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Abstract

We propose a fast MATLAB implementation of the mini-element (i.e. P1-Bubble/P1)
for the finite element approximation of the generalized Stokes equation in 2D and 3D.
We use cell arrays to derive vectorized assembling functions. We also propose a Uzawa
conjugate gradient method as an iterative solver for the global Stokes system. Numer-
ical experiments show that our implementation has an (almost) optimal time-scaling.
For 3D problems, the proposed Uzawa conjugate gradient algorithm outperforms MAT-
LAB built-in linear solvers.
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1 Introduction

MATLAB is a popular problem solving environment, widely used for general scientific com-
putation in education, engineering and research. MATLAB is nowadays a standard tools
in many areas. Thanks to its collection of direct (e.g. LU , LDL>, Cholesky) and iterative
(e.g. conjugate gradient, GMRES, bi-conjugate gradient) solvers, it is tempting to use
MATLAB for the numerical approximation of partial differential equations (PDEs). For
the finite element method (FEM), the main obstacle for using MATLAB is the assembly of
the global matrix and vector. Since MATLAB built-in solvers are optimized, the assembly
operations can take up to 99% of whole CPU time, as shown in [13], using an implementa-
tion with standard loop over triangles ([1, 2, 15]) directly derived from compiled languages
(FORTRAN and C/C++). Unfortunately, some vectorized FEM codes are less flexible
and require a huge amount of memory due to the allocation of auxiliary arrays and the
corresponding matrix operations [13, 21, 22]. Recently Koko [14] proposes a MATLAB
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2 THE MODEL PROBLEM 2

implementation close to the standard form by using cell-arrays to store the gradient of the
basis functions, for the Poisson equation and linear elasticity in 2D and 3D.

In this paper, we propose a fast MATLAB implementation of the P1-Bubble/P1 finite
element (Mini element, [3, 8, 10]) for the generalized Stokes problem in 2D and 3D. The
mini element for spatial discretization of the Stokes problem is easy to use in engineering
practice since its allows for the use of equal-order interpolation (the same mesh for velocity
and pressure). Equal-order interpolation is very useful in large-scale multi-physics codes.
Indeed, a code dealing with several independent variables (e.g. chemical species, velocity
components, etc) requires the transfer of information between its different components at
each time-step. Fast implementation means that our code operates on array and does
not use for-loops over elements (triangles of tetrahedrons) for the assembling operations.
Instead, we use cell-arrays to store element matrices as in [14]. We also propose a solution
strategy for the final linear system. Indeed, we propose a efficient (preconditioned) Uzawa
conjugate gradient method derived from the one used with P2/P1 (or P1-iso-P2/P1)
finite element pair ([7, 10]). The proposed conjugate gradient method operates on the dual
(pressure) space and, at each iteration, d independent linear systems are solved (d = 2, 3).
Our implementation needs only MATLAB basic distribution functions and can be easily
modified and refined.

The paper is organized as follows. The model problem is described in Section 2, followed
by a finite element discretization in Section 3. The element matrices in 2D/3D are described
in Section 4. In Section 5, we propose our Uzawa conjugate gradient method for solving
the Stokes system. MATLAB implementation details are given in Section 6. Numerical
experiments are carried out in Section 7. Readers can download and edit the codes from
http://www.isima.fr/~jkoko/Codes/KSTOK.tar.gz.

2 The model problem

Let Ω be a bounded domain in Rd (d = 2, 3) with a Lipschitz-continuous boundary Γ.
Consider in Ω the Stokes problem

αu− ν∆u+∇p = f , in Ω, (2.1)

∇ · u = 0, in Ω, (2.2)

u = uD, on Γ, (2.3)

where u = (u1, . . . , ud) ∈ Rd is the velocity vector, p the pressure and f = (f1, . . . , fd) ∈ Rd
the field of external forces. In equation (2.1), α ≥ 0 is an arbitrary constant. If α = 0,
then equations (2.1)-(2.3) turn to be the classic Stokes problem. If α > 0, then equations
(2.1)-(2.3) turn to be a generalized Stokes problem encountered in time discretization of
Navier-Stokes equations (see e.g. [10]). The constant ν > 0 is the kinematic viscosity.
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We need the functional spaces V = H1
0 (Ω)d,

V D =
{
v ∈ H1(Ω)d : v = uD on Γ

}
, P =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
,

and bilinear forms

ai(ui, vi) = α(ui, vi)Ω + ν(∇ui,∇vi)Ω, i = 1, . . . , d

a(u,v) =

d∑
i=1

ai(ui, vi),

where (·, ·)Ω stands for the standard L2(Ω) scalar product. The variational formulation of
the Stokes problem (2.1)-(2.3) is as follows:

Find (u, p) ∈ V D × P such that:

a(u,v)− (p,∇ · v)Ω = (f ,v)Ω, ∀v ∈ V , (2.4)

−(q,∇ · u)Ω = 0, ∀q ∈ P. (2.5)

3 Finite element discretization with P1-Bubble-P1

For the finite element discretization of (2.4)-(2.5), we have to chose a finite element pair
for the velocity field and the pressure. This choice cannot be arbitrary but must satisfy
the inf-sup condition [4, 6].

3.1 Mini element

In this paper we study the discretization of the Stokes problem (2.1)-(2.3) by the finite
element pair P1-bubble/P1 (the so-called mini-element), introduced by Arnold, Brezzi
and Fortin [3]. This element leads to a relatively low number of degrees of freedom with a
good approximate solution.

Let Th be a triangulation of Ω and T a triangle of Th. We define the space associated
with the bubble by

Bh =
{
vh ∈ C 0(Ω̄); ∀T ∈ Th, vh|T = xb(T )

}
.

We also defined the discrete function spaces

Vih =
{
vh ∈ C 0(Ω̄); vh|T ∈ P 1, ∀T ∈ Th; vh|Γ = 0

}
, i = 1, . . . , d

Ph =

{
qh ∈ C 0(Ω̄); qh|T ∈ P 1, ∀T ∈ Th; :

∫
Ω
qh dx = 0

}
,
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and we set Xih = Vih ⊕ Bh and Xh = X1h × · · · ×Xdh. With the above preparations, the
discrete variational problem reads as follows.

