L%?CEH_%_%) (w). On the other hand, d;(Rv) = v — LRv, from

which follows that 0,Rv e C@/ 2L§°, and consequently Rv € C;Z/ 2+1L§O.
>

The constraint 8 < 2 is not relevant. Indeed, by iteration the previous Schauder
estimates can be proved for an arbitrary exponent 8 > 0.

4

Time-space paraproducts

We introduce in this section the machinery of paraproducts which we shall use
in our analysis of the singular PDEs of Anderson and Burgers . In the
classical setting of analysis on the torus, the elementary definition of a paraproduct
given in Section [2] in terms of Fourier analysis should make convincing, for those
who are not familiar with this tool, the fact that II;(g) is a kind of "modulation”
of g, insofar as each mode g; of g, in its Paley-Littlewood decomposition, is mod-
ulated by a signal which oscillates at frequencies much smaller — the finite sum
D o<i< j—o fi- So it makes sense to talk of a distribution/function of the form IIf(g)
as a distribution/function that ”locally looks like” g. This is exactly how we shall use
paraproducts, as a tool that can be used to provide some kind of Taylor expansion
of a distribution/function, in terms of some other 'model” distributions/functions.
This will be used crucially to bypass the ill-posed character of some operations in-
volved in the (PAM) and Burgers equations, along the line of what was written in
Section 2

Working in a geometric setting where Fourier analysis does not make sense, we
shall define our paraproduct entirely in terms of the semigroup generated by the
operator £ = ¢y + L on the parabolic space. The definition of a paraproduct comes
together with the definition of a resonant operator II(-, -), tailor-made to provide the
decomposition

fg=T(g) +1(f,g) + y(f)

of the product operation, and with IT;(g) and II( f, g) with good continuity properties
in terms of f and ¢ in the scales of Holder spaces. Such a construction was already
done in our previous work [4], where the generic form of the operator L, given by
its first order carré du champ operator, imposed some restrictions on the range of
the method and allowed only a first order machinery to be set up. The fact that we
work here with an operator L in Hérmander form will allow us to set up a higher
order expansion setting. We will use this for the description of the space in which
to make sense of the two singular PDEs we want to analyse. However, this a priori
useful setting is in direct conflict with one of the main technical tools introduced by
Gubinelli, Imkeller and Perkowski in their seminal work [19].



26

The case is easier to explain on the example of the (PAM) equation. A solution
to that equation is formally given as a fixed point of the map

D u— e Tug + R(ug),

for which we shall need u to be a priori controlled by Z := R((), to make sense of the
product u¢ — more will actually be required, but let us stick to this simplified picture
here; so the map ® will eventually be defined on a space of distributions controlled
by Z, such as defined in Section [2] where it will be shown to be a contraction. At
a heuristic level, for a distribution (u,u') controlled by Z, the product u¢ will be
given by a formula of the form

uC =T, (Q) + ().

To analyse the term R(u(), and recalling that Z := R((), it is thus very tempting
to write
R(Hu(C)) = Hu<Z) + [Rv Hu] (C) + ( : )

and work with the commutator [R,II,]|. This is what was done in [19, 4] to study
the 2-dimensional (PAM) equation on the torus and more general settings; and
it somehow leads to a non-natural choice of function space for the remainder f*
of a paracontrolled distribution in a space-time setting. Unfortunately, we have
little information on this commutator, except from the fact that it is a regularizing
operator with a quantifiable regularizing effect — it was first proved in [19] in their
Fourier setting. This sole information happens to be insufficient to push the analysis
of the (PAM) or Burgers equations far enough in a 3-dimensional setting. As a way
out of this problem, we introduce another paraproduct ﬁv('), tailor-made to deal
with that problem, and intertwined to II,(-) via R, that is

Roll, = ﬁv oR;
so II is formally the II operator seen in a different basis
II=RolloL.

We show in Section that IT and II have the same analytic properties. In partic-
ular, if f € LFCY with —2 < o < 0, the Schauder estimate proved in proposition
shows that flv (’R f) is an element of the parabolic Holder space C®T2. In the
end, we shall be working with an ansatz for the solution space of the 3-dimensional
(PAM) equation given by distributions/functions of the form

w=Ty(Z)+ ().

The introduction of semigroup methods for the definition and study of para-
products is relatively new; we refer the reader to different recent works where such
paraproducts have been used and studied [5, [7), 11 6], 4].

4.1. Intertwined paraproducts We introduce in this section a pair of intertwined

paraproducts that will be used to analyze the a priori
ill-posed terms in the right hand side of the parabolic Anderson model equation
and multiplicative Burgers system in the next section. We follow here for that
purpose the semigroup approach developed in [4], based on the pointwise Calderén
reproducing formula

! dt
r-| e EerPs
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where f is a bounded and continuous function. This formula says nothing else than
the fact that

lim P{”) = Id.
t}0

(This is a direct consequence of the fact that the operator ¢} tends to the identity
operator, since ¢ has unit integral.) We can thus write formally for two continuous
and bounded functions f, g

. ! dt
fo=lim PV (PO 1 Pg) =~ | 1o (P (P01 PPg)} F + Aafi)
0

= JO” {pt(w (ng)f : pgb)g) +p® (Pt(b)f . ng)g) +o® (be)f . Pt(b)g)} dt A

n l(fug)u

(4.1)

where
(fig) =P (PO Pg)

stands for the “low-frequency part” of the product of f and g. This decomposition
corresponds to an extension of Bony’s well-known paraproduct decomposition [9] to
our setting given by a semigroup.

The integral exponent b has not been chosen so far. Choose it here even and no
smaller than 6. Using iteratively the Leibniz rule for the differentiation operators
V; or 0;, generically denoted D,

D(¢1)p2 = D(¢1 - ¢p2) — ¢1 - D(¢2),

we see that Pt(b) ( Eb)f . Pt(b)g) can be decomposed as a finite sum of terms taking
the form

(f’ ) = (b) (t 2‘+kV ak,’) (St(b/Q)f ( ‘J‘-&-EV 5£)73t(b)g)

where S(/2) ¢ StGC% and the tuples I, J and integers k, £ satisfy the constraint

]+ 1] b
P e pe=2,
2 e 2
Denote by Z; the set of all such (I, J, k, ¢). We then have the identity

J " (o) © J AL
for some coefficients a,ﬁ:i. Similarly, we have

J; O (P0sP0g) 2% | B0 Y
with B/ (f.g) of the form

B (1.0 = S ({3 viayp® g} - {5 viatypa)).

for some coefficients bi’i. So we have at the end the decomposition

fgzz%zf A (gf dt+2b JB

which leads us to the following definition.
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Definition. Given f € Use(m) C% and g € L* (M), we define the paraproduct Hgb)(f)
by the formula

()= | 1

0

dt
{ DI ACGOR DY bé;zs,ﬁgﬂf,g)}t,

Ty E k>t Tyl 4 k>t

and the resonant term II()(f, g) by the formula

1
J { Z ailt{ (Aig(fag) + Ai’i(g,f)) + Z bét{ B/?Z(ﬂ g)} %

0
Tyl +k<? Ty; 4=l o2

With these notations, Calderén’s formula becomes

fo=1P(f) + 1P (g) + IO (f,9) + A1(f,9)

with the “low-frequency part”
b b b
A(f.g) =P (PO f-Pg).

If b is chosen large enough, then all of the operators involved in paraproducts and
resonant term have a kernel pointwisely bounded by a kernel G; at the right scaling.
Moreover,

(a) the paraproduct term Héb)( f) is a finite linear combination of operators of

the form
! dt
le 2 1
Qi f - Prgl|—
fo ¢ ( n f ) P
with Q!, 02 € StGC4, and P! e StGCLO2],

(b) the resonant term II®)(f, g) is a finite linear combination of operators of the

form
1 dt
1({Alr 02,) %
|, Pi(eir-ato) 4
with O, Q% € StGCT and P! e StGCl0:20],

Note that since the operators Q® and P} are of the type Qﬁc), Pt(c) or a Pt(C)VI, they
can easily be composed on the left with another operator Q&d); this will simplify
the analysis of the paraproduct and resonant terms in the parabolic Holder spaces.
Note also that H;b)(l) =T®)(f,1) = 0, and that we have the identity

() = f—PYPOY,

as a consequence of our choice of the normalizing constant. Therefore the paraprod-
uct with the constant function 1 is equal to the identity operator, up to the strongly

regularizing operator PY))PY)).

