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-Abstract 

Objective. Maintaining upright posture is a complex task governed by the integration of afferent 

sensorimotor and visual information with compensatory neuromuscular reactions. The objective of the 

present work was to characterize the visual dependency and functional dynamics of cortical activation 

during postural control.  

Approach. Proprioceptic vibratory stimulation of calf muscles at 85 Hz was performed to evoke postural 

perturbation in open-eye (OE) and closed-eye (CE) experimental trials, with pseudorandom binary 

stimulation phases divided into four segments of 16 stimuli. 64-channel EEG was recorded at 512 Hz, 

with perturbation epochs defined using bipolar electrodes placed proximal to each vibrator. Power 

spectra variation and linearity analysis was performed via fast Fourier transformation into six frequency 

bands (Δ, 0.5-3.5 Hz; θ, 3.5-7.5 Hz; α, 7.5-12.5 Hz; β, 12.5-30 Hz; γ_low, 30-50 Hz; and γ_high, 50-80 

Hz). Finally, functional connectivity assessment was explored via network segregation and integration 

analyses.  

Main Results. Spectra variation showed waveform and vision-dependent activation within cortical 

regions specific to both postural adaptation and habituation. Generalized spectral variation yielded 

significant shifts from low to high frequencies in CE adaptation trials, with overall activity suppressed 

in habituation; OE trials showed the opposite phenomenon, with both adaptation and habituation 

yielding increases in spectral power. Finally, our analysis of functional dynamics reveals novel cortical 

networks implicated in postural control using EEG source-space brain networks. In particular, our 

reported significant increase in local θ connectivity may signify the planning of corrective steps and/or 

the analysis of falling consequences, while α band network integration results reflect an inhibition of 

error detection within the cingulate cortex, likely due to habituation.  

Significance. Our findings principally suggest that specific cortical waveforms are dependent upon the 

availability of visual feedback, and we furthermore present the first evidence that local and global brain 

networks undergo characteristic modification during postural control. 

Keywords: Vertical Posture, Proprioceptive Stimulation, EEG, Power Spectral Density, Functional 

Connectivity 
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1. Introduction 

Maintaining upright posture is a complex task governed by the integration of afferent sensorimotor 

information with compensatory neuromuscular reactions [1], and the compensation for unpredictable 

perturbations in balance is essential to retaining stability and avoiding injury from falling. The cerebral 

cortex and central nervous system (CNS) play integral roles in postural control, incorporating 

information from visual, somatosensory, and vestibular systems to carry out the corrective motions 

needed to maintain balance [2-4]. The role of the CNS and subcortical structures in this regard is well-

documented in literature for the innate generation of feedforward and feedback adaptive adjustments to 

reduce the risk of balance loss [5-7]. However, understanding the role of the cerebral cortex has been of 

comparatively recent focus, along with its potential relationship with visual subsystems. Nonetheless, 

there is growing evidence for the importance of cortical involvement in adapting to transient balance 

perturbation [4-6, 8-13].  

1.1. Role of the Cerebral Cortex in the Postural Control System 

The contributions from infratentorial or supratentorial structures in maintaining upright posture has been 

of much recent focus in vestibular research involving human postural biomechanics. In such studies, 

postural control feedback is generalized under single inverted pendulum (SIP) theory, wherein the 

simplest spinal model (containing one or few spinal segments) is subjected to reflex controls aimed at 

maintaining a constant body center of pressure (COP) on a limited base of support [14-16]. This SIP 

model has been shown to accurately represent postural control during both small body perturbations 

inherent to bipedal quiet stance [17], as well as movement when the body is sufficiently far from its 

limits of antero-posterior or medial-lateral stability [18]. In general, when upright stance is perturbed, 

infratentorial reflexes trigger synchronized, efferent muscle reactions within the spine; these reflexes 

are commensurately registered by supratentorial (cortical) structures. This combination of feedback 

systems during postural perturbation is a complex relationship that further involves central and 

peripheral nervous structures [20]; as such, optimizing the validity of extant postural control models 

presents a strategic priority for research [19-21].   
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Characterizing the precise role of the cerebral cortex in governing the supratentorial response to postural 

perturbation has been addressed by research on sensorimotor integration, which has specifically 

implicated the posterior-parietal cortex for its interconnectivity with motor and premotor cortices [2, 

22], and further studies have suggested the region’s role in complex sensorimotor processing [23-25]. 

In addition, enhanced activation of the fronto-central region has been reported during the visual 

recognition of one’s postural instability, both with and without warning cues [4, 5, 26], as well as during 

self-initiated postural changes [6, 13, 27]. In particular, the anterior cingulate cortex (ACC) in the fronto-

central region is well-known for its crucial involvement in action monitoring and the detection of error 

signals, specifically increasing in activity during the detection of balance instability [28-30]. 

