
HAL Id: hal-02047514
https://hal.science/hal-02047514v1

Preprint submitted on 25 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Euclidean distance matrix computation on big
datasets

Mélodie Angeletti, J.-M. Bonny, Jonas Koko

To cite this version:
Mélodie Angeletti, J.-M. Bonny, Jonas Koko. Parallel Euclidean distance matrix computation on big
datasets. 2019. �hal-02047514�

https://hal.science/hal-02047514v1
https://hal.archives-ouvertes.fr

Parallel Euclidean distance matrix computation

on big datasets ∗

Mélodie Angeletti1,2, Jean-Marie Bonny2, and Jonas Koko1

1LIMOS, Université Clermont Auvergne, CNRS UMR 6158, F-63000 Clermont-Ferrand, France
(melodie.angeletti@uca.fr, jonas.koko@uca.fr)

2INRA AgroResonance - UR370 QuaPA, Centre Auvergne-Rhône-Alpes, Saint Genes
Champanelle, France (Jean-Marie.Bonny@inra.fr)

Abstract

We propose, in this paper, three parallel algorithms to accelerate the Euclidean
matrix computation on parallel computers. The first algorithm, designed for shared
memory computers and GPU, uses a linear index to fill the block lower triangular part
of the distance matrix. The linear index/subscripts conversion is obtained with trian-
gular number and avoid loops over blocks of columns and rows. The second algorithm
(designed for distributed memory computer) in addition to linear index uses circular
shift on a 1D periodic topology. The distance matrix is computed iteratively and we
show that the number of iterations required is about half the number of processors
involved. Numerical experiments are carried-out to demonstrate the performances of
the proposed algorithms.

Keywords: Euclidean distance matrix, parallelization, mutlicores, many-core, GPU

1 Introduction

The distance matrix refers to a two-dimensional array containing the pairwise distance
(e.g., Euclidean, Manhattan, cosine) of a set of element and is a good measurement to tell
the differences beween data points. Thus the distance matrix is widely used in various
research areas using datasets: data clustering ([2]), pattern recognition [6], image analysis,
many-body simulation [3], systems biology [10]. These applications involve the distance
matrix computation between n entities (instances) with each of them described by a m-
dimensional vector (attributes).

In many applications, the distance matrix computation is a step of a more complex
algorithm (e.g. Ward algorithm). But the run-times are often dominated by the distance
matrix computation. For instance, in [1], the distance matrix computation takes at least
4/5 of total computation time (in sequential implementation) fro clustreing of MRIf data.

∗This work was supported by a research allocation SANTE 2014 of the Conseil Régional d’Auvergne

1

2 EUCLIDEAN DISTANCE MATRIX 2

Standard implementations of the Euclidean distance matrix is to split the original ma-
trix in tiles (or chunks/blocks) of columns (or lines). Two nested loops are then applied to
fill the distance matrix. Since the distance matrix is symmetric with zero diagonal, only
the lower of upper triangular part ic computed. We propose two algorithms for the dis-
tance matrix computation on huge datasets: one for share memory/GPU computers and
another for the distributed memory computers. We use the triangular numbers properties
to collapse the two nested loops over the blocks, in contrary to [7] who use external pattern
(Map-Reduce) to avoid nested loops. Our strategy leads to efficient implementation for
shared memory computers and GPU. The distributed memory algorithm is based on cir-
cular shift using a 1D periodic topology. The distance matrix is computed iteratively, each
processor filling one block per iteration. We show that the number of iterations required
is almost the number of tiles. The proposed paper is an extension to [1].

The paper is organised as follows. In Section 2 we described the standard implemen-
tation of the Euclidean distance matrix with two nested loops on blocks. In Section 3 we
present our algorithm for the Euclidean distance matrix computation on shared memory
and GPU computers, followed by the distributed memory algorithm in Section 4. The
numerical experiments are carried-out in Section 5.