One can prove the following continuity estimates in exactly the same way as in
[4]. Note first that if wy,ws are two space-time weights, then w := wjws is also a
space-time weight.

Proposition 13. Let wy,ws be two space-time weights, and set w := wy wo.
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(a) For every a, 8 € R and every positive regularity exponent -, we have

A1 (£ 9)] ey < [ flleg, l9llce,

for every f e CZ and g € 652.
(b) For every a € (—3,3) and f € CZ , we have

)

oy Sl
for every g € L®(wy!), and

)

ors < 19l I les,

for every g € (352 with 8 <0 and a + B € (-3, 3).

(c) For every o, B € (—0,3) with a + 8 > 0, we have the continuity estimate

HH“’)(f, 9)

cors S Wfllez, Il

for every f e CZ and g € ijQ.

The range (—3, 3) for a (or v+ ) is due to the fact that all the operators involving
a cancellation used in this estimate satisfy a cancellation of order at least v+ 10 > 3.
We simply write 3 in the above statement, which will be sufficient for our purpose.
We proved similar regularity estimates for the paraproduct introduced in [4], with
a range for « limited to (—2,1). This difference reflects the fact that the class
of operators L considered in [4], characterized by the first order carré du champ
operators, is more general than the class of Héormander form operators considered
in the present work, and allows only for a first order calculus.

These regularity estimates can be refined if one uses the specific weights w and
pewo introduced in Subsection

Proposition 14. For every a € (—3,3) and a,c € (0,1) with « —a —e € (—3,3) and
fe Co‘a, we have

e for every ge LY

)

< w7 @ g, flleg,

C‘g—a—s

o for every g€ C2 with B <0and o+ 3 —ae (—3,3)

)

carizre 5 19z 1 Flleg, -

The proof of this result is done along exactly the same lines as the proof of
Proposition using as an additional ingredient the elementary Lemma

We shall use the above paraproduct in our study of the parabolic Anderson model
equation, and multiplicative Burgers system, to give sense to the a priori undefined
products u¢ and M¢u of a C* function v on M with a C*~2 distribution ¢ on
M, while 2o — 2 < 0. Our higher order paracontrolled setting is developed for that
purpose. As said above, and roughly speaking, we shall solve the Anderson equation

(0r + L)u = uC
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by finding a fixed point to the map ®(u) = e~ Lup + R(u¢). We would like to set
for that purpose a setting where the product u¢ can be decomposed as a sum of the
form

3
u¢ = Y TV + (),
i=1

for some remainder term (---). We would then have
R(u¢) = i R(IO ) + (),
i=1
which we would like to write in the form
R(u¢) = iﬂﬁ? (R(Y:) + (),
i=1

commuting the resolution operator R with the paraproduct. The commutation is
not perfect though and only holds up to a correction term involving the regularizing
commutator operator [R, Hg(-)], whose regularizing effect happens to be too limited
for our purposes. This motivates us to introduce the following operator.

Definition. We define a modified paraproduct ® setting
(b ) b
P (f) = R(1P(2f)).

The next proposition shows that if one chooses the parameters ¢; that appears

in the reference kernels G;, and the exponent b that appears in the definition of the

paraproduct, both large enough, then the modified paraproduct ﬁéb) () has the same

algebraic/analytic properties as Hf}b)(~).

Proposition 15. If the ambient space M is bounded, then for a large enough choice
of constants ¢; and b, the modified paraproduct II,(f) is a finite linear combination of

operators of the form
! dt
f %’(Q?f : 7’39) —
0 t

with Q! € GC52, Q2 € StGC1 and P! e StGC.
If the space M is unbounded, then the result still holds on the parabolic space [0, T'] x
M for every T' > 0, with implicit constants depending on T'.

The operators Q) that appears in the decomposition of II,(f) are elements of
StGCI%?] while the operators Q! that appear in the decomposition of I, (f) are
mere elements of GC5 2.

Proof — Given the structure of Héb)(-) as a sum of terms of the form

[ (i) ¥

with P! € StGC and Q', Q% StGCg, it suffices to look at

j;(t—%) (@) 0Ple) <
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We have P! € StGCI*?) and it is easy to check that (QF(tL))
to StGC1+2 = StGC1. Insofar as

RQ* = (&4R)",
we are left with proving that the family 51 = (Q%tilR)
with Q! essentially given here by

11
Q; = (t?“ﬂ@&’:)ﬂ(b)

0<t<l also belongs

belongs to GC§*2,

0<t<l1

with %‘ +k > 5. Note in particular that we have either [I| > % or k > §. We

check in the first two steps of the proof that O € G in both cases provided b is
chosen big enough. The third step is dedicated to proving that Ole GCiL,
Step 1. Assume here that || > % The kernel K of Q} o (t7'R) is given by
K((:IZ, 7), (¥, U)) = JOO Kt\1|/2v p® —()\—U)L(x7 y)(taT)k(Pt(T -2 @ (4.2)
o e t

. . 1l
So by the Gaussian estimates of the operator t 2 VIPt(b)e_()‘_")L at scale max(t, A—
)2, and since |I| > 2, we deduce that

Ul

t 2
K S| —— _
tléVIPéb)e(/\U)L(x’y)‘ ~ (t + A — 0_> gt-i—)\ U(a:>y)

< (7= v (14t Y

t+A—o t+A—o0
b_v_y -
3 sT2 —1 d(.%',y)Q '
S — NI
(i) eV (11

v__

if b is chosen large enough for %— 5 —/1 to be non-negative. Using the smoothness
of ¢ we then deduce that ’K((m, 7), (y, 0’))’ is bounded above by

w(B(z, Vi)™t <1 + W>_el foo (t>gg£1 <1 LT A)El d\

t Y ¢ 2

< ey (0 15) ()

So we get the upper bound

1 d(z,y)? + |1 — 0| —h
}K((w, 7), (v, 0‘))‘ <v(Bum((z,7), \/E)) (1 + ’ " ) . (4.3)
If d(z,y) < 1, this is exactly the desired estimate. If d(z,y) > 1 and one works
on a finite time interval [0, 7] then we keep the information that |\ —o| < T
and so the exponentially decreasing term in the Gaussian kernel on the spatial
variable allows us to keep in all the previous computations an extra coeflicient
of the form

d(z,9)?

p(Bar(, 1)) e™ T
which is exactly the decay required in the definition of the class G.

Step 2. Assume now that k > g. We work with the above formula for the
kernel K and use the cancellation effect in the time variable by integrating by



32

parts in A for transporting the cancellation from time to space variable. So
starting from formula (4.2)), the “boundary term” in the integration by parts

K k—1 _
ot ViP® (o)L (,y) ()" (T = A)
is vanishing for A — o0, and equal to
k—
p® (CL‘, y)(t&-) 13015(7— - J)
t
for A = 0. The latter term satisfies estimate (4.3]). So up to a term denoted by

(v'), bounded as desired, we see that K((a:, 7), (v, a)) is equal to

* k-1 dA
(V) + Ktm (2, y)(—t0x)" e (T — A) E

T+1V1Pt(b>L€7<)‘70)L
where we used that by analyticity of L in L'(M)
—(A—=0o)L _ —Le_(A_O)L.

K 1
t2Vr

oxe

Doing k integration by parts provides an identity of the form

®© dA
K@) o) = O+ | Ky, o, @)alr =2 G

where (v) stands for a term with (4.3) as an upper bound. This procedure
leaves us with a kernel which has an order of cancellation at least g in space;
we can then repeat the analysis of Step 1 to conclude.

Step 3. The proof that ol actually belongs to GCs2 is very similar, with
details largely left to the reader. The above two steps make it clear that the
study of O! reduces to the study of operators with a form similar to that of the
elements of StGC[%2!). We have provided all the details in Proposition 3| of how
one can estimate the composition between such operators and obtain an extra
factor encoding the cancellation property. The cancellation result on Q! comes
by combining the arguments of Proposition |3| with the two last steps.

