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Alternating direction method of multiplier for the unilateral

contact problem with an automatic penalty parameter

selection

Jonas Koko∗

Abstract

We propose an alternating direction method of multiplier (ADMM) for the uni-
lateral (frictionless) contact problem with an optimal parameter selection. We first
introduce an auxiliary unknown to seprate the linear elasticity subproblem from the
unilateral contact condition. Then an alternating direction is applied to the corre-
sponding augmented Lagrangian. By eliminating the primal and auxiliary unknowns,
at the discrete level, we derive a pure dual algorithm, starting point for the con-
vergence analysis and the optimal parameter approximation. Numerical experiments
are proposed to illustrate the efficiency of the proposed (optimal) penalty parameter
selection method.

Keywords: Linear elasticity, unilateral contact problem, alternating direction,
augmented Lagrangian.

1 Introduction

Unilateral contact (frictionless) problem is a very common problem in engineering and
poses serious challenges. It differs from the classical linear elasticity only by the presence
of a linear constraint (the non-penetration condition). Various numerical methods have
been developed, see, e.g., [8, 6, 7, 9, 13, 14] and references therein. The method pro-
posed in [9] is an alternating direction method of multiplier (ADMM) and it is related
to augmented Lagrangian operator splitting methods [2, 3]. The main idea is to separate
the differentiable part of the problem (i.e. linear elasticity) from the nondifferentiable
part (i.e. the non-penetration condition) by introducing an auxiliary unknown. Applying
an alternating direction method to the corresponding augmented Lagrangian leads to a
simple two-step iterative method in which the matrix of the linear elasticity is constant.
This property makes ADMM algorithm outperforms, see [9], another optimization based
method, the popular active-set semi-smooth Newton method [6, 7, 13].

Alternating direction method of multiplier is a powerful operator-splitting algorithm
for solving structured optimization problems encoutoured in a wide range of areas such as
compressed sensing [15], image restoration [12], machine learning [1], etc. The method was
initiated by Glowinski et al. [4, 2, 3], who systematically developed ADMM algorithms
(also known as Uzawa block relaxation methods) for solving nonlinear partial differential
equations. But ADMM based algorithms have a severe drawback: the choice of the penalty
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2 THE MODEL PROBLEM AND ADMM ALGORITHM 2

parameter. Indeed, the rate of convergence of the algorithm is strongly related to the
penalty parameter and the choice of this parameter is a non trivial problem. We propose,
in this paper, a simple procedure for the numerical approximation of the optimal penalty
parameter for use with ADMM algorithm in the case of a frictionless contact problem. To
this end, we carefully derived a convergence analysis on a pure dual ADMM algorithm.
The pure dual version is obtained by eliminating the primal and auxiliary unknowns. Note
that the approximate formula is based on extreme eigenvalues, and is therefore suitable
for coarse meshes only.

The paper is organized as follows. In Section 2 the ADMM algorithm for the unilateral
frictionless contact problem is presented. In Section 3 the finite dimensional versions are
presented. The convergence analysis is carried out in Section 4. The penalty parameter
approximation is outlined in Section 5, followed by the numerical experiments in Section
6.

2 The model problem and ADMM algorithm

We consider an elastic body occupying in its initial (undeformed) configuration a bounded
domain Ω of Rd (d = 2, 3) with a boundary Γ = ΓD∪ΓC . We assume that the elastic body is
fixed along ΓD with meas(ΓD) > 0. ΓC denotes a portion of Γ which is a candidate contact
surface between Ω and a rigid foundation. The normalized gap between ΓC and the rigid
foundation is denoted by g. In this paper, we consider the small strains hypothesis so that
the strain tensor is E(u) = (∇u+∇ut)/2, where u = (u1(x), . . . , ud(x)) is the displacement
field. Hooke’s law is assumed, i.e. the stress tensor is linked to the displacement through
the linear relation

σ(u) = CE(u)

where C = (Cijkl) is the (fourth order) elastic moduli tensor, assumed to be symmetric
positive definite. Let n be the outward unit normal to Ω on Γ. We consider the normal
component of the displacement field and the stress tensor given by

un = u · n, σn(u) = (σ(u)n) · n.