2 Euclidean distance matrix

Let us consider an m by n dataset matrix X where n is the number of data points
and m is the size of the feature space. The i-th column of X is dentoed by xi, i.e.
X = [x1 x2 · · · xn]. Computing the square Euclidean distance matrix for X consists in
computing the symetric n by n matrix D = (dij) with entries

dij := d(xi,xj) =‖ xi − xj ‖2, 1 ≤ j < i ≤ n

The complexity for computing each pair dij is O(m). Since D has zeros diagonal entries
(dii = 0), the storage requirement is n(n − 1)/2. The standard algorithm for computing
D consists of calculating each dij inside of two nested loop, using BLAS like routines or
language intrinsic routines (i.e. dot product in Fortran). En practice, this standard
algorithm has a low performance even with small size problems.

Unlike other distance matrices, Euclidean distance matrix can be computed using a
matrix operations based method to achieve the maximum performance. If we set

e = (1 1 · · · 1)> and s = (‖ x1 ‖2 · · · ‖ xn ‖2)>

D can be computed by using the vector-based formula

dij =‖ xi ‖2 + ‖ xj ‖2 −2x>
i xj , 1 < j < i < n (2.1)

or the matrix-based formula

D = se> + es> − 2X>X. (2.2)

Then, as for the dense matrix-matrix multiplication, a blocking strategy (see, e.g., [4, 5] is
required to extract out the best performance of the modern multi-core/many-core systems.

3 EFFICIENT EUCLIDEAN DISTANCE MATRIX ALGORITHM 3

Blocking (or tiling/chuncking) is a well-known optimization technique for improving the
effectiveness of memory hierarchies of the modern processors.

A blocking/tiling method consists of splitting X into M × N blocks XIJ of size
mB × nB, with

mB = bm/Mc, nB = bb/Nc

XIJ = (xij), i = (I − 1)mB + 1,. . . , m̄B, j = (J − 1)nB + 1, . . . , n̄−B, (2.3)

where m̄B = min(Imb,m) and n̄B = min(JnB, n). Consequently, sub-vector sJ of columns
norms of X :J becomes

sJ =

M∑
L=1

(
X>

LJ ·X>
LJ

)
eJ ,

where (·) stands for element-wise (or Hadamrd) multiplication. The decomposition of X
into blocks (2.3) induces a decomposition of D into a block (lower) triangular D = (DIJ)
such that

DIJ = sIe
>
J + eJs

>
I − 2

M∑
L=1

X>
LIXLJ (2.4)

where sJ and eJ are subvectors of s and e corresponding to tile X:J . If I = J , only
the lower triangular part of DIJ is stored. For each tile I we compute the Euclidean
distance between its columns. Then, we compute the Euclidean distance between each
pairs formed of a column of tile I and a column of another tile J . Loop tiling is efficient even
in sequential implementation because it improves the temporal data locality, and hence
the cache utilization. As the distance matrix is symmetric with zero diagonal entries, we
keep only the lower triangular part and store it in a vector d of size n(n− 1)/2. The tile-
based algorithm for the Euclidean distance matrix calculation is presented in Algorithm 1.
Algorithm 1 has a severe drawback: it cannot be parallelized efficiently since loops in I
(line 4) and J (line 7) cannot be merged. As a result, a poor scalability parallel algorithm
with speed-up that can collapses from a number of processors [1].

3 Efficient Euclidean distance matrix algorithm

An efficient parallelization of Algorithm 1 requires the transformation of the double loop
in (I, J) into a single loop in K from 1 to N(N + 1)/2, the number of blocks DIJ , for
J <= I. Fortunately, there is a connection between the conversion of the linear index K
into subscripts (I, J), and the triangular numbers.

3.1 Triangular numbers and index/subscripts conversion

The ith triangular number ti is the number obtained by adding all positive integers less
than or equal to a given positive integer i, i.e.

ti = 1 + 2 + · · ·+ i = i(i+ 1)/2.