Let us give some details for the particular case where the family Q belongs
to StGC* for some a > % — 1 and commutes with R; this covers in particular
the case where Q is built in space only with the operator L with no extra V;
involved. Let us then take s,¢ € (0,1) and consider the kernel of the operator
Q}Q2. Note first that
31Q: = (etez) o (1'R)
t+s . _
- (ete) t+9)7'R.
Since Q! € (93, we know that Qtl Q¢ is an operator with a kernel with decay at
b
scale (t + s)% with an extra factor (ﬁ) ®. We may also consider that
y b
1e _ s 1% 42 ~1
Q5 = ((t+s)2> Qi (t+s) R
for some operator Q7, ; having g—order of cancellation and a kernel with decay
at scale 4/s +t. So by what we did in the two first steps we also obtain that
1
Q?, (t + s)7'R has a kernel with decay at scale (t + s)2, for a large enough
choice of b. (Indeed, note that Q? is very similar to the operators studied in the
two first steps: easily analyzed as a function of the space-variable, while, as far
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as the time-variable is concerned, the composition of convolution preserves the
main properties needed on the functions — vanishing moments.) At the end, we

conclude that ,
b
N1 e st 16 2
Qth: <(t—|—8)2> Qt+s

with Q7 having fast decreasing kernel at scale (s + t)% That concludes the
fact that O € GCS~2,
>
The following continuity estimate is then a direct consequence of Proposition
since the latter implies that we can reproduce the same argument as for the standard
paraproduct in Proposition
Proposition 16. For every a € (—3,3) and a,c € (0,1) with « —a — e € (—3,3) and
fe Co‘a, we have

) < 6w g 1 F e,

c;—a—E

for every g e LE.

Last, note the normalization identity
- b b
(f) = f - RPYPY(LS)

for every distribution f € S’; it reduces to

m(f) = f - PP ()
if f‘T:O = 0. (Use here the support condition on ¢ in the definition of P.) Let us

also point out here the strongly regularizing effect of the two operators 77£b)73£b) and

72739)77#)/5, denoted by A below, that satisfy the continuity estimate
”A”C‘%Hcg S

for any «, 5 € (—3,3) and any space-time weight w.
We shall fix from now on the parameters b and ¢;, large enough for the above
result to hold true.

Remark 17. The previous Proposition is very interesting because of the following ob-
servation: the time-space paraproducts II are defined in terms of parabolic cancellations
and so do not differentiate the space and the time. Consequently, it is not clear if the
time-space paraproducts II may be bounded on L%C’ﬁ for some e < 0 (with or without
weights), Such property would be very useful since the paracontrolled calculus (as shown
later in the study of (PAM) for instance) needs to estimate the composition of R (the
resolution of heat equation) with the paraproduct. However, following the definition of
the paraproduct we have for f € LQO?C'B and g e C?

RO (f) = TP (R ).

Soif fe L%Cﬁ for some a € (—2,0) then Schauder estimates imply that Rf € C**2
and we may then use the boundedness on Holder spaces of the modified paraproduct
.

In conclusion, these new space-time paraproducts seem to be very natural for the
paracontrolled calculus. They allow us to get around a commutation between the initial
paraproduct and the resolution operator R (which could be a limitation for a higher
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order paracontrolled calculus) and fits exactly in what paracontrolled calculus requires
to solve singular PDEs, modelled on the heat equation.

4.2. Commutators and correctors We state and prove in this section two continuity
estimates that will be useful in our study of the
3-dimensional parabolic Anderson model equation and Burgers system in Section

Definition 18. Let us introduce the following a priori unbounded trilinear operators on
S!. Set

R(f,g,u) == T (TP () =),

and define the corrector
C(f,g,u) =1 (TP (1), u) — g1 (£, ).

This corrector was introduced by Gubinelli, Imkeller and Perkowski in [19] under
the name of commutator. We prove in the remainder of this section that these
operators have good continuity properties in some weighted parabolic Hélder spaces.

Proposition 19. Given some space-time weights wi,ws, w3, set w = wiwows. Let
a, B, be Holder regularity exponents with o € (—3,3), 8 € (0,1) and v € (—3,0].
Then if 6 := o+ f+ 7€ (—3,3) with a + 3 < 3, we have

|R(f 9:w)es < 1 fles, lglles, Tulez, (4.4)

forevery feCg , g€ C& and u € CJ,; so the modified commutator defines a trilinear

continuous map from Cgj, x ng Cy to CO.

Proof — Recall that Héb) is given by a finite sum of operators of the form
1
. dt
A= | ol (@0 Piw) T
0

where Ql, Q2 belong at least to StGC3. We describe similarly Hng) as a finite
sum of operators of the form

2 b e ( oyt A2 dt

A= | ar(QtoPiw) T

Thus, we need to study a generic modified commutator
A (AL() = A2y f),
and introduce for that purpose the intermediate quantity
b sef 1 2 ds

g(fag7u) = 0 Qs (Qs(f) ’ Ps (g) ' Ps (u)) ?
Note here that due to the normalization II; ~ Id, up to some strongly regular-
izing operator, there is no loss of generality in assuming that

f o th J Qo3 4dt (4.5)

Step 1. Study of A2 (A}(f)) — £(f,g,u). We shall use a family Q in StGC,
for some a > ||, to control the Holder norm of that quantity. By definition,
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and using the normalization ({4.5)), the quantity Q, (.Az (AL()—Ef. 9, u)) is,
for every r € (0, 1), equal to

[ eorfetar(ctnpie) P2} 28 [ a0 (ciin Phio) P2m) &
- Ll Ll 0.9x{atal* (N (PHo) - P;(g))) P} B,

where in the last line the variable of PL(g) is the one of Q3*, and so it is frozen
through the action of QQ}*. Then using that g € C? with § € (0, 1), we know
by Proposition [7] that we have, for 7 > o,

B
wa(w, 7)Y (PLg) (,7) = (Pho)w, )| < (5 + ¢+ p((2,7), (9,0))) * ete) g

Note that it follows from equation (3.4) that the kernel of Q*Q}* is pointwise
bounded by G;. s, and allowing different constants in the definition of the Gauss-
ian kernel G, we have

Girs((z,7), (y,0)) (s +t + d(, y)2)g e“@Y) < (s + t)ggﬁs((m, 7),(y,0)). (4.6)

So using Lemma [4] and the cancellation property of the operators Q at an order
no less than a (resp. 3) for Q (resp. the other collections Q'), we deduce that

T (A2 (45(6) — Efg.w)|

S I flleg, gl s llwl f f N 13 (s +1)5s3 25U
S o u _ st s 5 ’
e T Jo Jo \(s+ 772 (s +1)2 st

where we used that 7 is negative to control P2(u). The integral over t € (0, 1)
can be computed since o > —3 and a + 8 < 3, and we have

oo, (42 (430 - £rg0),

Ll sr 2
< flles, loleg, luler, f [ (o)

S | flleg, 19les Iulez, e,

(IS
Njw

[SIEY

ds
S

uniformly in 7 € (0,1) because |a| > 0. That concludes the estimate for the
high frequency part. We repeat the same reasoning for the low-frequency part
by replacing 9, with Q7 and conclude that

A5 (A — € g0,

S [ flleg, I9lles, lulez,

Step 2. Study of Agg —&(f,g,u). This term is simpler than that of Step 1
and can be treated similarly. Note that Q, (.A; (AZ( f )) —-&(f, g, u)) is equal,
for every r € (0,1), to

ds
S

[ e (einpiun) © - [ a0 (el Pl P2)
ds

s .

f 0,05 (Q4(1) (P (ug) - P(9) - P2(w)))
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Now note that since g € C” with 8 € (0,1), we know by Proposition |7, for
T =0,

ws(w,7) " g(@,7) = (Plg) (4, 0)|

< wo(x, T)*l‘g(xﬂ') —g(y, 0')’ + wa(z, T)*l‘g(y, o) — (Ptlg) (y,o)‘

< (s +t+p((x,7), (v, U))2> i ‘de(x’y)”gHC@‘

Then the same proof as in Step 1 can be repeated.

As far as the continuity properties of the corrector
C(f,g.u) = L (IP(£),u) — gL (f,0)

are concerned, the next result was proved in an unweighted setting in [4, Proposition
3.6] for a space version of the paraproduct II; elementary changes in the proof give
the following space-time weighted counterpart.

Proposition 20. Given space-time weights w,ws, w3, set w := wiwows. Let a, B,
be Holder regularity exponents with a € (—3,3),5 € (0,1) and v € (—00,3]. Set
di=(a+pB) A3+~ If

O<a+p+v<1 and a+v<0

then the corrector C is a continuous trilinear map from Cg x 052 x Clly to CO.

5

Anderson and Burgers equations in a 3-dimensional background

We are now ready to start our study of the parabolic Anderson model equation
(0t + L)u = uC
and the multiplicative Burgers system
(0 + L)u+ (u-V)u=Mcu

in a 3-dimensional manifold, using the above tools. Here for Burgers system, we
consider a collection of three operators V' := (V1, V5, V3) (£y = 3). We shall study the
(PAM) equation in a possibly unbounded manifold, using weighted Holder spaces,
while we shall be working in a bounded setting for the Burgers equation, as its
quadratic term obviously does not preserve any reasonable weighted space.