While many tools have been employed to study neurocognitive processes in this regard, the use of 

electroencephalography (EEG) as a neuroimaging technique remains disparately reported. Nonetheless, 

extant literature has investigated the utility of EEG through examination of evoked potentials associated 

to balance perturbation. Most typically, changes in evoked activity have been reported as time-domain 

event-related potentials (ERP) and/or perturbation-evoked responses (PER), and ERP/PER components 

such as N1 amplitudes and Contingent Negative Variation (CNV) have been reported [4-6, 12, 13]. 

While ERP responses have exhibited a wide distribution during unpredictable perturbations to upright 

posture, the propensity of literature suggests the generalizability of responses to fronto-central and 

occipital sites [59-61]. Power spectral density (PSD) analysis represents an alternative, yet analogously 

conventional method for EEG signal analysis, which remains comparatively underreported in postural 

control literature, despite its proven utility in cognitive and/or motor task EEG studies [28, 31-33].  

In addition to ERP analysis, emerging evidence highlights the utility of EEG for the estimation of 

functional brain network dynamics; indeed, functional connectivity in this regard plays a crucial role in 

many cognitive and motor functions [34]. In addition to its non-invasiveness and the relative ease of use 

(portability), a key advantage of EEG in discerning functional neural connectivity is its excellent 

temporal resolution, which offers the unique opportunity to both track large-scale brain networks over 

very short durations and to analyze fast dynamic changes that can occur during resting states or in brain 

disorders [35]. 



5 

1.2. Comparative Indicators for the Cortical Response: Adaptation and Habituation 

There are two primary indicators for cortical response in balance perturbation and postural control: 

cortical adaptation and habituation. Cortical adaptation in postural control may be described as transient 

changes in motor control strategy when exposed to acute changes in balance or sensorimotor input [36]. 

Cortical habituation, conversely, may be defined as the process of gradual improvement in postural 

rescue acquired through repetitive adaptation, through which enhanced motor control is acquired from 

repetitive, strategic corrections [37, 38]. Indeed, the contributory mechanisms of vestibular and 

subcortical systems represent phylogenically older structures for governing balance and employing 

learned motor movements, altogether suggesting their comparatively larger roles in postural adaptation 

[39]. In general, postural control is transiently and longitudinally improved by repetitive exposure to 

postural perturbation, such as in daily exercise, which encourages both functional and structural 

adaptation in the neuromuscular system [31, 40, 41]. In a research context, external vibratory stimulation 

applied to a muscle or tendon is a typical technique for the artificial induction of postural change, 

evoking the activation of proximal muscles to instigate an erroneous sensation of movement, which 

ultimately induces a commensurate postural response [33, 42].  

Maintaining vertical posture may be generalized by the complex integration of feed-forward and feed-

back mechanisms in cortical and subcortical structures to generate forces toward a supporting surface; 

this is typically achieved by calculated adjustments to the position of body segments or extremities. 

However, the precise role of the cerebral cortex and functional dynamics during the adaptation or 

influence of motor neuron executions remains debated; to our knowledge, there exists no study on the 

assessment of changes in EEG power spectra and functional connectivity during proprioceptic 

stimulation. Furthermore, while vision has been known to play an important role in postural control, its 

relationship with cortical activity during postural perturbation is not well understood. These notions 

altogether motivate the present work, wherein we report the employment of EEG to investigate the 

cortical dynamics of postural adaptation and habituation with and without visual feedback following 

vibratory proprioceptive stimulation of calf muscles.  
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2. Material and Methods 

2.1. Experiment Setup 

The main experiment was performed in the Icelandic Center for Neurophysiology at Reykjavik 

University. Ten healthy subjects between 22 and 25 years old were instructed to maintain upright posture 

during vibratory balance perturbations evoked by vibrators designed to deliver simultaneous stimulation 

to both calf muscles. These vibrators comprised of revolving DC-motors equipped with a 3.5 g eccentric 

weight, contained in cylindrical casing measuring 0.06 m length and 0.01 m in diameter. Each vibrator 

was held in place by elastic straps fastened tightly around the widest point of the calf muscle, and 

electrical stimulation was set to deliver a vibratory amplitude of 1.0 mm and a vibration frequency of 

85 Hz. Stimulations were applied according to a pseudorandom binary sequence schedule, where each 

shift had a random duration of 0.8 seconds to 6.4 seconds, yielding an effective stimulus bandwidth of 

0.1-2.5 Hz. 