3 EFFICIENT EUCLIDEAN DISTANCE MATRIX ALGORITHM 4

Algorithm 1 Tile based Euclidean distance matrix calculation algorithm

Require: X of size m× n, nT and N = bn/nT c
Require: D (block) distance matrix

1: for J = 1 to N do

2: sJ =

M∑
L=1

(
X>

LJ ·X>
LJ

)
eJ

3: end for

4: for I = 1 to N do

5: for J = 1 to I do

6: DIJ = sIe
>
J + eJs

>
I − 2

M∑
L=1

X>
LIXLJ

7: end for
8: end for

The triangular number are therefore 1, 3, 6, 10, 15, ... Furthermore, if ti is the ith
triangular number, then

i =
1

2

(√
8ti + 1− 1

)
. (3.1)

Now consider, e.g., the following 4 × 4 lower triangular matrix in which the entries are
replaced by the corresponding linear index k in the storage vector (row-wise numbering)

1
2 3
4 5 6
7 8 9 10

The diagonal entries (i.e. 1, 3, 6, 10) correspond to the first four triangular numbers. We
easily verify that the entry (1, 1) is stored in k = 1 = t1, the entry (2, 2) in k = 3 = t2,
the entry (3, 3) in k = 6 = t3 and (4, 4) in k = 10 = t4. The linear index k of the diagonal
(i, i) is given by k = ti = i(i + 1)/2. Knowing k it is easy, using (3.1), to get i. If k is
not a triangular number, then i given by (3.1) is no longer an integer. But rounding it
down we obtain the highest value of i for which ti ≤ k and i + 1 is the row in which the
entry k is located in the original matrix. To get the column, we just substract ti from k,
i.e. j = k − i(i + 1)/2. Algorithm 2 describes the conversion of a linear index k to lower
triangular subscripts (i, j).

In Algorithm 2, the entries are numbering by rows in the orginal matrix. In Algo-
rithm 3, the entries in the original matrix are numerbing column-wise as follows

1
2 5
3 6 8
4 7 9 10

4 DISTRIBUTED ALGORITHM 5

Algorithm 2 Converts the linear index k to lower triangular subscripts (i, j), row-wise
numbering

Require: k the storage index, n the size of the triangular matrix
p = (

√
1 + 8 ∗ k − 1)/2

i0 = bpc
if i0 = p then
i = i0, j = i

else
i = i0 + 1, j = k − i0 ∗ (i0 + 1)/2

end if

Algorithm 3 Converts the linear index k to lower triangular subscripts (i, j), column-wise
numbering

Require: k the storage index, n the size of the triangular matrix
k′ = n(n+ 1)/2− k

p = b(
√

1 + 8 ∗ k′ − 1)/2c

i = k − n(n− 1)/2 + p(p+ 1)/2, j = n− p

If the original matrix is strictly lower triangular, we do not need to store the diagonal en-
tries as in Algorithm 3-2. For a column-wise storage, it suffices to replace, in Algorithm 3,
n by n− 1 and i by i− 1. We get Algotithm 4.

Algorithm 4 Converts the linear index k to lower strictly triangular subscripts (i, j),
column-wise numbering

Require: k the storage index, n the size of the triangular matrix
k′ = n(n− 1)/2− k

p = b(
√

1 + 8 ∗ k′ − 1)/2c

i = k − n(n− 1)/2 + p(p+ 1)/2, j = n− 1− p

3.2 Efficient Euclidean distance matrix algorithm

The efficient distance matrix procedure is described in Algorithm 5. Loop over blocks DIJ

(Line 4-7) is now entirely linear and can therefore be parallelized efficiently. Note that, in
practice, the size of end blocks ({XLN}L or {XMJ}J) can be different from the size of
the others blocks.

4 Distributed algorithm

Algorithm 5 is not suitable for a distributed system: a collection of processors that do not
share memory nor clock. For a distributed memory system, the only way one processor

4 DISTRIBUTED ALGORITHM 6

Algorithm 5 Efficient Euclidean distance matrix calculation algorithm

Require: X of size m× n, d of size n(n− 1)/2.
Require: mB, nB, M = bm/mBc and N = bn/nBc

1: for J = 1 to N do

2: sJ =
M∑
L=1

(
X>

LJ ·X>
LJ

)
eJ

3: end for

4: for K = 1 to N(N + 1)/2 do

5: Compute block subscripts (I, J) from K, e.g. using Algorithm 2

6: DIJ = sIe
>
J + eJs

>
I − 2

M∑
L=1

X>
LIXLJ

7: end for

can exchange information with another is through passing information explicitly through
the network. This type of architecture has the significant advantage that it can scale up
to large numbers of processors (up to hundreds of thousands proessors).

