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Abstract

The interplay between the diffusion-controlled dynamics of a solidification
front and the trajectory of a grain boundary groove at the solid-liquid inter-
face is studied by means of thin-sample directional solidification experiments
of a transparent alloy, and by numerical simulations with the phase-field
method in two dimensions. We find that low-angle grain boundaries (sub-
boundaries) with an anisotropic interfacial free energy grow tilted at an an-
gle θt with respect to the temperature gradient axis. θt remains essentially
equal to its value imposed at equilibrium as long as the solidification velocity
V remains low. When V increases and approaches the cellular instability
threshold, θt decreases, and eventually vanishes when a steady-state cellular
morphology forms. The absence of mobility of the subboundary in the solid
is key to this transition. These findings are in good agreement with a recent
linear-stability analysis of the problem.
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1. Introduction

The solidification of melts generally yields polycrystalline solids. During
the growth of a single solid phase, for example in dilute binary alloys, many
different crystallites of the same phase, but with different orientations com-
pete at the growth front and are separated by grain boundaries that intersect
the solid-liquid interface [1]. The as-cast grain structure and the distribution
of crystal orientations in the growing solid material are therefore determined
by the coupled dynamics of solid-liquid interfaces and grain boundaries close
to the growth front [2, 3, 4, 5].

Competition between grains of different orientations has been thoroughly
studied for growth velocities well above the onset of morphological instabil-
ity, in a regime where the solid-liquid interface is strongly morphologically
unstable and forms dendritic array structures (see Refs. [6, 7] and references
therein). In this dendritic regime, grain boundaries meet the solid-liquid in-
terface deep inside the semi-solid mushy zone (i.e. far behind the dendrite
tips) and have a negligible influence on grain selection, which is predomi-
nantly controlled by the growth competition of primary, secondary, and ter-
tiary dendrite arms from neighboring grains at the leading edge of this zone
[6, 7].

In contrast, the low-velocity regime of monophase growth remains com-
paratively less understood. When the interface is morphologically stable
or weakly unstable, forming relatively shallow cells, the dynamics of grain
boundaries is tightly coupled to the dynamics of the solid-liquid interface.
This regime has been recently investigated analytically under the assump-
tion that the departure of the interface from planarity is small [8], but the
predictions of this theory still await validation, especially in view of the fact
that departure from planarity becomes significant even close to the onset of
morphological instability. Here, we investigate this low-velocity regime both
experimentally and computationally.

We study the dynamics of subboundary grooves by thin-sample direc-
tional solidification experiments of transparent alloys and by numerical sim-
ulations with a phase-field model. In directional solidification, the alloy sam-
ple is translated at a constant velocity V towards the cold part of an exper-
imental setup that imposes a fixed and constant thermal gradient G. The
crystallization front is morphologically stable for velocities below the thresh-
old velocity VMS of the Mullins-Sekerka instability [9]: it remains planar and
perpendicular to the thermal-gradient axis. For V ≥ VMS, it undergoes a
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bifurcation to cellular patterns.
It is known that a grain boundary groove can provoke a pre-cellulation

of the solid-liquid interface in its vicinity for velocities slightly below VMS.
This has been established theoretically for a fixed, isotropic grain boundary
[2]. The case of a low-angle grain boundary, also called subboundary, is
more complex. Subboundaries are generally strongly anisotropic, that is,
their free energy depends on their inclination. Therefore, at equilibrium,
a subboundary that intersects the solid-liquid interface is inclined, in the
solid, in a direction that is imposed by the Young-Herring condition at the
trijunction (Fig. 1). It generally makes a finite angle with the temperature
gradient. What happens during solidification? We demonstrate here that
there exists two very distinct regimes of subbounday growth, in qualitative
agreement with the theoretical predictions of Ref. [8]. For low velocities,
the subboundary grows in a direction that is very close to its inclination
at equilibrium. This implies that the triple junction moves laterally along
the solidification front. In contrast, for velocities above or closely below the
cellular instability threshold, the triple junction as well as the subboundary
follow the direction of the temperature gradient.

Moreover, the simulations demonstrate that the grain boundary mobility
plays a crucial role for the morphological evolution. In situ observations in
transparent alloys indicate that high-angle grain boundaries, that is, grain
boundaries that separate two crystals with a large misorientation, are mo-
bile, whereas subboundaries remain immobile on the micrometer-scale res-
olution of an optical microscope. This striking difference can most likely
be attributed to the fact that high-angle grain boundaries in contact with
the liquid are wet, that is, they are decorated, at equilibrium, by an atom-
ically thin layer of disordered liquid-like material over a temperature range
that extends well below the solid-liquid equilibrium (see Ref. [10] and refer-
ences therein). For the very same reason, high-angle boundaries are almost
isotropic, whereas subboundaries can be very anisotropic. In the numerical
simulations, the grain boundary mobility can be controlled independently of
the anisotropy, which makes it possible to separately study the influence of
these grain boundary properties.

