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Is an Inquiry-Based Approach Possible at the 
Elementary School?
Magali Hersant and Christine Choquet

The value of problem solving to promote mathematical understanding and learning is 
recognized equally by mathematicians, teachers’ trainers and teachers. However, in spite 
of this agreement to associate mathematical activity with problem solving, problem 
solving has had multiple and often contradictory meanings through the years (Schoenfeld, 
1992, p. 337). This subject is regularly approached and questioned on international 
colloquiums such as ICME-13.

Santos-Trigo recognizes that “research in problem solving has generated interesting ideas 
and useful results to frame and discuss paths for students to develop mathematical 
knowledge and problem solving proficiency” (Santos-Trigo, 2013, p. 500). But he also 
notices that “it is not clear how teachers implement and assess their stu- dents’ 
development of problem solving competencies” (ibid., 2013, p. 500). In this area, 
questions about problem posing especially emerge. As generation of new problems or 
reformulations of given problems (Silver, 1994) problem posing is epistemologically 
relevant for teaching and learning mathematics. Indeed, mathematicians, physicists and 
epistemologists like Hadamard, Einstein, Popper and Bachelard seem to agree that posing 
an interesting problem is more important than solving it. Following Singer, Ellerton, and 
Cai (2013), we can link problem posing experiences to “development of abilities, 
attitudes and creativity, and its interrelation with problem solving and studies on when 
and how problem solving sessions should take place” (Malaspina, 2016, p. 34). Likewise, 
it provides information about the ways to pose new problems and about the need for 
teachers to develop abilities to handle complex situations in problem solving contexts. So, 
problem posing seems to be an interesting topic to both study teaching and learning 
mathematics.

Inquiry is at the heart of problem posing (Singer et al., 2013). In Europe, over the last 
decade, the institutional willingness to promote Inquiry Based Learning (IBL) in 
mathematics revive interest on problem solving and posing to teach and learn math- 
ematics at every level of education. But the conditions and constraints which might favor, 
or on the contrary hinder, implementation of IBL in mathematics and learning 
mathematics with IBL must still be specified. Dorier and Garcia (2013) considered that 
teachers play a central role in an institutional system and that attention should be paid to 
teachers’ training, especially for primary school. They also mentioned the importance of 
the resources that should contained didactical comments.

In this context, we address the question of the possibilities of learning mathematics based 
on an inquiry approach at French elementary school, as far as most of elementary school 
teachers have a weak scientific background and therefore a weak experience on posing 
problems. To this end, we propose to study two well-contrasted case studies using IBL for 



mathematics learning in ordinary teaching context and in didactic engineering context 
and, within, describe and characterize some conditions of possibilities of learning 
mathematics with inquiry at French elementary school. Taking into account previous 
studies about inquiry-based learning in mathematics and its implementation in the 
classroom, in the European context (Sect. 6.1), we hypothesize that these conditions are 
both determined by the problem and by the activity of the teacher as he supports students’ 
activity. To characterize the conditions on the problem we introduce the notion of 
potential of inquiry. To identify conditions attached to the teachers’ practices we rely on 
the analyze of the students’ activity with the leaning by problematization framework 
(Fabre & Orange, 1997). This theoretical framework is strongly anchored in science 
epistemology (Popper, 1972; Bachelard, 1970) and in inquiry (Dewey, 1938; Fabre, 
2005), as we will explain it (Sect. 6.2). Within this framework posing problem is as 
important as solving it and problem posing is considered as a way to explore what 
conditions and possibilities for problems or situations to engage students in problem 
posing activities. Indeed, we can identify within this framework whether teachers’ in-class 
activity allowed problem posing and solving for the students.

6.1 Inquiry-Based Learning: An Inquiry Processes That Is Difficult to 
Implementation in Classroom

The promotion of a teaching of mathematics by IBL appears as a world movement even if 
the epistemological outlines and the didactic stakes are to be specified. Attempts to 
implement IBL in mathematics are made and numerous research projects concerning the 
inquiry in sciences and in mathematics have been carried out dur- ing the last 20 years 
(Erh-Tsung, & Fou-Lai, 2013; Engeln, Euler, & Maaß, 2013; O’Shea & Leavy, 2013). 
Our review of literature shows that the definition of IBL is not stabilized in the field of the 
international didactics. However, IBL appears strongly connected with inquiry as we will 
bring it out. Furthermore, this survey also highlights difficulties to implement IBL in day-
to-day teaching.