At first glance, the distance matrix computation is not suitable for distributed memory
calculations since we have to fill a block triangular matrix. Indeed, a direct adaptation
of Algorithm 5 leads to a unpracticable topology with variable number of processors in-
volved. There is a need to design a new algorithm for distributed memory computers. The
distributed algorithm proposed in this Section is based on cyclic shifts. A circular shift is
a permutation which shifts all elements of a set by a fixed offset, with the elements shifted
off the end inserted back at the beginning (right shift), and the elements shifted off at the
beginning inserted back at the end (left shift). Formally, a circular shift is a permutation
σ of the n entries in the set {1, 2, . . . , n} such that, for all entries i

σ(i) = i+ 1 (modulo n) or σ(i) = i− 1 (modulo n). (4.1)

Applying (4.1) k times is equivalent to a shift of k places, denoted by σk and defined by

σk(i) = i+ k (modulo n) or σk(i) = i− k (modulo n). (4.2)

Let N be the number of processors available. We then split X into N tiles X :J

(J = 1, . . . , N) as described in Section 2. We assume that we can compute efficiently
submatrix DIJ = d(X :I ,X :J), the distance matrix between any column of X :I and X :J ,
by adptating Algorithm 5. In our distributed algorithm we start by assigning to pro-
cessor I, the computation of the submatrix DI,I . Then, we perform a circular (right)
shift on the first subscript so that, in the second step, processor I computes submatrix
DI,σ(I) = DI,I+1. In practice, the block subscripts are aranged in order to fill only the
lower triangular part of the distance matrix. The circular shift procedure continues, Ta-
ble 1, until all blocks DIJ (J ≤ I) are computed. The following theorem shows that we

5 NUMERICAL EXPERIMENTS 7

can fill the block triangular distance matrix using a successive circular shift procedures as
a communication scheme between processors.

Process 1 2 · · · I · · · N

1st Step D1,1 D2,2 · · · DI,I · · · DN,N

2nd Step D1,2 D2,3 · · · DI,I+1 · · · DN,1

3rd Step D1,3 D2,4 · · · DI,I+2 · · · DN,2

...
kth Step D1,σk(1) D2,σk(2) · · · DI,σk(I) · · · DN,σk(N)

Table 1: The successive circular shift procedure on blocks

Theorem 4.1. The cyclic shift procedure described in Table 1 stopps after (N+1)/2 steps.

Proof. The lower/upper triangular part of D contains N(N + 1)/2 blocks DIJ and the
cyclic shift procedure described in Table 1 generates N blocks each step. It is obvious that
(N + 1)/2 steps are needed to fill D.

The main consequences of Theorem 4.1 are:

• If N is even, then at the last step only N/2 blocks are to be computed by N processes,
as shown below with N = 4

D1,1 D2,2 D3,3 D4,4

D1,2 D2,3 D3,4 D4,1

D1,3 D2,4 D3,1 D4,2

• If N is odd, then in all steps, N blocks are to be computed by N processes, as shown
below with N = 5

D1,1 D2,2 D3,3 D4,4 D5,5

D1,2 D2,3 D3,4 D4,5 D5,1

D1,3 D2,4 D3,5 D4,1 D5,2

In practice, cyclic shifts are performed efficiently by send/receive procedures in a 1-D
cartesian periodic topology. A distributed algorithm for the Euclidean distance matrix
calculation is described in Algorithm 6.

5 Numerical experiments

In this section we propose the performance results of the proposed algorithms for the
computation of the Euclidean distance matrix. The numerical experiments are carried out
on the following platforms:

COMP1 DELL PowerEdge R930 (shared memory) based on Intel Xeon E7-8890 with
2.50GHz CPU. The computer consists of 4 sockets of 18 cores each (i.e. 72 cores).
Each socket has a private 45MB L3-cache, shared by all cores and each core has a
private 256KB L2-cache and 32KB L1-cache. The total RAM is 3TB.