Find (uh, ph) ∈Xh × Ph such that

a(uh,vh)− (ph,∇ · vh)Ω = (f ,vh)Ω ∀vh ∈Xh, (3.1)

−(qh,∇ · uh)Ω = 0 ∀qh ∈ Ph. (3.2)

For a given triangle T , the velocity field uh and the pressure ph are approximated by
linear combinations of the basis functions in the form

uh(x) =

d+1∑
i=1

φi(x)ui + ubφb(x), ph(x) =

d+1∑
i=1

φi(x)pi,

where ui and pi are nodal values of uh and ph while ub is the bubble value. The basis
functions are defined by

φ1(x) = 1− x− y, φ2(x) = x, φ3(x) = y, φb(x) = 27
3∏
i=1

φi(x),

in 2D, and

φ1(x) = 1− x− y − z, φ2(x) = x, φ3(x) = y, φ4(x) = z, φb(x) = 256
4∏
i=1

φi(x)

in 3D.
To construct the coefficient matrices, a number of integrals involving powers of the

basis functions will be computed. Integrals over a triangle T can be evaluated directly by
the following formulas∫

T
φα1

1 φα2
2 φα3

3 dx = 2|T | α1!α2!α3!

(α1 + α2 + α3 + 2)!
(3.3)∫

T
φα1

1 φα2
2 φα3

3 φα4
4 dx = 6|T | α1!α2!α3!α4

(α1 + α2 + α3 + α4 + 3)!
, (3.4)

where |T | stands for the triangle area (in 2D), or the tetrahedron volume (in 3D). A useful
property for the basis functions is

d+1∑
i=1

∇φi = 0. (3.5)
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3.2 Algebraic formulation

We use the following notations for the discrete velocity/pressure nodal values

ūi =

[
ui
uib

]
, f̄i =

[
fi
fib

]
, i = 1, . . . , d. (3.6)

System (3.1)-(3.2) leads to the following algebraic form, using notations (3.6), Ā 0 −B̄>1
0 Ā −B̄>2
−B̄1 −B̄2 0


 ū1

ū2

p

 =

 f̄1

f̄2

0

 (3.7)

in 2D, or 
Ā 0 0 −B̄>1
0 Ā 0 −B̄>2
0 0 Ā −B̄>3
−B̄1 −B̄2 −B̄3 0



ū1

ū2

ū3

p

 =


f̄1

f̄2

f̄3

0

 (3.8)

in 3D. In (3.7) and (3.8) Ā = M̄ + R̄, with M̄ the mass matrix and R̄ the stiffness matrix.
B̄i is the divergence submatrix associated with the i-th partial derivative, i.e.

B̄i ≡ (qh, ∂iuih)Ω, i = 1, . . . , d.

To create the algebraic system (3.7) or (3.8), the discrete system (3.1)-(3.2) is evaluated
over each triangle T to obtain the element matrices and vectors

M̄
(T )
ij =

∫
T
αφiφjdx, R̄

(T )
ij =

∫
T
ν∇φi · ∇φjdx,

B̄
(T )
ij =

∫
T
∂1φiφjdx+

∫
T
∂2φiφjdx, f̄

(T )
i =

∫
T
fφidx.

Then assembling operations consist of direct-summing the element matrices over the trian-
gulation Th to obtain the global matrices M̄ = (M̄ij), R̄ = (R̄ij), B̄ = (B̄ij) and f̄ = (f̄i)

M̄ij =
∑
T∈Th

M̄
(T )
ij , R̄ij =

∑
T∈Th

R̄
(T )
ij ,

B̄ij =
∑
T∈Th

B̄
(T )
ij , f̄i =

∑
T∈Th

f̄
(T )
i .

In the next sections we detail the element matrices M̄ , R̄, B̄i and the right-hand side f̄ .
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4 Element matrices

For P1 finite element, we need only the element area and the gradient of the basis functions
for the element matrices and vectors. To derive vectorized MATLAB codes, we need
analytical expressions forall element matrices and vectors. This section is devoted to this
task. For the sake of the presentation we drop the (T )-superscript introduced in the
previous section to distinguish element matrices from global ones.

4.1 Two-dimensional case

For a triangle T , let {(xi, yi)}i=1,2,3 be the vertices and {φ}i=1,2,3 the corresponding basis
functions. The gradient of φi are given by ∇φ

t
1

∇φt2
∇φt3

 =

 1 1 1

x1 x2 x3

y1 y2 y3


−1  0 0

1 0
0 1

 =
1

2|T |

 y2 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1

 , (4.1)

where |T | is the area of T given by

2|T | = det

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

A nonbubble entry of the element stiffness matrix R̄, is given by

R̄ij =

∫
T
ν∇φi · ∇φjdx = |T |ν∇φi · ∇φj , i, j = 1, 2, 3. (4.2)

For the bubble entries R̄bj , for j = 1, 2, 3. A straightforward calculation yields to (using
(3.5))

R̄bj =
9

4
|T |

3∑
i=1

∇φi = 0, j = 1, 2, 3.

For the diagonal entry corresponding to the bubble (i.e. i = j = b) we have

R̄bb = ν

∫
T

272∇(φ1φ2φ3) · ∇(φ1φ2φ3)dx

=
81

10
ν|T |

(
|∇φ1|2 + |∇φ2|2 + |∇φ3|2 +∇φ1∇φ2 +∇φ1∇φ3 +∇φ2∇φ3

)
=

81

10
ν|T |

(
|∇φ1|2 + |∇φ2|2 +∇φ1 · ∇φ2

)
=: ωR, (4.3)

using (3.5).
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With the above results, the element stiffness matrix is therefore

R̄ =

(
R 0
0 ωR

)
.

As for the stiffness matrix, we set M = (M̄ij)i,j=1,...,3 the nonbubble part of the mass
matrix. A direct calculation yields

Mij =

{
α
6 |T | if i = j,
α
12 |T | elsewhere.

(4.4)

The bubble part of the mass matrix is given by

M̄bj =
3α

20
|T |, j = 1, 2, 3,

M̄bb =
81α

280
|T | =: ωM . (4.5)

The element mass matrix is therefore

M̄ =

(
M z
z> ωM

)
,

where

z> =
3

20
α|T | (1 1 1) .