The subjects stood on a pressure platform where postural sway was monitored by recording anterio-

posterior and medial-lateral stance pressure changes [43]; it is important to note that although sway and 

its corresponding EEG may be the product of the same perturbance, these responses are not necessarily 

dependent upon each other. As such, postural sway was monitored here as a quality control method to 

ensure appropriate stimulation response. Simultaneous to postural sway, EEG data were recorded 

continuously from 64 channels in bipolar configuration, with each experimental trial segmented into 

two phases lasting a total of 230 seconds: the quiet stance phase (30 seconds), designated as the 

prestimulus baseline ( 𝐵𝐿 ), and the stimulation phase (200 seconds). Each stimulation phase was 

subdivided into four segments, 𝑄1-𝑄2-𝑄3-𝑄4, each containing 16 stimuli (64 in-total per experimental 

trial). In particular for this study, 𝑄1 and 𝑄4 segments were separately isolated to define adaptation and 

habituation epoch events, respectively. Finally, experimental trials were performed twice for each 

subject according to two conditions: with closed eyes (CE) and with open eyes (OE). Experimental trial 

order was randomized for each subject in the cohort to reduce the effect of learning due to repeated 

stimulus, as described [58]. 
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2.2. EEG Data Acquisition 

The acquisition of EEG data was performed using a 64-channel wet-electrode cap in bipolar 

configuration with a portable amplifier and recording tablet using EEGO software (ANT Neuro, 

Enschede Netherlands). A standardized 10-20 system montage was used, and 3D head models were 

generated with each subject in accordance with standard montage electrode positions [44]. After 

strapping the calf muscle vibrators to both legs, participants were informed of the experiment protocol, 

and the EEG cap was attached, followed by the application of conductive electrode gel to reduce 

measured impedance to less than 10 kΩ in each channel. Next, a pair of bipolar electrodes were placed 

proximal to each vibrator to isolate and define vibratory epochs for each stimulation phase. After 

completing this instrumentation setup, the proprioceptive stimulation experiment was initialized, with 

EEG data acquired at a sampling frequency of 512 Hz. 

2.3. Data Processing 

Following data acquisition, recorded EEG was manually segmented for subject into OE and CE 

recordings. Next, each dataset was processed according to a series of transformation operations to 

prepare the measurements for analysis in a customized GUI in Matlab (MathWorks, Inc., Natick, 

Massachusetts, USA). Initial preprocessing operations were performed as outlined: 

1. Baseline and Stimulation Phase Extraction: each baseline (𝐵𝐿) and stimulation phase which 

were identified and extracted from each collected dataset to be separately processed.  

2. Vibratory Stimuli Detection: using the signal from both bipolar calf electrodes, each of the 64 

experimental vibrations were manually identified and divided into their four segments, 𝑄1-𝑄2-

𝑄3-𝑄4, as previously described. Subsequently, 𝑄1 and 𝑄4 segments were separately extracted 

from the signal in order to describe: 

a. Adaptation: the initial effects evoked by the proprioceptive stimulation (𝐵𝐿 vs. 𝑄1).  

b. Habituation: the cortical conditioning process from prolonged postural perturbation 

(𝑄1 vs. 𝑄4) 
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3. Signal Filtering: 𝐵𝐿, 𝑄1and 𝑄4 segments were filtered with a band-pass filter [0.3-80 Hz] with 

a 24dB/octave roll-off to isolate six EEG frequency bands (𝛥, 0.5-3.5 Hz; 𝜃, 3.5-7.5 Hz; 𝛼, 7.5-

12.5 Hz; 𝛽, 12.5-30 Hz; 𝛾𝑙𝑜𝑤, 30-50 Hz; and 𝛾ℎ𝑖𝑔ℎ, 50-80 Hz). Moreover, signals were filtered 

with a band stop filter from 49-51 Hz to remove undesired monomorphic artifacts from 50 Hz 

mains electricity.  

4. Artifact Detection: automatic artefact detection using a manual voltage threshold set between 

-100µV and +100µV was used to exclude segments contaminated by eye blinks and/or motion 

artifacts. An artefact was detected automatically with the ASA feature "Artefact Detection", if 

EEG data exceed threshold values in at least one channel. The user interfaces of the FFT analysis 

features allow to "reject artefacts": this means that any events overlapping with artefacts was 

not used in the respective feature. If thresholded detection was inadequate for removing all 

visible artifacts, manual artefact identification was performed: all artefacts clearly contaminated 

by motion artefacts were marked and then excluded from Fourier analyses.  

Finally, the following series of postprocessing operations were then executed: 

1. Fast Fourier Transformation (FFT): FFT processing of each EEG dataset was performed 

using ASA software (ANT Neuro, Enschede Netherlands) using a frequency resolution of 0.977 

Hz [62], and epoch durations set to 30 seconds for 𝐵𝐿 data and the entire stimulus duration (as 

previously noted, ranging from 0.8-6.4 seconds) for 𝑄1 and 𝑄4 stimulation datasets.  

2. Power Spectrum Extraction: power spectral density (PSD) values and topologies were then 

obtained from FFT analysis, normalized in ASA, and finally exported in ASCII format. 

PSD values were exported in this regard for cohort comparison and statistical analysis using Matlab. 