5 NUMERICAL EXPERIMENTS 8

Algorithm 6 Distributed algorithm for the Euclidean distance matrix calculation

Require: X of size m× n
Require: N the number of processors, organized as 1D cartesian periodic topology.

1: Split matrix X into N tiles X :I , I = 1, . . . , N
2: Assign tile X :I to processor I and compute the diagonal block DII , I = 1, . . . , N
3: Save a local copy of X :I on each processor I

4: for K = 2 to (N + 1)/2 do
5: Perform a circular shift scheme to exchange blocks between neighboring processors
6: Compute block DI,σK−1(I), for each processor I = 1, . . . , N
7: end for

COMP2 DELL PRECISION RACK7910 based on 10-core Intel Xeon E5-2640 with
2.40GHz CPU and NVIDIA Quadro P5000 with 2560 CUDA cores. The total RAM
is 62GB for the CPU and 16GB for the device. Note that in Quadro P5000, there are
many fewer units devoted to double precision arithmetics. As a result the theoretical
performance in double precision (277 GFLOPS) is more than three times lower than
the single precision performance (8.9 TFLOPS).

We chose FORTRAN (2003-2008) language for its large number of intrinsic array
functions. We study the performances of the following algorithms:

ALG1 FORTRAN parallel implementation of Algorithm 5 using OpenMP. The paral-
lelisation is straightforward: the loops in J and K are parallelized using dynamic
scheduling.

ALG2 FORTRAN parallel implementation of Algorithm 6 using OpenMPI library. As
mentioned in Section 4, we use 1-D cartesian periodic topology and MPI SENDRECV REPLACE

(send/receive messages using a single buffer). Note that if N (the number of proces-
sors) is small, the code generates large arrays whose size can quickly exceeds MPI
count INT MAX (i.e. 231). Then we have to use MPI derived types to support large
counts for Algorithm 6 with small N . Since using Algorithm 6 with small a num-
ber of processors is not relevant, we present the performances of Algorithm 6 with
N ≥ 4.

ALG3 CUDA implementation of Algorithm 5 on COMP2. CUDA (Compute Unified
Device Architecture) [9] is an extension of C programming language for using with
NVIDIA Graphics Processing Units (GPUs) and thus benefit from many-core archi-
tecture. The GPU kernel consists in computing sI and sJ on on CPU, copying XI ,
Xj , sI , sJ on GPU, and computing the distance sub-matrix (2.4) using CUBLAS
[8]. As the call to CUBLAS is asynchronous, while the GPU computes, the CPU
copies the result of the previous GPU calculation. We also overlap the copy and the
computation using streams.

5 NUMERICAL EXPERIMENTS 9

Figure 1: Performances of ALG1 on COMP1 (single precision) with varying block size:
unicore (left), 18-core (right)

5.1 Benchmarking

The main difficulty in the parallel algorithms described in the previous sections is the choice
of block sizes: the performance of the algorithms are strongly related to the partitionning
of the matrices. Then a simple procedure is to perform a systematic benchmarking [11].
To this end, we consider a matrix of size 103 × 104. We begin the computations with
blocks of size 4×16 since we deal with m×n rectangular matrices with n >> m. We then
multiply, successively, each dimension by 2 to get blocks of size 8×16, 8×32, 16×32, etc.
The performances are evaluated in terms of GFLOPS using one core or one socket (18-core
for COMP1 and 24-core for COMP2), single precision or double precsision arithmetics.
Note that unicore “optimal” block size will be used in the distributed Algorithm 6 while
socket “optimal” block size will be used in Algorithm 5.

Figure 2: Performances of ALG1 on COMP1 (double precision) with varying block size:
unicore (left), 18-core (right)

Figures 1-2 show the performances of ALG1 on COMP1. We observe that the per-
formances peak at block size 16 × 64 for any mode (unicore or socket, single or double
precision).