In this paper, we present results from in situ solidification experiments
and phase-field simulations that confirm the existence of a transition in sub-
boundary behavior, from interfacial-anisotropy-driven growth at low velocity
to growth along the temperature gradient at high velocities. These results
validate the main qualitative predictions of Ref. [8] relating to the role of
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Figure 1: A high-angle grain boundary (on the left) and a subboundary (on the right)
intersect the solid-liquid interface at equilibrium (V = 0) in a thin sample of a transparent
CBr4-1.4 mol% C2Cl6 alloy, in a fixed temperature gradient G = 120 K cm−1. In this
image, as well as in following ones, the thermal axis is vertical, the liquid on the top.
The solid-liquid interface appears as a thick dark line. The solid-solid interfaces are made
faintly visible by thin liquid channels decorating their intersect with the sample glass
walls. Note the inclination of the subboundary, and the small depth of its grain boundary
groove. Inset: the same subboundary during directional solidification at low velocity
(V = 2.0 µm s−1). Bar: 20 µm.

grain boundary energy anisotropy. We also find that a mobile grain boundary
behaves in a qualitatively different way than an immobile one. These results
open an interesting avenue for obtaining information about grain boundary
energetics and mobility from directional solidification experiments.

In the remainder of this article, we will first review the theory of Ref. [8]
in more detail and briefly summarize our experimental and numerical meth-
ods. We then present selected results of experiments and simulations that
illustrate the roles of energetic and kinetic grain boundary properties on
morphological evolution.

2. Theoretical Background

Consider directional solidification of a dilute binary alloy: the sample is
pulled with velocity V in a fixed temperature gradient G. For thin samples,
convection in the liquid is suppressed, and the problem can be treated in two
dimensions. We use some standard approximations: equal density of solid
and liquid phases, a temperature field that is independent of the interface
shape (frozen temperature approximation), interfaces in local equilibrium (no
interface kinetics), and no solute diffusion in the solid (one-sided model).
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The stability of a planar interface was analyzed by Mullins and Sekerka
[9]. Below a critical velocity VMS, the planar interface is stable; above this
velocity, the destabilizing effect of solute diffusion overcomes the stabilizing
effects of the temperature gradient and capillarity for perturbations in a
characteristic range of wavelengths. This velocity is usually slightly larger
than the constitutional supercooling velocity VCS introduced by Tiller et al.
[11] at which solute diffusion and the temperature gradient balance each
other. More precisely: the diffusion and thermal lengths are given by lD =
D/V and lT = ∆T/G, respectively, where D is the solute diffusivity in the
liquid, and ∆T = |m|∆c the freezing range, with ∆c being the concentration
difference between the liquid and the solid at the planar interface, and m the
liquidus slope. Constitutional supercooling occurs at lT = lD, which entails
VCS = DG/∆T . The difference between VCS and VMS increases with the
capillary length d0 = Γ/∆T , where Γ is the Gibbs-Thomson constant of the
solid-liquid interface. It can be useful to write VMS = VCS(1 +µc), where the
capillary correction µc depends on d0. For concentrated alloys, d0 is several
orders of magnitude smaller than the other two length scales (hence µc � 1,
and VMS ≈ VCS), but for very dilute alloys, such as the one studied in the
experiments described below, the difference between VCS and VMS can be
appreciable.

Consider two grains, denoted by Grain 1 and Grain 2, that grow next
to each other into the Liquid L (Fig. 2). At the intersection of the grain
boundary with the solid-liquid interface, a grain boundary groove is formed.
At the triple junction, the balance of capillary forces fixes the dihedral angle
(Fig. 2). For a thermal gradient in the 100 K cm−1 range, the depth of a
grain boundary groove is typically of a few microns.

The influence of a symmetric grain boundary groove (that is, a shallow
groove created by an isotropic grain boundary, for isotropic solid-liquid in-
terfaces) on the morphological instability has been studied by Coriell and
Sekerka [2]. They found that the “built-in” perturbation created by the
grain boundary groove does not alter the threshold velocity VMS. However,
the approach of the instability threshold becomes visible because a station-
ary perturbation appears around the grain boundary groove, which has the
form of a decaying sine wave with a spatial decay length that diverges when
V tends to VMS from below.

This analysis was extended in Ref. [8] to the case of anisotropic grain
boundaries. In two dimensions, the grain boundary orientation (inclination)
is specified by a single angle θ. The inclination-dependent grain boundary
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energy γ(θ) depends on the (fixed) misorientation between the two grains.
The Young-Herring condition of capillary force equilibrium at the trijunction
point can be compactly stated using the vector formalism developed by Cahn
and Hoffman [12]. The vector ~σ is given by

~σ = γ(θ)t̂+
∂γ(θ)

∂θ
n̂, (1)

where t̂ and n̂ are the unit tangent and normal vectors to the grain boundary.
The Young-Herring condition is then expressed as

γLt̂L1 + γLt̂L2 + ~σ = ~0, (2)

where t̂L1 and t̂L2 are the tangent vectors to the two solid-liquid interfaces
at the trijunction point (see Fig. 2). The solid-liquid interfaces are assumed
to be isotropic, and their free energy is noted γL.

Figure 2: Anisotropic force balance at a subboundary trijunction in directional solidifica-
tion. Here, ~γLi = γLt̂Li, with i = 1, 2. See text for details.