The unilateral contact problem consists, for a given volume force f , of finding the dis-
placement field u satisfying

(i) the equilibrium equations

−divσ(u) = in Ω, (2.1)

u = 0 on ΓD, (2.2)

(ii) and the contact (i.e. non-penetration) conditions

un − g ≤ 0, σn(u) ≤ 0, (un − g)σn(u) = 0, on ΓC . (2.3)

Let us introduce the functions space V =
{
v ∈ H1(Ω)2, v = 0 on ΓD

}
and the set of

admissible displacements K = {v ∈ V, vn − g ≤ 0 on ΓC}. Let a(·, ·) be the symmetric,
continuous and coercive bilinear form which corresponds to the virtual work in the elastic
body

a(u,v) =

∫
Ω
σ(u) : E(v)dx.
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We denote by f(·) the linear form of external forces

f(v) =

∫
Ω
f · vdx.

Using the potential energy functional

J(v) =
1

2
a(v,v)− f(v)

we can formulate the unilateral contact problem as the constrained minimization problem

Find u ∈ K such that
J(u) ≤ J(v), ∀v ∈ K. (2.4)

To achieve a solution of (2.4) by an ADMM algorithm, we need additional steps.
Following Glowinski and Le Tallec [3], we introduce the set

C =
{
p ∈ L2(ΓC), p− g ≤ 0 on Γc

}
and its characteristic functional IC : L2(Γc)→ R ∪ {+∞} defined by

IC(p) =

{
0 if p ∈ C,
+∞ if p 6∈ C.

It is clear that (2.4) is equivalent to the following constrained minimization problem

Find (u, p) ∈ V × L2(ΓC)2 such that

J(u) + IC(p) ≤ J(v) + IC(q) ∀(v, q) ∈ V × L2(ΓC)2, (2.5)

un − p = 0 on ΓC . (2.6)

With (2.5)-(2.6) we associate the augmented Lagrangian functional

Lr(v, q;λ) = J(v) + IC(q) + (vn − q, λ)ΓC
+
r

2
‖ vn − q ‖2ΓC

, (2.7)

where r > 0 is the penalty parameter. ADMM algorithm for (2.4) is based on (2.7). The
method performs successive minimizations in u and p followed by the multiplier λ update
as follows

uk+1 = arg min
v

Lr(v, p
k;λk), (2.8)

pk+1 = arg min
p

Lr(u
k+1; q;λk), (2.9)

λk+1 = λk + r(uk+1
n − pk+1). (2.10)

Minimization (2.8) leads to an equilibrium problem which always has a unique solution
even though the original problem allows rigid body motions. Minimization (2.9) is solved
explicitly. The corresponding ADMM algoririthm is presented in Algorithm 1 (see [9] for
detailed derivation). We iterate until the relative error on uk and pk becomes ”sufficiently”
small.
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Algorithm 1 ADMM algorithm for the unilateral contact problem

Initialization. φ0 and λ0 are given.

Iteration k ≥ 0. Compute successively uk+1, pk+1 and λk+1 as follows

• Find uk+1 ∈ V such that

a(uk+1,v) + r(uk+1
n ,vn)ΓC

= f(v) + (rpk − λk,vn)ΓC
, ∀v ∈ V.

• Compute the auxiliary unknown

pk+1 = uk+1
n +

1

r

[
λk −

(
λk + r(uk+1

n − g)
)+
]
.

• Update the Lagrange multiplier

λk+1 = λk + r(uk+1
n − pk+1).

3 Finite dimensional algorithms

We assume that Ω ⊂ Rd is a polyhedral domain and therefore can be exactly triangulated.
We consider a (continuous piecewise linear) finite element triangulation Th of Ω consistent
with the decomposition of its boundary Γ into ΓD and ΓC . If n is the number of nodes of
the triangulation, the dimension of the finite element subsapce Vh ⊂ V is dimVh = dn.