5 NUMERICAL EXPERIMENTS 10

To benchmark ALG3 (on COMP2) we use a matrix of size 103 × 3 · 104 and we begin
with block of size 512 × 1024 to avoid excessive computational time due to small blocks.
Figure 3 shows the performances of the CUDA implementation of Algorithm 5. For single
or double precision arithmetics, the performances peak at block size 1000 × 2048. Note
that using a test matrix with more rows and columns, the performances peak at block size
8192× 16384.

Figure 3: Performances of Algorithm 5 using COMP3 with varying block size

n = 32, 000 n = 64, 000 n = 128, 000 n = 256, 000

NPROC ALG1 ALG2 ALG1 ALG2 ALG1 ALG2 ALG1 ALG2
1 323.327 — 1270.853 — 5095.186 — 20335.726 —
2 164.552 — 659.487 — 2661.569 — 10820.598 —
4 82.317 101.622 333.825 408.717 1335.422 1646.935 5370.388 6589.662
8 42.230 44.551 169.643 178.967 698.557 715.106 2814.481 2875.162
16 22.107 23.585 89.599 94.839 368.040 377.659 1470.060 1513.006
32 11.850 13.248 46.603 52.718 188.248 209.852 751.216 841.881
64 6.565 8.223 24.908 32.221 95.577 128.490 381.067 517.898

ALG3 5.835 20.182 77.617 OoM

Table 2: Single precision execution times (Sec.) for ALG1-ALG3, m = 1, 000 and various
n.

5.2 Speed-up

We now present performances results of ALG1-ALG3 for different problems sizes and
precisions. The data used were generated according (in problem size and data magnitude)
to fMRI data ([1]): m is the number of scans and n is the number of voxels. Functional
Magnetic Resonance Imaging (fMRI) is a noninvasive technique for studying brain activity.
During the course of an fMRI experiment, brain images (scans) are acquired between
1001000 times, with each image consisting of roughly 20, 000 − 20, 0000 volume elements
(voxels). The experience can be repeated several times for the same subject (subject
analysis), as well as for multiple subjects (group analysis) to facilitate the population
inference. As shown by Thirion et al., for a great number of clusters, the best clustering

5 NUMERICAL EXPERIMENTS 11

algorithm is the agglomerative hierarchical clustering with Wards criterion because of the
goodness of the fitting and its reproducibility. Computing the Euclidean distance matrix
for fMRI dataset is the first step for applying the Ward clustering algorithm.

We report in Table 2 single precision execution times (in Sec.) for ALG1-ALG3 on
datasets with m = 1000 (subject analysis) and varying number of columns n. Figure
4-5 show the corresponding speed-ups and parallel efficiency with respect to a sequential
implementation running on a single core of COMP1. We notice that ALG1 outperforms
ALG2 in all cases, with an almost linear speed-up and a parallel efficiency of at least
80%. Note that the execution time of ALG2 includes communication times, e.g., the
times devoted to messages passing and the time to collect the distance submatrices from
all processors. ALG3 outperforms ALG1 and ALG2 with a speed-up of about 65. For the
largest problem (n = 256, 000) ALG3 fails because of the (host) CPU memory since the
matrices (X and D) must be loaded in CPU memory.

n = 64, 000 n = 128, 000 n = 256, 000

Figure 4: Single precision speed-up for ALG1-ALG3, m = 1000 and various n.

n = 64, 000 n = 128, 000 n = 256, 000

Figure 5: Single precision efficiency for ALG1-ALG2, m = 1000 and various n.