At rest (V = 0), the solute concentration in the liquid is uniform, and the
problem of finding the shape of the grain boundary groove in the temperature
gradient is equivalent to the problem of the meniscus of a sessile droplet in
the gravity field: for uniform solute concentration, the Gibbs-Thomson law
directly links the curvature and the temperature (here, a linear function of
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the z coordinate) in the same way as the Laplace law links curvature and
pressure for a sessile droplet. The groove profile is thus universal, and must in
particular be mirror symmetric with respect to the z axis. As a consequence,
the contact angles at the trijunction point are also the same, and ~σ must be
parallel to z. This yields a sufficient condition to determine the inclination
angle of the grain boundary at equilibrium. Expliciting the components of t̂
and n̂ in terms of θ, it is found that

γ(θ) cos θ +
∂γ(θ)

∂θ
sin θ = 0. (3)

We note θe the solution of this equation.
In thin-sample directional solidification experiments of transparent alloys,

grain boundaries are made visible by the presence of a thin liquid channel
that decorates their intersect with the glass walls. It is observed that a
subboundary groove at the solid-liquid interface presents a finite dihedral
angle, and a much smaller depth than large-angle (wet) grain boundaries.
This implies that the subboundary energy, or, rather, |~σ|, is smaller than
twice the solid-liquid surface free energy γSL. Since the cross-section of the
liquid channel along the boundary is likely to decrease when |~σ| decreases,
a subboundary exhibits a fainter contrast than a large-angle grain boundary
in optical images.

In Ref. [8], the behavior of such a trijunction was examined for non-
zero V in the limit of small slopes and for a mild anisotropy, that is, a
function γ(θ) that has no cusps or missing orientation. Generally speaking,
it is expected that the subboundary remains tilted at a certain angle θt,
and thus the trijunction travels sideways at a velocity Vt = V tan θt. It was
found in Ref. [8] that for velocities below VCS, the grain boundary orientation
remains essentially the same as at equilibrium (θt ≈ θe; see Fig. 2). For
velocities closely below the Mullins-Sekerka threshold and beyond, the tilt
angle becomes zero, and the trijunction travels along the z axis. The angle θt
changes continuously between these two regimes in the velocity range between
VCS and VMS, as schematically depicted in Fig. 3.

Qualitatively, this transition can be understood in the following way. As
long as the solid-liquid interface is morphologically stable, it remains pla-
nar outside of the grain boundary groove, which implies that the capillary
force balance at the trijunction (Young-Herring condition) gives a strong
constraint for the inclination of the subboundary, even though the system is
not in equilibrium any more. In contrast, once the morphological instability

7



sets in, the interface becomes curved and the concentration becomes inho-
mogeneous along the interface. Therefore, the grain boundary groove can
become asymmetric, and the inclination of the subboundary can adjust. For
a strongly cellular interface, the subboundary is attached to a deep groove
between cells, and is thus completely slaved to the dynamics of the cellular
solid-liquid interface.

tθ

VCS VMS

0

0

T
il

t 
an

g
le

Solidification velocity (V)

Figure 3: Schematic representation of the subboundary tilt angle θt as a function of the
solidification velocity V in steady state, as found theoretically in Ref. [8]. There are three
distinct regimes: (i) for V < VCS , θt is essentially equal to the equilibrium inclination
angle θe; (ii) for VCS < V < VMS , θt decreases with V , and (iii) for V > VMS , θt vanishes
and the subboundary grows parallel to z.

It should be mentioned that similar arguments have recently been used
to analyze the related problem of lamellar eutectic growth [13]. In this case,
two different solid phases grow next to each other. If the solid-solid inter-
phase boundaries are anisotropic, the capillary force balance determines the
growth directions, under the assumption that the contact angles on both
sides of a lamella remain symmetric. Since there is no morphological insta-
bility in binary eutectic alloys, only the interfacial-anisotropy driven growth
regime should be observable. These predictions are in good agreement with
experiments [14] and have been nicely confirmed by numerical simulations
using phase-field and boundary-integral techniques [15, 16, 17, 18].
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3. Methods

3.1. Experimental

We performed thin-sample directional solidification (thin-DS) experiments
using a transparent alloy with nonfaceted solid-liquid interfaces, namely,
CBr4-C2Cl6 (liquidus slope: |m| = 80 K mol−1; partition coefficient: K =
0.75; capillary length: d0 = 0.23 µm; solute diffusion coefficient in the liq-
uid: D = 500 µm2 s−1) [19], of nominal concentration C0 = 1.4± 0.1 mol%.
Details about the thin-DS method can be found in Ref. [20]. In brief, for
solidification, the sample is pulled at a velocity V (1 − 10 µm s−1) along z
toward the cold part of a steady thermal gradient G (120 ± 20 K cm−1) that
is established along the z axis between two temperature regulated copper
blocks separated by a 5-mm gap. Thin rectangular samples are made of two
flat glass plates separated by 12-µm thick polymer-strip spacers that fix the
thickness and the lateral dimensions (5×40 mm2) of the alloy film. The solid-
liquid interface was observed in real-time with an optical microscope. Images
were recorded with a monochrome digital camera, and transferred to a PC
for further analysis. The nominal constitutional-supercooling, and Mullins-
Sekerka threshold velocities for this alloy composition are VCS ≈ 15 µm s−1

and VMS ≈ 20 µm s−1, respectively. However, the actual cellular threshold
velocity was estimated to be of about 15 ± 4 µm s−1. This difference with
the theoretical predictions can be attributed to unidentified impurities.