Finally, the element stiffness/mass matrix Ā is

Ā =

(
A z
z> ω

)
.

where we have set A = R+M and ω = ωR + ωM .
A direct integration yields the element divergence matrix −B̄ = [−B̄1 − B̄2], where

B̄i = [Bi −Bib] with

Bi =
|T |
3

 ∂iφ1 ∂iφ2 ∂iφ3

∂iφ1 ∂iφ2 ∂iφ3

∂iφ1 ∂iφ2 ∂iφ3

 , i = 1, 2, (4.6)

and

Bib =
9|T |
20

 ∂iφ1

∂iφ2

∂iφ3

 , i = 1, 2. (4.7)
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The contribution of the right-hand side component fi, in nonbubble terms, is given by

f
(T )
i =

|T |
3
fiT , i = 1, 2, 3 (4.8)

where fiT is a mean value of fi on T . The bubble terms of the right-hand side are

f
(T )
ib =

∫
T
fiφbdx =

9

20
|T |fiT , i = 1, 2. (4.9)

With the above element matrices and vectors the 11×11 element system corresponding
to (3.7) is 

A z 0 0 −B>1
z> ω 0 0 B>1b
0 0 A z −B>2
0 0 z> ω B>2b
−B1 B1b −B2 B2b 0




u1

u1b

u2

u2b

p

 =


f1

f1b

f2

f2b

0

 .

To reveal diagonal blocks, the system above can be rearranged as follows

A 0 z 0 −B>1
0 A 0 z −B>2
z> 0 ω 0 B>1b

0 z> 0 ω B>2b

−B1 −B2 B1b B2b 0





u1

u2

u1b

u2b

p

 =



f1

f2

f1b

f2b

0

 . (4.10)

We can now eliminate the bubble unknowns u1b and u2b since they correspond to diagonal
blocks (the ω blocks). From (4.10)3 and (4.10)4, we deduce that

uib = (fib −B>ibp− z>ui)/ω, i = 1, 2. (4.11)

Substituting (4.11) into (4.10)1, (4.10)2 and (4.10)5 we obtain a linear system in (u1 u2 p)
>

whose matrix is A− ω−1zz> 0 −B>1 − ω−1zB>1b

0 A− ω−1zz> −B>2 − ω−1zB>2b

−B1 − ω−1B1bz
> −B2 − ω−1B2bz

> −ω−1(B1bB
>
1b +B2bB

>
2b)

 (4.12)

and the right-hand side  f1 − ω−1zf1b

f2 − ω−1zf2b

−ω−1(B1bf1b +B2bf2b)

 . (4.13)
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4.2 Three-dimensional case

Let {xi = (xi, yi, zi)}i=1,...,4 be the vertices of a tetrahedron T and {φi}i=1,...,4 the corres-
ponding basis functions. The gradient ∇xφi over T are given by

∇φ>1
∇φ>2
∇φ>3
∇φ>4

 =


1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4


−1 

0 0 0

1 0 0

0 1 0

0 0 1


An alternative formula for computing ∇φi is

∇xφi = J−1∇ξφi(ξ).

where J is the Jacobean matrix of the mapping ξ 7→ x(ξ), that is,

J =

 x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

x4 − x1 y4 − y1 z4 − z1

 . (4.14)

The volume of tetrahedron T is given, from (4.14), by |T | = det(J)/6.
As for 2D case, the nonbubble entries of the element stiffness matrix ar given by

R̄bj =
9

4
|T |

3∑
i=1

∇φi = 0, j = 1, 2, 3, 4. (4.15)

while R̄bj = 0, for all j = 1, . . . , 4. For the diagonal entry, using (3.4)-(3.5), we obtain

R̄bb = ν

∫
T

2562∇(φ1φ2φ3φ4) · ∇(φ1φ2φ3φ4)dx

=
8192

845
ν|T |

[
3∑
`=1

|∇φ`|2 +∇φ1 · ∇φ2 +∇φ1 · ∇φ3 +∇φ2 · ∇φ3

]
=: ωR.(4.16)

For the 3D mass matrix, a straightforward calculation with a linear tetrahedron shows
that (for nonbubble entries)

M̄ij =

 αT
|T |
10 if i = j,

αT
|T |
20 if i 6= j

,

where αT is a mean value of α on T . The bubble part of the mass matrix is given by

M̄bj =
8α

105
|T |, j = 1, 2, 3,

M̄bb =
8192α

51975
|T | =: ωM . (4.17)
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The element mass matrix is therefore

M̄ =

(
M z
z> ωM

)
,

where

z> =
8α

105
|T |
(

1 1 1 1
)
.

If we set −B̄ = [−B̄1 − B̄2 − B̄3] and B̄i = [Bi − Bib], a straightforward calculation
yields to

Bi =
|T |
4


∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

 , i = 1, . . . , 4; (4.18)

and

Bib =
32

105
|T |


∂iφ1,
∂iφ2

∂iφ3

∂iφ4

 . (4.19)

The contribution of the right-hand side component fi, in nonbubble terms, is given by

f
(T )
i =

|T |
4
fiT , i = 1, 2, 3, 4 (4.20)

where fiT is a mean value of fi on T . The bubble terms of the right-hand side are

f
(T )
ib =

∫
T
fiφbdx =

32

105
|T |fiT , i = 1, 2, 3. (4.21)

As in 2D, we rearrange the Stokes system and we get

uib = (fib −B>ibp− z>ui)/ω, i = 1, . . . , 4. (4.22)

Substituting (4.22) into the rest of the system, we obtain a linear system whose matrix is

A− ω−1zz> 0 0 −B>1 − ω−1zB>1b

0 A− ω−1zz> 0 −B>2 − ω−1zB>2b

0 0 A− ω−1zz> −B>3 − ω−1zB>3b

−B1 − ω−1B1bz
> −B2 − ω−1B2bz

> −B3 − ω−1B3bz
> −ω−1

3∑
i=1

BibB
>
ib


(4.23)
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and the right-hand side 
f1 − ω−1zf1b

f2 − ω−1zf2b

−ω−1
3∑
i=1

BibB
>
ib

 . (4.24)

5 Uzawa conjugate gradient Algorithm

We propose in this section, a preconditioned conjugate gradient method for solving the
Stokes system after the assembly of the element systems (4.12)-(4.13) and (4.23)-(4.24).
For a finite element pair of the form Pk+1/Pk (e.g. P2/P1 or P1-iso-P2/P1), the pre-
conditioner advocated by [7] (see also [9, 10, 12]) is efficient and widely used. In the
author knwoledge, there is not an equivalent preconditioner for the pair P1-Bubble/P1 (or
P1/P1 with stabilization). The algorithm presented in his section is therefore an original
contribution.

The Stokes system can be rewritten in a compact form[
A −B>
−B −C

] [
u
p

]
=

[
f
fp

]
(5.1)

where A is (symmetric) positive definite block diagonal matrix, C is positive semi-definite
matrix.