2.4. Power Spectra Variation  

As previously stated, the primary objectives of the present investigation were to analyze cortical markers 

for OE and CE postural adaptation ( 𝑄1 − 𝐵𝐿 ) and habituation ( 𝑄4 − 𝑄1 ). To investigate these 

differences and clarify the role of the cerebral cortex in postural control, OE and CE difference spectra 
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topologies were extracted for each EEG frequency band, showing electrodes and corresponding cortical 

regions with significant differences in utilization. In this comparison, significant changes in mean 

spectral power at each electrode were assessed using paired heteroscedastic t-tests, yielding topological 

𝑃-value maps for each EEG waveform (with 𝑃 < 0.05 the threshold for significance).  

Furthermore, spectral power variations (𝛿%) were calculated for the cohort to assess whether percent 

changes in adaptation and habituation were significantly different depending on the availability of visual 

feedback. To do this, PSD values were extracted and averaged within each band over all electrodes, 

resulting in 6x1 vectors for each subject for both OE and CE trials, according to the following 

expressions: 

Adaptation: 𝛿(𝑄1 − 𝐵𝐿)% = 100 ×
𝜇𝑄1−𝜇𝐵𝐿

𝜇𝐵𝐿
       (1) 

Habituation: 𝛿(𝑄4 − 𝑄1)% = 100 ×
𝜇𝑄4−𝜇𝑄1

𝜇𝑄1
       (2) 

To assess statistical significance between datasets, pairwise, two-sample Z-tests were performed, and 

𝑃 < 0.05  was analogously considered the threshold for significance. To correct for multiple 

comparisons, the 𝑃-values of sensor-wise comparisons were corrected using the Benjamini–Hochberg 

(BH) method [71]. 

2.5. Power Spectra Linearity 

To assess the degree of correlation between PSD values in each recording epoch, mean spectral values 

for each member of the cohort were plotted against their own respective frequency band. For postural 

adaptation analysis, 𝐵𝐿  and 𝑄1  average values were compared for each frequency band, and for 

habituation assessment, 𝑄4 and 𝑄1 PSD values were compared. Pearson’s correlation coefficients, 𝑟, 

were calculated for each correlation and were considered significantly correlated for |𝑟| > 0.7 [63]. 

Furthermore, 𝑃-values were calculated using a homoscedastic, two-tailed Student’s t-test of the null 

hypothesis that there exists no linear relationship, with 𝑃 < 0.05 the threshold for significance. 

2.6. Functional Connectivity Analysis 
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2.6.1. Brain Network Construction 

Functional brain networks were constructed using the “EEG source connectivity” method, which is 

comprised of two main steps [45]: 1) reconstruction of cortical source dynamics by solving the inverse 

problem, and 2) estimation of the functional connectivity between reconstructed signals. Here, we used 

the weighted minimum norm estimate (wMNE) algorithm as the inverse solution [59]. The wMNE was 

computed, using Brainstorm [68] toolbox for a cortical mesh of 15000 vertices using openMEEG [69]. 

A Desikan-Killiany atlas-based segmentation approach was used, consisting in 68 cortical regions [70]. 

Time series within one region of interest were averaged after flipping the sign of sources with negative 

potentials. . Reconstructed regional time series were band-pass filtered across the six reported EEG 

frequency bands. Next, functional connectivity between regional time series was computed for each 

frequency band, using the phase locking value (PLV) metric, which returns a PLV value between 0 (no 

phase locking) and 1 (full synchronization) [46, 47]. 

2.6.2. Network Metrics 

While functional connectivity provides key information about how different cortical regions are linked, 

graph theory analysis (GTA) offers a framework to characterize the network topology and organization. 

In practice, while many GTA metrics can be extracted from networks to characterize both local and 

global properties, we report the utility of two, in particular: 

1. Network Segregation (Local Information Processing): The clustering coefficient, 𝐶𝐶, was 

computed as a direct measure of network segregation [64]. In brief, 𝐶𝐶 denotes how close a 

node’s neighbors tend to cluster together [65]. This coefficient is the proportion of connections 

among a node’s neighbors, divided by the number of connections that could possibly exist 

between them, which is zero if no connections exist and one if all neighbors are connected. 

2. Network Integration (Global Information Processing): The relative importance of a node is 

proportional to its betweenness centrality, 𝐶, which reflects the proportion of the number of 

shortest paths in which the node participates (see [66] for a technical review). 
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All extracted network GTA measures were normalized with respect to random networks. Thus, we 

generated 500 surrogate random networks, derived from the original network, by randomly reshuffling 

the edge weights. Normalized values were computed by dividing original values by the average values 

computed on the randomized graphs [48]. Finally, the Jonckheere-Terpstra test was used to evaluate the 

trends of network GTA metrics as a function of the level of control (from 𝐵𝐿 to 𝑄1 through 𝑄4). This 

non-parametric rank-based test can be used to determine the significance of a trend by the computation 

of a z-score equivalent assembled against its critical value (with 𝑃 < 0.05  the threshold for 

significance). The statistical difference between conditions was performed at the level of each region (a 

node-wise analysis). Thus, the results are a set of brain regions that show significant differences between 

the conditions. 