We therefore used some of our in situ observations for a semi-quantitative
determination of the actual value of VCS. We observed first that for V val-
ues smaller than 6 µm s−1, the front was systematically planar over the
whole width of the sample during solidification. In this regime, the depth
of GB grooves was comparable to that observed at rest (V = 0). This
is shown in Fig. 1 for a subboundary. Within a finite velocity range, say,
V = 6 − 10 µm s−1, the front still remained essentially planar, except for
a pre-cellulation, that is, several periods of a decaying interface oscillation,
close to grain boundary grooves, as predicted by Coriell and Sekerka [2]. This
phenomenon is illustrated in Fig. 4 for two isotropic grain boundaries. As
stated above, fully developed cellular patterns were systematically observed
for larger solidification velocities.

3.2. Phase-field (PF) model

We have used a grand-canonical multi-phase-field formulation that has
been developed and validated in Refs. [21, 22]. In particular, this model was
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Figure 4: Pre-cellulation of the solid-liquid interface in the vicinity of two neighbouring
grain boundaries at a velocity (V = 9.9 µm s−1) well below the cellular threshold velocity.
Same sample as in Fig. 1. Bar: 100 µm.

used in Refs. [15, 16] to determine the growth direction of eutectic lamellae
with anisotropic interphase boundaries between the two solid phases α and
β. Here, only the main features of the model will be presented; more details
can be found in Ref. [15].

The model uses three (N = 3) phase-fields, namely, φ1, φ2 and φL. Those
fields indicate local volume fractions of the respective phases, and thus obey
the constraint

∑N
i=1 φi = 1. Solute diffusion in the liquid is described in

terms of the diffusion potential µ, which is the thermodynamic conjugate of
the concentration field c.

We start with a grand-canonical free energy functional

Ω =

∫
εa(φ, ~∇φ) +

1

ε
W(φ) + ω(µ, T, φ), (4)

where ε is a length scale parameter related to the numerical interface thick-
ness, and a(φ, ~∇φ) is the gradient energy density given by,

a(φ, ~∇φ) =
∑N

i<j
γij [ac(q̂ij)]

2 |~qij|2. (5)

Here, ~qij = φi~∇φj − φj ~∇φi is a vector normal to the interface i − j, q̂ij is
the corresponding unit vector, and ac is the anisotropy function of the i− j
interface.
W(φ) in Eq. (4) is a multi-obstacle potential defined by

W(φ) =


16
π2

N∑
i,j=1

γijφiφj +
N∑

i<j<k=1

γijkφiφjφk if φ ∈ Σ

∞ elsewhere,

(6)

Σ is bounded by φi ≥ 0 and
∑N

i φi = 1. γijk is a third order potential term
which avoids appearance of any unwanted “foreign” phases in the binary i−j
interfaces.
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ω(µ, T, φ) in Eq. (4) is a grand-canonical potential which is obtained by
interpolating the Legendre transformations of the concentration-dependent
Helmholtz free-energy densities, ωi, of the constituting phases,

ω(µ, T, φ) =
∑N

i=1
ωi(µ, T )hi(φ) (7)

ωi(µ, T ) = fi − µc. (8)

Here hi(φ) = φ2
i (3−2φi)+2φiφjφk are weight functions that satisfy

∑N
i=1 hi(φ) =

1.
The equation of motion for µ is given by

∂µ

∂t
=
~∇ · (M(φ)~∇µ−~jat)−

∑N
i=1 ci

∂hi(φ)
∂t∑N

i=1
∂ci
∂µ
hi(φ)

, (9)

where ci = −∂ωi/∂µ. An antitrapping current ~jat is added to avoid artificial
solute trapping effects, thereby guaranteeing that the correct thin interface
limit is obtained at the solid-liquid interfaces [23, 24]. The atomic mobility
of the diffusing atoms M(φ) can be related to the diffusion coefficient in the
liquid D by M(φ) = φlD/(∂

2fi/∂c
2
i ).

The temporal evolution of φ follows the Allen-Cahn dynamics

∂φi
∂t

= − 1

τε

[
δΩ

δφi
− Λ

]
, (10)

with τ being the relaxation time, which may vary between different interfaces
according to

τ =

∑
i<j τijφiφj∑
i<j φiφj

. (11)

The values of τij are chosen so as to make the interface kinetics vanish [22].
The Lagrange multiplier Λ is added (in Eq. (10)) to maintain the constraint∑N

i=1 φi = 1 throughout the system.
As already mentioned, the mobility of the subboundary (solid-solid inter-

face) plays a crucial role. Several possibilities exist to lower the mobility of
the subboundary. First, one may simply choose τ12 � τ1L = τ2L in Eq. (11).
Second, one may lower the phase-field mobility in the solid-solid interface by
multiplying τ with 1 − 4φ1φ2, a function that falls to zero on the interface
between grains 1 and 2 (φ1 = φ2 = 1/2). We have tested both approaches,
which have yielded qualitatively similar results.
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The discretized version of these equations can occasionally lead to φi
values less than 0 or greater than 1. If φi falls below 0, we replace it with 0,
and if it increases beyond 1, we replace its value with 1. This is a standard
procedure for obstacle potentials.