Let xj (j = 1, . . . ,m) be a contact node (i.e. xj lies on ΓC). The displacement vector
and the unit outward normal at xj are denoted by uj and nj , respectively. We introduce
the linear mappings N : Rdn → Rm, such that Nu is the vector of the normal components
of u at contact nodes, that is, (Nu)j = u>j nj , j = 1, . . . ,m.

The finite element discretization leads to the following matrices and vectors

• A, (dn) × (dn) stiffness matrix (symmetric positive definite), i.e. from the bilinear
form a(u, v);

• M normal mass matrices (m×m symmetric positive definite);

• f ∈ Rdn the (discrete) external forces;

• g ∈ Rm the (discrete) normalized gap;

• p ∈ Rm the (discrete) auxiliary unknown;

• λ ∈ Rm the (discrete) lagrange multiplier.

With the notations above, the augmented Lagrangian (2.7) now reads in the discrete
setting

Lr(u,p;λ) = J(u) + λ>M(Nu− p) +
r

2
(Nu− p)>M(Nu− p), (3.1)

where

J(u) =
1

2
u>Au− f>u.
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3.1 Discrete ADMM algorithm

The derivation of the discrete version of Algorithm 1 from the augmented Lagrangian
function (3.1) is straigthforward, Algorithm 2.

Algorithm 2 Algebraic ADMM algorithm for the unilateral contact problem

Initialization k = 0 r > 0, p0 and λ0 are given.

Iteration k ≥ 0 . Compute successively uk+1, pk+1 and λk+1 as follows.

Step 1 Compute uk+1 ∈ Vh such that

(A + rN>MN)uk+1 = f + N>M(rpk − λk) (3.2)

Step 2 Compute pk+1 ∈ Ph

pk+1 = Nuk+1 +
1

r

(
λk − (λk + r(Nuk+1 − g))+

)
(3.3)

Step 3 Update Lagrange multiplier

λk+1 = λk + r(Nuk+1 − pk+1)

3.2 ADMM algorithm without the auxiliary unknown

Algorithm 2 can be simplified by eliminating the auxiliary unknown p. Indeed, using the
update formula (3.3) we have

rpk = r(pk −Nuk) + rNuk

= −(λk−1 + r(Nuk − pk) + rNuk + λk−1

= rNuk + λk−1 − λk,

that is
rpk − λk = λk−1 − 2λk + rNuk. (3.4)

If we set λk
− = min(0,λk−1 + r(Nuk − g)), the right-hand side of (3.4) becomes

λk−1 + rNuk − 2λk = λk−1 + r(Nuk − g) + rg − 2λk

= λk
− − λk + rg.

It follows that
rpk − λk = λk

− − λk + rg

i.e., we have eliminated the auxiliary unknown p from the right-hand side of (3.2). It
remains to remove p from the multiplier update formula. From (3.3) we deduce that

r(pk+1 −Nuk+1) = λk − (λk + r(Nuk+1 − g))+. (3.5)

Substituting (3.5) into the Lagrange multiplier update formula, we obtain the new multi-
plier update formula

λk+1
+ := (λk + r(Nuk+1 − g))+.
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Gathering the results above, the ADMM algorithm without the auxiliary unknown p is
described in Algorithm 3. In Algorithm 3, λ0

+ and λ0
− must be consistent. Indeed, if, e.g.,

u0 = 0, then we can set λ0
+ = r(Nu0−g)+ = 0. It follows that λ0

− = r(Nu0−g)− = −rg.

Algorithm 3 ADMM without auxiliary unknown for the unilateral contact problem

Initialization k = 0 r > 0, λ0
+ and λ0

− are given.

Iteration k ≥ 0 . Compute successively uk+1, λk+1
+ and λk+1

− as follows.

Step 1 Compute uk+1 such that

(A + rN>MN)uk+1 = f + rN>Mg + N>M(λk
− − λk

+) (3.6)

Step 2 Update the Lagrange multipliers

λk+1
+ = (λk

+ + r(Nuk+1 − g))+

λk+1
− = (λk

+ + r(Nuk+1 − g))−

3.3 Pure dual version

The pure dual version of the ADMM algorithm for the unilateral contact problem is
obtained by eliminating the displacements vector u. From (3.6) we have

uk+1 = A−1
r

(
f + rN>Mg + N>M(λk

− − λk
+)
)

where we have set
Ar = A + rN>MN.