6.1.1 IBL and Inquiry

IBL is anchored at the same time in the investigation and in the construction of 
knowledge about reasoning in a critical way, in reference to the philosopher Dewey 
(1859–1952) (Linn, Davis, & De Bell, 2004; Rocard et al., 2007). This inquiry pro- 
gresses through the interactions between unknown elements, that raise questions, and 
known elements that allow to analyze these unknown elements and to form hypotheses or 
still to connect some elements in already lived experimentations. Thus, an essential 
function of IBL is to organize the field of experimentation of the students and the 
development of attitudes of learning based on the practice of reflexive activ- ities like 
inquiry (Dewey, 2011; Hétier, 2008). The term “inquiry-based learning” refers to student-
centered ways of teaching by posing questions, exploring situations and developing their 
own ways towards solutions. It thus reaffirms the link between inquiry and problem 
posing (Maaß & Artigue, 2013).



In Europe, an institutional context has intended to promote IBL for teaching and learning 
mathematics (Rocard et al., 2007) and several European research projects have been 
conducted to help in the development of new practices of mathematics teaching. We can 
especially mention the Fibonacci project (2010–2013; led by the Ecole Normale 
Supérieure, France and the University of Bayreuth, Germany), the LEMA project (2008, 
2010; 6 European countries) and the PRIMAS project (2010–2013: 14 universities, 12 
European countries) both rooted in the Pedagogical University of Freiburg.

We notice that the cited above projects put forward the wealth of a work of modelling and 
then most of the time propose IBL from a modelling context. But we make assumption 
that some other kinds of problems can also lead to mathematical inquiry. In this paper, we 
illustrate this possibility with a discrete optimization problem (problem 2).

Outcomes of these projects include propositions of IBL situations that support the 
development of mathematics teaching practices and identification of difficulties of 
implementation for the teachers. This latter especially draws our attention for our work.

6.1.2 Difficulties of Implementation

Within PRIMAS project, which objective was the developing of devices of pre- service 
and in-service teachers’ training, Dorier and Garcia (2013) identified the conditions and 
constraints that might favor, or on the contrary, hinder a large-scale implementation of 
inquiry-based mathematics and science education.

In most countries, it seems that teachers find it difficult to choose statements and to 
implement in class activities based on inquiry (Dorier & Garcia, 2013; Schoenfeld & 
Kilpatrick, 2013). It also seems difficult to define and to distribute the responsibilities 
between students and the teacher in front of proposed tasks. The teachers do not feel at 
ease with sharing students’ results to compare their productions, with organizing them 
into a hierarchy and with implementing mathematical debates (Inoue & Buczynski, 2011). 
These difficulties that are related to the process of institutionalization (Choquet, 2014) do 
not seem specific to the IBL. They are well-known about problem solving.

Having identified and explained these difficulties, research proposed improvements in 
order to promote and develop IBL in rights conditions leading to students’ learning. First, 
types of resources (textbooks, websites) are different among countries and it seems 
important to propose to teachers’ resources promoting IBL “accompanied by didactical 
comments on how it can be efficiently implemented in class and embedded into a device 
to be used for professional development” (Dorier & Garcia, 2013, p. 849). Second, 
studies show the central role played by the use of digital technology in problem solving 
and in particular in the IBL:

“There is a need to develop or adjust current problem-solving frameworks [...] to characterize the ways of 
reasoning, including the use of new heuristics, for example, dragging in dynamic representations, with which 
students construct learning in a result of using digital tools in problem-solving approaches” (Santos-Trigo, 2013, 
p. 500). And it also seems necessary “to develop methodological tools to observe, analyze, and evaluate group’s 
problem-solving behaviors that involve the use of digital technology” (Ibid., p. 500). This use should not be 



reduced to the exploration of the problem to establish hypothesis but it has to be a part of all the resolution’s 
process of the problem. (Artigue, 2012)

Third, even if curricula in all countries support IBL (Dorier & Garcia, 2013), the 
elementary teachers’ mathematical and science competencies include a weak didactical 
qualification to implement an IBL approach in their class. That’s why pre-service and in-
service teachers’ training might be increased especially on IBL.