5.1. Getting solutions for the (PAM) equation Let us take the freedom to assume for

the moment that the noise ¢ in the
above equations is not necessarily as irregular as white noise. We shall fix from now
on a finite positive time horizon T'. Recall the elementary result on paracontrolled
distributions u with derivative u stated in section[2} such distributions are of the form
u = e %vy, for some more regular factor v;. This is indeed what happens formally
for any solution fo the (PAM) equation, since u¢ = II,({), up to some smoother

term, and R(Hu(C )) = II,(R(), up to some more regular remainder. Elaborating

formally on this remark leads to the introduction of the following distributions, and
the choice of representation for a solution of the (PAM) equation adopted below in

proposition [21]
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For a continuous function ¢ in Cgﬂ, and 1 < 7 < 3, define recursively the following
reference distributions/functions

with
50 ZO

Yii=(, Yo=Y Vi(Z1)?, Ya:i=2) Vi(Z1)Vi(Za), (5.1)
=1 =1
and define

Zo eO
(%) = =2 ) Vi(Z1)Vi(Zs), Wa:=— ) Vi(%)?
i=1 1=1
as well as for j € {1,.., 4y}
. (0
Wi = 310 (Vi) , ViR(V; %) ).
i=1

Indeed in the (%) term, only the resonant parts in the products have to be defined,
since the parapoducts always have a sense, and so we will focus on the resonant part

of (x)
Lo
Wy = —2 Y T (Vi(23), Vi(Z1)).
=1

Defining the Y;’s as elements of LJ@CO‘*“*")/ 2 c L%Cf,i‘”, the distributions Wj, as

element of Ly C’;f{f‘_l, and W1, W. as an element of L C’g{f‘_l, forsome 1/3 < a < 1/2
and a > 0, when ( is a space white noise, is the object of the renormalisation step,
which shall be done elsewhere. These conditions ensure, by Schauder estimates,
Proposition @ that Z; is in the parabolic Holder space C;‘j. Note that assuming Wy

is an element of L%)Cgf‘*l ensures that (x) is an element of L%)C’g‘afl. We assume
throughout this section that this data set is given; set Z := Z1 + Zy + Z3 =: Z1 + Z.

Proposition 21. The function w is a formal solution of the (PAM) equation if and only

if the function v := e “u is a solution of the equation
Lo
Lv=—Uv+2) Vi(Z)Vi(v), (5.2)
i=1

with the same initial condition as u at time 0. The letter U stands here for W7 + Wy + W5
for an explicit distribution W3 in L%Cm.

Proof — Observe that
o-u = e” (57—1) + 00,21 + vc972>,

and using the Leibniz rule on V;’s

Lo
Lu = e” (— D IVi(2)?0 = VH(Z)w - 2Vi(Z)Vi(v) — v;%)
i=1

Lo
=eZ (vLZ + Lo — Y Vi(Z)*v — 2V,~(Z)V;(v)>
=1
—=¢Z (szl +oLZ + Lv—v ) Vi(2)* - 2Vi(Z)VZ-(v)> .
1=1
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Due to the definition of Y;’s, we have some telescoping property:

Lo
LZ =)\ Vi(Z)
i=1

N

0

= LR(Yz + Y3) — ), (V;(Zl) +Vi(Z2) + V;-(Zg))2

=1
/4 3
=Yoo+ Ys— ) > Vi(Z)Vi(Zy)
i=1jk=1
A 3
=W+ Wo =Y. > VilZ)Vi(Zy)
=1 jj-;—ka;B

Since we assume that Z; € C3%, it follows that V;(Z;) € LEC ™" and Vi(Z) €
L%C;f{f‘_l. Given that j + k > 5 and a € (1/3,1/2), at least one of the two

numbers (ja—1) and (ka — 1) is positive and the other not smaller than 2 — 1.
So

Lo
U:=LZ-) Vi(Z) e Wy + Wy + LFC* !, (5.3)
i=1
and the result follows.

>

Instead of solving directly (PAM) through paracontrolled calculus, we are going
to solve (5.2)).

Definition 22. Given % <fB<ac< % and a time-independent distribution ( € C}?‘a_z,
a (PAM)-enhancement of ( is a tuple 5 = (C,)@,i@,Wl,WQ,(Wg)j>, with Y}, €
LECp PR and Wi, Wo, W] € LEC20,

So the space of (PAM)-enhanced distributions ¢ for the (PAM) equation is
here simply the product space

3
k=2

5.1.1. The paracontrolled approach The study of singular PDEs, such as the An-

derson and Burgers equations or , from a
paracontrolled point of view is a four step process. Let us sketch it for equation ([5.2))
as an example.

(a) Set yourself an ansatz for the solution space, in the form of a
Banach space of paracontrolled distributions/functions.

Given % <fB<a< %, we choose here to work with functions v paracontrolled by

14
the collection {R(Vl(Zl))) ’ v that is with v of the form

i

V4
v = 20: i) (R(%ZQ) + ot (5.4)
i=1
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for a remainder vf € C;;gjﬂ and v; € Cg. We refer the reader to Subsection M for

the introduction of weights p, and w. Note that we use the I paraproduct and not
the II paraproduct. We turn the solution space

Sa 3 (@ = {(U; V1, ey Vg %) satisfying the above relations}

into a Banach space by defining its norm as
Lo

[@svns w009 g 5= 0¥ + 2 ol s - (5.5)
i=1

(b) Recast the equation as a fixed point problem for a map ¢ from the
solution space to itself.

This is where we use the continuity properties of the corrector and different para-
products. In the specific situations of equation (5.2)), given (v;v1,...,vy;v") in the
solution space S, g (@, one sets

y=£(-Uv+ 2% Vi(Z)Vi(v))
i=1

and shows that it has a decomposition (y;yi,... ,ygo;yﬁ) of the form . This
is where we need all th extra information contained in 6 . Then, given an initial
data vy € C};;‘fjﬁ, the application « : (7,z) — e "(vg)(x), belongs to C};{f:ﬂ and
satisfies

Ly =0, Yr=0 = V.

We define a continuous map ® from the solution space S, g (@ to itself setting
® = (V301,005 0%) o (U Y01, U3 Y ).
(c) Prove that ® is a contraction of the solution space.

Recall a parameter x > 1 appears in the definition of the special weight . We
shall see below that the function y* satisfies the estimate

Wlengess < K2l @ion, o i e8],
for some ¢ > 0, and that (yi,...,ys,) depends only on v and not on vy,..., vy, and

v¥. These facts provide a quick proof that ® o ® is a contraction of the solution space
Sa,p (@ Indeed, given (v;vy, ... ,vgo;vﬁ) in S, 8 (@, set

(z + 7521, ... ,Zgo;Zﬁ + ”y) = @OQ(v;vl,...,ng;vﬁ) € Sa,ﬁ(@-
We know that

HzﬁHC;J;OiZﬁ S "i_aH(y + 77 y17 LU 7y£0; y’i + FY)HO(,B
S T vﬁ)Haﬁ.

The paracontrolled structure (5.4)) of y and Schauder estimates also give

Lo
ey, = Wlesz, + 24~ Tl
< KZ_EH(I)(’U,’Ul, ..,vgo,vﬁ)“aﬁ
< K% (v, 1, ..,vgo,vﬂ)”a’ﬁ.
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So we conclude that y is controlled with a small bound. Since (21, .., z¢,) will be given
by y, we then obtain that (z;z1,..., 2¢,; zﬁ) will be controlled in &, g (@ with small
norms (relatively to the initial (v; vy, ... ,vgo;vﬁ)) and so that ® o ® is indeed a small
perturbation of the map (v;vy,... ,vgo;vﬁ) — (7;0,...,0;7). Then it is standard
that if k7¢ is small enough, that is k is large enough, then we can apply the fixed
point theorem to ®°? and conclude that it has a unique fixed point in the solution
space Sq 3 (@, the same concolusion for ® follows as a consequence.

(d) Renormalisation step.