Substituting uk+1 into the Lagrange multiplier update formulas, we obtain Algorithm 4.

Algorithm 4 Dual ADMM algorithm for the unilateral contact problem

Initialization k = 0 r > 0, λ0
+ and λ0

− are given.

Set Ar = A + rN>MN and a = A−1
r (f + rN>Mg)

Iteration k ≥ 0 . Compute successively λk+1
+ and λk+1

− as follows.

λk+1
+ =

[
(I− rNA−1

r N>M)λk
+ + rNA−1

r N>Mλk
− + r(Na− g)

]+
(3.7)

λk+1
− =

[
(I− rNA−1

r N>M)λk
+ + rNA−1

r N>Mλk− + r(Na− g)
]−

(3.8)

Algorithm 4 is unpraticable since in A−1
r can be a full matrix of large size. However,

the recursive relation (3.7)-(3.8) is important because it gives an easy way to prove the
convergence of the ADMM algorithm. Indeed, Algorithm 4 is useful as a theoretical basis
for the study of the influence of r.
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4 Convergence

Since min(0, x) = −max(0,−x), the recursive relation (3.7)-(3.8) can be rewritten in the
useful form

λk+1
+ =

[
(I− rNA−1

r NTM)λk
+ + rNA−1

r NTMλk
− + r(Na− g)

]+
(4.1)

λk+1
− = −

[
−(I− rNA−1

r NTM)λk
+ − rNA−1

r NTMλk
− − r(Na− g)

]+
. (4.2)

Since for any x ∈ Rn ‖ x+ ‖≤‖ x ‖ we have

‖ λk+1
+ ‖2 ≤ ‖ (I− rNA−1

r N>M)λk
+ + rNA−1

r N>Mλk
− ‖2 + ‖ r(Na− g) ‖2 (4.3)

‖ λk+1
− ‖ ≤ ‖ −(I− rNA−1

r N>M)λk
+ − rNA−1

r NTMλk
− ‖2 + ‖ r(Na− g) ‖2(4.4)

so that

‖ λk+1
+ ‖2 + ‖ λk+1

− ‖2≤ ‖ (I− rNA−1
r N>M)λk

+ + rNA−1
r NTMλk

− ‖2

+ ‖ −(I− rNA−1
r N>M)λk

+ − rNA−1
r N>Mλk

− ‖2 +2 ‖ r(Na− g) ‖2

that is
‖ λk+1
± ‖2≤‖ Aλk+1

± ‖2 +2 ‖ r(Na− g) ‖2,
where we have set

λk+1
± =

[
λk+1

+

λk+1
−

]
and A =

[
I− rNA−1

r NTM rNA−1
r NTM

−(I− rNA−1
r NTM) −rNA−1

r NTM

]
.

The convergence of Algorithm 4 therefore depends on the spectral radius of A. We have
the following proposition for the non-zeros eigenvalues of A.

Proposition 4.1 The non-zero eigenvalues of A are eigenvalues of I − 2rNA−1
r N>M

and conversely.

Proof. Let us set

A1 = I− rNA−1
r N>M and A2 = rNA−1

r N>M

so that

A =

[
A1 A2

−A1 −A2

]
.

We have to show that the non-zero eigenvalues of A are eigenvalues of A1 − A2 = I −
2rNA−1

r N>M and conversely. Let α be an eigenvalue of A and (X1,X2) the corresponding
eigenvector. We have

A1X1 +A2X2 = αX1, (4.5)

−A1X1 −A2X2 = αX2 (4.6)

that is, α(X1 + X2) = 0. For non-zero eigenvalues we deduce that the eigenvectors are
such that X1 = −X2. Substituting in (4.5)-(4.6) we obtain

