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Introduction

The asymptotic analysis of the transport of charged particles under strong magnetic fields is a very important topic in plasma physics [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF][START_REF] Frénod | Long time behavior of the two-dimensional Vlasovequation with strong external magnetic field[END_REF][START_REF] Frénod | The finite Larmor radius approximation[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF][START_REF] Saint-Raymond | The gyro-kinetic approximation for the Vlasov-Poisson system[END_REF][START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyro-kinetic approximation[END_REF][START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF][START_REF] Littlejohn | Variational principles of guiding centre motion[END_REF][START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF][START_REF] Bostan | The effective Vlasov-Poisson system for the finite Larmor radius regime[END_REF][START_REF] Bostan | Transport of charged particles under fast oscillating magnetic fields[END_REF][START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF]. It is related to real life applications, such that the energy production through magnetic confinement. When the particle velocities are small with respect to the light speed, the evolution of the particle density f = f (t, x, v) is described by the Vlasov-Poisson system

∂ t f ε +v •∇ x f ε + q m {E[f ε (t)](x) + v ∧ B ε (x)}•∇ v f ε = 0, (t, x, v) ∈ R + ×R 3 ×R 3 . (1) E[f ε (t)] = -∇ x Φ[f ε (t)], Φ[f ε (t)](x) = q 4π 0 R 3 R 3 f ε (t, x , v ) |x -x | dv dx
where ε > 0 is a small parameter, entering the strong external non vanishing magnetic field

B ε (x) = B ε (x)e(x), B ε (x) = B(x) ε , |e(x)| = 1, x ∈ R 3 .
The potential Φ[f ε ] satisfies the Poisson equation

-∆ x Φ[f ε (t)] = q 0 R 3 f ε (t, x, v) dv, (t, x) ∈ R + × R 3
whose fundamental solution is z → 1 4π|z| , z ∈ R 3 \ {0}. Here 0 represents the electric permittivity. For any particle density f = f (x, v), the notation E[f ] stands for the Poisson electric field

E[f ](x) = q 4π 0 R 3 R 3 f (x , v ) x -x |x -x | 3 dv dx (2)
and ρ[f ], j[f ] are the charge and current densities respectively

ρ[f ] = q R 3 f (•, v) dv, j[f ] = q R 3 f (•, v)v dv.
The above system is supplemented by the initial condition

f ε (0, x, v) = f in (x, v), (x, v) ∈ R 3 × R 3 .
In [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] a regular reformulation (when ε 0) of the Vlasov-Poisson system has been derived, in the three dimensional setting, for well prepared initial particle densities. In this work we extend the previous analysis to general initial particle densities. Considering general initial conditions leads to fast oscillations in time. In order to describe the asymptotic behavior (when ε 0), we need to introduce a fast time variable s = t/ε. The analysis follows closely that in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] and the arguments rely on averaging along the flow of a vector field. As a fast time variable has been introduced, we need to consider the extended phase space (s, x, v) for averaging functions and vector fields.

Our paper is organized as follows. The average operators on the extended phase space and main properties are discussed in Section 2. The regular reformulation of the Vlasov-Poisson problem with strong external magnetic field is derived in Section 3 and revisited in the last Section 4.

Average operators and main properties

As in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], we introduce the relative velocity with respect to the electric cross field drift ṽ = v -ε E ε (t, x) ∧ e(x) B(x) .

Accordingly, at any time t ∈ [0, T ], we consider the new particle density f ε (t, x, ṽ) = f ε t, x, ṽ + ε E[f ε (t)](x) ∧ e(x) B(x) , (x, ṽ) ∈ R 3 × R 3 .

The particle densities f ε , f ε have the same charge density

ρ[ f ε (t)] = q R 3 f ε (t, •, ṽ) dṽ = q R 3 f ε (t, •, v) dv = ρ[f ε (t)], t ∈ [0, T ] implying that the Poisson electric fields corresponding to f ε , f ε coincide E[f ε (t)] = E[ f ε (t)], t ∈ [0, T ].
Therefore we can use the same notation E ε (t) for denoting them. We assume that the magnetic field satisfies

B 0 := inf x∈R 3 |B(x)| > 0 or equivalently ω 0 := inf x∈R 3 |ω c (x)| > 0.
The new particle densities ( f ε ) ε>0 verify

∂ t f ε + ṽ + ε E ε ∧ e B • ∇ x f ε -ε ∂ t E ε ∧ e B + ∂ x E ε ∧ e B ṽ + ε E ε ∧ e B • ∇ ṽ f ε + ω c ε ṽ ∧ e + q m (E ε • e) e • ∇ ṽ f ε = 0, (t, x, ṽ) ∈ [0, T ] × R 3 × R 3 (3) 
f ε (0, x, ṽ) = f in x, ṽ + ε E[f in ](x) ∧ e(x) B(x) , (x, ṽ) ∈ R 3 × R 3 .
As in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], thanks to the continuity equation

∂ t ρ[f ε ] + div x j[f ε ] = 0
we obtain the following representation for the time derivative of the electric field E ε , in terms of the particle density f ε

∂ t E[f ε ] = - 1 4π 0 div x R 3 x -x |x -x | 3 ⊗ j[ f ε (t)](x ) + ερ[ f ε (t)](x ) E ε (t, x ) ∧ e(x ) B(x ) dx .
We introduce the new Larmor center x = x + ε ṽ∧e(x) ωc(x) , which is a second order approximation of the Larmor center x + ε v∧e(x) ωc(x) . We decompose the transport field in the Vlasov equation in such a way that x remains invariant with respect to the fast dynamics. We will distinguish between the orthogonal and parallel directions, taking as reference direction the magnetic line passing through the new Larmor center x, that is e(x) (which is left invariant with respect to the fast dynamics) ṽ = [ṽ -(ṽ • e(x))e(x)] + (ṽ • e(x))e(x).

Finally the Vlasov equation (3) writes

∂ t f ε +c ε [ f ε (t)]•∇ x,ṽ f ε +εa ε [ f ε (t)]•∇ x,ṽ f ε + b ε ε •∇ x,ṽ f ε = 0, (t, x, ṽ) ∈ [0, T ]×R 3 ×R 3 (4) where the autonomous vector field b ε ε • ∇ x,ṽ is given by b ε ε • ∇ x,ṽ = [ṽ -(ṽ • e(x)) e(x) + εA ε x (x, ṽ)] • ∇ x + ω c (x) ε (ṽ ∧ e(x))
• ∇ ṽ and for any particle density f ,

a ε [ f ] • ∇ x,ṽ , c ε [ f ] • ∇
x,ṽ stand for the vector fields

a ε [ f ] • ∇ x,ṽ = E[ f ] ∧ e B -A ε x • ∇ x + -∂ x E[ f ] ∧ e B ṽ + ε E[ f ] ∧ e B + 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ j[ f ] + ερ[ f ] E[ f ] ∧ e B (x ) dx ∧ e(x) • ∇ ṽ c ε [ f ] • ∇ x,ṽ = (ṽ • e(x)) e(x) • ∇ x + ω c (x)ṽ ∧ e(x) -e(x) ε + q m (E[ f ] • e(x)) e(x) • ∇ ṽ = q m (E[ f ] • e(x)) e(x) -ω c ṽ ∧ 1 0 ∂ x e x + εs ṽ ∧ e(x) ω c (x) ṽ ∧ e(x) ω c (x) ds • ∇ ṽ + (ṽ • e(x)) e(x) • ∇ x .
The vector field A ε x (x, ṽ) • ∇ x will be determined by imposing that the Larmor center x is left invariant by the fast dynamics

b ε • ∇ x,ṽ x + ε ṽ ∧ e(x) ω c (x) = 0
that is

I 3 + ε∂ x ṽ ∧ e ω c A ε x (x, ṽ) = -∂ x ṽ ∧ e ω c [ṽ-(ṽ•e(x)) e(x)]- e(x) -e(x) ε ∧(ṽ∧e(x)).
The method employed in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] applies as well when the initial particle density is not well prepared. In this case we deal with two time scales: the slow time variable t and the fast time variable s = t/ε. We need to average in the extended phase space(s, x, ṽ). We say that a function u = u(s, x, ṽ) is S = S(x, ṽ) periodic with respect to s iff u(s + S(x, ṽ), x, ṽ) = u(s, x, ṽ), (s, x, ṽ