For the bulk free energies, fi in Eq. (8), we choose parabolas as de-
scribed in Refs. [25, 15]. As already mentioned, in the former reference
we have used this model to simulate tilted lamellar eutectic growth, with
three different parabolas for the three phases involved (two solids and the
liquid). Here, we use two “identical copies” of the free energy functions for
the two solids, and choose parameters for the liquid that yield a phase di-
agram with parallel solidus and liquidus lines, that is, fs = A(c − c0s)

2/2
and fl = A(c − c0l )

2/2 + B(T − T0) where c0s and c0l are the equilibrium
concentrations of solid and liquid at a reference temperature T0, and the
constants A and B can be related to the liquidus slope and the latent heat of
crystallization. We fix the ratio of the capillary length d0 and the interface
thickness parameter ε to ε/d0 = 1.58 in all our simulations. Unless stated
otherwise, we fix the temperature gradient G such as to have lT/d0 = 100
(in the experiments described above, lT/d0 ≈ 200), and vary the intensity of
the cellular instability by changing V . The instability is predicted to occur
at lT/lD ≈ 2.2 (µc ≈ 1.2).

Let us now specify the anisotropy of the boundary energy. We note
γ(θ) = γ0ac(θ), with γ0 a reference value of the grain boundary energy and
ac(θ) the anisotropy function, where we have chosen θ = 0◦ to correspond to
a minimum in the grain boundary energy. We choose

ac(θ) = 1− εc
[
exp

(
− θ

2

w2
c

)
+ exp

(
−(θ − π)2

w2
c

)]
. (12)

Many grain boundaries exhibit cusp-like minima in their anisotropy func-
tions, where the energy minimum corresponds to a particular atomic con-
figuration of high symmetry. Our anisotropy function approximates such a
cusp around θ = 0 and θ = π (these two orientations are equivalent for grain
boundaries in crystals whose unit cells have an inversion symmetry) with
deep but smooth minima to make the grain boundary energy differentiable
with respect to θ. Here, εc is the magnitude of the anisotropy and wc is
the width of the cusp. In all our simulations, we have chosen εc = 0.2 and
wc = 0.1. The function given by Eq. (12) is plotted for these parameters
in Fig. 5a, and the corresponding polar plot of the Cahn-Hoffman ξ-vector
in Fig. 5b. The equilibrium shape of a grain is given by the convex central
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part of the latter plot, whereas orientations on the “ears” are absent from the
equilibrium shape. It should be noted that, by adjusting εc and wc, the range
of missing orientations can be tuned (and even totally avoided). Outside of
the cusp, i.e. in the horizontal part of the plot in Fig. 5a, the subboundary
remains almost isotropic.

 0.7

 0.8

 0.9

 1

 1.1

-90 -60 -30  0  30  60  90

a
c
 (

θ
)

θ

(a) (b)

Figure 5: (a) Anisotropy function ac according to Eq. (12), and (b) polar plot of ac (in red,
full line) and the corresponding ξ-plot (in green, dashed line), for εc = 20% and wc = 10%.

In order to examine the lateral drift of grain boundaries, the minimum
energy direction has to make a finite angle with respect to the temperature
gradient. This corresponds to a rigid body rotation of the entire bicrystal, as
can be physically achieved in the setup of rotating directional solidification
[14]. If the bicrystal is rotated by an angle θR, the grain boundary energy
becomes

γ(θ) = γ0ac(θ − θR). (13)

This is implemented in the phase-field model by performing a local rotation
to the crystallographic frame whenever the anisotropy needs to be evaluated,
as described in Ref. [15].

Since the anisotropy function that we have chosen generates missing ori-
entations, we need to apply a regularization technique in order to avoid
ill-posedness of the phase-field model. As in previous studies [15, 26, 27],
we add the square of the Laplacian of each phase field to the free energy
functional, with a prefactor β, that is, we use the free energy

Ω̃ = Ω +

∫
V

β
∑
i

(~∇2φi)
2. (14)
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The sharp corners of the equilibrium shape are smoothed out over a length
scale ∼

√
β/(γ0ε). Note that the variation of the extended free-energy func-

tional generates fourth derivatives of the phase field, which imposes the use
of a fine grid discretization and small time steps.

4. Results

4.1. Experiments

As mentioned above, and as illustrated in Fig. 1, subboundaries exhibit
two basic features: (i) they are generally tilted with respect to the ther-
mal gradient, and (ii) the subbounbdary groove at the solid-liquid interface
presents a finite dihedral angle, and a much smaller depth than ordinary
grain boundaries. A crucial observation here is that the trajectory of a sub-
boundary groove, as well as its shape, remained unchanged, within the optical
resolution, when observed at rest (V = 0), or during directional solidification
at a low rate (Fig. 1). There are qualitative changes when the cellular thresh-
old is approached. The dynamic behavior of a subboundary close to, and far
below VMS is depicted in Fig. 6. In Fig. 6a, the solidification conditions are
similar to those of Fig. 4, and one indeed observes a pre-cellulation of the
solid-liquid interface, but the subboundary groove adopts an asymmetric,
comma-like shape, with contact angles that are different on the two sides of
the boundary. This signals that the anisotropy of the subboundary remains
substantial, but that the vector ~σ is no longer parallel to the z axis.