Let us introduce the generalized Lagrangian function

L (u,p) =
1

2
u>Au− f>u− p>Bu− 1

2
p>Cp− f>p p. (5.2)

Due to the properties of A and C, the saddle-point for (5.2) exists. Then it follows that
(5.1) is the saddle-point equation for (5.2), that is, (5.1) characterizes the solution of the
saddle-point problem

min
u

max
p

L (u,p) = max
p

min
u

L (u,p). (5.3)

5.1 Uzawa Conjuage gradient algorithm

To derive a dual (Uzawa) algorithm for (5.1), we assume that u = u(p) is the solution of
Poisson equation

Au = f + B>p (5.4)

that is, in the decomposed useful form

Aiui = fi + B>i p, i = 1, . . . , d.
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Then multiplying (5.4) by u and substituting the result in (5.2), we obtain

L (u(p), p) = −1

2
u>Au− 1

2
p>Cp− f>p p. (5.5)

If we introduce the dual functional

J∗(p) = −min
u

L (u(p),p)

with u(p) solution of (5.4), the saddle-point problem (5.3) becomes

Find p such that
J∗(p) ≤ J∗(q), ∀q. (5.6)

From (5.5), J∗ is quadratic and coercive. From (5.4), we deduce that the mapping p 7→ u(p)
is linear and u(p + td) = u(p) + tw where w is the solution of the sensitivity problem

Aw = B>d, (5.7)

or
Aiwi = B>i d, i = 1, . . . , d.

It follows that, the derivative of J∗ is

r := ∇J∗(p) = Bu + Cp + fp. (5.8)

With a search direction d, we compute an optimal stepsize ρ by solving

∇J∗(p + ρd)>d = 0,

that is
ρ = −d>(Bw + Cd)/(r>d),

where w is the solution of the sensitivity equation (5.7).
Since J∗ is a quadratic function, the best search direction is a conjugate gradient

direction. As a consequence, the best algorithm for (5.6) is a conjugate gradient algorithm.
At each iteration k, the Fletcher-Reeves conjugate gradient direction is given by

dk = rk+1 + βkdk

βk = ‖rk+1‖2 ‖rk‖−2 .

A dual (Uzawa) conjugate gradient algorithm for solving the saddle-point problem (5.1)
is outlined in Algorithm 1. Theoretically, Algorithm 1 converges in at most nB = rank(B)
iterations. Obviously, for large scale problems, nB is very large and it is preferable that
convergence should be obtained in a number of iterations considerably less than nB.
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Algorithm 1 Uzawa conjugate gradient algorithm for (5.1)

k = 0. p0 is given

0.1 Initial solution

Aiu
0
i = fi − B>i p0, i = 1, . . . , d

r0 = Bu0 + Cp0 + fp

0.2 Initial gradient and direction

r0 = Bu0 + Cp0 + fp

d0 = r0.

k ≥ 0. While g>k gk > ε(g>0 g0)

k.1 Sensitivity and stepsize

Aiw
k
i = B>i dk, i = 1, . . . , d

r̃k = Bwk + Cdk

ρk = (r>k dk)
/

(d>k r̃k)

k.2 Update

pk+1 = pk − ρkdk, u
k+1 = uk − ρkwk

k.3 New gradient

rk+1 = rk − ρk r̃k,

k.4 Conjugate gradient direction

βk = (r>k+1rk+1)(r>k rk)−1

dk+1 = rk+1 + βkdk.

5.2 Preconditioned Uzawa conjugate gradient algorithm

A practical implementation of a conjugate gradient method for solving (5.1) requires a
preconditioner, that is, a suitable scalar product for computing ∇J∗(p) instead of the
standard one used in (5.8). The convergence properties of the conjugate gradient method
for the generalized Stokes problem are deteriorated for large values of the ratio α/ν, see
e.g. [10, 12].

To derive a preconditioner for (5.1) following the idea of [7, 11], we need to simplify the
continuous problem. We first notice that the equivalence between P1-Bubble/P1 element
and the stabilized formulation has been proved [19, 18, 16, 20, 5]. Then, if we neglect the
bubble contribution in the stiffness and divergence matrices, (5.1) can be expressed in the
strong form as

αu− ν∆u+∇p = f (5.9)

∇ · u−∇ · (νh∇u) = 0, (5.10)

where νh is an element dependent constant.
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As in [11] we define the linear operator from L2(Ω) into L2(Ω) (neglecting the constant
term in (5.8))

φ := Aq = ∇ · uq −∇ · (νh∇q) (5.11)

where uq is the solution of
αuq − ν∆uq = −∇q. (5.12)

Note that (5.12) is the (strong) sensitivity system. The idea behind preconditioning is to
find a linear operator B such that BAq = q. Applying the divergence operator in (5.12),
we obtain

α∇ · uq − ν∇ ·∆uq = −∆q

or
α∇ · uq − ν∆(∇ · uq) = −∆q (5.13)

Using (5.11) in (5.13), we obtain

−∆q − α∇ · (νh∇q) + ν∆ (∇ · (νh∇q)) = αφ− ν∆φ. (5.14)

Then, in practice, at each step of the preconditioned conjugate gradient algorithm, the
gradient of J∗ is computed as an approximate solution of the linear system

(K + αC + νKM−1C)g = (αM + νK)r (5.15)

where K and M are the stiffness and the mass matrices, respectively. Let us introduce the
mesh Reynolds number

Reh =
α

ν
h2

where h is the mesh size. Taking into account the CPU time and the storage requirement
for computing the last term of the matrix involved in (5.15), we consider the following
preconditioning system instead

(K + αC)g = Hr. (5.16)

where

H =

{
νK + αdiag(M) if Reh ≤ 1

νK + αI if Reh > 1
(5.17)

In (5.16) and (5.17), K and M are P1 stiffness and mass matrix, respectively, and C the
bubble matrix from Function 6.1-6.3.

From the theory of preconditioned conjugate gradient methods for the Stokes problem
(see e.g. [10]) if Dirichlet conditions are imposed for the velocity, then for g in (5.14) we
must impose ∂g/∂n = 0 (homogeneous Neumann boundary conditions). On the other
hand, where a stress condition is prescribed for the fluid, we must impose g = 0 in (5.14).
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Algorithm 2 Preconditioned Uzawa conjugate gradient algorithm for (5.1)

k = 0. p0 is given: Set P = K + αC, H given by (5.17).