(A1 −A2)X1 = αX1,

(A1 −A2)X2 = αX2.
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We deduce that α is an eigenvalue of A1 − A2. From the relations above, it is obvious
that non-zero eigenvalues of A1 −A2 are also eigenvalues of A. 2

To study the eigenvalues of I− 2rNA−1
r N>M, we consider the following sequence

µk+1 = (I− 2rNA−1
r N>M)µk = µk − 2rNA−1

r N>Mµk, k ≥ 0. (4.7)

We follow the same procedure as [3, p. 46] for a quadratic programming problem with
equality constraints. From (4.7), we deduce that

A−1N>Mµk+1 = A−1N>Mµk − 2rA−1N>MNA−1
r N>Mµk. (4.8)

Since
A−1

r = (A + rN>MN)−1 = (I + rA−1N>MN)−1A−1

it follows that

A−1N>Mµk+1 = A−1N>Mµk−2rA−1N>MN(I+rA−1N>MN)−1A−1N>Mµk (4.9)

By introducing the auxiliary unknown ηk = A−1N>Mµk, the sequence (4.9) becomes

ηk+1 = (I− 2rA−1N>MN(I + rA−1N>MN)−1)ηk, ∀k ≥ 0. (4.10)

The convergence of the sequence {ηk} will gives us informations about the convergence
of the sequence {µk} and then {λk

+, λ
k
−}. From [5, th. 1.1.6 and cor. 2.4.3.4], B =

(I − 2rA−1N>MN(I + rA−1N>MN)−1) is a polynomial function of A−1N>MN, with
p(t) = (1 − 2rt(1 + rt)−1) as polynomial. Then the eigenvalues of B are polynomial
functions of the eigenvalues of A−1N>MN and thus λi(B) = p(λi(A

−1N>MN), that is

λi(B) = 1− 2r
λi(A

−1N>MN)

1 + rλi(A−1N>MN)
=

1− rλi(A−1N>MN)

1 + rλi(A−1N>MN)
. (4.11)

The eigenvalues (and eigenvectors) of A−1N>MN are solution to the generalized sym-
metric eigenvalue problem

N>MNw = λAw

Since A is symmetric positive definite and N>MN is symmetric positive semi-definite,
the eigenvalues of A−1N>MN are non-negative, and the eigenvectors corresponding to
two distinct eigenvalues are A-otthogonal. It follows that the eigenvalues of B are such
that

0 ≤ λi(B) ≤ 1, ∀i. (4.12)

Note that A and M are square and non singular matrices. Then if 0 is an eigenvalue
of A−1N>MN , then the corresponding eigen-subspace is ker(N). Thus R(A−1N>M) is
spanned by the eigenvectors of A−1N>MN associated with strictly positive eigenvalues
(using the property R(N) = (ker(N))⊥). Since {ηk} ⊂ R(A−1N>M), we can write (4.10)
in a basis of R(A−1N>M) formed with eigenvectors wi of A−1N>MN associated with
strictly positive eigenvalues λi. We get

ηk+1
i =

1− rλi
1 + rλi

ηki , ∀i = 1, . . . , N1 and k ≥ 0.

We deduce the following convergence theorem.
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Theorem 4.2 (Convergence) ADMM Algorithm 4 converges for any r > 0.

Corollary 4.3 (optimal step-size and convergence rate) The optimal penalty param-
eter for r is

r∗ =
1√

λmλM
(4.13)

where λm and λM are, respectively, the smallest nonzero eigenvalue and the largest eigen-
value of A−1N>MN. With the choice (4.13), the convergence of Algorithm 4 is linear
with an asymptotic constant θ satisfying

θ ≤ 1− (λm/λM )1/2

1 + (λm/λM )1/2
. (4.14)

Proof: For (4.13), see, e.g., [3, ch. 3]. The convergence factor (4.14) is deduced from
the behavior of the function ξ 7→ (1− ξ)/(1 + ξ). 2

If N>MN is nonsingular, we can express (4.14) using the (Euclidean) condition number
of A−1N>MN given by

κ2(A−1N>MN) =‖ A−1N>MN ‖2‖ (N>MN)−1A ‖2= λM/λm.

We obtain the following corollary.