In the French context, institutional aims greatly emphasized the fact that math- ematics 
teaching should contribute to the development of students’ inquiry competences. Low 
scores of French students to PISA problem solving samples, and disaffection of scientific 
programs at University are the two main reasons mentioned to support these injunctions. 
The mathematics curriculum of primary school (2016) affirms again the importance of 
developing problem solving students’ competences, especially through the resolution of 
real-word problems. French elementary school teachers have to teach mathematics and 
sciences even if they are not specialist in these matters (Artigue, 2011). There exist strong 
links between IBL in sciences and in mathematics education, especially the fact that 
inquiry is the core of mathemat- ical and scientific activities (Hersant & Orange-
Ravachol, 2015). But, there also exist differences that make it difficulty to implement and 
require a specific teachers’ training.

In the following part, taking into account research results presented here, we present the 
theoretical framework of learning by problematization (Fabre & Orange, 1997) that 
allows to envisage mathematical problems solving in terms of inquiry, which “can spread 
and produce solutions to [these] problems but also establish neces- sities to which they 
are subjected” (Hersant & Orange-Ravachol, 2015, p. 100).

6.2 Theoretical References and Research Design

We propose to identify conditions of possibilities for learning mathematics with IBL at 
the elementary school. To this end, we use the learning by problematization framework 
(Fabre & Orange, 1997) and introduce the notion of inquiry potential of a problem.

6.2.1 Learning by Problematization: A Theoretical Framework to 
Analyze Students’ Mathematical Activity

We use this framework to analyze the students’ activity. So, it is important to precise that 
posing and constructing problem is here seen from the students’ point of view. Indeed, 
even if the teacher posed a question it does not mean that the problem is posed for the 
students and least of all that they construct it. But when students make attempts, 
formulate sub-problems or conjectures we can say that they at least pose the problem.

Learning by problematization is a theoretical framework developed by Fabre and Orange 
(1997) for the didactic of biology. It is yet well known and used in many didactics, 
especially in didactic of mathematics (Hersant, 2010; Grau, 2017). In this framework, the 
position and the construction of the problem have a more important place than its 



solution. This is connected with the importance of inquiring (Dewey, 1938), posing and 
constructing problems (Popper, 1972) in sciences.

Taking also into account Bachelard’s epistemology, this framework considers that 
knowing is not “knowing that” but “knowing that it cannot be otherwise”. Indeed, this 
framework makes a distinction between facts that come under opinions, and necessities 
that come under scientific constructions built into a scientific paradigm (Kuhn, 1962). 
Therefore, problematization is defined as a multidimensional pro- cess involving posing, 
building and solving problem in a dialectic of facts and of ideas (Orange, 2000). From an 
epistemological point of view, this above feature of the problematization process witch 
deals with scientific activity is also relevant for mathematics. Let’s refer to 
mathematicians to explain this specific point. Regarding the multidimensional process, we 
can first refer to Poincaré (1905, 1970) who noticed the strong link between intuition as 
“an instrument of creation” (p. 37) and logical as an “instrument of proof” (p. 37). So, 
from his point of view, intuition plays a key role in posing and building problem, whereas 
logical, and especially deduction, mainly intervenes in solving problem. Moreover, this 
multidimensional process deals with an experimental dimension. Perrin who is a 
mathematician asserts this experimental dimension of the mathematics (2007) when he 
explains that “mathematics is also an experimental science”. For Pòlya (1954, 1965) this 
experimental dimension under- lies a similar dialectic of facts and ideas in biology and in 
mathematics. Indeed, for him (1965, pp. 110–111), “specific examples” (facts) suggests 
“new significations” (ideas) that lead to hypothesis and then proof (Pòlya, 1965, p. 111).

These distinctions between facts and ideas lead Orange to consider three structures of 
thinking summoned up during the search of a problem (Orange, 2000, 2005). The first one 
is the empirical register that corresponds to relevant facts for the problem, established 
during the search of the problem. The second one deals with the register of necessities 
that are established into an “epistemic structure” that Orange calls the explicative register 
(Orange, 2000, 2005). We shall explain these registers with an example. If the problem is 
to know if 46 is the sum of three consecutive numbers, 45  14 + 15 + 16 and 48  15 + 16 + 
17 are relevant facts. Then relating and confronting these facts, in an “induction” and 
“more general statement” process (Pólya, 1954), make it possible to establish necessities: 
as 14 + 15 + 16  45 and 15 + 16 + 17  48, there is no other possibility to sum three 
consecutive numbers and to obtain 46; indeed 46 will never be the sum of three 
consecutive numbers. These latter propositions are not facts, nor opinions. But they are 
not only conclusions: they are built necessities. And building them we ensure that it 
cannot be otherwise. So, these elements come under the register of necessities. These 
necessities are established into a model. Indeed, to put up these necessities we consider 
arithmetic domain. But we could also envision the problem in a functional way (with a 
discreet function). Then the necessities will have to do with surjection function. In a way, 
this model matches with Piaget’s “epistemic structure”. Orange (2000, 2005) call it the 
explicative register. For Scientifics or mathematicians, excepted during paradigm shifts, 
models are well shared and known. But, for students who are in process of learning what 
sciences or mathematics are, these explicative models are in construction. And we have to 
take into account this in-process-building in our analysis of students’ search of problem. 
For the previous problem, for example, at the end of the primary school many students 