0.1 Initial solution and residual

Aiu
0
i = fi − B>i p0, i = 1, . . . , d

r0 = Bu0 + Cp0 + fp

0.2 Initial gradient and direction

Pg0 = Hr0

d0 = g0.

k ≥ 0. While g>k rk > ε(g>0 r0)

k.1 Sensitivity and stepsize

Aiw
k
i = B>i dk, i = 1, . . . , d

r̃k = Bwk + Cdk

ρk = (r>k dk)
/

(d>k r̃k)

k.2 Update

pk+1 = pk − ρkdk, rk+1 = rk − ρk r̃k,

uk+1 = uk − ρkwk

k.3 New gradient

Pg̃k = Hr̃k,

gk+1 = gk − ρkg̃k

k.4 Conjugate gradient direction

βk = (g>k+1rk+1)(g>k rk)−1

dk+1 = gk+1 + βkdk.

Remark 5.1. The preconditioning system (5.15), that is,

(αM + νK)−1(K + αC + νKC)g = r,

induces (over the discrete pressure space) the norm |g|P = g>r.

Remark 5.2. If C = 0 in 5.15, we recover the preconditioning system of Cahouet and
Chabat [7] widely used for P2/P1 or P1-iso-P2/P1 finite elements.

With the preparation given in the previous section, the preconditioned Uzawa con-
jugate gradient algorithm for solving the Stokes system (5.1) is detailed in Algorithm 2.
Algorithm 2 inherits the main properties from the conjugate gradient algorithm of Cahouet-
Chabat [7]:

• At each step, we solve d independent linear systems for the velocity field. The
matrices involved are sparse and can be factorized or preconditioned once and for all.
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• The same algorithm is able to deal with 2D or 3D systems without any complication.

6 MATLAB implementation

We know detail the assembly of the Stokes systems (4.12)-(4.13) and (4.23)-(4.24). For the
computational efficiency, the MATLAB codes must be vectorized (i.e. without long for -
loops). We then use arrays, cell-arrays, and MATLAB vectorized operators and functions

.*, ./, .^, sum, sparse

6.1 Mesh representation and KPDE package

We assume that the triangulation of Ω consists of np nodes and nt elements (triangles
or tetrahedrons). We adopt the mesh representation by arrays used in [13, 14, 17]. The
nodes coordinates are stored in an array p(1:np,1:2) (in 2D) or p(1:np,1:3) (in 3D). The
element nodes are stores in an array t(1:nt,1:3) (in 2D) or t(1:nt,1:4) (in 3D). Dirichlet
boundary conditions are provided by a list of nodes and the corresponding prescribed
values.

As shown in [14] using cell-array in FEM allows to have implementation close to the
standard form used in classical languages (C/C++, FORTRAN) FEM codes, while being

efficient. The idea is to compute and store, for all triangles, the element matrix entry A
(T )
ij

in the cell-array At{i,j}. Then we use MATLAB function sparse to assemble A with
finite small for loops

for i=1:nd

for j=1:nd

A=A+sparse(t(:,i),t(:,j),At{i,j},np,np);

end

end

where nd=3 (in 2D) or nd=4 (in 3D). This approach is used in KPDE package [14] for
assembling matrices and vectors from Poisson and linear elasticity equations in 2D and
3D.

We need two key functions from KPDE package, kpde2dgphi and kpde3dgphi, which
compute the gradient of the basis functions and the elements volume as follows

[ar,g]=kpde2dgphi(p,t); %2D

[vol,g]=kpde3dgphi(p,t); %3D

g is 3-by-1 or 4-by-1 cell-array such that g{i}(:,k) is ∂kφi(x) for all elements.
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6.2 2D case

Using the cell array g and the array ar, the nonbubble entry R̄ij , (4.2), of the element
stiffness matrix is then given (for all triangles) by

Rij=nu*ar.*sum(g{i}.*g{j},2);

The bubble diagonal entry ωR, (4.3), is computed as follows for all triangles

omega_r=(81/10)*nu.*ar.*(sum(g1.^2,2)+sum(g2.^2,2)+sum(g1.*g2,2));

The nonbubble entry Mij , (4.4), of the element mass matrix is,

Mii=alpha.*ar/6 ; % diagonal

Mij=alpha.*ar/12; % off-diagonal

The bubble entries (4.5) of the element mass matrix are given by

omega_m=(81/280)*alpha.*ar; % diagonal

Mbj=(3/20)*alpha.*ar}; % off-diagonal

The entries (i, j) of the element divergence matrix (4.6) are vetorized as follows

B1ij=ar.*g{i}(:,1)/3; B2ij=ar.*g{i}(:,2)/3;

while the bubble entries (4.7) are

B1ib=(9/10)*ar.*g{i}(:,1); B2ib=(9/10)*ar.*g{i}(:,2);

The vectorized element contribution of the right-hand side (4.8) is

f1=(1/3)*ar.*f1t; f2=(1/3)*ar.*f2t;

while the bubble entries (4.9) are

f1b=(9/20)*ar.*f1t; f2b=(9/20)*ar.*f2t;

MATLAB Functions 6.1-6.2 assemble the Stokes system. To make the assembling func-
tions self-contained, all calculations are integrated except elements area and the gradient
of basis functions which can be computed outside and passed as argument. Note that in
2D, the time for computing the triangles area and the gradient of the basis functions is
not significant. Functions 6.1-6.2 can be called without the last two arguments without a
significant computational overcost.

Instead of matrix (4.12) and vector (4.13), Functions 6.1-6.2 can return submatrices and
subvectors of (4.12)-(4.13) if called with more than one output arguments. The statement

[A,B,C]=kstok2dp1bmat(p,t,nu,alpha)
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Function 6.1 Assembly of the 2D Stokes matrix (4.12).
function [A,B,C]=kstok2dp1bmat(p,t,nu,alpha,ar,g)

% A=kstok2dp1bmat(p,t,nu,alpha) or [A,B,C]=kstok2dp1bmat(p,t,nu,alpha)

% A=kstok2dp1bmat(p,t,nu,alpha,ar,g) or [A,B,C]=kstok2dp1bmat(p,t,nu,alpha,ar,g)

%------------------------------------------------------------------------------

np=size(p,1); Z=sparse(np,np);

% Triangles area and gradient of basis functions

if (nargin == 4) [ar,g]=kpde2dgphi(p,t); end

% Bubble coefficients (z and omega)

zt=(3/20)*alpha.*ar;

omega=(81/10)*nu.*ar.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{1}.*g{2},2))...

+(81/280)*alpha.*ar;

c=(9/10)*ar;

% Matrices assembly

Ah=Z; Bh=cell(1,2); [Bh{:}]=deal(Z); Ch=sparse(np,np);

for i=1:3

for j=1:3

Ah=Ah+sparse(t(:,i),t(:,j),nu.*ar.*sum(g{i}.*g{j},2),np,np)...