The defining relations for Z; found in step (b) actually involve some terms that
cannot be defined by purely analytical means when ( is a white noise, but which
make perfect sense for a regularized version (¢ of (. Their proper definition requires
a renormalisation procedure that consists in defining them as limits in probability,
in some parabolic Hélder spaces, of suitably modified versions of their regularized
versions (with (¢ in place of (), which essentially amounts in the present setting to
adding to them some deterministic functions or constants. (This may be trickier
in other situations as the theory of regularity structures makes it clear.) Given the
inductive construction of the Z;, this renormalisation step also needs to be done
inductively. At e fixed, this addition of deterministic quantities in the defining
relations for Z; defines another map ®° from the solution space to itself that can
eventually be equivalent to consider a renormalised equation with noise (°, with
e-dependent terms added in the equation, when compared to the initial equation.
Write u® for its solution. In the end, we get, from the continuity of fixed points of
parameter-dependent uniformly contracting maps, a statement of the form: Let ®
stand for the map constructed by taking as reference distributions/functions Z; the
limits, in probability, of their renormalised versions. Then the functions u® converge
in probability to the solution u of the fized point problem of the map .

We shall do here the first three steps of the analysis for both the Anderson and
Burgers equations, leaving the probabilistic work needed to complete the renormali-
sation step to another work — the present article is already big enough not to overload
it with 20 or 30 pages more, but will instead give in section [6] some hints as to what
is going on.

5.2. The deterministic PAM equation Given what was said in the preceding section,
the main work for solving the (PAM) equa-
tion consists in proving the following result.

Theorem 23. Let % <a< % be given. Choose 8 < «, the positive parameter a in the
weight p,, and € > 0, such that

20+ 3 > 1 and 8a+e)<a-—p.

Given an enhanced distribution ¢, one can extend the product operation

Lo
ve CP(M) > —Uv+2 > Vi(Z)Vi(v)
=1

to the space S, 5(C) into an operation & — —U% + 2 3% Vi(Z)V;(0), so that setting

V4
yim R[ - 00+ 2 Y VIEWV)],
=1
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and y; = 20V;(Z3) + 2Vi(v), there exists yf € C};}f;ﬂ such (y;y1,...,Ye;y") is an

element of the solution space S, 3 (6) and

H(y’ylayyfo,yﬁ)H $ H(U;’Ula"'avfo;vﬁ)
a,B

o, (5.6)
ez 7 [ 0n o v )

a8

Proof — First, we note that since v satisfies the ansatz (5.4) and 2a < o — 3, we
know from Schauder estimates that

14+o 1+
vECq,, NCy” ..

Step 1. We first consider the part Uv where we recall that U = Wy + Wy + Wy
for some W3 € L%Cgf‘_l. Using the paraproduct algorithm, one gets

Wav = I1y) (0) + LY (W) + 0O (0, W),

By the boundedness of paraproducts, Proposition [I3] and Schauder estimates,
Proposition [12] we get

Hﬁg (v) € C;,O‘Jrﬁ SO Rﬂwg (v) € CZ—;EE c C};{fjﬁ

with
e

euyye =1 IWley,

since 2¢ + 2a < a — f and a < 1. For the resonant part, a similar reasoning
with Proposition [T3] yields

IO (v, Wy) e 2 so  RI® (v, W) e 238
with
[RI (0, W)

—&
vy S ez

edness, Proposition [16] to have RHS,b)(Wg) = 11 (RW3), hence since RWj3 €

For the second paraduct, we use the modified paraproduct and its bound-
C;:za we have ”RHq(Jb

(W3) € Cob™TP with

H RITY) (W3)

gy 1 IWlez

since 4(a + ) < a — 8. So we have R(W3v) € CLETP | with an acceptable
bound.

The term W is an element of L7 C’gg_l, so using the same reasoning yields that
R(ng) € C};ﬁ:ﬁ with an acceptable bound.

The term Wi is an element of L%C;“a_l, so it is really more singular than the
two previous terms. Recall its definition

Lo
Wy = =2 Vi(Z1)Vi(Zs)
=1

with V;(Z3) in C% , since Z3 is an element of C}*®. So W7 is in C2~!, and since
Pa’ Pa Pa

veCLhe, we have

H%,)l (v) e C2@ and TIO(Wy,v) e 2

wWp2a wp2a”
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Using Schauder estimates one obtains

HRH(V?% ) Cl+a+s + HRH(b)(Wl’v) clvatp ~ 7€HUHC%3'

It remains us to study the paraproduct term

IO (W) = T+ 1+ 111,
with

Lo

~ 2 21 ) (1), (Vi)
“
= —2 3 1) (10 (Vi(23). Vi(21))
i O1

l
= -2 1 (H(V’?(Zl) (w(zg))).
=1

By easy considerations on paraproducts, the third term Ill belongs to C;ap:l
and R(INN) € C};;_Y:B , with acceptable bounds, because Z3 is an element of C3 .
Moreover, since we assume that W; = Zfo L TI® (Vi(Z3), Vi(Z1)) is an element of
LOOCQO‘ 1 the second term Il also satisfies R(Il) € Cg];ajﬁ Using the regularity

ofve C 1*2" C LOO , and Proposmon.for the commutation property, we deduce
that

2211“ 2]+

and consequently

—2 Z 05 0 [RVi(Z1)] + CLi

Wp—a

with an acceptable bound for the remainder since 8(a +¢) + 1 < 3a — 3.
At the end, we have obtained that

{ an) [RVi( Zl)]+c;;fjﬂ},

which proves that R(Uv) is paracontrolled by the collection (RVZ(Zl))Z and the

remainder has a bound controlled by x7¢.

Step 2. Let now focus on the term Zlfo L Vi(Z2)Vi(v). Fix an index i and write
b
Vi(Z)Viv) = T, (Vi(2)) + T (Vi(v)) + T (Vi(2), Vi(v)).
The second term is of regularity 2a — 1 and using the modified paraproduct,
Schauder estimate and the fact that we have v e C};I;j, we see that

R |y

Vi Vi) | = T (RVi(0)) € Clpet.

Vi(2)

We proceed as follows to study the resonant part. First, since o > 1/3, we have

Lo
1® (V;(2), Vi(v)) e { > a® (W(Zl), Vi) [R<Vj21)]) + Czi%l}
j=1
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Consider the modified resonant part

" (f,9) := TO(f, Vig)

and the corresponding corrector

Cilfogh) i= T (TP (1), ) = oI (f, ).
Then since in the study of the resonant part and the commutator, we can change
the localization operators, so we can integrate an extra V; operator, we get
boundedness of ﬁgb) from C® x CP to C**P~1 as soon as a + B —1 > 0, and
boundedness of the corrector C; from C® x C? x CY into CtA+7=1 ag soon as
a+ B+~ —1>0, proceeding exactly in the same way as above for II®) and C.
Using this commutator, we see that Zfozl 1) (V;(Z), Vi(v)) is an element of the

space

fo (0 EO

25 20 0 (Vi(20), ViR(V;20)) + 3, Ca(VilZa). vy, ViR(V; 20)) + €250
i=1j=1 i=1

that is an element of
Lo
7 V2 204+6—-1 0 ~2a—1
D W 4 C2o P < LRC2e
j=1

since WQJ € LOTOCgffl and 2a + 8 > 1. In the end, we conclude that

Lo
y:=R|-Uv+2> Vi(2)Vi(v)
i=1
1 (b) 1+«
= 2300 70y vy (RVA(Z0) +C2 7

as expected. Observe that Vj(Z3) is of parabolic regularity (3ac — 1), so vV;(Z3)
and V;(v) belong to cl .
>

We can then apply the contraction principle, such as explaned above in Step (c)
in section B.1.11

Given vg € ngff , write SZOB (E) for those tuples (v;v1, ..., vy; vﬁ) in S, (Z‘)

with vj,—g = vo. As the function v := (z,7) (™) (vo) () belongs to C;{fjﬁ

and is the solution of the equation
((97' + L)(V) =0, 9r=0 = vo,
we define a map ® from 820/3 (E ) to itself setting
D (v;v1,. .., Vg vﬁ) = (y + v; 20V1(Z3) + 2Vi(v), . .., 20V, (Z3) + 2V, (v); yﬂ + ’y),
with
yi=R(=00+2) Vi2)V(®)),
i=1
and yf given by the previous theorem. Note that the map ® depends continuously

on the enhanced distribution E ; so the next well-posedness result is then a direct
consequence of Theorem 23]
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Theorem 24. Let % <a< % be given. Choose 3 < «, the positive parameter a in the
weight pg, and € > 0, such that

2+ >1 and 8la+e)<a-—p.