think that 46 cannot be the sum of three consecutive numbers because, even if they try a 
lot, they do not find any such sum. Their model corresponds to “naïve empiricism” 
(Balacheff, 1987). It is not an acceptable model in mathematics, regarding to proof 
criteria but it explains the way they envision the solution of the problem that is in an 
empirical model (Hersant, 2010).

The space of constraints and necessities (Orange, 2000, 2005) is a way to represent the 
construction of the problem. It accounts for tensions between empirical facts and 
necessities into an epistemic structure that are realized by one student or a group of 
students. The pertinent facts and the tensions established by the students can be indeed 
inferred from their productions and the verbal interactions observed in class. Then these 
tensions are represented by linking facts and necessities (for examples, see Fig. 6.1). In 
these diagrams connections between the elements of the three registers are not 
represented by arrows but only by segments. Indeed they indicate no direction, nor logical 
or chronological links but mean putting in tense relations.

6.2.2 Inquiry Potential of a Problem

We suppose that conditions of learning by inquiry both depend on the way the teacher 
posed the problem—especially the problem’s writing as the setting of the search—and on 
the activity of the teacher as a help for the inquiry. Therefore, with respect to the first 
condition, in the first step of our study we look for the inquiry potential of the problem. 
This empowers us to estimate the possibilities, for the students, to pose and construct the 
problem from the question posed by the teacher. To define the inquiry potential of a 
problem we use the following questions:

• (i)   is the problem likely to engage students in a research activity for 
considerable time? 

• (ii)  in particular, does the problem engage students in making attempts? 

• (iii)   does the problem support the formulation of sub-problems? Of 
conjectures? 

Fig. 6.1 Drawing at the scale given by the teacher for problem P0 (left) and for problem P1 (right)



The first and second concern the possibility for the students to explore the prob- lem and, 
therefore, to have great conditions to construct it. The third concerns the construction of 
the problem as the formulation of sub-problem helps it.

6.2.3 Research Design

We analyze the activity of students who are between 8 and 11 years old while they try to 
solve a mathematical problem. To this end, we use a corpus extracted from previous 
projects (Choquet, 2014; Hersant, 2010) and take at it a fresh look with new theoretical 
tools. The first case study deals with modelling. It focuses on the learning of the concept 
of circle—as the set of all points in a plane that are at a given distance from a fixed point
—and of disc—as the set of points that are at a smaller than or equal distance to a fixed 
point. It corresponds to an ordinary class- room situation (Laborde, Perrin-Glorian, & 
Sierpinska 2005) as the researcher does not intervene in the choice of the problem nor in 
its management in the classroom.

From the teacher’s point of view this situation corresponds to an investigation situation. 
The second case study is extracted from a didactic engineering. Its goal was to overcome 
a widespread misconception among the young students about the impossibility in 
mathematics: “it is impossible because I did not succeed in doing it”. Hersant showed that 
discreet optimization problems are suitable to overcome this misconception and therefore 
proposed a set of didactical situations about discreet optimization. The design of these 
situations both relied on the theory of didactical situations in mathematics (Brousseau, 
1997)—importance of a retroactive milieu and of the didactical contract—and on learning 
by problematization—importance of posing and constructing problem and of building 
necessities. These situations can also be considered as inquiry situations.

For these both cases, our analyze consists of two steps. The first one deals with doing a 
priori analyze and the second with a posteriori one. In the first step, we determine the 
inquiry potential of the problem and then, as a minimal investigation exists, we establish a 
priori space of constraints and necessities. That means an ideal space of constraints taking 
into account students’ knowledge when they have to solve the problem. In the second 
step, we confront these results with the students’ productions and the teacher’s 
intervention. This brings elements on the role of the teacher in the inquiring process.