+sparse(t(:,i),t(:,j),alpha.*ar/12,np,np)...

-sparse(t(:,i),t(:,j),zt.*zt./omega,np,np);

Ch=Ch-sparse(t(:,i),t(:,j),c.*c.*sum(g{i}.*g{j},2)./omega,np,np);

for k=1:2

Bh{k}=Bh{k}-sparse(t(:,i),t(:,j),ar.*g{j}(:,k)/3,np,np)

-sparse(t(:,i),t(:,j),c.*g{i}(:,k).*zt./omega,np,np);

end

end

Ah=Ah+sparse(t(:,i),t(:,i),alpha.*ar/12,np,np);

end

% Output

if (nargout == 1) A=[Ah Z Bh{1}’; Z Ah Bh{2}’; Bh{1} Bh{2} Ch];

elseif (nargout > 1) A=Ah; B=[-Bh{1} -Bh{2}]; C=-Ch; end

returns the velocity stiffness matrix A, the divergence matrix B=[B1 B2] and the pressure
(stiffness) matrix C. Similarly,

[b,bp]=kstok2dp1brhs(p,t,nu,alpha)

returns the velocity right-hand side b=[b1; b2] and the pressure right-hand side bp. These
submatrices are used in the preconditioned Uzawa conjugate gradient method presented in
Section 5.

6.3 3D case

Using the cell-array g and the element volume vol, computed by the KPDE function
kpde3dgphi,the element stiffness matrices are computed simultaneously on all elements by

Rij=nu*vol.*sum(g{i}.*g{j},2);

while bubble diagonal entry (4.16) is given by

omega_R=(8192/945)*nu.*vol.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{3}.^2,2)...

+sum(g{1}.*g{2},2)+sum(g{1}.*g{3},2)+sum(g{2}.*g{3},2))
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Function 6.2 Assembly of the Stokes right-hand side (??).
function [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha,ar,g)

% b=kstok2dp1brhs(p,t,f1,f2,nu,alpha) or [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha)

% b=kstok2dp1brhs(p,t,f1,f2,nu,alpha,ar,g) or [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha,ar,g)

%------------------------------------------------------------------------------

np=size(p,1);

% (f1,f2) at the center of triangles

if (length(f1)==np), f1t=sum(f1(t),2)/3; else f1t=f1; end

if (length(f2)==np), f2t=sum(f2(t),2)/3; else f2t=f2; end

% Triangles area and gradient of basis functions

if (nargin == 6) [ar,g]=kpde2dgphi(p,t); end

% Bubble coefficients (z and omega)

zt=(3/20)*alpha.*ar;

omega=(81/10)*nu.*ar.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{1}.*g{2},2))...

+(81/280)*alpha.*ar;

c=(9/10)*ar; ft={f1t f2t};

% Assembly of the right-hand side

bb=sparse(np,1); bh=cell(2,1); [bh{:}]=deal(sparse(np,1));

for i=1:3

for k=1:2

bh{k}=bh{k}+sparse(t(:,i),1,(1/3)*ft{k}.*ar-c.*ft{k}.*zt./omega,np,1);

bb=bb-sparse(t(:,i),1,c.*c.*g{i}(:,k).*ft{k}./omega,np,1);

end

end

% Right-hand side

if (nargout == 1) b=[full(cell2mat(bh)); full(bb)];

elseif (nargout == 2) b=full(cell2mat(bh)); bp=full(bb); end

The nonbubble entries of element mass matrix (??) are computed by

Mii=alpha.*vol/10; % diagonal

Mij=alpha.*vol/20; % off diagonal

The bubble part of the mass matrix (4.17) is given by

omega_m=(8192/51975)*alpha.*vol; % diagonal

Mbj=(8/105)*alpha.*vol; % off-diagonal

The entries (i, j) of the element divergence matrices (4.18) are computed simultaneously
as follows

B1ij=vol.*g{i}(:,1)/4; B2ij=vol.*g{i}(:,2)/4; B3ij=vol.*g{i}(:,3)/4;

while the bubble entries are

B1ib=(32/105)*vol.*g{i}(:,1); B2ib=(32/105)*vol.*g{i}(:,2);

B3ib=(32/105)*vol.*g{i}(:,3);
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The element contributions of the right-hand side (4.20)-(4.21) are given by

f1=vol.*f1t/4; f2=vol.*f2t/4; f3=vol.*f3t/4;

f1b=(32/105)*vol*f1t; f2b=(32/105)*vol*f2t; f3b=(32/105)*vol*f3t;

Function 6.3 Assembly of the 3D Stokes matrix (4.23)
function [A,B,C]=kstok3dp1bmat(p,t,nu,alpha,vol,g)

%--------------------------------------------------------------------

% A=kstok3dp1bmat(p,t,nu,alpha) or A=kstok3dp1bmat(p,t,nu,alpha,vol,g)

% [A,B,C]=kstok3dp1bmat(p,t,nu,alpha) or [A,B,C]=kstok3dp1bmat(p,t,nu,alpha,vol,g)

%------------------------------------------------------------------------------

np=size(p,1); Z=sparse(np,np);

% Gradient of basis functions

if (nargin == 4) [vol,g]=kpde3dgphi(p,t); end

% Bubble coefficients ( z and omega )

zt=(8/105)*alpha.*vol;

omega=(8192/945)*nu.*vol.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{3}.^2,2)...

+sum(g{1}.*g{2},2)+sum(g{1}.*g{3},2)+sum(g{2}.*g{3},2))+(8192/51975)*alpha.*vol;

c=(32/105)*vol;

% Stiffness, mass and divergence matrices

Ah=sparse(np,np); Bh=cell(1,3); [Bh{:}]=deal(Z); Ch=sparse(np,np);

for i=1:4

for j=1:4

Ah=Ah+sparse(t(:,i),t(:,j),nu*vol.*sum(g{i}.*g{j},2),np,np)...

+sparse(t(:,i),t(:,j),alpha*vol/20,np,np)...

-sparse(t(:,i),t(:,j),zt.*zt./omega,np,np);

Ch=Ch-sparse(t(:,i),t(:,j),c.*c.*sum(g{i}.*g{j},2)./omega,np,np);

for k=1:3

Bh{k}=Bh{k}-sparse(t(:,i),t(:,j),vol.*g{j}(:,k)/4,np,np)...