) ∈ R × R 3 × R 3 .
Similarly, we say that a function u = u(s, x, ṽ) is S ε = S ε (x, ṽ) periodic with respect to s iff u(s + S ε (x, ṽ), x, ṽ) = u(s, x, ṽ), (s, x, ṽ

) ∈ R × R 3 × R 3 .
With the notations in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] Propositions 3.1, 3.2, we observe that if u is S periodic with respect to s, therefore the function (s, x, ṽ) → u(Λ ε (s; x, ṽ), T ε (x, ṽ)) is S ε periodic with respect to s. For establishing that, notice that Λ ε (s + S ε (x, ṽ); x, ṽ) = Λ ε (s; x, ṽ) + S(T ε (x, ṽ)).

Indeed, we have, thanks to Proposition 3.2 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] Λ ε (s + S ε (x, ṽ); x, ṽ) =

s+S ε (x,ṽ) 0 λ ε (X ε (σ; x, ṽ), Ṽε (σ; x, ṽ)) dσ = s 0 λ ε (X ε (σ; x, ṽ), Ṽε (σ; x, ṽ)) dσ + S ε (x,ṽ) 0 λ ε ((X ε , Ṽε )(τ ; (X ε , Ṽε )(s; x, ṽ))) dτ = Λ ε (s; x, ṽ) + S ε ((X ε , Ṽε )(s;x,ṽ)) 0 λ ε ((X ε , Ṽε )(τ ; (X ε , Ṽε )(s; x, ṽ))) dτ = Λ ε (s; x, ṽ) + Λ ε (S ε ((X ε , Ṽε )(s; x, ṽ)); (X ε , Ṽε )(s; x, ṽ))
= Λ ε (s; x, ṽ) + S(T ε ((X ε , Ṽε )(s; x, ṽ)))

= Λ ε (s; x, ṽ) + S((X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ))) = Λ ε (s; x, ṽ) + S(T ε (x, ṽ)).

It is easily seen that u(Λ ε (s + S ε (x, ṽ); x, ṽ), T ε (x, ṽ)) = u(Λ ε (s; x, ṽ) + S(T ε (x, ṽ)), T ε (x, ṽ)) = u(Λ ε (s; x, ṽ), T ε (x, ṽ))

saying that the function (s, x, ṽ) → u(Λ ε (s; x, ṽ), T ε (x, ṽ)) is S ε periodic with respect to s.

Observe that for any (s, x, ṽ

) ∈ R × R 3 × R 3 , the characteristics of ∂ s + b • ∇ x,ṽ , ∂ s + b ε • ∇ x,
ṽ issued from (s, x, ṽ) are (s + σ, X(σ; x, ṽ), Ṽ(σ; x, ṽ)), (s + σ, X ε (σ; x, ṽ), Ṽε (σ; x, ṽ)) respectively. We define the average operators for continuous S periodic, S ε periodic functions by u (s, x, ṽ) = 1 S(x, ṽ) S(x,ṽ) 0 u(s + σ, X(σ; x, ṽ), Ṽ(σ; x, ṽ)) dσ, (s, x, ṽ) ∈ R × R 3 × R 3 u ε (s, x, ṽ) = 1 S ε (x, ṽ) S ε (x,ṽ) 0 u(s+σ, X ε (σ; x, ṽ), Ṽε (σ; x, ṽ)) dσ, (s, x, ṽ) ∈ R×R 3 ×R 3 .

Notice that the above operators extend the corresponding average operators defined in Proposition 3.1 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] for continuous functions, not depending on s. As in Proposition 3.2 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], we establish a relation between the average operators • , • ε . We will work under the hypothesis

∇ x ω c = 0, implying that S(x, ṽ) = S ε (x, ṽ) = 2π/ω c , λ ε (x, ṽ) = 1, Λ ε (s; x, ṽ) = s, (s, x, ṽ) ∈ R × R 3 × R 3 . Proposition 2.1 Let u ∈ C(R × R 3 × R 3 ) be a S periodic function with respect to s such that supp u ⊂ {(s, x, ṽ) ∈ R × R 3 × R 3 : |ṽ| ≤ R} for some R > 0. For any ε > 0 satisfying εR ∂ x e L ∞ /|ω c | < 1 we have u(•, T ε ) ε = u (•, T ε ). Proof. It is enough to consider (s, x, ṽ) ∈ R × R 3 × R 3 such that |ṽ| ≤ R.
In that case we have, cf. Proposition 3.2 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] 

u(•, T ε ) ε (s, x, ṽ) = 1 S S 0 u(s + σ, T ε ((X ε , Ṽε )(σ; x, ṽ))) dσ = 1 S S 0 u(s + σ, (X, Ṽ)(σ; T ε (x, ṽ))) dσ = u (s, T ε (x, ṽ)).
We also need to adapt the result in Proposition 3.3 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] for S periodic functions.

Proposition 2.2 Let z ∈ C(R × R 3 × R 3 ) be a S periodic function of zero average z (s, x, ṽ) = 1 S S 0 z(s + σ, x, Ṽ(σ; x, ṽ)) dσ = 0, (s, x, ṽ) ∈ R × R 3 × R 3 .
1. There is a unique continuous S periodic function u of zero average whose derivative along the flow of

∂ s + b • ∇ x,ṽ is z (∂ s + b • ∇ x,ṽ )u = z, u = 0.
If z is bounded, so is u and

u C(R×B(Rx)×B(R ṽ )) ≤ S 2 z C(R×B(Rx)×B(R ṽ )) for any R x , R ṽ > 0. If supp z ⊂ R × B(R x ) × B(R ṽ), then supp u ⊂ R × B(R x ) × B(R ṽ).
2. If z is of class C 1 , then so is u and we have for any R x , R ṽ > 0

∇ ṽu C(R×B(Rx)×B(R ṽ )) ≤ S √ 3 ∇ ṽz C(R×B(Rx)×B(R ṽ )) ∇ x u C(R×B(Rx)×B(R ṽ )) ≤ C ∇ x z C(R×B(Rx)×B(R ṽ )) + R ṽ ∇ ṽz C(R×B(Rx)×B(R ṽ )) ∂ s u C(R×B(Rx)×B(R ṽ )) ≤ z C(R×B(Rx)×B(R ṽ )) + 2 √ 3R ṽ ∇ ṽz C(R×B(Rx)×B(R ṽ ))
for some constant C depending on ∂ x e L ∞ and S.

Proof.

1. Take

u(s, x, ṽ) = 1 S S 0 (σ -S)z(s + σ, (X, Ṽ)(σ; x, ṽ)) dσ, (s, x, ṽ) ∈ R × R 3 × R 3 .
2. Use the vector fields (c i • ∇ x,ṽ ) 1≤i≤6 , see Proposition 3.1 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], which are in involution with ∂ s + b • ∇ x,ṽ , since ∇ x ω c = 0.