Then, one can choose a positive parameter «, in the definition of the special weight w,

large enough to have the following conclusion. Given vy € C;Egjf, the map ® has a

unique fixed point (v, vy, .., vy,, vﬁ) in SZO/B (2) it depends continuously on the enhanced

distribution 2 and satisfies the identity v; = 20V;(Z3) + 2V;(v) for i = 1,..,€y. This
distribution is a solution of

Lo
L(v) = —Uv+2 ) Vi(Z)V;(D)
=1

with v;_g = vo. So that, as we have observed u = eZv is a solution of (PAM) with
initial data vg.

If the ambient space M is bounded, then we do not have to take care of the infinity
in the space variable, and one can prove a global (in time) result by considering the
weight w(xz, 7) = "7 with a large enough parameter .

5.3. The stochastic PAM equation Recall the time-independent white noise over the
measure space (M, u) is the centered Gaussian
process ¢ indexed by L?(M), with covariance

E[¢(f)?] = f £2(x) p(d).

It can be proved [4] to have a modification with values in the spatial Holder space

C’,;ffs, for all positive constants ¢ and a, where v is the Ahlfors dimension of
(M,d, p) — its dimension in our Riemannian setting. We take v = 3 here. We still
denote this modification by the same letter £&. As made clear in the introduction to
this section, the study of the stochastic singular PDE of Anderson

(0r + L)u = u€

can be done in the present setting. This requires a renormalisation step needed
to show that the quantities = = Y;,W;,... can be defined as elements of suitable
functional spaces, as limits in probability of distributions of the form =¢ — A*, where
=° is given by formula, with ¢ = €% := e~¢L¢, the regularized version of the noise
via the semigroup, and A\® are some deterministic functions. This renormalisation
step is not done here not to overload the present article. Section [6] gives a flavour of
what is involved in this process in the present setting. Note that the two dimensional
setting was studied in depth in [4] — spatial paraproducts were used there instead of
space-time paraproducts. Here is the statement which can be proved in the present
3-dimensional setting.

Theorem 25 (Renormalization). Consider £ a white noise on M and for ¢ > 0, denote
by €2 := e~¢L¢ its regularized version. Denote by Z¢ the distributions corresponding to
= =Y}, Wj,... that one obtains by replacing ¢ by £°. Then for any o < 1/2

e thedistributions Y7, Y5, W, are e-uniformly bounded and converging in CTCI?‘;2,
respectively CTCI?a_l and CTCgf_l, for every a € (0,1);



45

e there exists deterministic functions A, A5, and AS 5 such that the distributions
Yy — ﬁ,Wf — A5 and W35 — A5 5, are e-uniformly bounded and converging in
C’TC'aa_g/Q, respectively C’TC'IEGO‘_1 and CTCgf_l, for every a € (0,1).

Write Z° and U® for the renormalized versions of Z¢ and U¢. By tracking in the

proof of Theorem [23| the changes induced by such a renormalisation of Yy, Wi and
WS, we see that if (vs; V%, Vg Us’ﬁ> satisfies ansatz (5.4)) with ¢ = £°, and setting

Lo
v = R(— (O = N =25, = A5)0 + 20 Vi(Z Vi) ),
=1

then the tuple
(45 20°VA(Z5) + 2VA(0°), . .., 207V (Z5) + 2V (v%); 4 + )
also satisfies the ansatz.

Theorem 26. Let % <a< % be given. Choose 3 < «, the positive parameter a in the
weight p, and € > 0, such that

20+ >1 and 8(a+e)<a-—p.

One can choose a large enough parameter x in the definition of the special weight @
for the following to hold. There exists a sequence of deterministic functions (A5)
such that if v® stands for the solution of the renormalized equation

0<e<l1

Lo
o + Lv® = [—(U‘f—x;— 51— 372)05—1—22\/}(7‘2)%(1)5)] v (0) = vy (5.7)
=1

with initial condition vy € C;Egjf, then v® converges in probability to a solution v €

14+a
Cop -

By reproducing calculations of subsection we observe that v® is solution of
equation (5.7) if and only if u® := eZ € is solution of the equation

Owut + Lu® = (£ — A — A5, — A5)u’, u®(0) = vp. (5.8)

Theorem 27. Let % <a< % be given. Choose 8 < «, the positive parameter a in the
weight p,, and € > 0, such that

2+ >1 and 8(a+e)<a-—p.

One can choose a large enough parameter x in the definition of the special weight w
for the following to hold. There exists a sequence of deterministic functions <>‘§)0<s<1
such that if u® stands for the solution of the renormalized equation with initial
condition vg € cé;,‘;‘ff, then u® converges in probability to a distribution u € CZ,, .
Remark 28. This result is also coherent with the one of [25] by Hairer and Labbé.
Indeed, in |25, Equation (5.3)], where the quantities of order ’odd’ (in terms of the
white noise) has no renormalization correction terms (as for us) as well as for VNVQJ
(which is of order “even’ but involving an extra derivative V;’). This latter term will
be more explained at the end of Section[f], and we will see why this extra derivative
with symmetrical properties implies that the correction term (for the renormaliza-
tion) is null, as in [25].



46

5.4. The multiplicative Burgers equation We study in this last section the multi-
plicative Burgers system

O+ L)u+ (u-V)u=Mcu

in the same 3-dimensional setting as before with three operators V := (Vi, Va, V3)
forming an elliptic system. Here the solution u = (u',u? u?) is a function with

R3-values and (u - V) u has also 3 coordinates with by definition

3
(- V)ul o= Y uwiVi(w).
=1

To study this equation, we have to make the extra assumption that the ambient
space M is bounded. Indeed the boundeness of the ambient space is crucial here, as
using weighted Holder spaces, it would not be clear how to preserve the growth at
infinity dictated by the weight when dealing with the quadratic nonlinearity. In such
a bounded framework, we do not need to use spatial weights and consider instead
the unweighted Holder spaces C7 — or rather we work for convenience with a weight
in time

w(z,T):=e"". (5.9)
We stick to the notations of the previous section. The study of Burgers’ system
requires a larger space of enhanced distributions than the study of the 3-dimensional
(PAM) equation; the additional components include those quantities that need to
be renormalised to make sense of the term (u - V)u, when ( is an element of C%~2,
such as space white noise.

We first rewrite Burgers system in a more convenient form, as we did for the
(PAM) equation. For each cooordinate exponent j = 1,2, 3, we define Z2, Wé from
¢’ as above. Then consider a function u : M +— R? defined by

w = eZ

with v : M + R3. Then observe that u is formally a solution of 3-dimensional
Burgers system on M if and only if v is the solution of the system

Lo = —Uv+2 Y Vi(Z)WVi(0) = Y v'e? (Vio! + 07V Z7). (5.10)
i=1 i=1

To treat the nonlinearity, we need to introduce another a priori given element in the

enhancement of the noise (. Define a 3 x 3 matrix © setting formally

0 =1 (71, v;z]).

Definition 29. Given % <f<a< % and a time-independent distribution ( € C*72, a
(3d Burgers)-enhancement of ( is a tuple QA":: ((,Yg,Yg, Wl, Wa, (ng)j, @), with
Yy € LEC G012 W Wy, Wi € LEC?* and © € (LEC?Y).

So the space of enhanced distributions f for the multiplicative Burgers system
is the product space

3
Cga—Q % H L%ocga—(5—k)/2 % (L%oczg—l)5 % L%c&a—l;
k=2
with slightly abuse notations here as the first factors in the above product refer to
R3-valued distributions/functions, while thelast factr has its values in R?. Given
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such an enhanced distribution 5 , we define the Banach solution space Saﬁ(f ) as in
section [5.1.1] replacing the weight p, by the constant 1. Recall the constant x > 1

appearsin the time weight (5.9)).

Theorem 30. Let % <a< % be given. Choose 5 < «, the positive parameter a in the
weight p,, and € > 0, such that

20+ > 1 and b6e < o — .

Given an enhanced distribution 6and Ve Syp (5) the nonlinear term
[N@)P = v'e” (07 + 07Vi Z)
i=1

is well-defined and there exists some 2% € C};‘HB with

(RIN()],...;2%) € Sap ()
and

H (R[N (v)], .. .;zﬁ)H <K ® H (v, v1, ..,1}3,1}ﬂ)‘ (5.11)

~
a7/8

Proof — We fix a coordinate j = 1, 2,3 and have to study

a8

3 i . . .
[N(w)) = Z vie?' (Viv? + ' V; 27).
i=1

The first quantity is sufficiently regular by itself, and we have Z; € C%, v € CLF*
so for every ¢ = 1,2, 3 then

vie? Vind e Co
hence _
R[v’eszivJ] € C};‘”’B
with an acceptable norm (controlled by ™).
Let us now focus on the second part vie? v/V;Z7. Since v € CLt®, it is very

regular and the problem only relies on defining the product e%V;Z7. We first
decompose using paraproducts

AViz) =1, (Vi) + 1Y), (7)) + 1O (e V2.