-sparse(t(:,i),t(:,j),c.*g{i}(:,k).*zt./omega,np,np);

end

end

Ah=Ah+sparse(t(:,i),t(:,i),alpha*vol/20,np,np);

end

% Final matrix

if (nargout == 1)

A=[Ah Z Z Bh{1}’; Z Ah Z Bh{2}’; Z Z Ah Bh{3}’; Bh{1} Bh{2} Bh{3} Ch];

elseif (nargout == 3) A=Ah; B=[-Bh{1} -Bh{2} -Bh{3}]; C=-Ch; end

MATLAB Functions 6.3-6.4 assemble the three-dimensional Stokes system. for compu-
tational efficiency, the elements volume vol and the gradient of the basis functions g can
be computed once and for all, and passed to Functions 6.3-6.4. For more flexibility, vol
and g can also be computed inside Functions 6.3-6.4 if they do not appear in the list of
input arguments. As in 2D, Functions 6.3-6.4 can return submatrices and subvectors used
in the preconditioned Uzawa conjugate gradient algorithm, if called with more than one
output argument.
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Function 6.4 Assembly of the 3D Stokes right-hand side (4.24)
function [b,bp]=kstok3dp1brhs(p,t,f1,f2,f3,nu,alpha,vol,g)

% b=kstok3dp1brhs(p,t,f1,f2,f3,nu,alpha) or b=kstok3dp1brhs(p,t,f1,f2,f3,nu,alpha,vol,g)

% [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha) or [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha,vol,g)

%------------------------------------------------------------------------------

np=size(p,1);

% (f1,f2) at the center of triangles

if (length(f1)==np), f1t=sum(f1(t),2)/4; else f1t=f1; end

if (length(f2)==np), f2t=sum(f2(t),2)/4; else f2t=f2; end

if (length(f3)==np), f3t=sum(f3(t),2)/4; else f3t=f3; end

% Triangles area

if (nargin == 7) [vol,g]=kpde3dgphi(p,t); end

% Bubble coefficients (z and omega)

zt=(8/105)*alpha.*vol;

omega=(8192/945)*nu.*vol.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{3}.^2,2)+sum(g{1}.*g{2},2)...

+sum(g{1}.*g{3},2)+sum(g{2}.*g{3},2))+(8192/51975)*alpha.*vol;

c=(32/105)*vol;

% Assembly of the right-hand side

ft={f1t f2t f3t};

bb=sparse(np,1); bh=cell(3,1); [bh{:}]=deal(sparse(np,1));

for i=1:4

for k=1:3

bh{k}=bh{k}+sparse(t(:,i),1,(1/4)*ft{k}.*vol-c.*ft{k}.*zt./omega,np,1);

bb=bb+sparse(t(:,i),1,c.*c.*g{i}(:,k).*ft{k}./omega,np,1);

end

end

% Output

if (nargout == 1) b=[full(cell2mat(bh)); full(bb)];

elseif (nargout == 2) b=full(cell2mat(bh)); bp=full(bb); end

6.4 Preconditioned Uzawa conjugate gradient algorithm

In our MATLAB implementation the same function (i.e. kstokcg) is used for 2D and
3D problem. For this, we use cell-arrays to store the component system informations:
Cholesky factors, permutation vectors, right-hand sides. For instance, for the 3D Stokes
problem we form

R={R1 R2 R3}; % Cholesky factors

s={s1 s2 s3}; % Permutations vectors

b={b(1:np) b(np+1:2*np) b3(2*np+1:3*np)}; % Right-hand sides

Then in the conjugate gradient function, the velocity systems are solved using the for-loop

for i=1:nd

w{i}(s{i})=R{i}’\(R{i}\b{i}(s{i}));

end

where nd=3. An alternative implementation is to form the block diagonal matrix
R=blkdiag(R1, R2, R3), the permutation vector s=[s1 s2 s3] such that, e.g., in Step
k.1, we solve
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w(s)=R’\(R\b(s));

But for large scale 3D problems, computing R’\(R\b(s)) requires a large amount of
memory and can fail.

7 Numerical experiments

We now propose some numerical experiments to demonstrate the performances of our im-
plementation. The computations have been carried out on a Dell Precision T3610 work
station equipped with Intel Xeon 3.0GHz processor with 32GB RAM. The MATLAB ver-
sion is 9 (R2016a).

7.1 Scalability

We first study the scalability of our MATLAB codes: We consider the discretization of a
unit cube (0, 1)d (d = 2, 3) with a uniform mesh of size h, with nt triangles (or tetrahe-
drons) and np nodes. This initial mesh is successively uniformly refined to produce meshes
of size h/2, h/4, h/8, etc. After each refinement the number of triangles is multiplied by
4 (2D) and the number of tetrahedraons by 8 (3D). Since the assembly process is essen-
tially based on the number of elements, we expect that the time to assemble the matrices
increases by approximately the same factor, i.e. 5− 6 in 2D and 8− 10 in 3D as observed
in [14] for Poisson equation and linear elasticity. Table 1-2 show the assembly CPU times
(in Seconds) for the Stokes system in 2D and 3D, respectively. We can notice an almost
linear optimal time-scaling for our implementation.

h 1/32 1/64 1/128 1/256 1/512 1/1024

N 3*1089 3*4225 3*16641 3*66049 3*263169 3*1050625

A 0.018 0.071 0.325 1.516 7.242 36.390

b 0.002 0.011 0.050 0.251 1.214 5.995

Table 1: CPU times (in Seconds) for assembling the Stokes matrix system of size N in 2D.

h 1/4 1/8 1/16 1/32 1/64 1/128

N 4*125 4*729 4*4913 4*35937 4*274625 4*2146689

A 0.075 0.057 0.397 3.438 34.538 348.249

b 0.027 0.018 0.051 0.465 4.544 46.394

Table 2: CPU times (in Seconds) for assembling the Stokes matrix system of size N in 3D.
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7.2 Factorization versus Uzawa conjugate gradient

We now consider a Stokes flow in a driven cavity Ω = (0, 1)d with f = 0 in (2.1) and

2D: Γ1 = (0, 1)× {1}, u = (1, 0)> on Γ1, and u = 0 on ∂Ω \ Γ1;

3D: Γ1 = (0, 1)× (0, 1)× {1}, u = (1, 0, 0)> on Γ1, and u = 0 on ∂Ω \ Γ1.

Ω is discretized by uniform meshes of size 1/16, 1/32, 1/64, 1/128, 1/256 and 1/512 in 2D,
and 1/4, 1/8, 1/16, 1/32 and 1/64 in 3D. Since thre are powerful linear (direct) solvers in
MATLAB, we first compare our conjugate gradient algorithm with

• \ (backslash) the standard MATLAB solver for general matrix based on Gaussian
elimination;

• ldl the block LDL> factorization for symmetric indefinite systems.