We report in Table 3 the performance results using double precision arithmetics with
m = 1000 (subject analysis) and various values n. Figure 6-7 show the corresponding
speed-ups and parallel efficiency with respect to a sequential implementation running on
a single core of COMP1. Similar to the single preision results, ALG1 outperforms ALG2
with an almost linear speed-up. The speed-up, for ALG1, is between 50 and 60, and the
parallel efficiency greater than 0.8 for all problem sizes. For ALG2, the parallel efficiency

5 NUMERICAL EXPERIMENTS 12

n n = 32, 000 n = 64, 000 n = 128, 000 n = 256, 000

NPROC ALG1 ALG2 ALG1 ALG2 ALG1 ALG2 ALG1 ALG2
1 342.297 — 1373.270 — 5453.231 — 22137.345 —
2 177.214 — 711.573 — 2877.604 — 11639.543 —
4 89.828 120.721 359.484 491.837 1444.051 1957.464 5780.013 8056.589
8 46.150 53.499 187.482 214.528 751.333 857.863 3003.863 3494.472
16 24.179 28.464 97.755 113.572 392.937 455.158 1585.501 1802.658
32 12.730 16.252 50.724 64.770 202.828 254.906 811.418 1028.867
64 6.977 10.247 25.792 40.400 102.945 160.118 414.101 646.936

ALG3 9.259 32.147 143.528 OoM

Table 3: Double precision execution times (Sec.) for ALG1-ALG3, m = 1, 000 and various
n.

n = 64, 000 n = 128, 000 n = 256, 000

Figure 6: Double precision speed-up for ALG1-ALG3, m = 1000 and vaious n.

n = 64, 000 n = 128, 000 n = 256, 000

Figure 7: Double precision efficiency for ALG1-ALG2 with m = 1000 and various n.

5 NUMERICAL EXPERIMENTS 13

is now about 0.5-0.55. An interesting observation, in the double precision case, is that the
GPU implementation (ALG3) is outperformed by the OpenMP implementation (ALG2).
For ALG3, the spped-up is now around 40, which is less than that for a single preicision
(around 65). This is beacause of the small number of double precision units (FP64) in
Quadro P5000 GPU.

m = 1, 000 m = 5, 000 m = 10, 000

NPROC ALG1 ALG2 ALG1 ALG2 ALG1 ALG2
1 5095.186 — 24282.427 — 48455.671 —
2 2661.569 — 12497.112 — 24977.728 —
4 1335.422 1646.935 6202.373 7852.281 12362.524 15500.902
8 698.557 715.106 3257.418 3327.252 6372.089 6554.438
16 368.040 377.659 1717.981 1661.936 3445.819 3268.145
32 188.248 209.852 880.823 836.477 1748.490 1623.331
64 95.577 128.490 445.833 441.224 886.729 844.680

ALG3 77.617 200.097 244.990

Table 4: Single precision execution times (Sec.) for ALG1-ALG3, n = 128, 000 and various
m.

We now study the behavior of ALG1-ALG3 on datasets from group analysis: n =
128, 000 and m = 1, 000, 5, 000, 10, 000 corresponding to one, 5 and 10 subjects. We
report in Table 5 the single precision execution times of the algorithms. The speed-up
achieved by the implementations are shown in Figure 9. ALG3 outperforms ALG1-ALG2
with a speed-up of 121 (m = 5, 000) and 198 (m = 10, 000). Another interesting fact is
that the speed-up of ALG2 (MPI implementation) is almost equivalent to that of ALG1
for m = 5, 000 and slightly better for m = 10, 000 (57 versus 54).

m = 5, 000 m = 10, 000

Figure 8: Single precision speed-up for ALG1-ALG3, n = 128, 000 and various m.

We report in Table 5 the double precision preformance results for a dataset from
group analysis. For ALG3 (GPU implementation) the execution fails for m = 5, 000 and
m = 10, 000 because of the host CPU memory limit. The speed-up for ALG1-ALG2 are
shown in Figure 9. For m = 5, 000, ALG1 outperforms ALG2 but for the largest problem
(m = 10, 000), the speed-up obtained with ALG2 on 64 processors is about 50 compared
to 46 for ALG1. We can think that on huge datasets, with a large number of processors,
ALG2 will be better than ALG1.