Corollary 4.4 If N>MN is nonsingular, then the eigenvalues of A−1N>MN are strictly
positive and Algorithm 4 with the optimal choice (4.13) converges linearly with an asymp-
totic constant θ satisfying

θ ≤ κ2(A−1N>MN)− 1

κ2(A−1N>MN) + 1

5 Penalty parameter approximation

We now study how to compute λm and λM , the smallest nonzero eigenvalue and the largest
eigenvalue of A−1N>MN. For this purpose, it is convenient to arrange the indices in such
a way that the contact indices C and the interior indices I occur in a consecutive order.
This leads to the block matrix representation of the stiffness matrix as

A =

(
AII AIC

ACI ACC

)
and

N>MN =

(
OII OIC

OCI MCC

)
,

where OII , OIC and OCI are matrices of zeros; and MCC is the contact boundary (diago-
nal) mass matrix. Consequently, if we set

A−1 =

(
ÃII ÃIC

ÃCI ÃCC

)
,

then the nonzero eigenvalues of A−1N>MN are eigenvalues of ÃCCMCC . To compute
ÃCC , we can apply block-Gaussian elimination to A with AII as block-pivot

ÃCC =
(
ACC −ACIA

−1
II AIC

)−1
.
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It follows that ÃCC is the Schur complement of AII in A.
We now detail the practical steps for the approximation of the penalty parameter.

Since computing A−1
II is unpracticable even for medium size problem, we compute ÃCC by

solving equivalent linear systems. We obtain Algorithm 5.

Algorithm 5 Algorithm for computing the approximate penalty parameter r∗

Step 1. Solve for X̃ the system
AIIX̃ = AIC (5.1)

Step 2. Compute the schur complement of AII

S = ACC −ACIX̃

Step 3. Solve for X
SX = MCC (5.2)

Step 4. Compute λm and λM the exterme eigenvalues of X and the optimal penalty
parameter approximation (4.13).

Solving (5.1) or (5.2) is equivalent to solving several linear systems that have the same
matrix but different right-hand sides. Since the different right-hand sides are available, all
the systems of equations can be solved at the same time using a single Gaussian elimination
(e.g. using MATLAB \ operator : X = S\MCC for (5.2)).

6 Numerical experiments

We have implemented the algorithms described in the previous sections in MATLAB, using
piece-wise linear finite element, vectorized assembling functions and the mesh generator
provided in [10, 11], on a computer equipped running Linux (Ubuntu 16.04) with 3.00GHz
clock frequency and 32GB RAM. The ADMM solver used in the experiments is based on
Algorithm 1. The test problems used are designed in order to illustrate the behavior of
the algorithms more than to model contact actual phenomena. Since our approximation
procedure combines matrix inversion and computation of extreme eigenvalues, we restrict
our penalty parameter estimation to small size problems.

We use the following notations

• r∗ approximate optimal penalty parameter obtained by (4.13).

• r̄ standard numerical optimal penalty parameter obtained using the uniform sam-
pling of interval (.1, αE), where α > 1 and E is the Young modulus.

• mc the size of matrix ÃCCMCC used for computing r∗. To reduce the computational
cost mc ≤ 100 in the numerical experiments.

• Iter. The number of iterations required for convergence in Algorithm 2.

• CPU Time. CPUT time in Seconds.
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6.1 Example 1: 2D problem

We consider a rectangular elastic body Ω = (0, 2) × (0, 1) with the boundary partition
ΓD = {0} × (0, 1), ΓN = (0, 2)× {1} and ΓC = (0, 2)× {0}. On ΓD the body is clampsed
(uD = 0) and on ΓN non-homogeneous Neumann boundary conditions are prescribed
σ(u) · n = −10. On ΓC , the normalized gap betwenn Ω and the rigid foundation is
g(x) = 0.01. The material constants are E = 2000 and ν = 0.3.