The limit model and convergence result

We are ready to investigate the limit model in (4) as ε 0. In this case we intend to capture the fast oscillations due to the operator ∂ t + b ε ε • ∇ x,ṽ . We are looking for a development whose dominant term belongs to the kernel of

∂ t + b ε ε • ∇ x,ṽ . It is easily seen that for any function u ∈ ker(∂ s + b • ∇ x,ṽ ), we have u(•, T ε ) ∈ ker(∂ s + b ε • ∇ x,ṽ ), since u(s + σ, T ε ((X ε , Ṽε )(σ; x, ṽ))) = u(s + σ, (X, Ṽ)(σ; T ε (x, ṽ))) = u(s, T ε (x, ṽ)).
Similarly, for any S periodic function of zero average u = 0, the S periodic function

u(•, T ε ) has zero average u(•, T ε ) ε = u (•, T ε ) = 0.
The previous discussion suggests to consider the Ansatz

f ε (t) = fε (t, t/ε) • T ε + ε f 1 ε (t, t/ε) • T ε + ε 2 f 2 ε (t, t/ε) • T ε + . . . (5) 
where

(∂ s + b • ∇ x,ṽ ) fε = 0, f 1 ε = 0.
As in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], at the leading order, the particle density f ε has no fluctuation (with respect to the extended average operator), and the averages at the orders O(ε 0 ), O(ε) combine together in fε (t, t/ε) • T ε . Notice also that the constraint (∂ s +b•∇ x,ṽ ) fε = 0 is equivalent to fε (t, s, x, ṽ) = Fε (t, (X, Ṽ)(-s; x, ṽ)), for some function Fε (t). We are looking for a closure determining fε , f 1 ε . The error estimate will require to introduce the second order correction ε 2 f 2 ε (t, t/ε)•T ε . Plugging the Ansatz ( 5) in ( 4) we obtain

1 ε ∂ s fε (t, s) • T ε + ∂ t fε (t, s) • T ε + ∂ s f 1 ε (t, s) • T ε + ε∂ t f 1 ε (t, s) • T ε + ε∂ s f 2 ε (t, s) • T ε + . . . + c ε [ fε (t, s) • T ε + ε f 1 ε (t, s) • T ε + . . .] • ∇[( fε + ε f 1 ε + . . .)(t, s) • T ε ] + εa ε [( fε + . . .)(t, s) • T ε ] • ∇[( fε + . . .)(t, s) • T ε ] + b ε ε • ∇[( fε + ε f 1 ε + ε 2 f 2 ε + . . .)(t, s) • T ε ] = 0. By construction we have (∂ s + b ε • ∇)( fε • T ε ) = 0
, and therefore we deduce

∂ t fε (t, s) • T ε + (∂ s + b ε • ∇)(( f 1 ε + ε f 2 ε )(t, s) • T ε ) + ε∂ t f 1 ε (t, s) • T ε (6) + c ε [( fε + ε f 1 ε )(t, s) • T ε ] • ∇[( fε + ε f 1 ε )(t, s) • T ε ] + εa ε [ fε (t, s) • T ε ] • ∇[ fε (t, s) • T ε ] = O(ε 2 ).
We will take the (extended) average of ( 6) by discarding all second order contributions. Obviously we have

∂ t fε (t, •) • T ε ε = ∂ t fε (t, •) • T ε (∂ s + b ε • ∇ x,ṽ )( f 1 ε + ε f 2 ε )(t, •) • T ε ) ε = 0 ∂ t f 1 ε (t, •) • T ε ε = ∂ t f 1 ε (t, •) • T ε = ∂ t f 1 ε (t, •) • T ε = 0 and εa ε [ fε (t, s) • T ε ] • ∇ x,ṽ [ fε (t, s) • T ε ] = ε(a[ fε (t, s)] • ∇ x,ṽ fε (t, s)) • T ε + O(ε 2 ) which implies, cf. Proposition 2.1 εa ε [ fε (t, •) • T ε ] • ∇ x,ṽ [ fε (t, •) • T ε ] ε = ε (a[ fε (t, •)] • ∇ x,ṽ fε (t, •)) • T ε ε + O(ε 2 ) = ε a[ fε (t, •)] • ∇ x,ṽ fε (t, •) • T ε + O(ε 2 ).
We concentrate now on the term corresponding to the vector field

c ε • ∇ x,ṽ c ε [( fε + ε f 1 ε )(t, s) • T ε ] • [( fε + ε f 1 ε )(t, s) • T ε ] = c ε [ fε (t, s) • T ε ] • ∇( fε (t, s) • T ε ) + ε(c ε [ fε (t, s)] • ∇ f 1 ε (t, s)) • T ε + ε q m [(E[ f 1 ε (t, s)] • e)(e • ∇ ṽ fε (t, s)] • T ε + O(ε 2 ) = (c 0 [ fε (t, s)] • ∇ fε (t, s)) • T ε + ε(c 1 [ fε (t, s)] • ∇ fε (t, s)) • T ε + ε(c 0 [ fε (t, s)] • ∇ f 1 ε (t, s)) • T ε + ε q m [(E[ f 1 ε (t, s)] • e)(e • ∇ ṽ fε )] • T ε + O(ε 2 )
where

c 0 [ f ] • ∇ x,ṽ = (ṽ • e)e • ∇ x + q m (E[ f ] • e)e • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e)] • ∇ ṽ.
We claim that the average along the flow of

∂ s + b • ∇ x,ṽ of (E[ f 1 ε (t, s)] • e)e
• ∇ ṽ fε (t, s) vanishes. Indeed, as e • ∇ ṽ is in involution with respect to ∂ s + b • ∇ x,ṽ , we have

(∂ s + b • ∇ x,ṽ )(e • ∇ ṽ fε (t)) = e • ∇ ṽ((∂ s + b • ∇ x,ṽ ) fε (t)) = 0 implying that (E[ f 1 ε (t, •)] • e)(e • ∇ ṽ fε (t)) = E[ f 1 ε (t)] • e e • ∇ ṽ fε (t) = 0 because the charge density of f 1 ε (t) has zero average ρ[ f 1 ε (t)] (s, x) = q S S 0 R 3 f 1 ε (t, s + σ, x, ṽ) dṽdσ = q S S 0 R 3 f 1 ε (t, s + σ, x, Ṽ(σ; x, ṽ)) dṽdσ = q R 3 f 1 ε (t) (s, x, ṽ) dṽ = 0.
Therefore, thanks to Proposition 2.1 we obtain

[(E[ f 1 ε (t)] • e)(e • ∇ ṽ fε (t))] • T ε ε = (E[ f 1 ε (t)] • e)(e • ∇ ṽ fε (t)) • T ε = 0 and thus c ε [( fε (t, •) + ε f 1 ε (t, •)) • T ε ] • ∇[( fε (t, •) + ε f 1 ε (t, •)) • T ε ] ε = c 0 [ fε (t, •)] • ∇ fε (t, •) • T ε + ε c 1 [ fε (t, •)] • ∇ fε (t, •) • T ε + ε c 0 [ fε (t, •)] • ∇ f 1 ε (t, •) • T ε + O(ε 2 ).
The previous computations lead to the following model for the particle density fε

∂ t fε (t, s) + c 0 [ fε (t, •)] • ∇ fε (t, •) + ε (a[ fε (t, •)] + c 1 [ fε (t, •)]) • ∇ fε (t, •) (7) 
+ ε c 0 [ fε (t, •)] • ∇ f 1 ε (t, •) = 0, (t, s, x, ṽ) ∈ [0, T ] × R × R 3 × R 3
together with the constraint (∂ s + b • ∇ x,ṽ ) fε = 0. The equation for the fluctuation f 1 ε comes by comparing [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] with respect to [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF]. Indeed, we have