6 CONCLUSION 14

m = 1, 000 m = 5, 000 m = 10, 000

NPROC ALG1 ALG2 ALG1 ALG2 ALG1 ALG2
1 5453.231 — 26721.462 — 53218.082 —
2 2877.604 — 14072.942 — 28057.677 —
4 1444.051 1957.464 7040.014 9553.563 13931.026 —
8 751.333 857.863 3652.245 4071.456 7258.762 7925.922
16 392.937 455.158 1914.008 1991.188 3810.251 3947.947
32 202.828 254.906 985.877 1021.801 2039.642 2037.573
64 102.945 160.118 507.908 560.293 1155.392 1044.874

ALG3 143.528 OoM OoM

Table 5: Double precision execution times (Sec.) for ALG1-ALG3, n = 128, 000 and
various m.

m = 5, 000 m = 10, 000

Figure 9: Double precision speed-up for ALG1-ALG2 with n = 128, 000 and various m.

6 Conclusion

We have studied parallel algorithms, on various architectures (share and distributed mem-
ory, GPU), for the Euclidean matrix computation on large datasets. Numerical experi-
ments have shown that the three algorithms proposed are competitive based on architec-
ture, problem size and single/double precision arithmetics.

Note that ALG3 allows to designed hybrid implementations. For instance, we can
replace Step 6 of Algorithm 6 by ALG1 or ALG3 if blocks (I, J) are distributed over a
set of nodes with multi-core CPUs of GPUs. Further work is underway to design hybrid
implementations involving CPU and GPU.

The proposed algorithm can be easily adapted for other distance matrice computation,
particularly lp-distance defined by

dij = d(xi,xj) =

(
m∑
k=1

∣∣ xki − xkj ∣∣p
)1/p

.

It suffices to replace matrix-based formulas, used for the Euclidean matrix, by a suitable
formula.

REFERENCES 15

References

[1] Angeletti M., Bonny J.-M., Duriff F. and Koko J. Parallel hierarchical ag-
glomerative clustering for fMRI data. In Proc. 12nd Conf. Parallel Processing and
Applied Mathematics PPAM 2017, volume 10777 of LNCS, pages 1–11. Springer,
2018.

[2] Berkhin P. . A survey of clustering data mining techniques. In Grouping multidi-
mensional data, pages 25–71. Springer, 2006.

[3] Hendricksson B. and A:Plimpton S. Parallel many-body simulations without
all-to-all communication. Journal of Parallel and Distributed Computing, 25:15–25,
1995.

[4] Krishnan M. and Nieplocha J. Srumma: A matrix multiplication algorithm suit-
able for clusters and scalable shared memory systems. In Proc. 18th International
Parallel and Distributed Processing Symposium IPDPS 2004. IEEE, 2004.

[5] Lam M., Rothberg E. E. and Wolf M. E. The cache performance and optimiza-
tions of blocked algorithms. In Proc. ASPLOS IV, volume 19, pages 63–74. ACM
SIGARCH Computer Architecture News, 1991.

[6] Li J. and Lu B.L. An adaptive image Euclidean distance. Pattern Recognition,
42:349–357, 2009.

[7] Li Q., Kecman V. and Salman R. A chunking method for Euclidean distance
matrix calculation on large dataset. In Proc. Int. Conf.Machine Learning and Appli-
cations, pages 208–2013. IEEE, 2010.

[8] NVIDIA Corporation. CUDA Tookit 4.1: CUBLAS Library. NVIDIA Corporation,
2012.

[9] NVIDIA Corporation. NVIDIA CUDA. NVIDIA Corporation, 2012.

[10] Zola J., Aluru M. and Aluru S. Parallel information theory based construction of
gene regulatory networks. In Proc. 15th annual IEEE High-Performance Computing
HiPC 2008, volume 5374 of LNCS, pages 336–349, Berlin, 2008. Springer-Verlag.

[11] Zuckerman S., Pérache M. and Jalby W. Fine tuning matrix multiplications
on multicore. In Proc. 15th annual IEEE High-Performance Computing HiPC 2008,
volume 5374 of LNCS, pages 30–41, Berlin, 2008. Springer-Verlag.

	Introduction
	Euclidean distance matrix
	Efficient Euclidean distance matrix algorithm
	Triangular numbers and index/subscripts conversion
	Efficient Euclidean distance matrix algorithm

	Distributed algorithm
	Numerical experiments
	Benchmarking
	Speed-up

	Conclusion