Shortly after the first snapshot of Fig. 6a, the velocity was lowered from
V = 7.0 µms−1 down to 3.5 µms−1. As can be seen in panel Fig. 6b, the
perturbation of the solid-liquid interface quickly died out, and the trijunction
started to move sideways. From Figs. 6c and 6d, it is clear that the system
rapidly found a steady-state configuration with a constant lateral drift of the
subboundary trijunction, leaving a straight, but tilted subboundary in the
solid. It can also be appreciated that the subboundary was not mobile in
the solid, since the curved section that resulted from the transient regime
immediately after the velocity change (Fig. 6c) was not smoothed out by
interface motion on the time scale of the observation. A reverse transition
from inclined to straight subboundary was observed upon an increase of
velocity.

In order to test the degree of locking of subboundaries, we have also used
the rotating directional solidification (RDS) method. Details about the RDS
method can be found in Ref. [14]. In brief, it permits both to translate a
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a)# b)#

c)# d)#
Figure 6: Dynamic behavior of a subboundary groove during directional solidification
(same alloy as in Fig. 1). (a) Steady state at V = 7.0 µm s−1 (inset: 2×-magnification
view of the subboundary groove). (b) Beginning of the transient stage after V was switched
down to 3.5 µm s−1. (c) End of the transient at V = 3.5 µm s−1. d) Steady state at V
= 3.5 µm s−1. Horizontal dimension of each snapshot: 205 µm.
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thin sample for standard directional solidification, and to vary the orienta-
tion of the crystals by rotation with respect to the temperature-gradient axis
z. Translation and rotation motions can be operated independently, simul-
taneously [14], or in successive order [28]. Here, we used the RDS method
for measuring the tilt angle θt of a subboundary as a function of the rotation
angle θR. We used a stepwise procedure, namely: directional solidification at
fixed θR and low velocity, measurement of θt, partial melting, incrementation
of θR by a few degrees, then reiteration. Using this method, we could avoid
merging of the subboundary of interest with neighboring ones of opposite,
or lesser inclination. The main result of this analysis is simple: θt varies
linearly with θR, within optical resolution, over a large θR interval. Within
this interval, the subboundary therefore remains locked to a fixed plane. The
upper limit of the locked-state interval was observed to vary from 30 to 70◦,
depending on the subboundary. In most cases, that limit was observed to cor-
respond to a sudden unlocking (θt ≈ 0) of the subboundary, and a recovery
of its mobility. The unlocking process will not be discussed here.

4.2. Simulations

We have performed phase-field simulations for V < VCS in which the
orientation of the free energy minimum was rotated with respect to the tem-
perature gradient axis by various angles θR. The solutions of the nonlinear
Eq. (3) for the tilt angle are plotted for the anisotropy function used in the
simulations in Fig. 7. They can be divided into three branches, separated by
the two turning points of the curve. On the “locked” branch that starts at
θR = 0◦ and extends up to the first turning point, the tilt angle essentially
follows the rotation angle: the grain boundary remains nearly in the direction
that corresponds to the minimum of its surface energy. On the “unlocked”
branch beyond the second turning point, the tilt angle remains zero inde-
pendently of the rotation angle: the grain boundary is now outside of the
cusp in the energy, which entails that it behaves as an isotropic boundary.
The solutions located on the branch that connects the two turning points are
unstable.

We show two snapshot pictures of such simulations for θR = 0◦ (Fig. 7b)
and θR = 20◦ (Fig. 7c). In all simulations, the grain boundary selects a
constant steady-state inclination θt after a short transient, and the trijunction
drifts sideways. The inclination angle is compared with the solution of Eq. (3)
in Fig. 7a. The simulation results fall precisely onto the “locked” branch
between 0◦ and 20◦, and onto the “unlocked” branch between 21◦ and 90◦.
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It should be noted that Eq. (3) predicts the existence of two stable solutions
with different tilt angles for a range of rotation angles. However, we were
unable to find a value of θR where we could reach both solutions by our
simulations. In this respect, subboundaries in this velocity regime behave
similarly as anisotropic interphase boundaries in phase-field simulations of
lamellar eutectics [15, 16, 29, 18].
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Figure 7: Below VCS : (a) The subboundary tilt angles obtained from simulations with
various rotation angles (points) are superimposed onto the analytical solutions given by
Eq. (3) (lines). Snapshots of steady-state interface shapes are shown for (b) θR = 0◦, (c)
θR = 20◦. For all simulations: lT /d0 = 25, lT /lD = 0.5, lateral system size Lx ≈ 40.5 d0
(256 grid points of spacing ∆x = 0.1 ε).