(∂ s + b ε • ∇)[( f 1 ε + ε f 2 ε )(t, s) • T ε ] = ∂ s ( f 1 ε + ε f 2 ε ) • T ε + ∂T ε b ε b•T ε •[∇( f 1 ε + ε f 2 ε )] • T ε = [(∂ s + b • ∇)( f 1 ε + ε f 2 ε )] • T ε
and therefore (6) also writes

∂ t fε (t, s) + (∂ s + b • ∇)( f 1 ε + ε f 2 ε ) + ε∂ t f 1 ε + c 0 [ fε (t, s)] • ∇ fε (t, s) (8) 
+ ε(a[ fε (t, s)] + c 1 [ fε (t, s)]) • ∇ fε (t, s) + εc 0 [ fε (t, s)] • ∇ f 1 ε (t, s) + ε q m (E[ f 1 ε (t, s)]•)(e • ∇ ṽ fε (t, s)) = O(ε 2 ).
Taking the difference between ( 8), ( 7) yields

c 0 [ fε (t, s)] • ∇ fε (t, s) -c 0 [ fε (t, •)] • ∇ fε (t, •) + ε(a[ fε (t, s)] + c 1 [ fε (t, s)]) • ∇ fε (t, s) -ε (a[ fε (t, •)] + c 1 [ fε (t, •)]) • ∇ fε (t, •) + εc 0 [ fε (t, s)] • ∇ f 1 ε (t, s) -ε c 0 [ fε (t, •)] • ∇ f 1 ε (t, •) + ε q m (E[ f 1 ε (t, s)] • e)(e • ∇ ṽ fε (t, s)) + (∂ s + b • ∇)( f 1 ε + ε f 2 ε ) + ε∂ t f 1 ε = O(ε 2 ).
The above equality suggests to determine the fluctuation f 1 ε by

c 0 [ fε (t, s)] • ∇ fε (t, s) -c 0 [ fε (t, •)] • ∇ fε (t, •) + (∂ s + b • ∇) f 1 ε (t, s) = 0, f 1 ε = 0 (9)
and to consider the corrector f 2 ε such that

(a[ fε (t, s)] + c 1 [ fε (t, s)]) • ∇ fε (t, s) -(a[ fε (t, •)] + c 1 [ fε (t, •)]) • ∇ fε (t, •) + c 0 [ fε (t, s)] • ∇ f 1 ε (t, s) -c 0 [ fε (t, •)] • ∇ f 1 ε (t, •) + q m (E[ f 1 ε (t, s)] • e)(e • ∇ ṽ fε (t, s)) + ∂ t f 1 ε + (∂ s + b • ∇) f 2 ε = 0, f 2 ε = 0.
The well posedness of ( 7), ( 9) is stated in Section 4, see Theorem 4.1. As in Theorem 1.2 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], we can establish the following error estimate. The proof details are left to the reader.

Theorem 3.1 Let B = Be ∈ C 4 b (R 3
) be a smooth magnetic field such that ∇ x B = 0, div x B = 0. Consider a non negative, smooth, compactly supported initial particle density G ∈ C 3 c (R 3 × R 3 ) and g(s, x, ṽ) = G(x, Ṽ(-s; x, ṽ)), (s, x, ṽ) ∈ R × R 3 × R 3 . We denote by (f ε ) 0<ε≤1 the solutions of the Vlasov-Poisson equations with external magnetic field (1), ( 2) on [0, T ], 0 < T < T (f in ), cf. Theorem 2.1 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], corresponding to the initial condition

f ε (0, x, v) = (g + εg 1 ) 0, x + ε v ∧ (x) ω c , v -ε E[ G] ∧ e(x) B , (x, v) ∈ R 3 × R 3 where c 0 [g] • ∇g -c 0 [g] • ∇g + (∂ s + b • ∇)g 1 = 0, g1 = 0.
For ε ∈]0, ε T ] small enough, we consider the solution fε = fε (t, s, x, ṽ) on [0, T ] of the problem

∂ t fε (t, s) + c 0 [ fε (t, •)] • ∇ fε (t, •) + ε (a[ fε (t, •)] + c 1 [ fε (t, •)]) • ∇ fε (t, •) + ε c 0 [ fε (t, •)] • ∇ f 1 ε (t, •) = 0, (t, s, x, ṽ) ∈ [0, T ] × R × R 3 × R 3 c 0 [ fε (t, s)] • ∇ fε (t, s) -c 0 [ fε (t, •)] • ∇ fε (t, •) + (∂ s + b • ∇) f 1 ε (t, s) = 0, f 1 ε = 0
corresponding to the initial condition fε (0, s, x, ṽ) = G(x, Ṽ(-s; x, ṽ)) = g(s, x, ṽ), (s, x, ṽ

) ∈ R × R 3 × R 3 .
Therefore there is a constant C T such that for any

0 < ε ≤ ε T sup t∈[0,T ]    R 3 R 3 f ε (t, x, v) -( fε + ε f 1 ε ) t, t/ε, x + ε v ∧ e ω c , v -ε E[ fε (t, t/ε)] ∧ e B 2 dvdx    1/2 ≤ C T ε 2 .

Equivalent formulation of the limit model

We determine now the equivalent formulation for ( 7), ( 9) by computing the average of the vector fields entering this model. Most of the computations has been performed in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], where the formulae for a • ∇, c 0 • ∇, c 1 • ∇ are detailed, and we only need to complete them by treating the extra terms due to the presence of the fast time variable.

Proposition 4.1

Assume that e ∈ C 2 (R 3 ), ∇ x ω c = 0, div x e = 0 and let us consider fε

∈ C 2 ([0, T ] × R × R 3 × R 3 ). Then fε solves ∂ t fε + c 0 [ fε ] • ∇ fε + ε (a[ fε ] + c 1 [ fε ]) • ∇ fε + ε c 0 [ fε ] • ∇ f 1 ε = 0, (∂ s + b • ∇) fε = 0 (10) c 0 [ fε ] • ∇ fε -c 0 [ fε ] • ∇ fε + (∂ s + b • ∇) f 1 ε = 0, f 1 ε = 0 ( 11 
)
iff fε satisfies fε (t, s, x, ṽ) = Fε (t, (X, Ṽ)(-s; x, ṽ)), where

∂ t Fε + c 0 [ Fε ] • ∇ Fε + ε a[ Fε ] + c 1 [ Fε ] • ∇ Fε + εD[ Fε ] • ∇ Fε = 0 (12) D[ F ] • ∇ X, Ṽ = j[ F ] ∧ e(X) 3 0 B + R 3 N (e(X), X -X , e(X ))j[ F ](X ) dX 8π 0 B ∧ e(X) • ∇ Ṽ + q m e ⊗ e E (e • rot X e) ( Ṽ • e) ω c F -E Ṽ ∧ e ω c • ∇ X F + d Ṽ (X, Ṽ ) • ∇ Ṽ d Ṽ (X, Ṽ ) = (c 0 • ∇ x,ṽ ) 3 k=1 [(A k ) -s cos(ksω c ) + (B k ) -s sin(ksω c )] (0, X, Ṽ ) f 1 ε (t, s, x, ṽ) = 3 k=1
[A k ((X, Ṽ)(-s; x, ṽ)) cos(ksω c ) + B k ((X, Ṽ)(-s; x, ṽ)) sin(ksω c )]

• (∇ Ṽ Fε (t))((X, Ṽ)(-s; x, ṽ)) [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF] where N (e, z, e ) = (I 3 -e⊗e)K(z

)(I 3 -e ⊗e )-M [e]K(z)M [e ], K(z) = (I 3 -3z ⊗ z/|z| 2 ) /|z| 3 A k (X, Ṽ ) = 1 kπ S 0 F(s, X, Ṽ ) sin(ksω c ) ds, B k (X, Ṽ ) = - 1 kπ S 0 F(s, X, Ṽ ) cos(ksω c ) ds for k ∈ {1, 2, 3} and 
F(s, X, Ṽ ) = ∂ x,ṽ Ṽ(-s; (X, Ṽ)(s; X, Ṽ ))c 0 ((X, Ṽ)(s; X, Ṽ )) c 0 (x, ṽ) • ∇ x,ṽ = (ṽ • e)e • ∇ x -[ṽ ∧ ∂ x e(ṽ ∧ e)] • ∇ ṽ.
Proof.