The second term B% is bounded in C?*~!. The last resonant part is studied

through a paralinearization formula (see [4] and references there for example)

e =1 (Z%) + (2a)

eZ"

which implies with o > 1/3
AT =IO (7 v, 20y = I® (H:) (1), mzj) +(3a—1)

Zi
= M7, V,27) + (30 - 1)
= 2O (Z],ViZ]) + (30— 1) = ' 67 + (30 - 1),

where we have used the commutator estimates. Since we assume that O is
supposed to be well-defined L§‘9C2O‘_1, we conclude to A% € LE’FOCZO‘_l. So we
observe that

H(:i)j (V') + IO (AY vin?)
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is well-defined in C?ﬂa whose evaluation through R is then bounded in Ci—fﬁﬂ

with acceptable bounds. And since
b ij ~(b ij
RO [49] = 1Y) (RAY)
this is also controlled in Ci-faJ“B by Schauder estimates and we conclude to

HR(Uivinj)

cltats S K° HUHC;O‘ :
™

It remains the quantity with B% (instead of A” ). Here we only know that B%
belongs to C?*~! (and not L%cho‘_l as for AY) but we can take advantage of
the fact that B* is a paraproduct. Indeed as before we have

®

Bis (viv?) + ® (BY viv?)

well-controlled in C3% and
(Re”))

b) [ i _ 0 iy — 1 (i
RIL) [BY] =TI (RBY) =TI (117,

which is well-controlled in C'***# due to Schauder estimates (Proposition .
In conclusion, we have obtained that

RN (v))’

3
R [Z v O (ViZ9) | + (1 + o+ B)
=1

Il
.Mw

@
Il
—_

R, (M, (viz)) | + 11+ a+ 8)

< |
OO RV:Z0) + (1 +a+B)

I
e
=k

@
Il
—_

O

vivieZ®

(RV;Z7) + (1 + a + B),

I
.Mw

@
Il
—

which exactly shows that R[N (v)]’ is paracontrolled by the collection RV;Z7);.
>

Corollary  31. Under the assumptions of Theorem [30] on the positive parameters
a,fB,a,e, and given 4 € SQ’B(C) with u € C272072 set v := R(ﬁ{ — (u - V)u)
Then the tuple (v, u, u1,uz) satisfies the structure equation (5.4), with

H (v,u,ul,uz)HaB <Kk ® H (U,U1,UQ,U3) (5.12)

)
o,

where k is the constant appearing in the definition (5.9)) of the weight w.

Proof of Theorem [21 - Well-posedness of Burgers system follows as a direct con-

sequence. Theorem [2| on the convergence of the solutions to a renormalised
e-dependent equation to the solution of the Burgers equation is thus obtained
as a direct consequence of this well-posedness result together with an additional
renormalisation step that will be done in a forthcoming work. The 3 x 3 matrix-
valued functions d° is the one renormalizing the quantities (@Z’J)§<i7j<3. By
tracking the changes (in the proof of Theorem , induced by a renormali-
sation of ©F into ©° — d° in L%Cg(‘j‘_l, we see that if (ua,uﬁ,ug,ug) satisfies
Ansatz (5.4) with Z7, and setting v® := R((uE - VuE — ds(ui,ui)), the tuple
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(UE ,uf,ug, u%) still satisfies the ansatz. We then complete the proof of Theorem
as done for Theorem [1]
>

6

A glimpse at renormalisation matters

We provide in this section a sketch of the proof of the renormalisation step de-
scribed in Theorem needed to give a complete proof of the well-posedness theo-
rem, Theorem full details will be given in a forthcoming work. Hairer uncovered
in [23] the rich algebraic setting in which renormalisation takes place within his the-
ory of regularity structures. It provides in particular a clear understanding of which
counterterms need to/can be added in the dynamics driven by a regularized noise to
get a converging limit when the regularizing parameter tends to 0. Basic renormal-
isation consists in removing from diverging random terms their expectation. While
this operation is sufficient in a number of cases, such as the 2 and 3-dimensional
(PAM) equations, or the 1-dimensional stochastic heat equation [23] 25], more elab-
orate renormalisation procedures are needed in other examples, such as the (KPZ)
or <1>§1 equations. Hopefully, the kind of renormalisation needed here for the study
of the 3-dimensional (PAM) and Burgers equations, is basic, in accordance with the
work of Hairer and Labbé [25] on the (PAM) equation in R3. We describe it below
in elementary terms and refer the reader to a forthcoming work for full details.

Three kinds of terms Zg, =3, Z4 need to be renormalised, with Z; formally ¢-linear
in the noise £. The terms Y5 and W2J are bilinear, the term Y3 is 3-linear and the
terms Wy, Wy are 4-linear. The term Y3 is relatively easy to analyse, in the line
of what we did in our previous work [4]; some more details on the terms Wy will
be given, and we shall study a toy model for the higher order terms =3 and Z4,
for which complete computations can be easily performed. We write here { for a
"generic’ noise that plays the role of a regularized version of the Gaussian space noise
&; this is a time-independent function/distribution; recall Z; = R({). We do not
pay attention here to the weights that should be added below as this is mainly a
technical issue.

In addition to the Conditions on the operator L that we spelled out in section
3.1} we need to assume here that the following two mild conditions hold.

e The 'first-order’ order operators V; (for i = 1,..,4y) are anti-self-adjoint with
respect to the measure u, which in particular implies that L is self-adjoint.
Note that in a Riemannian setting, where V; is a differentiation operators along a
vector field, such an assumption is equivalent to the fact that the corresponding
vector fields are divergence-free.

e The operators t(|”+|J|+1)/2VI[VZ-, Vj]VJe_tL have kernels K; satisfying the Gauss-
ian bounds, where [, | denotes the usual commutator between two linear oper-
ators ([3.2))

The examples of section satisfy these additional conditions.

Let point out here that while the basic renormalisation operation done here con-
sists in substracting from some diverging quantities their expectation, the latter
quantities are a priori time and space-dependent functions. Following remark 11 in
[20], it is actually possible to set up a framework where we only need to renormalise
some quantities by time-independent functions.
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Aiming that, the operation of subtracting the expectation seems to not be suffi-
cient. Indeed, as explained in [20, Remark 11], this technical difficulty can be avoid
by modifying the time initial data (for 7 = 0) in the operator R of resolution for the
heat equation. By such a modification, the suitable expectation becomes a time-
independent function (and so is a good quantity for renormalizing) but we need to
develop the whole paracontrolled calculus with distributions singular at time 7 = 0.
This is fully explained in details in [19, Chapter 5], and there is no difficulty to adapt
their result to the present setting, to which we stick in this section, to emphasize
the basic problems at hand.

6.1. Renormalising the quadratic terms In order to explain and to be more convinc-

ing, we present the main arguments for the
renormalisation in the case of a doubling space (M,d, ) with general Ahlfors reg-
ularity of dimension v = d (not necessarily v = 3). We recall that this means that
w(B(z,7)) ~ r? uniformly in 2 € M and r € (0, 1].