3. Results and Discussion 

3.1. Power Spectra Variation and Linearity 

Our first PSD analysis method involved the topological comparison of both average spectral power 

values for each EEG waveform, as well as 𝑃-values (uncorrected) to illustrate significant differences 

between spectral power in individual electrodes. Figures 1-3 contain results from these analyses, 

showing comparisons between CE and OE conditions, in both adaptation (𝑄1 − 𝐵𝐿) and habituation 

(𝑄4 − 𝑄1). 
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Figure 1: Spectral topology differences during CE postural adaptation (𝑄1 − 𝐵𝐿) and habituation (𝑄4 −

𝑄1). *Note statistical significance of 𝑃 < 0.05 is denoted by each electrode denoted by a white ‘x’ in 

the significance maps. 

As is evident in Figure 1, difference spectra values in CE adaptation varied considerably in specificity 

to each EEG waveform, with a general reduction in 𝑄1 spectral power over 𝐵𝐿 for lower frequencies 

(𝛥  and 𝜃 ), varied differences seen in 𝛼  and 𝛽 , and an increase in 𝑄1  over 𝐵𝐿  in 𝛾𝑙𝑜𝑤  and 𝛾ℎ𝑖𝑔ℎ . 

Significant spectral differences from reduced 𝑄1 power were highlighted in occipital and right-temporal 

𝛥 and 𝜃. Contrastingly, higher waveforms yielded more positive differences in spectral power; while 

not significant, these differences may indicate a shift in cortical recruitment during CE postural 

adaptation from lower to upper EEG waveforms. In habituation trials, difference spectra illustrated a 

nearly global reduction in 𝑄4  power over 𝑄1 , with the exception of 𝛾ℎ𝑖𝑔ℎ  and right frontal 𝛾𝑙𝑜𝑤 . 

Significant spectral differences were found in 𝜃 around the precentral or superior frontal gyri, in addition 

to many locations across the cortex in 𝛼  and 𝛽  bands; however, 𝛥, 𝛾𝑙𝑜𝑤 , and 𝛾ℎ𝑖𝑔ℎ  bands yielded 

minimal significance. These results show a generalized decrease in cortical activity in CE postural 

habituation, altogether suggesting the comparative employment of proprioceptive mechanisms over 

time. 
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Figure 2: Spectral topology differences during OE postural adaptation (𝑄1 − 𝐵𝐿) and habituation 

(𝑄4 − 𝑄1). *Note statistical significance of 𝑃 < 0.05 is denoted by each electrode denoted by a white 

‘x’ in the significance maps. 

As shown in Figure 2, OE adaptation difference spectra illustrated a nearly global increase in 𝑄1 power 

over 𝐵𝐿 , with the exception of 𝛾ℎ𝑖𝑔ℎ . These results are directly antithetical to our findings in CE 

adaptation, furthermore illustrating the inverse 𝛾ℎ𝑖𝑔ℎ power relationship observed in CE habituation. 

However, significant spectral differences (uncorrected) from increased 𝑄1 power were limited to right-

temporal and occipital 𝛼 and 𝛽. Nonetheless, these results indicate that cortical recruitment may be 

directly related to the OE condition, as specifically evidenced by the generalized increase in 𝑄1 activity 

over 𝐵𝐿 . In habituation trials, difference spectra again illustrated antithetical results to CE trials, 

showing an increase in 𝑄4 power over 𝑄1 in a majority of channels for each EEG band. However, 𝑃-

value topologies indicated only one significant electrode in prefrontal 𝜃, suggesting the necessity for 

additional comparisons to solidify implicated differences between CE and OE trials (Figure 3). 
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Figure 3: Spectral topology comparison between CE and OE difference spectra in both postural 

adaptation and habituation. *Note statistical significance of 𝑃 < 0.05  is denoted by each electrode 

denoted by a white ‘x’ in the significance maps.  