Figure 1: Mesh sample for Ω = (0, 2)× (0, 1) of size h = 1/8

We first consider the meshes of size h=1/8 (Figure 1), 1/16 and 1/32. We compare
the approximate penalty parameter r∗ obtained with (4.13) with the numerical penalty
parameter r̄ obtained by sampling the interval (0.1, 10) ∗ E with 200 points uniformly
spaced. The evolution of the number of iterations with respect to the penalty parameter
is shown in Figure 2. The normal stress distribution on ΓC is shown in Figure 3

Figure 2: Number of iterations versus the penalty parameter for Example 1.

Figure 3: Normal Stress distribution on ΓC for Example 1.

We summarize in Table 1 the (optimal) penalty parameters and the behavior of Al-
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gorithm 2 in terms of CPU time and number of iterations. Note that the CPU time for
r∗ includes the time spent in both Algorithm 2 and Algorithm 5. The CPU time for
r̄ is the computational time of the whole sampling procedure. We can notice that the
sampling process gives better results in terms of the number of iterations required by
the ADMM solver. But sampling is a time-consuming process. For the largest problem
(h = 1/32), obtaining the optimal penalty parameter (4.13) with Algorithm 5 is about 80
times faster than the standard sampling procedure. Table 2 shows that, for r∗ = 3134.1289
and r̄ = 3510 (obtained using a mesh of size 1/32), the performances of Algorithm 2 are
almost comparable for large size meshes.

h 1/8 1/16 1/32

size of mc 17 33 65
r∗ 1591.4878 2220.5867 3134.1289
Iter. 35 27 27
CPU Time 0.057 0.177 0.269
r̄ 3510 2810 3510
Iter. 19 18 19
CPU Time 1.797 4.957 23.766

Table 1: r̄ obtained by sampling Versus r∗ obtained by (4.13).
.

h 1/8 1/16 1/32 1/64 1/128 1/256

Iterations 24 19 27 25 19 21r∗ = 3134.1289
CPU Time 0.009 0.018 0.096 0.479 1.603 9.127

Iterations 19 20 19 20 20 20r̄ = 3510
CPU Time 0.008 0.014 0.078 0.339 1.646 8.713

Table 2: Performances of Algorithm 2 with r∗ = 3134.1289 and r̄ = 3510 for Example 1.
.

7 Example 2: Hertz problem

The Hertz problem is a classical test problem in the numerical simulation of unilateral
contact problem. It consists of an infinitely long cylinder resting in a rigid foundation,
and subjected to a uniform load along its top of intensity f = −(0, 1600). The radius of
the cylinder is R = 8. The material constants for the cylinder are E = 2000 and ν = 0.3.
For symmetry reason, only quarter of the cylinder is consider (Figure 4) and we set u1 = 0
on ΓD = {0} × (0, 8). The contact surface is ΓC = {x ∈ (0, 8)2 | x2

1 + x2
2 = 16}.

We first consider meshes with 442 and 1692 with 35 and 69 nodes on ΓC , respectively.
Note that the problem allows a rigid body motion in the vertical direction. In ADMM
Algorithm 2, the mass terms provided by the normal integral prevent infinite displacements
at the initial step. But for Algorithm 5, AII is only positive semidefinite and then non
invertible. We simply add a small positive constant on the vertical components of ΓD. As
in Example 1, we compute r̄ by sampling (.1, 10) ∗ E with 200 points, uniformly spaced.
Figure 5 shows the variation of the number of iterations with respect to the penalty
parameter. The deformed configuration and the stress distribution on the contact ΓC are
shown in Figure 6 and 7, respectively.
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Figure 4: Mesh sample for the Hertz problem.

Figure 5: Number of iterations versus penalty parameter for the hertz problem.

Figure 6: Deformed configuration and Von Mises effective stress for the Hertz problem
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Figure 7: Normal Stress distribution on ΓC for the Hertz probel

We summarize in Table 3 the (optimal) penalty parameters and the behavior of Al-
gorithm 2 in terms of CPU time and number of iterations. For mc = 35, the sampling
procedure gives better results in terms of the number of iterations for the ADMM solver
but the computational time is much greater. For mc = 69 the number of iterations is
almost equivalent for both r̄ and r∗ but the computational time is again much greater for
r̄. We report in Table 4 the performances of Algorithm 2 using r∗ = 201.7825 and r̄ = 200.
We can notice that the performances of Algorithm 2 using both penalty parameters are
almost equivalent.

mc 35 69

r∗ 137.1789 201.7825
Iter. 59 43
CPU Time 0.084 0.166
r̄ 200 200
Iter. 49 44
CPU Time 46.357 215.029

Table 3: r̄ obtained by sampling Versus r∗ obtained by (4.13), for the Hertz problem.
.