To study the possibilities to learn mathematics by inquiring at the elementary school, we 
will look into the way these students construct the problem, that means the pertinent facts 
they consider, the necessities they establish and the epistemic structure they summon up. 
We will represent this activity with a space of constraints and necessities. This space will 
help us to characterize their activity as a problematization or not. But it will also help us 
to understand the conditions that permit or not this problematization.

6.3 First Case Study: Modeling a Situation to Learn About Disc in an 
Ordinary Teaching Practice



Let’s consider the two following problems. The first one is part of the French official 
instructions. The second one is part of a textbook, it’s the problem that the teacher chose 
to submit to his students.

Problem P0: Sophie has to fetch milk from the farm whose yard is shown below. In A and B are leashed two 
dogs. In A, Azor has a 6 m long leash; in B, Baltazar has a 5 m long leash. Can Sophie go to the door of the farm 
without being bitten?

Problem P1: A pet is leashed to a post. The leash is 8 m long. Draw a picture of the area where the pet can move.

None of these problems has an immediate answer for a pupil who ignores the definition of 
a circle as the set of all points in a plane equidistant from a fixed point. For both of these 
problems, we can analyze as follows the inquiry potential.

6.3.1 Inquiry Potential of the Problem

Concerning the problem P0, the question allows students to easily propose an answer—
that may no be the expected answer (i). Indeed, the wording of the ques- tion of P0 is non 
mathematical but the figure introduces the geometric framework as the posts of both dogs 
are represented by points. In an inquiry way, as Dewey describes it, they will make 
attempts (can Sophie go straight ahead? can she take this way?) (ii). Students can easily 
formulate a conjecture (it is possible or not) and then have to find a way to prove it (iii). 
Owing to the effect of the didactical contract (Brousseau, 1997; Hersant & Perrin-Glorian, 
2005, Hersant, 2014), they will surely try to find one. As this task appears as a 
mathematical one, students know the teacher will not accept an unjustified answer and, 
therefore, they won’t themselves accept it because in the mathematics classroom answers 
must be justified in accordance with the epistemological side of the didactical contract 
(Hersant, 2014). They can identify sub-problems to increase their understanding of the 
situation (when she is there, what happens?). Their tests will certainly lead them to 
conjecture that the border of the “unbitten” zone is made of circles (iii). So, this problem 
is likely to generate doubts and implication in the task to remove these doubts.

Concerning the problem P1, it is more difficult for students to have an idea of the 
expected answer (it is neither «yes because» nor «no, because») (i). Indeed, the answer 
matches with staked knowledge that students are supposed to ignore. This significant 
difference with the previous problem is due to the wording of the problem: the students 
have to «draw a picture of the area» and not to decide to the possibility of plowing a path. 
Moreover, counter to the previous problem, this one is not clearly a mathematical one. 
Indeed, even if the word “area” is used in the wording of the problem, the task and the 
draw accompanying this wording suggest the expected answer is not mathematical nor 
geometrical. We can suppose that the schema (Fig. 6.1, right) is given to help children to 
imagine the situation but it hinders the setup of a suitable didactical contract, especially a 
geometrical contract. Nevertheless, students can make attempts (the dog can be here, he 
cannot be there, etc.) (ii). They can identify sub-problems (can the dog go here?). But 
they probably will be satisfied with the identification of some places and will not seek 
further (iii).



6.3.2 A Priori Space of Constraints and Necessities

Figures 6.2 and 6.3 respectively picture the a priori spaces of constraints and necessities 
for P0 and P1.

Fig. 6.2 A priori space of constraints and necessities for P0. “S” means Sophie, “C(A, 6)” means circle which 
center is A and which radius is 6; D(A,6) means the disc



Fig. 6.3 A priori space of constraints and necessities for P1. “P” matches with the post

For each problem, students can construct sub-problems and this leads them to do some 
tests. These tests allow them to constitute a corpus of possible and impossible ways either 
for Sophie or the pet. Indeed, for P0, students use drawing to scale and, so they can see on 
their drawing if the circles intersect. Therefore, the discussion about the number of 
intersections is moot. These new elements about the problem are facts and match with the 
empirical register. Dually, these empirical elements allow students to give off necessities 
of the problem (for example: the pet must go beyond 8 m; he can go everywhere the 
distance to the post is less than 8 m; he always can go at 3 m of his post).