Clearly the constraint (∂ s + b • ∇) fε = 0 writes fε (t, s, x, ṽ) = Fε (t, (X, Ṽ)(-s; x, ṽ)) for some function Fε = Fε (t, X, Ṽ ) ∈ C 2 ([0, T ]×R 3 ×R 3 ). We need to compute the averages

c 0 [ fε ] • ∇ fε , (a[ fε ] + c 1 [ fε ]) • ∇ fε , c 0 [ fε ] • ∇ f 1 ε
along the flow of ∂ s +b•∇ x,ṽ and to invert the operator ∂ s + b • ∇ x,ṽ on zero average functions, in order to solve [START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF]. Recall that for any particle density f , the vector field a

[ f ] • ∇ x,ṽ writes a[ f ] • ∇ x,ṽ = E[ f ] ∧ e B -A x (x, ṽ) • ∇ x -∂ x E[ f ] ∧ e B ṽ • ∇ ṽ + 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ j[ f ](x ) dx ∧ e(x) • ∇ ṽ. We have ρ[ fε (t, s)] = ρ[ Fε (t)] implying that E[ fε (t, s)] = E[ Fε (t)] and j[ fε (t, s)](x) = R(-sω c , e(x))j[ Fε (t)](x)
and therefore

a[ fε (t, s)] • ∇ x,ṽ = a[ Fε (t)] • ∇ x,ṽ + a s [ Fε (t)] • ∇ ṽ where a s [ Fε ]•∇ ṽ = 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ [R(-sω c , e(x )) -I 3 ] j[ Fε ](x ) dx ∧ e(x) •∇ ṽ.
Thanks to the equality fε (t, s, x, ṽ) = fε (t, s + σ, (X, Ṽ)(σ; x, ṽ)) we have

∇ x,ṽ fε (t, s, x, ṽ) = t ∂(X, Ṽ)(σ; x, ṽ)(∇ fε )(t, s + σ, (X, Ṽ)(σ; x, ṽ)) implying that (∇ fε )(t, s + σ, (X, Ṽ)(σ; x, ṽ)) = t ∂(X, Ṽ)(-σ; (X, Ṽ)(σ; x, ṽ))∇ fε (t, s, x, ṽ) and (a[ fε ] • ∇ fε )(t, s + σ, (X, Ṽ)(σ; x, ṽ)) = ∂(X, Ṽ)(-σ; (X, Ṽ)(σ; x, ṽ))a[ Fε (t)]((X, Ṽ)(σ; x, ṽ)) • ∇ fε (t, s, x, ṽ) + R(σω c , e(x))a s+σ [ Fε (t)](x) • ∇ ṽ fε (t, s, x, ṽ).
Averaging with respect to σ, we obtain cf. Proposition 5.1 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] a

[ fε ] • ∇ fε (t, s, x, ṽ) = 1 S S 0 ∂(X, Ṽ)(-σ; (X, Ṽ)(σ; x, ṽ))a[ Fε (t)]((X, Ṽ)(σ; x, ṽ)) dσ • ∇ x,ṽ fε (t, s, x, ṽ) + 1 S S 0 R(σω c , e(x))a s+σ [ Fε (t)](x) dσ • ∇ ṽ fε (t, s, x, ṽ) = a[ Fε (t)] (x, ṽ) • ∇ x,ṽ fε (t, s, x, ṽ) + 1 S S 0 R(σω c , e(x))a s+σ [ Fε (t)](x) dσ • ∇ ṽ fε (t, s, x, ṽ) = ∂(X, Ṽ)(-s; x, ṽ) a[ Fε (t)] (x, ṽ) • (∇ X, Ṽ Fε )(t, (X, Ṽ)(-s; x, ṽ)) + 1 S S 0 R((s + σ)ω c , e(x))a s+σ [ Fε (t)](x) dσ • (∇ Ṽ Fε )(t, (X, Ṽ)(-s; x, ṽ)) = a[ Fε (t)] ((X, Ṽ)(-s; x, ṽ)) • (∇ X, Ṽ Fε )(t, (X, Ṽ)(-s; x, ṽ)) + 1 S S 0 R(σω c , e(x))a σ [ Fε (t)](x) dσ • (∇ Ṽ Fε )(t, (X, Ṽ)(-s; x, ṽ))
where a • ∇ has been computed in Proposition 5.4 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF]. Notice that in the last equality we have used the involution of a[ Fε (t)] • ∇ with respect to the vector field b • ∇, cf. Proposition 5.1 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF]. For the last average, observe that 

1 S S 0 R(σω c , e(x))a σ [ Fε (t)](x) dσ = 1 4π 0 BS S 0 R(σω c , e(x)) div x R 3 x -x |x -x | 3 ⊗ R(-σω c , e(x )
div x R 3 x -x |x -x | 3 ⊗ [cos(σω c )(I 3 -e(x ) ⊗ e(x )) -sin(σω c )M [e(x )] + e(x ) ⊗ e(x )]j[ Fε (t)] dx ∧ e(x) dσ = 1 4π 0 B I 3 -e ⊗ e 2 div x R 3 x -x |x -x | 3 ⊗ [I 3 -e(x ) ⊗ e(x )]j[ Fε (t)](x ) dx ∧ e(x) - 1 4π 0 B M [e] 2 div x R 3 x -x |x -x | 3 ⊗ M [e(x )]j[ Fε (t)](x ) dx ∧ e(x) = - M [e] 8π 0 B lim δ 0 |x-x |>δ [I 3 -e(x) ⊗ e(x)](x -x ) |x -x | 3 div{[I 3 -e(x ) ⊗ e(x )]j[ Fε (t)](x )} dx + M [e] 8π 0 B lim δ 0 |x-x |>δ M [e(x)](x -x ) |x -x | 3 div{M [e(x )]j[ Fε (t)](x )} dx = - M [e(x)] 8π 0 B lim δ 0 |x-x |>δ N (e(x), x -x , e(x ))j[ Fε (t)](x ) dx - M [e(x)] 8π 0 B lim δ 0 |x-x |=δ {[I 3 -e(x) ⊗ e(x)] x -x |x -x | 3 ⊗ [I 3 -e(x ) ⊗ e(x )] x -x |x -x | + M [e(x)] x -x |x -x | 3 ⊗ M [e(x )] x -x |x -x | }j[ Fε (t)](x ) dσ(x )
where 