Above VMS, cellular structures result with shallow or deep grooves de-
pending on the value of the G/V ratio. A simulation far beyond the insta-
bility threshold is shown in Fig. 8a. The grain boundary still grows at a
fixed inclination, which is very close to the one obtained for the same rota-
tion angle at lower velocities. In contrast, the theory predicts that it should
grow parallel to the temperature gradient in this regime. Interestingly, the
trajectory of the trijunctions in the spatio-temporal plot in Fig. 8a follows an
almost vertical line, which is parallel to the growth direction. The trijunc-
tions, therefore, obey the theoretical predictions, whereas the subboundary
behind the trijunction does not.

Obviously, this behavior can only arise because the entire grain boundary
moves. In fact, it is “attached” to the trijunction point, and since we use
Neumann boundary conditions (vanishing gradients of all fields) at the lower
end of the simulation box, the grain boundary can “slide” along the system
boundary. As discussed in the section on experiments, subboundaries are
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usually not mobile. We have implemented two different ways in the phase-
field model to lower the mobility of the solid-solid interfaces (refer to Sec. 3.2).
The results of both methods are qualitatively similar and are illustrated
in Fig. 8b. The grain boundary now just “follows” the trajectory of the
trijunction, which results in a zero inclination angle.

(a) (b)

Figure 8: (a) Superimposed snapshot pictures of cell development, starting from a planar
interface, far beyond VMS (lT /lD = 15.825). (b) the same with a reduced mobility of the
subboundary. Parameters: θR = 20◦, lT /d0 = 100, lateral system size Lx ≈ 40.5 d0 (256
grid points of spacing ∆x = 0.1 ε).

In Fig. 9, we plot the steady-state inclination angle of grain boundaries
with zero mobility as a function of the ratio lT/lD, which characterizes the
strength of morphological instability, for a fixed rotation angle of θR = 20◦.
The simulations largely confirm the theoretical predictions: for stable in-
terfaces, the inclination is identical to the rotation angle (the subboundary
follows its minimum energy direction), whereas for unstable interfaces, it
is zero (the subboundary grows parallel to the temperature gradient). The
transition between the two regimes is gradual, as sketched in Fig. 3. This may
appear surprising given that the anisotropy function that we have used in the
simulations exhibits a range of forbidden orientations, from 6◦ to 12◦ for the
chosen model parameters that control the subboundary energy anisotropy.
However, a close examination of the simulation results reveals that the sub-
boundary is actually not straight, but exhibits a zig-zag shape characteristic
of unstable interfaces [30, 31, 32] when the inclination of the subboundary
falls inside the forbidden range. Whereas, in this case, the local inclination of
the subboundary varies, its average inclination appears to decrease smoothly
with increasing growth rate as shown in Fig. 9. This suggests that this be-
havior is generic and not limited to weakly anisotropic subboundaries. The
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wavelength of the zig-zag pattern, however, generally depends on the reg-
ularization parameter β of the phase-field model and is only slightly larger
than the interface thickness for the parameters in the present simulations.
Grain boundary dynamics could potentially become more complex in the
case where this wavelength is larger than the interface thickness. This case
warrants further study.
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Figure 9: Steady-state tilt angle θt as a function of the ratio lT /lD, for a fixed rotation
angle of θR = 20◦, lT /d0 = 100, and lateral system size Lx ≈ 40.5 d0 (256 grid points of
spacing ∆x = 0.1 ε).

5. Summary and Outlook

We have studied the dynamics of anisotropic low-angle grain boundaries
(subboundaries) in directional solidification, both by in situ observations of
thin-sample directional solidification experiments on transparent binary al-
loys, and by phase-field simulations. Given the fact that the anisotropy of the
grain boundary energy is unknown, we did not aim for a quantitative match
between experiments and modeling, but were rather interested in qualitative
and generic features of subboundary dynamics at velocities close to the onset
of morphological instability.

All of our results confirm the main predictions of the recent theoretical
analysis presented in Ref. [8]. At velocities that are below the constitutional
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supercooling threshold, the subboundary follows its minimum energy direc-
tion, which is generally inclined with respect to the axis of the temperature
gradient. As a result, the triple junctions drift laterally along the growth
front. At velocities that are above the onset of morphological stability, cells
appear, and the subboundaries are “slaved” to the grooves between cells:
they become aligned with the temperature gradient. The transition between
the two regimes is gradual, and mostly occurs between VCS and VMS.

The simulations allow us to draw two additional conclusions, namely (i)
the transition between the two regimes is gradual even for anisotropies that
are strong enough to exclude certain ranges of orientations from the equilib-
rium shape of a grain, and (ii) the fact that the mobility of the subboundaries
is low (or zero) is crucial for the transition in the inclination. Mobile sub-
boundaries above the morphological instability are slaved to the roots of the
cellular grooves, but adjust their orientation to a minimum-energy direction
by moving inside the solid along their entire length.