These two spaces highlight the necessity to move from a discrete representation (search 
for punctual solutions) of the problem to a continuous one (search for all solutions). This 
moving is also a crossing from the one-dimensional geometry to a two-dimensional 
geometry. For P0, the problem takes charge of this cognitive gap. Indeed, the two 
following necessities “Sophie has to walk at least at 6 m from A” and “Sophie has to walk 
at least at 5 m from B” only give positions where Sophie is not bitten. But they do not tell 
a possible way to the door. So, it does not close the problem and maintains the doubt to 
the possibility to reach the door. This doubt keeps the necessity to browse all the 
possibilities in an exhaustive manner. And thereby, it leads to encounter the move from 
the discrete to the continuous. The effect of an epistemological clause of the didactical 
contract also play a part (Hersant, 2014): students know that it is a mathematical task and 
especially a geometrical task (points are represented on the diagram) and that, therefore, 
they cannot be satisfied with a “yes” or “no” answer.



At the opposite, in problem 1, the expected answer is a drawing and the didactical 
contract is not clearly a mathematics one (the drawing indicates a drawing pet and a 
point) or a geometric representation. The epistemological clause of the contract cannot 
play for inducing an exhaustive research and moving from a discrete to a continuous 
envision of the problem. Moreover, the situation itself does no generate many doubts. In 
other words, the situation does not have the potential to lead the students to the research 
of every possibility. In this case the move from the discreet to the continuous envisions 
the problem that is not supported by the situation.

6.3.3 Problem P1: Implementation, Students’ Productions and Sharing

One of the observed teacher turned the problem P0 into the P1. Its realization has been 
observed by Choquet (2014) in a 21 students’ classroom at the end of the elementary 
school (10–11 years old students). They knew the signification of common vocabulary 
associated with a circle (ray, diameter, center, chord). They also knew how to draw a 
circle with a compass. But, they did not yet know the mathematical definition of a circle.

The teacher presents the activity and let students search individually for ten minutes. Then 
they work in small groups during fifteen minutes: each student has to search the problem 
and to give a written solution, but students are allowed to speak about the problem. After 
the students’ research, the teacher selects three productions to be collectively discussed 
for ten minutes. Indeed, five students turn in a blank page and the productions of the 
sixteen other students can be split into three categories.

Fig. 6.4 Productions of students from first category (left), from second category (middle) and from third 
category (right)

The first category ties with students who draw the leash and a dog in a vertical plan (Fig. 
6.4, left). They are seven in this case. Their production is closely linked to the drawing 
proposed by the teacher in the presentation of the problem (Fig. 6.1, right). Only one 
position of the dog is considered; they do not represent any area. These answers indicate 
that these students did not achieve to pose the mathematical problem, nor construct the 
problem, nor explored the field of possibilities. Indeed, they probably did not establish 
any necessity about this problem. Why? They did not consider the problem as a 
mathematical one because the statements of the problem implemented a didactical 
contract that is beside mathematics. In the second category, we gather two students who 
begin to schematize and envision several positions for the dog (Fig. 6.4, middle). We can 
suppose that these students lead a mathematical inquiry but they come up against the 
difficulty to move from discrete to continuous. These students most probably do not strike 
the problem of exhaustiveness of the answer. Their activity may correspond to our a priori 
space of constraints (Fig. 6.3). In the last category, there are seven students who draw the 



circle that bounds the zone without prior trials (Fig. 6.4, right). The observation suggests 
that these students already knew the definition of a circle as the set of all points in a plane 
that are at a given distance from a given point. So it is difficult to say that they have posed 
and constructed the problem.

Finally, it seems that the students have no approach of inquiry: those who have well 
conceptualized the notion of circle already reinvest it, probably without consid- ering any 
sub-problems; the others stumbled on the exploration of a one-dimension problem.

6.3.4 What Can We Learn from This Case?

In this case, we think that the teacher changes the wording of the problem P0 without 
enough considering the effects of these modifications on the inquiry potentialities of the 
problem. That reveals a critical point for teaching by inquiry at the elementary school in 
France: most teachers have a literature Baccalaureate and it is not easy for them to fashion 
problems for their students. Moreover, this example mainly shows the limits of using real-
world problems to impulse an inquiry process. Indeed, despite of an attempt of class 
discussion after group work, most of the students do not identify the task as a 
mathematical one. The didactical contract is not clear enough and the teacher does not 
intervene to make this contract explicit. So, we can imagine that the students will not 
learn about geometry with this problem. Indeed, during the research phase their activity 
do not allow them to build up a mathematical problem. Then, the solution given by the 
teacher will not be anchored in a problem research. In these conditions, can we still 
consider that these students learn by solving problem?