K(z) = (I 3 -3 z |z| ⊗ z |z| )/|z| 3 , z ∈ R 3 \ {0}, N (e,
{(I 3 -e(x) ⊗ e(x)) x -x |x -x | 3 ⊗ (I 3 -e(x ) ⊗ e(x )) x -x |x -x | + M [e(x)] x -x |x -x | 3 ⊗ M [e(x )] x -x |x -x | }j[ Fε (t)](x )dσ(x ) = |z|=1 {(I 3 -e(x) ⊗ e(x))z ⊗ (I 3 -e(x + δz) ⊗ e(x + δz))z + M [e(x)]z ⊗ M [e(x + δz)]z}j[ Fε (t)](x + δz)dσ(z) → δ 0 |z|=1 {(I 3 -e(x) ⊗ e(x))z ⊗ (I 3 -e(x) ⊗ e(x))z + M [e(x)]z ⊗ M [e(x)]z}dσ(z) j[ Fε (t)](x) = |z|=1 |z ∧ e(x)| 2 (I 3 -e(x) ⊗ e(x))dσ j[ Fε (t)](x) = 8π 3 (I 3 -e(x) ⊗ e(x)) j[ Fε (t)](x).
Therefore the average of a[ fε ] • ∇ x,ṽ fε writes

a[ fε ] • ∇ fε (t, s, x, ṽ) = a[ Fε (t)] • ∇ X, Ṽ Fε (t) ((X, Ṽ)(-s; x, ṽ)) (14) - e(x) 
8π 0 B ∧ lim δ 0 |x-x |>δ N (e(x), x -x , e(x ))j[ Fε (t)](x ) dx • (∇ Ṽ Fε (t))((X, Ṽ)(-s; x, ṽ)) + j[ Fε (t)](x) ∧ e(x) 3 0 B • (∇ Ṽ Fε (t))((X, Ṽ)(-s; x, ṽ)).
We inquire about the convergence, when δ 0 of

|x-x |>δ N (e(x), x -x , e(x ))j[ Fε ](x ) dx = δ<|x-x |<R N (e(x), x -x , e(x ))(j[ Fε ](x ) -j[ Fε ](x)) dx + δ<|x-x |<R N (e(x), x -x , e(x )) dx j[ Fε ](x)
for R large enough. We are done if we establish the convergence of 1 {δ<|x-x |<R} N (e(x), xx , e(x )) dx when δ 0. But we can write

δ<|x-x |<R N (e(x), x -x , e(x )) dx = δ<|x-x |<R (N (e(x), x -x , e(x )) -N (e(x), x -x , e(x))) dx + δ<|x-x |<R
N (e(x), x -x , e(x)) dx and therefore it is enough to prove the convergence, as δ 0, of 1 {δ<|x-x |<R} N (e(x), xx , e(x)) dx . Actually, for any r > 0 we have |z|=r N (e(x), z, e(x)) dσ(z) = 0. This is a consequence of the fact that K(z) has zero trace for any z ∈ R 3 \ {0}. Indeed, for any ξ ∈ R 3 we have 

K(z) : (I 3 -e ⊗ e)ξ ⊗ (I 3 -e ⊗ e)ξ + K(z) : M [e]ξ ⊗ M [e]ξ + |ξ ∧ e| 2 K(z) : e ⊗ e = |ξ ∧ e| 2 traceK(z) = 0, z ∈ R 3 \ {0}
c 0 [ fε ] • ∇ x,ṽ fε (t, s, x, ṽ) = c 0 [ Fε (t)] • ∇ X, Ṽ Fε (t) ((X, Ṽ)(-s; x, ṽ)) (15) 
where c 0 • ∇ has been computed in Proposition 5.5 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF]. In order to treat the average of c 1 [ fε ] • ∇ x,ṽ fε we need to compute E[(ṽ ∧ e) • ∇ x fε ] and therefore the charge density q R 3 (ṽ ∧ e) • ∇ x fε (t, s, x, ṽ) dṽ = q div x R 3 fε (t, s, x, ṽ)(ṽ ∧ e) dṽ

-q R 3 fε (t, s, x, ṽ)div x (ṽ ∧ e) dṽ = div x (j[ fε (t, s)] ∧ e) + j[ fε (t, s)] • rot x e = e • rot x (R(-sω c , e(x))j[ Fε (t)]).
We obtain the following formula for the vector field

c 1 • ∇ c 1 [ fε (t, s)] • ∇ x,ṽ = c 1 [ Fε (t)] • ∇ x,ṽ + c 1s [ Fε (t)] • ∇ ṽ where c 1s [ Fε ] • ∇ ṽ = 1 B
E[e • rot x ((R(-sω c , e(x)) -I 3 )ṽ Fε )] • e e • ∇ ṽ and therefore

c 1 [ fε ] • ∇ fε (t, s, x, ṽ) = c 1 [ Fε (t)] • ∇ X, Ṽ Fε (t) ((X, Ṽ)(-s; x, ṽ)) + 1 S S 0 R(σω c , e(x))c 1σ [ Fε (t)](x) dσ • (∇ Ṽ Fε (t))((X, Ṽ)(-s; x, ṽ))
where c 1 • ∇ has been computed in Proposition 5.6 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF]. As before, the last average writes Finally the average of c 1 [ fε ] • ∇ x,ṽ fε is given by

c 1 [ fε ] • ∇ x,ṽ fε (t, s, x, ṽ) = c 1 [ Fε (t)] • ∇ X, Ṽ Fε (t) ((X, Ṽ)(-s; x, ṽ)) (16) + q m E (e•rot x e) (ṽ•e) ω c Fε (t) •e -E ṽ∧e ω c •∇ X Fε (t)
•e e•(∇ Ṽ Fε (t))((X, Ṽ)(-s; x, ṽ)).

We concentrate now on the average of c 0 [ fε ] • ∇ x,ṽ f 1 ε . Before ending the proof of Proposition 4.1, we need to generalize the Proposition 5.2 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] to the periodic case.

Proposition 4.2

Assume that e ∈ C 2 (R 3 ), ∇ x ω c = 0, div x e = 0. Let χ • ∇ s,x,ṽ = χ s ∂ s + χ x • ∇ x + χ ṽ • ∇ ṽ be a C 1 vector field on R × R 3 × R 3 , S periodic with respect to s. There is a continuous vector field ξ • ∇ s,x,ṽ = ξ s ∂ s + ξ x • ∇ x + ξ ṽ • ∇ ṽ in involution with respect to ∂ s + b • ∇ x,ṽ , such that for any S periodic function u

∈ C 2 (R × R 3 × R 3 ) ∩ ker(∂ s + b • ∇ x,ṽ ) χ • ∇ s,x,ṽ u 1 = ξ • ∇ s,x,ṽ u (17) 
where

χ • ∇ s,x,ṽ u -χ • ∇ s,x,ṽ u + (∂ s + b • ∇ x,ṽ )u 1 = 0, u 1 = 0 and χ • ∇ s,x,ṽ ϕ = ξ s ( 18 
)
where χ s -χ s + (∂ s + b • ∇ x,ṽ )ϕ = 0, ϕ = 0.

Proof.

The vector field ξ is uniquely determined by imposing ( 17) with (X, Ṽ)(-s; x, ṽ) ∈ ker(∂ s + b • ∇ x,ṽ ) and ( 18)

χ • ∇ s,x,ṽ U 1 = -ξ s b((X, Ṽ)(-s; x, ṽ)) + ∂ x,ṽ (X, Ṽ)(-s; x, ṽ)ξ x,ṽ
where U 1 is the unique solution of χ•∇ s,x,ṽ (X, Ṽ)(-s; x, ṽ)-χ • ∇ s,x,ṽ (X, Ṽ)(-s; x, ṽ) +(∂ s +b•∇ x,ṽ )U 1 = 0, U 1 = 0 (19) and χ • ∇ s,x,ṽ ϕ = ξ s , χ s -χ s + (∂ s + b • ∇ x,ṽ )ϕ = 0, ϕ = 0.