Figure 3 depicts the comparison between OE and CE difference spectra, showing which trials incurred 

more cortical activity in both adaptation and habituation. Since a majority of CE trials resulted in 

negative spectral differences, while OE trials gave positive results (both in adaptation and habituation), 

it is logical to expect a majority of these 𝛿(𝑂𝐸 − 𝐶𝐸) values to be positive; indeed, this is precisely 

what we observe. These differences are statistically significant in occipital and temporal electrodes for 

𝛥  and 𝜃 bands during adaptation, with additional significant electrodes at the precentral gyrus in 𝛼 and 

𝛽 bands. Further significance during habituation is evident in 𝜃 at the left-precentral gyrus, as well as 

the prefrontal and right-temporal cortices. Significance in habituation spectra was also found in the 𝛼 

band through both occipital and right-posterior parietal electrodes. Finally, while again showing fewer 

significant electrodes, habituation 𝛽 differences yielded significance in one central parietal electrode, 

with no significance in higher frequency waveforms. These results altogether show that the disparate 

trends observed in OE and CE difference spectra are statistically significant, suggesting the observation 

that cortical activity during postural control may be significantly higher with the use of vision. These 
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findings altogether directly support our hypothesis that visual recognition of instability plays a critical 

role in governing the employment of cortical processes for postural control. 

Following topological comparisons, pairwise spectral power variation (𝛿%) was calculated to assess 

whether percent changes in adaptation and habituation were significantly different, depending on the 

availability of visual feedback. The following tables contain results from this analysis, detailing the 

pairwise, two-sample Z-tests with significance designated for 𝑃 < 0.05 and 𝑃 < 0.01 between CE and 

OE adaptation and habituation trials. 

Table 1. PSD pairwise variation in open eyes (OE) and closed eyes (CE) postural 

adaptation (𝑄1 − 𝐵𝐿) and habituation (𝑄4 − 𝑄1) spectral comparisons 

 Frequency Band Pairwise Variation in Mean PSD1 

Adaptation: 𝜟 𝜽 𝜶 𝜷 𝜸𝒍𝒐𝒘 𝜸𝒉𝒊𝒈𝒉 

𝛿(𝑄1 − 𝐵𝐿)𝑂𝐸 83,5% 46,8% 13,0% 48,6% 11,9% -93,1%† 

𝛿(𝑄1 − 𝐵𝐿)𝐶𝐸 -6,5%† -30,9%† -3,5% -0,9%† -8,2% 28,0%† 

z-score 3,461** 0,729 0,772 2,472* 0,275 2,978** 

Habituation: 𝜟 𝜽 𝜶 𝜷 𝜸𝒍𝒐𝒘 𝜸𝒉𝒊𝒈𝒉 

𝛿(𝑄4 − 𝑄1)𝑂𝐸 53,4%† 24,7%† -2,3% 1,2% 12,8%†† 35,2%†† 

𝛿(𝑄4 − 𝑄1)𝐶𝐸 -36,6% -31,6% -20,8% -43,9% -3,7% -13,4% 

z-score 0,755 -0,343 -1,294 -2,285* 0,740 1,137 

       
1Waveform bandwidths: 𝛥, 0.5-3.5 Hz; 𝜃, 3.5-7.5 Hz; 𝛼, 7.5-12.5 Hz; 𝛽 , 12.5-30 Hz; 

𝛾𝑙𝑜𝑤, 30-50 Hz; and 𝛾ℎ𝑖𝑔ℎ , 50-80 Hz 

z-test: *𝑃 < 0.05; **𝑃 < 0.01 

Pearson’s coefficient (linearity): †𝑅 > 0.7; ††𝑅 > 0.9 

 

The results presented in Table 1 carry several important EEG waveform distinctions. Firstly, both OE 

adaptation and habituation tests indicated an increase in spectral power across five of the six bands 

(exceptions being 𝛾ℎ𝑖𝑔ℎ and 𝛼, respectively), while CE tests resulted in decreases in power over all 

habituation bands, along with all adaptation bands, except 𝛾𝑙𝑜𝑤. These findings are in direct accordance 

with the results shown in Figures 1-3, suggesting again that, following both acute and prolonged 

proprioceptive perturbation, cortical activity is upregulated with the availability of visual feedback, 

while conversely downregulated without vision. These notions further support our hypothesis that visual 

recognition of instability plays a critical role in governing the employment of cortical processes for 

postural control. 
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It is likewise intriguing to note both the significant difference between 𝛾𝑙𝑜𝑤 and 𝛾ℎ𝑖𝑔ℎ values and the 

degree of independence between 𝛾𝑙𝑜𝑤 and 𝛾ℎ𝑖𝑔ℎ PSD values, overall. Extant literature has suggested 

that generalized 𝛾 activity may precede the initiation of compensatory backward postural movement 

when balance is in danger [29], but our results extend this notion with the segmentation of our 𝛾 bands; 

it is evident here that the cortical response to instability with visual feedback engaged the 𝛾𝑙𝑜𝑤 portion 

of the 𝛾 waveform, whereas the 𝛾ℎ𝑖𝑔ℎ waveform was almost completely downregulated in adaptation, 

yet upregulated with prolonged perturbation. Furthermore, antithetical to other bands, 𝛾ℎ𝑖𝑔ℎ spectral 

power increased significantly (𝑃 < 0.01) in CE adaptation trials, suggesting its specificity as a cortical 

activity marker when vision is unavailable. However, it is important to likewise note that, although these 

results present clear cortical differences between 𝑄1  and 𝑄4  which have are referenced under the 

adaptation and habituation paradigm in literature [4], the onset of habituation still remains differentially 

possible throughout the course of stimulation phases – a notion which motivates further research in this 

regard. 