6.4 Second Case Study: Searching the Optimal Solution in a Discrete 
Optimization Problem in a Didactic Engineering

The situation has been designed within the framework of a didactic engineering involving 
a researcher (Hersant) and teachers (Hersant, 2010). It refers to the called “no three in line 
problem”. The wording of the problem is the following:

Problem 2: How many points can we put at most on this grid without forming any 
alignment of three points (see Fig. 6.5)?

6.4.1 Inquiry Potential of the Problem

This situation has been realized in several classes by teachers who all contributed to the 
design of the situation; the researcher did not intervene in the class management. The 
scenario was the following. First each student has to test possibilities, respecting 
constraints of the problem. This is the enumeration phase. As the task demands to make 
tests, all the students can do something and start to explore the problem (i and ii). So, the 
problem is likely to engage students in search. Moreover, this engagement in the problem 
is durable because students take to the game (i).



Fig. 6.5 The grid given to the students

If necessary, the teacher takes examples of putting points and asks students if the case 
correspond to an alignment. Then students can work by group and start to construct sub-
problems (iii) like: is 7 the best solution? For example, the researcher often observed the 
following situation. A student comes against the possibility to put more than six points on 
the grid (ii), he is convinced that it is impossible to put seven points on it. Indeed, in a 
naïve empirical explicative register, he thinks mathematical impossibility matches with 
pragmatic impossibility: “it’s impossible because I search hard but I do not succeed”. But, 
when one of his classmate succeed in putting seven points, he wonders: is seven the 
solution? how can I be sure? All the students will not doubt the same, indeed teacher can 
help them to construct these sub-problems (iii).

When many students have a solution that they can’t improve, the teacher stops the 
research and ask each group to realize a poster with its best or one of its best solution(s). 
The solutions of each group are post up on the board and are collectively examined to 
check that they respect the no three in line constraint. The best solution(s) of the class is 
(are) identified. At this time, the question is to know if it is worth to keep searching, that 
means if we can improve the best solution of the class, or not. Then students are led to 
construct sub-problems: how can we know if this solution is the best? Is it possible to put 
n points on the grid?

So, with this problem, students are engaged in the search, they make attempts and 
construct sub-problems. The inquiry potential of the problem is real.

6.4.2 A Priori Space of Constraints and Necessities

The a priori space of constraints and necessities for this problem is the following (Fig. 
6.6).

This figure highlights the empirical facts that can be built up by the students during the 
search of the problem, especially the enumeration phase. It also shows the possible 
conflict that can exist between an in progress-necessity based on an empirical conception 
of the impossible and a fact like “I can put 9 points on the grid”. These contradictions will 
lead students to search for necessities and to evolve their point of view on the problem: 
searching how to put points on the grid without any alignment of three points will never 
bring the solution, the proof of the problem also needs to mobilize short-cuts and proofs 
of impossibilities. Especially they will have to establish the following necessity: there are 
at most two points on a line (or on a column). Then, if a ten points solution has been 
found by some students, then they will conclude that the solution is ten.



Fig. 6.6 A priori space of constraints and necessities for this problem

6.4.3 Students’ Productions

We propose this problem in several classes of students of 8–11 years old (Hersant, 2010). 
We will here especially be interested in the first class where the situation has been tested 
(8 and 9 years old students). The first hour was dedicated to enumeration on an 
arrangement of 4 lines and 4 columns grid. The students found eight points solutions. The 
second session was dedicated to an enumeration of five lines and five columns grid. At the 
end of this session, students summarize the state of the search in the class. They formulate 
the conjectures:

“Our record is 9, but I am sure than we can put 10 on the grid”; “If we concentrate more, we can put more points 
on the grid”; “There are two in each column”.

The third session was devoted to the search of the solution of the problem. For this we 
introduce the following question: is it possible to put more than 10 points on the grid? By 
introducing this question, our aim was to oblige students to work on short- cuts 
necessities. We knew that if the teacher does not take this initiative, students will keep on 
enumerating the problem and have no chance to establish necessities. But we observe 
during this session that students have difficulties to envision the proposition «we can at 
most put two points on a line without forming any alignment of three points» as a 
mathematical necessity. Indeed, they envision it only as a theorem in action (Vergnaud, 
1998) stemming from their experience of the enumeration. So only 2 pupils in 16 who 
expressed their views in an individual productions think that it is impossible because we 
can only put 2 points on a line. The other produced arguments such as the following:

“it’s impossible because Jean said it” (1 in 16 students)