It remains to check that (17) holds true for any u(s, x, ṽ) = U (z), z = (X, Ṽ)(-s; x, ṽ), U ∈ C 2 . We use the notation f s (x, ṽ) = f ((X, Ṽ)(s; x, ṽ)), for any function f . As χ•∇ s,x,ṽ u = (∇ z U ) -s • (χ • ∇ s,x,ṽ )(X, Ṽ)(-s; x, ṽ), it comes that the solution u 1 of

χ • ∇ s,x,ṽ u -χ • ∇ s,x,ṽ u + (∂ s + b • ∇ x,ṽ )u 1 = 0, u 1 = 0 is given by u 1 = (∇ z U ) -s • U 1
, where U 1 is the unique solution of (19). Therefore we have

χ • ∇ s,x,ṽ u 1 = (∇ z U ) -s • χ • ∇ s,x,ṽ U 1 + (χ • ∇ s,x,ṽ )(∇ z U ) -s • U 1 = (∇ z U ) -s • (ξ • ∇ s,x,ṽ )(X, Ṽ)(-s; x, ṽ) + (χ • ∇ s,x,ṽ )(∇ z U ) -s • U 1 = ξ • ∇ s,x,ṽ u + (χ • ∇ s,x,ṽ )(∇ z U ) -s • U 1
and we are done provided that the last average vanishes. Indeed, as U 1 = 0 we write, thanks to the symmetry of the Hessian matrix (∂

2 z U ) -s (χ • ∇ s,x,ṽ )(∇ z U ) -s • U 1 = (∂ 2 z U ) -s (χ • ∇ s,x,ṽ )(X, Ṽ)(-s; x, ṽ) • U 1 = (∂ 2 z U ) -s χ • ∇ s,x,ṽ (X, Ṽ)(-s; x, ṽ) -χ • ∇ s,x,ṽ (X, Ṽ)(-s; x, ṽ) • U 1 = - 1 2 (∂ s + b • ∇ x,ṽ ) (∂ 2 z U ) -s U 1 • U 1 = 0. Remark 4.1
We check that if χ s = 0, then ξ s = 0 and if ∂ s χ = 0, then ∂ s ξ = 0. Therefore if χ(x, ṽ) • ∇ x,ṽ is a C 1 vector field, there is a continuous vector field ξ(x, ṽ) • ∇ x,ṽ in involution with respect to ∂ s + b • ∇ x,ṽ (and therefore with respect to b • ∇ x,ṽ ) such that for any S periodic function u

∈ C 2 (R × R 3 × R 3 ) ∩ ker(∂ s + b • ∇ x,ṽ ) we have χ • ∇ x,ṽ u 1 = ξ • ∇ x,ṽ u where χ • ∇ x,ṽ u -χ • ∇ x,ṽ u + (∂ s + b • ∇ x,ṽ )u 1 = 0, u 1 = 0.
In particular, for any function

u ∈ C 2 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) we have χ • ∇ x,ṽ u 1 = ξ • ∇ x,ṽ u
where u 1 = u 1 (x, ṽ) is the unique solution of

χ • ∇ x,ṽ u -χ • ∇ x,ṽ u + b • ∇ x,ṽ u 1 = 0, u 1 = 0
see also Proposition 5.2 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF].

Thanks to the previous result, we compute the average of c 0

[ fε ] • ∇ x,ṽ f 1 ε . Proposition 4.3 Assume e ∈ C 2 (R 3 ), ∇ x ω c = 0, div x e = 0.
There is a vector field d(x, ṽ) • ∇ x,ṽ in involution with respect to b • ∇ x,ṽ such that for any

S periodic f ∈ C 2 c (R × R 3 × R 3 ) ∩ ker(∂ s + b • ∇ x,ṽ ) we have c 0 [ f ] • ∇ x,ṽ f 1 = d(x, ṽ) • ∇ x,ṽ f where f 1 solves c 0 [ f ] • ∇ x,ṽ f -c 0 [ f ] • ∇ x,ṽ f + (∂ s + b • ∇ x,ṽ ) f 1 = 0, f 1 = 0. Proof. Recall that c 0 [ f ] • ∇ x,ṽ = (ṽ • e)e • ∇ x + q m (E[ f ] • e)e • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e)] • ∇ ṽ. As f ∈ ker(∂ s + b • ∇ x,ṽ ), we deduce that ∂ s ρ[ f ] = 0 and therefore the vector field (E[ f ] • e)e • ∇ ṽ is in involution with respect to b • ∇ x,ṽ and ∂ s + b • ∇ x,ṽ , implying that q m (E[ f ] • e)e • ∇ ṽ f - q m (E[ f ] • e)e • ∇ ṽ f = 0 and q m (E[ f ] • e)e • ∇ ṽ f 1 = q m (E[ f ] • e)e • ∇ ṽ f 1 = 0.
Our conclusion follows by applying Proposition 4.2 with the vector field c 0 • ∇ x,ṽ = (ṽ • e)e • ∇ x -[ṽ ∧ ∂ x e(ṽ ∧ e)] • ∇ ṽ, whose average is cf. Proposition 5.5 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF], see also Remark 4.1

c 0 • ∇ x,ṽ = (ṽ • e) e • ∇ x + (∂ x ee ⊗ e -e ⊗ ∂ x ee)ṽ • ∇ ṽ + (rot x e • e) 2 
(ṽ ∧ e) • ∇ ṽ .

In order to express f 1 in terms of f (s, x, ṽ) = F ((X, Ṽ)(-s; x, ṽ)), observe that (c 0 • ∇ x,ṽ f )(s + σ, (X, Ṽ)(σ; x, ṽ)) = c 0 ((X, Ṽ)(σ; x, ṽ))

• t ∂(X, Ṽ)(-σ, (X, Ṽ)(σ; x, ṽ)) t ∂(X, Ṽ)(-s; x, ṽ)(∇ F ) -s = ∂(X, Ṽ)(-s; x, ṽ)∂(X, Ṽ)(-σ, (X, Ṽ)(σ; x, ṽ))c 0 ((X, Ṽ)(σ; x, ṽ)) • (∇ F ) -s c 0 • ∇ x,ṽ f (s, x, ṽ) = ∂(X, Ṽ)(-s; x, ṽ) c 0 (x, ṽ) • (∇ F ) -s = ( c 0 • ∇ F ) -s implying that ∂(X, Ṽ)(-s; x, ṽ)c 0 (x, ṽ) • ∇ X, Ṽ F -s -c 0 • ∇ X, Ṽ F -s + (∂ s + b • ∇ x,ṽ ) f 1 = 0 or equivalently [∂(X, Ṽ)(-s; (X, Ṽ)(s; X, Ṽ ))c 0 ((X, Ṽ)(s; X, Ṽ )) -c 0 (X, Ṽ )] • ∇ X, Ṽ F + d ds f 1 (s, (X, Ṽ)(s; X, Ṽ )) = 0.
Clearly we have

∂ x,ṽ X(-s; (X, Ṽ)(s; X, Ṽ ))c 0 ((X, Ṽ)(s; X, Ṽ )) -c 0 x (X, Ṽ ) = 0
and therefore the previous equality becomes [∂ x,ṽ Ṽ(-s; (X, Ṽ)(s; X, Ṽ ))c 0 ((X, Ṽ)(s; X, Ṽ )) -c 0 ṽ (X, Ṽ )] • ∇ Ṽ F + d ds f 1 (s, (X, Ṽ)(s; X, Ṽ )) = 0.

Let us introduce the function F(s, X, Ṽ ) := ∂ x,ṽ Ṽ(-s; (X, Ṽ)(s; X, Ṽ ))c 0 ((X, Ṽ)(s; X, Ṽ ))

= ∂ x Ṽ(-s; (X, Ṽ)(s; X, Ṽ ))(c 0x ) s + ∂ ṽ Ṽ(-s; (X, Ṽ)(s; X, Ṽ ))(c 0ṽ [A k ((X, Ṽ)(-s; x, ṽ)) cos(ksω c ) + B k ((X, Ṽ)(-s; x, ṽ)) sin(ksω c )]

• (∇ Ṽ F )((X, Ṽ)(-s; x, ṽ)).