In addition to the 𝛾 bands, the reported results likewise show the significant (𝑃 < 0.05) drop in 𝛽 

waveform spectral power in both adaptation and habituation, but with strikingly disparate 

characteristics. In adaptation, OE trials yielded a large upregulation in 𝛽, whereas CE trials yielded a 

slight downregulation, suggesting again that vision is critical for governing cortical activation – most 

significantly in high-frequency (𝛾 and 𝛽) waveforms. However, in habituation, the OE 𝛽 band remained 

highly active, but dropped significantly (𝑃 < 0.05) in CE trials. This suggests again both the governing 

role of the 𝛽 waveform in visually-aided cortical postural control, along with its diminishing utility 

without visual feedback. 

Finally, the reported linearity results indicate some critical remarks regarding the degree of dependence 

between each paired variable; however, it is first important to define our interpretation of Pearson’s 

correlation in this regard, wherein the greater the value of 𝑅, the lower the degree of inter-bandwidth 

independence and the more any observed intra-bandwidth significance may be due to natural spectral 

power variance. In adaptation, OE trials exhibited almost no linear correlation, with the exception of 
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𝛾ℎ𝑖𝑔ℎ, whereas CE trials exhibited significant (𝑅 > 0.7) linear dependence in all bandwidths except 𝛼 

and 𝛾𝑙𝑜𝑤. This distinction in comparing visual employment was antithetical in habituation trials, wherein 

OE linear dependence was significant (𝑅 > 0.7) in 𝛥 and 𝜃 bands and strongly significant (𝑅 > 0.9) in 

both 𝛾𝑙𝑜𝑤  and 𝛾ℎ𝑖𝑔ℎ bands, whereas CE trials yielded no linear correlation. These results altogether 

suggest disparate levels of dependence upon cortical activation when comparing OE and CE trials; in 

adaptation, the use of vision resulted in stronger inter-bandwidth independence, whereas in habituation, 

this independence was stronger without vision. 

3.2. Functional Connectivity Analysis 

Here, we explored two metrics for assessing functional connectivity during the three experimental 

phases: brain network segregation (using clustering coefficients, 𝐶𝐶) and network integration (using 

betweenness centralities, 𝐶). The Jonckheere-Terpstra test was used to evaluate these network GTA 

metrics as a function of the level of control (from 𝐵𝐿 to 𝑄1 through 𝑄4), with statistical significance 

determined by z-score equivalence (with 𝑃-values of node-wise comparisons corrected analogously 

using the BH false-discovery-rate method and 𝑃 < 0.05  the threshold for significance). After 

implementing this methodology, only 𝜃 -band segregation and 𝛼 -band network integration yielded 

statistical significance. 

The top row in Figure 4 shows CE network segregation cortical maps, denoting regions with a 

significant increase in the 𝜃  band 𝐶𝐶  (𝑃 < 0.05, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ) – a phenomenon mainly observed in 

central regions (left precentral, left postcentral, right paracentral) and parietal regions (left and right 

superioparietal). In addition, network integration maps illustrate a significant decrease in 𝛼  -band 

network integration (𝑃 < 0.05, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) from the experiment 𝐵𝐿 to stimulation phases 𝑄1 through 

𝑄4. These results mainly implicate cortical regions associated to the Default Mode Network (DMN: left 

anterior cingulate and left posterior cingulate), in addition to the cuneus and the left superiofrontal 

regions. 
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Figure 4: 3D representation of cortical brain regions, showing network segregation differences from 𝐵𝐿 

to 𝑄1 to 𝑄4 conditions within the 𝜃 band (top row) and network integration differences from 𝐵𝐿, 𝑄1 to 

𝑄4 conditions within the 𝛼 band. 

These results altogether indicate that cortical recruitment in postural control may be associated with 

decreased global functional connectivity at the 𝜃 band and decreased local functional connectivity at the 

𝛼  band. Before discussing the specific relevance of these findings, it is important to highlight the 

primary novelty of this type of investigation; this is the first reported employment of EEG source 

connectivity assessment to specifically characterize functional networks involved in postural control. 

While this notion makes it challenging to discuss the ultimate significance of these results, emerging 

literature does cite the utility of this method for investigating cognition [49] as well functional network 

changes in brain disorders [50], with correlative remarks to enable our discussion of this method in-

context. 