These results open interesting perspectives for the determination of grain
boundary properties. Indeed, the grain boundary inclination is a quantity
that can easily be measured. If, in addition, data on crystallographic orien-
tations can be retrieved from the experiments, as is possible in situ X-ray
experiments [33], a quantitative comparison between experiments and sim-
ulations could permit to determine the anisotropy of the subboundary en-
ergy, and to gather information about their mobility. In this respect, the
recently developed method of rotating directional solidification [14] is par-
ticularly valuable, since it permits to control the orientation of the sample
with respect to the temperature gradient. This method could complement
the data on grain boundary properties at high homologous temperatures,
which have been obtained by other methods including molecular dynam-
ics [34, 35, 36, 37, 38] and phase field crystal [39, 40] simulations, and in
particular provide a new avenue to infer the orientation dependence of grain
boundary premelting from grain boundary dynamics.
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[18] S. Ghosh, M. Plapp, Influence of Interphase Anisotropy on Lamellar
Eutectic Growth Patterns, Transactions of the Indian Institute of Metals
68 (6) (2015) 1235–1238.

[19] J. Mergy, G. Faivre, C. Guthmann, R. Mellet, Quantitative determi-
nation of the physical parameters relevant to the thin-film directional
solidification of the CBr4-C2Cl6 eutectic alloy, Journal of Crystal Growth
134 (3) (1993) 353 – 368.

[20] S. Akamatsu, G. Faivre, Anisotropy-driven dynamics of cellular fronts in
directional solidification in thin samples, Phys. Rev. E 58 (1998) 3302–
3315.

22



[21] M. Plapp, Unified derivation of phase-field models for alloy solidification
from a grand-potential functional, Physical Review E 84 (2011) 031601.

[22] A. Choudhury, B. Nestler, Grand-potential formulation for multicom-
ponent phase transformations combined with thin-interface asymptotics
of the double-obstacle potential, Physical Review E 85 (2012) 021602.

[23] A. Karma, Phase-field formulation for quantitative modeling of alloy
solidification, Phys. Rev. Lett. 87 (2001) 115701.

[24] B. Echebarria, R. Folch, A. Karma, M. Plapp, Quantitative phase-field
model of alloy solidification, Phys. Rev. E 70 (6) (2004) 061604.

[25] R. Folch, M. Plapp, Quantitative phase-field modeling of two-phase
growth, Physical Review E 72 (2005) 011602.

[26] S. Wise, J. Kim, J. Lowengrub, Solving the regularized, strongly
anisotropic cahn–hilliard equation by an adaptive nonlinear multigrid
method, Journal of Computational Physics 226 (1) (2007) 414–446.

[27] S. Wise, J. Lowengrub, J. Kim, K. Thornton, P. Voorhees, W. John-
son, Quantum dot formation on a strain-patterned epitaxial thin film,
Applied Physics Letters 87 (13) (2005) 133102.

[28] T. Borzsonyi, S. Akamatsu, G. Faivre, Weakly faceted cellular patterns
versus growth-induced plastic deformation in thin-sample directional so-
lidification of monoclinic biphenyl, Physical Review E 80 (2009) 051601.

[29] S. Akamatsu, S. Bottin-Rousseau, G. Faivre, S. Ghosh, M. Plapp,
Lamellar eutectic growth with anisotropic interphase boundaries, IOP
Conference Series: Materials Science and Engineering 84 (1) (2015)
012083.

[30] J. Stewart, N. Goldenfeld, Spinodal decomposition of a crystal surface,
Physical Review A 46 (10) (1992) 6505.

[31] F. Liu, H. Metiu, Dynamics of phase separation of crystal surfaces, Phys-
ical Review B 48 (9) (1993) 5808.

[32] S. Torabi, J. Lowengrub, A. Voigt, S. Wise, A new phase-field model for
strongly anisotropic systems, Proc. R. Soc. A 465 (2009) 1337–1359.

23



[33] A. Clarke, D. Tourret, Y. Song, S. Imhoff, P. Gibbs, J. Gibbs, K. Fezzaa,
A. Karma, Microstructure selection in thin-sample directional solidifica-
tion of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations,
Acta Materialia 129 (2017) 203–216.

[34] Y. Yang, M. Asta, B. B. Laird, Solid-liquid interfacial premelting, Phys-
ical review letters 110 (9) (2013) 096102.

[35] S. J. Fensin, D. Olmsted, D. Buta, M. Asta, A. Karma, J. Hoyt, Struc-
tural disjoining potential for grain-boundary premelting and grain coa-
lescence from molecular-dynamics simulations, Physical Review E 81 (3)
(2010) 031601.

[36] H. Song, S. Fensin, M. Asta, J. Hoyt, A molecular dynamics simulation
of (110) surface premelting in Ni, Scripta Materialia 63 (2010) 128–131.

[37] J. Hoyt, D. Olmsted, S. Jindal, M. Asta, A. Karma, Method for com-
puting short-range forces between solid-liquid interfaces driving grain
boundary premelting, Physical Review E 79 (2) (2009) 020601.

[38] P. Williams, Y. Mishin, Thermodynamics of grain boundary premelting
in alloys. ii. Atomistic simulation, Acta Materialia 57 (13) (2009) 3786–
3794.

[39] J. Mellenthin, A. Karma, M. Plapp, Phase-field crystal study of grain-
boundary premelting, Physical Review B 78 (18) (2008) 184110.

[40] A. Adland, A. Karma, R. Spatschek, D. Buta, M. Asta, Phase-field-
crystal study of grain boundary premelting and shearing in bcc iron,
Physical Review B 87 (2) (2013) 024110.

24