Table 3 shows the comparative performances for the 2D Stokes problem with ν = 1/50 and
α/ν = 103. We can notice that the proposed Uzawa conjugate gradient (Algorithm 2) and
the MATLAB uilt-in Gaussian elimination are almost equivalent even though, in Algorithm
2, the component systems are uncoupled and can be solved in parallel. The CPU times
for LDL> include CPU timde for the factorization and columns and rows permutation to
reduce fill-in that represents up to 90% of the whole CPU time.

If the Stokes problem is used in an iterative process (e.g. time stepping or linearization),
then Algorithm 2 or LDL> factorization are preferable. Indeed, if a LDL> is carried out
(once and for all) in the initialization step, then the solution of linear system reduces to
forward/backward substitutions in the rest of the iterative process. The computational
cost of Algorithm 2 can be reduced by using, as initial solution at the current step, the
solution of the previous step.

Mesh size h 1/32 1/64 1/128 1/256 1/512
Gaussian elim. CPU 0.02 0.07 0.40 2.11 10.88

LDL> CPU 0.02 0.17 1.22 7.13 46.11
Algorithm 2 CPU 0.02 0.08 0.35 1.94 12.01

Table 3: Comparative performances of MATLAB direct solvers and Algorithm 2 for the
2D Stokes system, ν = 1/50 and α/ν = 103

For the 3D Stokes problem the proposed Algorithm 2 outperforms the MATLAB di-
rect solvers, Table 4. For the largest problem (4 ∗ 653 = 1 098 500 unknowns) the direct
solvers fail because of lack of memory due to fill-in during factorization. Table 5 shows
the performances of the MATLAB gmres iterative solver using incomplete LU factoriza-
tion as preconditioner (MATLAB function ilu with 10−3 as drop tolerance). The value
of restart parameter is 10. GMRES algorithm outperforms Algorithm 2 up to h = 1/32.
But for the largest problem, Algorithm 2 is more than four times faster. It is clear that for
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large scale 3D problems, the proposed Uzawa algorithm is preferable. Table 6 shows the
good convergence properties of the proposed Uzawa conjugate gradient algorithm when
α/ν >> 1.

Mesh size h 1/4 1/8 1/16 1/32 1/64
Gaussian elim. 0.01 0.05 1.73 145.44 OoM
LDL> 0.02 0.08 6.29 128.54 OoM
Algorithm 2 0.04 0.89 1.70 78.08 1894.59

Table 4: Comparative CPU times (in Sec.) of MATLAB direct solvers and Algorithm 2
for the 3D Stokes system, ν = 1/50 and α/ν = 103, (OoM= Out of Memory).

Mesh size h 1/4 1/8 1/16 1/32 1/64
CPU Times (Sec.) 0.04 0.02 1.66 39.61 8230.59

Table 5: Performances of the gmres iterative solver for the 3D Stokes system, ν = 1/50
and α/ν = 103

α/ν 101 102 103 104 105 106 107

ν = 1/50 44 39 41 28 13 8 7
ν = 1/200 37 34 33 26 13 8 7
ν = 1/1000 31 28 27 24 18 8 7

Table 6: Number of iterations versus α/ν for the 3D driven cavity problem for h = 1/32

7.3 2D Visualization

In two-dimensional incompressible fluid problems, it is usual to display the stream-lines. If
the domain Ω is bounded and simply connected, in order to compute the stream-function
ψ, we have to solve the Poisson-Neumann problem

−∆ψ = ω, in Ω, (7.1)

∂nψ = −u · τ, (7.2)

where ω = ∂1u2 − ∂2u1 is the vorticity and τ the counter-clockwise oriented unit tangent
vector at Γ. Problem (7.1)-(7.2) has a unique solution in H1(Ω)/R. The variational
formulation of (7.1)-(7.2) is

Find psi ∈ H1(Ω)

(∇ψ,∇ϕ)Ω = (u1, ∂2ϕ)Ω − (u2, ∂1ϕ)Ω, ∀ϕ ∈ H1(Ω), (7.3)

This leads to the following algebraic system using P1 finite element

Rψ = B>2 u1 −B>1 u2
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where R is the 2D Laplacian matrix. We impose ψ = 0 at an arbitrary node to ensure the
uniqueness.

Figure 1: Mesh sample of the flow around cylinder problem

Figure 2: Velocity field of the flow around cylinder problem

Figure 3: Isobar lines for the flow around a cylinder problem

We know consider a test problem derived from a benchmark problem described in [23].
A mesh sample is shown in Figure 1. The inflow and outflow conditions (on left/right
boundaries) are

u1 =
0.3

0.412
× 4y(0.41− y), u2 = 0 on Γin = {0} × (0, 0.41),

u1 =
0.3

0.412
× 4y(0.41− y), u2 = 0 on Γout = {2.2} × (0, 0.41).

On the other parts of the boundary of Ω, homogeneous boundary conditions are precribed
(i.e. u = 0). The parameter α in (2.1) is set to 0. The center of the internal cylinder
is (0.25, 0.2) and the diameter is 0.1. The kinematic viscosity is ν = 10−3. This gives a
Reynolds number of Re = 30 based on the diameter of the cylinder and the maximum of
the inflow velocity. The domain is discretized by a non uniform mesh consisting of 1730
nodes and 3280 triangles, Figure 1. The velocity field obtained with MATLAB command
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Figure 4: Streamlines for the flow around a cylinder problem

quiver(p(:,1),p(:,2),u1,u2)

is shown in Figure 2. Isobar lines of Figure 3 are obtained using the contour plotting
function kpde2dcont from KPDE package [14]. The streamlines of Figure 4 are obtained
by plotting the solution of (7.3) with kpde2dcont.

Unfortunately, for 3D flows, there is no simple tool for graphics output. quiver3 allows
for visualisation of 3D velocity fields but the result is often unsatisfactory. Plotting 3D
functions (or their contours) is a non trivial problem. There is no simple subproblem like
(7.3) for streamlines in 3D.

8 Conclusion

We have proposed a fast MATLAB package for the numerical approximation of the general-
ized Stokes problem with the mini-element. Numerical experiments show that the proposed
assembling functions have an optimal linear time-scaling. The proposed Uzawa conjugate
gradient algorithm outperforms the MATLAB built-in solvers for 3D problems.
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