In particular the solution of c 0 •∇ x,ṽ (X, Ṽ)(-s; x, ṽ)-c 0 • ∇ x,ṽ (X, Ṽ)(-s; x, ṽ) +(∂ s +b•∇ x,ṽ )U 1 = 0, U 1 = 0 is given by

U 1 = (0, 3 k=1 
[A k ((X, Ṽ)(-s; x, ṽ)) cos(ksω c ) + B k ((X, Ṽ)(-s; x, ṽ)) sin(ksω c )])

and the vector field d(x, ṽ) • ∇ x,ṽ writes, cf. Proposition 4.2, Remark 4.1 d(x, ṽ) • ∇ x,ṽ = d ṽ • ∇ ṽ = (c 0 • ∇ x,ṽ )U 1 ṽ (0, x, ṽ) • ∇ ṽ = (c 0 • ∇ x,ṽ ) 3 k=1

[(A k ) -s cos(ksω c ) + (B k ) -s sin(ksω c )] (0, x, ṽ) • ∇ ṽ.

Actually the vector field d • ∇ x,ṽ is parallel to the vector field b • ∇ x,ṽ . If f (s, x, ṽ) =

|ṽ| 2
2 ∈ ker(∂ s + b • ∇ x,ṽ ), we have c 0 • ∇ x,ṽ f -c 0 • ∇ x,ṽ f = 0 and f 1 = 0. As in the proof of Proposition 5.7 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF] we deduce that d ṽ(x, ṽ) • ṽ = 0. Similarly, considering f (s, x, ṽ) = (ṽ • e(x)) ∈ ker(∂ s + b • ∇ x,ṽ ), we obtain f 1 (s, x, ṽ) = (ṽ • e) ω c ∂ x ee • (ṽ ∧ e) -∂ x e : (ṽ ∧ e) ⊗ (ṽ -(ṽ • e)e) + (ṽ -(ṽ • e)e) ⊗ (ṽ ∧ e) 4ω c and d ṽ(x, ṽ) • e = 0, cf. Proposition 5.7 [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF].

We come back to the proof of Proposition 4. = ∂(X, Ṽ)(-s; x, ṽ)d(x, ṽ) • (∇ X, Ṽ Fε (t))((X, Ṽ)(-s; x, ṽ)) = (d • ∇ X, Ṽ Fε (t)) -s . The equation [START_REF] Littlejohn | Variational principles of guiding centre motion[END_REF] follows by the equation [START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF], thanks to the equalities ( 14), ( 15), ( 16), (20), which ends the proof of Proposition 4.1.

  )j[ Fε (t)](x ) dx ∧ e(x) σω c )(I 3 -e(x) ⊗ e(x)) + sin(σω c )M [e(x)] + e(x) ⊗ e(x)]

  z, e ) = (I 3 -e ⊗ e)K(z)(I 3e ⊗ e ) -M [e]K(z)M [e ], e, z, e ∈ R 3 \ {0}, |e| = |e | = 1. Performing the change of variable x = x + δz in the last integral yields |x-x |=δ

3 .

 3 e, z, e) + (K(z)e • e)(I 3 -e ⊗ e)] : ξ ⊗ ξ = 0, ξ ∈ R As the matrix N (e, z, e) + (K(z)e • e)(I 3 -e ⊗ e) is symmetric, we obtain N (e, z, e) = -(K(z)e • e)(I 3 -e ⊗ e). By direct computation we obtain |z|=r (K(z)e • e) dσ(z) = 0, r > 0. Similarly we have

1 S S 0 R 0 E

 100 (σω c , e(x))c 1σ [ Fε (t)](x) dσ = e ⊗ e BS S [e • rot x ((R(-σω c , e) -I 3 )ṽ Fε )] dσ = e ⊗ e B E[e • rot x ((e ⊗ e -I 3 )ṽ Fε (t))] = e ⊗ e B E[(e • rot x e)(ṽ • e) Fε (t)] -e ⊗ e B E[(ṽ ∧ e) • ∇ x Fε (t)].

S S 0 f 1 3 k=1[ 3 k=1[ 0 F 0 F

 013300 ) s = ( Ṽ • e)[(1 -cos(sω c ))(∂ x ee ⊗ e + e ⊗ ∂ x ee) Ṽ(s; X, Ṽ ) + sin(sω c )∂ x ee ∧ Ṽ(s; X, Ṽ )] -[cos(sω c )(I 3 -e ⊗ e) + sin(sω c )M [e] + e ⊗ e]( Ṽ(s; X, Ṽ ) ∧ ∂ x e( Ṽ(s; X, Ṽ ) ∧ e))and therefore the S periodic function s → f 1 (s, (X, Ṽ)(s; X, Ṽ )) has no Fourier modes at the frequencies kω c , k ≥ 4. Moreover, since 1 (s, (X, Ṽ)(s; X, Ṽ )) ds = f 1 (0, X, Ṽ ) = 0 we deduce thatf 1 (s, (X, Ṽ)(s; X, Ṽ )) = A k (X, Ṽ ) cos(ksω c ) + B k (X, Ṽ ) sin(ksω c )] • ∇ Ṽ F d ds f 1 (s, (X, Ṽ)(s; X, Ṽ )) = -kω c A k (X, Ṽ ) sin(ksω c )+kω c B k (X, Ṽ ) cos(ksω c )]•∇ Ṽ Ffor some vector fields (A k , B k ) 1≤k≤3 to be determined. We have for k ∈ {1, 2, 3}A k (X, Ṽ ) = 1 kπ S (s, X, Ṽ ) sin(ksω c ) ds, B k (X, Ṽ ) = -1 kπS (s, X, Ṽ ) cos(ksω c ) ds and finally we obtain f 1 (s, x, ṽ) = 3 k=1

1 . 1 ε

 11 We know by Proposition 4.3 that fε ∈ ker(∂ s + b • ∇ x,ṽ ) andc 0 [ fε ] • ∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε + (∂ s + b • ∇ x,ṽ ) f 1 ε also the involution of d • ∇ with respect to b • ∇) c 0 [ fε ] • ∇ x,ṽ f = d(x, ṽ) • ∇ x,ṽ fε(20)
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Remark 4.2 When the particle density Fε satisfies the constraint b•∇ X, Ṽ Fε = 0, we have f ε (t, x, ṽ) ≈ fε (t, t/ε, x, ṽ) = Fε (t, (X, Ṽ)(-t/ε; x, ṽ)) = Fε (t, x, ṽ). Therefore the model [START_REF] Littlejohn | Variational principles of guiding centre motion[END_REF] reduces to the model with well prepared initial conditions (64) [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF]. Indeed, if the particle density verifies b • ∇ X, Ṽ F = 0, we claim that D[ F ] = 0. Clearly we have j[ F ] = ρ[( Ṽ • e) F ]e, implying that j[ F ] ∧ e = 0, N (e(X), X -X , e(X ))j[ F (X )] = 0 and (see also Remark 5.3 [6])

As we know that d • ∇ x,ṽ is parallel to b • ∇ x,ṽ , we also have

The well posedness of the model ( 10), [START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF], or equivalently ( 12), ( 13), thanks to Proposition 4.1, follows by standard arguments when analyzing Vlasov-Poisson like equations.

The details are left to the reader.

Theorem 4.1 Consider a non negative, smooth, compactly supported initial particle density Fin ∈ C 1 c (R 3 × R 3 ) and a smooth magnetic field

), ∇ x B = 0, B = 0, div x e = 0. Let T be any positive time. Then it exists ε T > 0 such that for any 0 < ε ≤ ε T there is a unique particle density

and Fε (0, X, Ṽ ) = Fin (X, Ṽ ), (X, Ṽ ) ∈ R 3 × R 3 .

If for some integer k ≥ 2 we have