Our findings here suggest that functional brain networks are reshaped (i.e. undergo characteristic 

network modification) from a normative upright stance through perturbation in 𝑄1 and 𝑄4. This was 

most keenly expressed by the reported centro-parietal network’s global characteristic shift in the 𝜃 

waveform; recent investigation into scalp-level EEG analysis from activity in this centro-parietal 
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network has reported similar changes from 𝐵𝐿  to task failure of a suprapostural motor task with 

increasing postural destabilization [51]. The implication of parietal regions during postural control, in 

particular, was also recently reported using functional near-infrared spectroscopy [52]. Furthermore, 

frequency-based EEG source localization has implicated the 𝜃 band for its critical role in sensorimotor 

control and sensory information processing [53]. Our reported increase in local 𝜃 connectivity may 

therefore reflect activity occurring across the centro-parietal network that signifies either the planning 

of corrective steps and/or precise cognitive analyses of potential biomechanical consequences from 

incorrect or nonexistent postural correction. 

Finally, the decrease in the 𝛼 band network, located mainly in the DMN, may reflect an inhibition 

phenomenon (well-known for the 𝛼 band), wherein the key role of error detection within the cingulate 

cortex was repressed – likely due to habituation [54, 55].  In addition, it was widely reported that the 𝛼 

network is highly involved in attentional processes by enabling the inhibition of irrelevant networks, 

influencing local/global signal processing, facilitating widespread information exchange, and enhancing 

perception [56].  

4. Conclusions 

Human postural control is a complex physiological task, reliant upon adaptive feedforward and feedback 

adjustments in the CNS, integrated with input from visual, vestibular, and somatosensory systems. 

While the roles of the CNS and subcortical structures in postural control is well-documented, there is 

still much debate in literature on the specific importance of the cerebral cortex and its relationship with 

vison. This was the motivation for the present work, wherein we describe the use of 64-channel EEG to 

investigate power spectral changes and cortical dynamics during the vibratory proprioceptive 

stimulation of calf muscles, measured with eyes open (OE) and eyes closed (CE). 

The results presented here illustrate several principle conclusions. Firstly, power spectra variation 

analysis showed waveform-dependent activation within cortical regions specific to postural adaptation 

(𝑄1 − 𝐵𝐿) and habituation (𝑄4 − 𝑄1). In particular, the reported 𝛾 band segmentation extends existing 

observations in literature that implicate its involvement in balance maintenance; we have shown here 
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that instability engaged 𝛾𝑙𝑜𝑤 and 𝛾ℎ𝑖𝑔ℎ waveforms analogously in OE and CE postural habituation, but 

the two bands behaved exactly the opposite in adaptation depending on the use of vision. Furthermore, 

generalized spectral variation resulted in significant spectral power shifts (from lower to higher 

frequencies) in CE adaptation trials, while generalized cortical activity decreased significantly in CE 

habituation trials. OE trials showed the opposite phenomenon, with both adaptation and habituation 

yielding increases in spectral power from 𝐵𝐿 to 𝑄1 and 𝑄1 to 𝑄4, respectively – albeit with fewer 

significant channels in each waveform. These results were further compared via pairwise variation, 

which illustrated the significant nature of our OE and CE observations; however, power spectra linearity 

results suggest that some EEG waveforms may not be strictly independent across trial conditions.  

We have additionally reported novel results that reveal potential cortical networks involved in postural 

control using EEG source-space brain network mapping. Our reported increase in local 𝜃 connectivity 

may signify either the planning of corrective steps and/or precise cognitive analyses of falling 

consequences. In addition, 𝛼 band network integration results may reflect an inhibition of error detection 

within the cingulate cortex, likely due to habituation. Our findings here suggest that functional brain 

networks undergo characteristic network modification; to our knowledge, these findings present the first 

reported characterization of both local and global brain network reshaping during postural control – a 

notion which necessitates future method optimization and the use of more subjects to support these 

results. 

Altogether, the present findings suggest the critical notion that, following both acute and prolonged 

proprioceptive perturbation, cortical activity is upregulated with the availability of visual feedback, 

while conversely downregulated without vision. However, conclusions on inter-bandwidth 

independence would be strengthened by the use of more subjects, and implicated cortical regions would 

be further strengthened by the use of higher spatial resolution EEG systems. Furthermore, it should be 

made clear that the reported OE condition is a necessary but insufficient condition in itself for directly 

relating these findings to the availability of visual input. In addition, future investigation would be 

optimized by correlation with additional metrics for balance performance, such as posturography or 

EMG to gauge postural sway. Results from these included metrics may indeed help to clarify the 
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feasibility and relevance of establishing the link between cortical response and body sway analysis. 

Nonetheless, the present study illustrates novel EEG spectral comparisons that provide evidence for the 

importance of visual referencing in postural control, and we further extend extant research by the 

introduction of adaptive cortical response analysis. These results invoke a novel emphasis on the 

importance of studying the role of the cortex in maintaining upright posture, providing further insight 

on challenging questions from a range of fields, from neurorehabilitation to the development of assistive 

tools for ambulation. 
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