“it’s impossible because we have already well searched and we did not find more” (4 in 16 students)

“because each time we try to add one more point on a 10 points grid there are three in a line” (3 in 16 students)

“it’s impossible, the grid is to small” or “there are not enough crosses” (6 in 16 view students)

Fig. 6.7 The box of points

So, we decide to introduce a box of points (see Fig. 6.7) and to ask them «You disagree 
about the reason. Now, using this table and without putting any points on the grid, tell us 
if it is possible to put more than ten points on the grid». This box of points involves 
switching from a geometrical setting (Douady, 1986) to an arithmetic one. Indeed, thus, 
implicitly, the question is: can we make n with a sum of 5 terms small or equal to 2? This 
helps students without killing the inquiry. It is also a great support to anchor the proof of 
the problem in the pupils’ activity.

6.4.4 What Do We Learn from This Case?

This brief analysis of the students’ activity shows that, in this case, students have posed 
and constructed the mathematical problem; they have carried out an investigation with the 
help of the teacher. So, this case study shows that inquiry is possible at the elementary 
school in France. It also empowers us to identify some conditions for its existence. First, 
it seems that the inquiry potential of the problem plays an important role. Here, he is 
mainly due to the doubt generated by the enumeration phase. Indeed, during this phase 
each student build certainties that could be desta- bilized by one of his classmate. Here, 
the milieu (Brousseau, 1997) of the situation plays an important role in problem posing. 
Moreover, the problem is easily identified as a mathematical problem by the students and 
it seems to facilitate the process of inquiry inside the mathematics field as the didactical 
contract is clear for the students. Finally, the engineering process provided the 
interventions of the teacher in case of students’ difficulties and these interventions seem to 
effectively empowered students’ inquiry.

6.5 Conclusion

We studied two cases to identify some conditions of possibilities of learning math- 
ematics with inquiry in elementary French school. For this, we first characterized inquiry 
for learning mathematics as a problem posing and constructing issue that leads to the 
establishment of necessities of the problem, according to our framework. Taking this 



point of view allows to broaden our vision of inquiry-based learning in mathematics 
beyond modeling. Indeed, problem posing activity and establishing necessities is at the 
core of mathematics activity, whatever the statement of the problem is.

Our two cases are well contrasted considering their objectives of learning. Problem P1 is 
inspired from problem P0. Both of them deal with a real world problem and modelling. 
They both aim to learn about circle. But, P0 does not lead to investigation by the students. 
Problem P2 deals with the meaning of impossible in mathematics without any ambition 
about learning curricular knowledge. It nevertheless brings students to an investigation.

Furthermore, we also highlight that the three problems P0, P1 and P2 have a different 
inquiry potential. We can explain these differences in the following way. Comparing 
problem P0 and problem P1, we emphasize the importance of designing the statement of 
the problem and making available didactical comments to teachers as Dorier and Garcia 
(2013) proposed it. Indeed, we can suppose that from P0 to P1, we lost a part of inquiry 
potential because of the lack of didactical comments associated to P0. For the problem 
P2, instead, we can suppose that the didactic engineering insures the inquiry potential of 
the problem.

Moreover, important difference between the two cases concerns the possible link between 
the effective activity of the students during the search of the problem and the solution of 
the problem. In problem P1, we saw that for many students there may not exist such a 
link. Therefore, it is very difficult for the teacher to explain it. On the other hand, for 
problem P2, these links exist and it is easy for the teacher to highlight them. Thus, our 
study shows differences between the way each teacher manages the students’ research and 
highlights the crucial role of supporting teachers in students’ inquiry activity, through 
didactical comments on the management of the situation, either through their participation 
in didactic engineering that could contribute to their professional development.

Finally, which conditions of possibility of inquiry at elementary school can we identify? 
Two of the conditions presented by the second case appear especially important. First of 
all, the design of the situation conducts students to doubt and therefore enrolls them on 
inquiry. This property that is related with the potentiality of the problem seems to play a 
crucial role. Then, the teacher is able to support the students’ inquiry activity taking into 
account their questions and introducing new sub-problem. This allows students to 
establish the necessities of the problem in direct link with their own exploration of the 
problem. Regarding this point, we can suppose that the teacher’s participation in the 
modelling of the situation with the researcher have a significant influence that remains to 
be determined.

In conclusion, this study asks us new questions concerning knowledge at stake in inquiry 
based learning situations and also teachers’ training to manage problem- posing and to use 
resources cautiously.
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