Number of nodes on Ω/ΓC 442/35 1692/69 6619/125 26181/229 104137/457

Iter. 49 43 54 51 50r∗ = 201.7825
CPU Time 0.029 0.097 0.592 4.485 27.109

Iter. 49 44 56 51 51r̄ = 200
CPU Time 0.025 0.083 0.597 4.483 27.560

Table 4: Performances of Algorithm 2 with r∗ = 201.7825 and r̄ = 200 for the Hertz
problem

.

7.1 Example 3: 3D problem

We now study the behavior of a 3D rectangular elastic body pressed onto a solid hemi-
sphere, Figure 8 ([13, 9]). The elastic body occupies the domain Ω = (−0.5, 0.5)×(−1, 1)×
(−0.5, 0.5) and the obstacle is a half-ball with radius r = 0.5 and center (−0.3, 0, −1). The
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contact surface is the lower surface ΓC = (−0.5, 0.5)× (−1, 1)× {−0.5}. A displacement
uD = (0, 0,−0.2) is prescribed on the upper surface ΓD = (−0.5, 0.5) × (−1, 1) × {0.5}.
The Young modulus is E = 106 and the Poisson ratio ν = 0.45. Figure 8 shows geometry
and the obstacle.

Figure 8: Geometry of the 3D obstacle problem

We first consider a non uniform mesh with 198 nodes, 773 tetrahedrons and 45 nodes on
ΓC . The deformed configuration obtained using ADMM Algorithm 2 is shown in Figure 9
and the normal (contact) stress distribution in Figure 10. For r̄, we sample (0.1 10∗E) with
200 points, uniformly spaced. We summarize in Table 5 the computed penalty parameters
r∗ and r̄ and the behavior of Algorithm 2 in terms of number of iterations and CPU time.
Even though r∗ is 20% larger than r̄, the number of iterations required by the ADMM
solver with both values is almost the same. We notice again that computing the penalty
parameter with Algorithm 5 is about 100 times faster.

Figure 9: Deformed configuration and Von Mises effective stress for Example 3.

Iter. CPU Time
r∗ = 3.1026× 106 28 0.083

r̄ = 2.6000× 106 28 8.035

Table 5: r̄ obtained by sampling Versus r∗ obtained by (4.13) for the 3D obstacle problem

To study the beahivior of Algorithm 2, the initial mesh of 198 nodes and 773 tetra-
hedrons is successively refined to produce meshes with 1289, 9245 and 69897 nodes and
6144, 49472 and 395776 tetrahedrons, respectively. The performances of Algorithm 2 are
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Figure 10: Normal stress distribution on ΓC

Number of nodes on Ω/ΓC 198/45 1289/153 9245/603 69897/2341

Iter. 28 30 31 32r∗ = 3.1026× 106
CPU Time 0.053 0.613 10.267 363.534

Iter. 26 28 33 30r̄ = 2.6000× 106
CPU Time 0.046 0.577 10.568 349.122

Table 6: Performances of Algorithm 2 with r̄ and r∗ for the 3D obstacle problem.

reported in Table 6. As in the 2D case, the number of iterations is virtually independent
of the mesh size, for both penalty parameters. We can notice that, for both penalty pa-
rameter, the difference of computational time for the largest problem is less than 5%. The
performances of Algorithm 2 with r∗ and r̄ are therefore comparable.

8 Conclusion

We have investigated the automatic parameter selection for the alternating direction
method of multiplier applied to the unilateral contact problem. Numerical experiments
have shown that the proposed procedure for the parameter selection is a good alternative
to the standard sampling procedure.
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