The core idea of the renormalization procedure for Y5 is best understood on the
model term 2y = I®)(¢, Z;). Tt is given by a linear combination of terms of the
form

1
dt
| P(atc-z)§
0 t
where the operators Q' are in the class StGCY* and P is an element of StGC[0:2%],
We have actually proved along the proof of Propositionthat the operator t ' Q?R
is also an operator with cancellation, precisely an element of GC5~2. So the core of
the renormalisation procedure for =2 happens to be the renormalisation of terms of

the form

(e en

ly = Ll Pt(Qtlg . Qgg) dt

Since ( is time-independent, we only have to consider in the previous term the case
where the operators Q', Q% have cancellation in space. We estimate the size of
Q,(l2) in terms of r, to see whether or not it belongs to some Hdlder space. For

white noise, the expectation E [’QT(I)(e)lz] is given by the integral on M? x [0, 1]?
of

Kop,, (e,¢)Ko,p, (e, ") E| QL e(€) QL () QLe()QLE()|  (6.1)

against the measure v(de')v(de”)dt;dts. The expectation in (6.1)) is estimated with
Wick’s formula by

E[Q;,£(¢")QF £(¢)E[Q1,6(e") Q7 (") ] + E[Q4,£(¢) Q4,&(e") [E[QF,E(e") QF ()]
+E[Q,£(e") QR (") |E[Q1,6(e") Q7,6 (¢)]
< (tth)id/2 + gt1+t2 (6,7 6”)2’

where d is the homogeneous dimension of the ambiant space M. We recall that
stochastic cancellations yields that for T', U two operators on M and for every points
y,ze€ M

E[Tﬁ(y)Uﬁ(z)] = JKT(x,y)KU(x, 2)dp(z) = Kysp(z,y). (6.2)
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E [‘QT(IQ) ‘2] can be bounded above by the sum of two integrals, with the first
one no greater than

| [ Ko, (e m, (e (trta)2aulde’ (e yitrats

r @ r @ d
< _d
~ J (r + t1> (r + tz) (tute) ™2 dtrdty

for some positive exponent a, with a relatively sharp upper bound, which happens to

be infinite in dimension 2 or larger. Considering |y —E[lg] removes precisely in Wick’s
1

formula the diverging part, and satisfies the estimate E[(lg — E[lg])Q] ’ < rl_%, that

shows that the associated distribution is in C2~¢. That computation was essentially
already done in Section 5.3 of our previous work [4]. For the second integral, with
dm := v(de’)v(de”)dt,dte, we have an estimate

j Ko,p, (6:¢)Ko,m, (62" G0 110 (¢', ") 2dm

r @ L

s f (7”+751> <7"+t2> (b +t2)72 Jgrﬂl 2, Y)Gr+12 (%, 2)G01+2 (y, 2) dm
r )\ -4 —d)2

<

~j<r+t1> <r+t2> (tr +12)72 (r + 1 + t2)" Y dbydty

< r?

for d < 4, where we have used . By combining with Kolmogorov’s continuity cri-
terion, that also shows that the associated distribution is (almost surely) in =9~
So we see here that the basic renormalisation procedure allows to take into account
in (6.1) only the terms where the stochastic cancellations mixes the parameters ¢;
and to as well as the variables ¢’ and e”, which happens to be crucial. This brings
us indeed to integrate (t1 + to)~%2(r + t; + to)~%? rather than (t1t2)~%2. Roughly
speaking, each term Q,( in the formula

1
lp = fo P (Q1¢ - Q¥¢) dt

is of order t~%*, which gives a converging integral only if d < 2; renormalisation has
the effect to turn the integral into a convergent integral for d < 4: in some sense
this operation (with a time-independent noise) allows us to ’compensate’ a lack of
regularity of order (d/2)”. One can treat the bilinear term Y3 in the very same way
as done in this paragraph.

Such a basic renormalisation procedure cannot work in all examples, as the @%
equation makes it clear. In that 3-dimensional example, the space-time noise (
has regularity —5/2, so Z; has regularity —1/2, which makes the expression Z;
undefined. In terms of the operators Qi(, the problem comes from the fact that
Ql(Zy) - Q¥(Z1) - Q}(Zy) is of size t=(/27 . Even, if the simple renormalisation
could compensate a lack of regularity of order (3/2)~ by above mechanism, it would
fall short of making it integrable for the Lebesgue measure on [0,1]. A trickier
renormalisation procedure is thus needed, whose roots are well-explained in Hairer’s
work [23] — see also the paracontrolled approach of Catellier and Chouk [IT].
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The study of the term

ZH " (Viz0), [ViR(v;29)] )

is done differently from the study of Ys, as can be expected from comparing our
setting with the setting of regularity structures for the 3-dimensional setting, in-
vestigated in Hairer and Labbé’s work [25]. While the same reasoning shows that
recentering W3 around its expectation makes it converge in the right space, there is
actually no need to renormalize this term.

To see this, we replace in a first step the study of the above quantity by a similar
one where the spacetime paraproduct II(?) and resonent term H(b)(~, -) is replaced
by a space paraproduct 7(®) and resonent operator W(b)(-, -) introduced and studied
in [4] — they are defined in the exact same way as I, but without the time con-
volution operation. Continuity properties were proved for such spatial paraproduct
in [4], and we shall use in addition an elementary comparison result between this
spatial paraproduct and our space-time paraproduct proved by Gubinelli, Imkeller
and Perkowski in their setting [19, Lemma 5.1]. A similar statement and proof holds
with the two paraproducts II(?) and 7(); we state it here for convenience.

Lemma 32. Let wy,wy be two space-time weights. If u € C3 for o € (0,1) and
vE LOTOC’fj2 for some (3 € (—3,3) then
V() =TI (v) € LFCSH

with w = wiws.

Setting
. eo
wj® = 370 (Vi(z0), [Vir(v; 29)])
i=1
and using the comparison lemma and then the continuity estimates of each para-
product, we see that W3 — ‘;E is equal to

D0 ey (ViR(VSZ0)) = 1) e (ViR(VAZ9) + T, ey (Vi(ZE)) = 4 v, 25 (Vi(20)
Lo
Z[ M) ey (VR(V; 25)) = 740 e (VR(VZl))] 4 LEC2e T,

so it is an element of C2*~!. So in order to estimate W2j’6 is the suitable Holder

space we only need to study its ”spatial” counterpart wg’e. This can be done as
follows.

As sz °, the quantity wé’g is quadratic as a function of the noise, however we are
going to see that its expectation is already bounded in C?*~!, as a consequence of
7€ is directly converging in C2~1,
with no renormalization needed along the way. The term wg’s can indeed be written
as a finite sum of integrals in time of terms of the form

P [QIVIRE - QFViR(ViRET)] (e) + P [QFViRE® - QIV;R(V;RE)] (e),

where the localizing operators P, and ), are only in space. Using the above addi-
tional geometric assumptions on the operator, the previous integral can be estimated,

some symmetry properties — this explains why wy



53

up to a satisfying remainder term controlled in terms of t?¢, by
P, [QIVIRE - ViQIR(VIRE)] () + P [QFViRE® - VQIR(VIRET)] (o).

Its expectation can be seen to converge in Cc?1 to

JKPt (2, y) [K[vjczfn(vjm]*@}vm(ya y) + K[VthlR(VjR)]*QthiR(y’y)] (dy),

where * denotes the usual adjoint in L2(M,du) (in space) and where the time is
fixed in the operator R. By symmetry, it is equal to

where Q¢ := f’*VJQ% + Q;’*V]Q? is antisymmetric. Since at time fixed, the spatial
operator R* is self-adjoint, we deduce that R*V;R*Q;V;R is antisymmetric in space
and so its kernel is vanishing on the diagonal. This shows as a consequence that

E [w%’s] is bounded in the Hélder space C2*~1.

6.2. Toy models for the higher order terms On can get a feeling of what happens

for the higher order terms =3 and =4 by
looking at model quantities whose the structure is the same, or not far from, the
different terms that appear in the definition of these terms. To study the trilinear
expressions of { that appear in =3, look at the model quantity

1
I3 := L Pr(Qf¢ - QF¢ - tQP¢) dt.

This quantity is of a slightly different nature than ly since its expectation is null
as ¢ appears an odd number of times. On the other hand, the computation of

2
E ‘QT(Ig)(e)’ involves a product of six Gaussian random variables. Applying

Wick’s formula shows that we always work with expectations of a product involving
t1 and t9, meaning that we have an estimate of the form

E [| Qr (|3) (6) ’2] < JKQ’I‘Ptl (6’ el)KQrPtQ (6’ 6,/)(t1t2)7d/2gt1 +t2 (6/7 ell)tth dm,

with dm = v(de')v(de”)dt1dts, as above. For d < 4, this gives the estimate

E[1Qr(I5)(e)l?] < JJ (T Itl)a ( . )a (trito) ™2 (r + t1 + o) Ptitodt dto

r+to

< p3/2+4

on which one reads that I3 has almost surely regularity (—3d/2 + 4)~, and there is
no required renormalisation. Indeed, it is coherent with [25] - equation (5.3), where
it is shown also, through the regularity structures theory, that the trilinear (in terms
of noise) quantities do not need to be renormalised.

The model quantities corresponding to =4 are of the type
1

= [ P(Qic- QB 108 101¢) di
0

We can see on such terms that a basic renormalisation procedure suffices to get
objects of regularity 07, in dimension 3, such as expected. Indeed, since we work
in dimension 3 and so Z; has a positive regularity, we see that Z3 and =4 have a



54

smaller lack of regularity than Z5. So it is ’easier’ to renormalize these higher order
terms than the first one.
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