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Fleet management for autonomous vehicles:
Online PDP under special constraints

Sahar Bsaybes, Alain Quilliot and Annegret K. Wagler
Université Clermont Auvergne

(LIMOS UMR CNRS 6158), Clermont-Ferrand, France

Abstract. The VIPAFLEET project consists in developing models and algorithms for man-
aging a fleet of Individual Public Autonomous Vehicles (VIPA). Hereby, we consider a fleet
of cars distributed at specified stations in an industrial area to supply internal transportation,
where the cars can be used in different modes of circulation (tram mode, elevator mode, taxi
mode). One goal is to develop and implement suitable algorithms for each mode in order
to satisfy all the requests under an economic point of view by minimizing the total tour
length. The innovative idea and challenge of the project is to develop and install a dynamic
fleet management system that allows the operator to switch between the different modes
within the different periods of the day according to the dynamic transportation demands of
the users. We model the underlying online transportation system and propose a correspond-
ing fleet management framework, to handle modes, demands and commands. We consider
two modes of circulation, tram and elevator mode, propose for each mode appropriate on-
line algorithms and evaluate their performance, both in terms of competitive analysis and
practical behavior.

1 Introduction

The project VIPAFLEET aims at contributing to sustainable mobility through the development
of innovative urban mobility solutions by means of fleets of Individual Public Autonomous Vehi-
cles (VIPA) allowing passenger transport in closed sites like industrial areas, medical complexes,
campuses, business centers, big parkings, airports and train stations. A VIPA is an “autonomous
vehicle” that does not require a driver nor an infrastructure to operate, it is developed by Easymile
and Ligier [9,10] thanks to innovative computer vision guidance technologies developed by re-
searchers at Institut Pascal [13,14]. This innovative project involves different partners in order
to ensure the reliability of the transportation system [11]. A long-term experimentation [14] has
been performed on the industrial site “Ladoux” of Michelin at Clermont-Ferrand as part of the
FUI VIPAFLEET project. A fleet of VIPAs shall be used in an industrial site to transport employ-
ees and visitors e.g. between parkings, buildings and from or to the restaurant at lunch breaks.
The fleet is distributed at specified stations to supply internal transportation, and a VIPA can
operate in three different transportation modes:

– Tram mode: VIPAs continuously run on predefined lines or cycles in a predefined direction
and stop at a station if requested to let users enter or leave.

– Elevator mode: VIPAs run on predefined lines and react to customer requests by moving to
a station to let users enter or leave, thereby changing their driving direction if needed.

– Taxi mode: users book their transport requests (from any start to any destination station
within the network with a start and an arrival time) in real time.

This leads to a Pickup-and-Delivery Problem (PDP) where a fleet of servers shall transport
goods or persons from a certain origin to a certain destination. If persons have to be transported,
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we usually speak about a Dial-a-Ride Problem (DARP). Many variants are studied including the
Dial-a-Ride Problem with time windows [7,8]. In our case, we are confronted with an online
situation, where transportation requests are released over time [2,3,6].

In a practical context, different objective functions can be considered. We focus on the eco-
nomic aspect where the objective is to minimize costs by minimizing the total tour length.

In a VIPAFLEET system, users can either call a VIPA directly from a station with the help
of a call-box or can book their request in real time by mobile or web applications. Since the
customer requests are released over time, the classical PDP does not reflect the real situation of
this project. Therefore we are interested in its online version. Our aim is to develop and install a
Dynamic Fleet Management System that allows the operator to switch between different network
designs, transportation modes and appropriate online algorithms within the different periods of
the day in order to react to changing demands evolving during the day, with the objective to
satisfy all demands in a best possible way. For that we model the underlying online transporta-
tion system and propose an according fleet management framework, to handle modes, demands
and commands (see Section 2). In Section 3 we develop suitable online algorithms for tram and
elevator mode and analyse them in terms of competitive analysis w.r.t minimizing the total tour
length. In Section 4, we provide computational results showing that the practical behavior of the
algorithms is much better than their worst case behavior captured by their competitive factors.
This enables us to cluster the demands into subproblems in such a way that, for each subprob-
lem, a suitable subnetwork and a suitable algorithm can be proposed leading to a globally good
solution (transportation schedule).

2 Problem description and model

We embed the VIPAFLEET management problem in the framework of a metric task system. We
encode the closed site where the VIPAFLEET system is running as a metric space M = (V, d)
induced by a connected network G = (V,E), where the nodes correspond to stations, arcs to
their physical links in the closed site, and the distance d between two nodes vi, vj ∈ V is the
length of a shortest path from vi to vj . In V , we have a distinguished origin vo ∈ V , the depot of
the system where all k VIPAs are parked when the system is not running, i.e., outside a certain
time horizon [0, T ].

A Dynamic Fleet Management System shall allow the operator to switch between different
transportation modes within the different periods of the day in order to react to changing cus-
tomer demands evolving during the day. For that, for a certain period [t, t′] ⊆ [0, T ], we define a
metric subspace M ′ = (V ′, d′) induced by a subnetwork G′ = (V ′, E′) of G, where a subset of
nodes and arcs of the network is active (i.e. where the VIPAs have the right to perform a move
on this arc or pass by this node during [t, t′]). An operator has to decide when and how to move
the VIPAs in the subnetworks, and to assign customer requests to VIPAs.

Any customer request rj is defined as a 4-tuple rj = (tj , xj , yj , zj) where

– tj ∈ [0, T ] is the release date,
– xj ∈ V is the origin node,
– yj ∈ V is the destination node,
– zj specifies the number of passengers.

The operator monitors the evolution of the requests and the movement of VIPAs over time
and creates tasks to move the VIPAs to go to some station and pick up, transport and deliver
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users. More precisely, a task can be defined as τj = (tj , xj , yj , zj , G
′). This task is sent at time

tj to a VIPA operating in the subnetwork G′ containing stations xj and yj , indicating that zj
passengers have to be picked up at xj and delivered at yj . In order to fulfill the tasks, we let a
fleet of VIPAs (one or many, each having a capacity for Cap passengers) circulate in the network
inducing the metric space.

More precisely we determine a feasible transportation schedule S for (M, T ) consisting of a
collection of tours {Γ 1, . . . , Γ k} where:

– each of the k VIPAs has exactly one tour,
– each request rj is served not earlier than the time tj it is released,
– each tour starts and ends in the depot.

If each user is transported from its start station to its final destination by only one VIPA, then
S is called non-preemptive, otherwise preemptive. In particular, if start and destination station
of a user do not lie on the same subnetwork G′, the user has to change VIPAs on one or more
intermediate stations. As this typically leads to inconveniences, the design of subnetworks has
to be done in such a manner that preemption can be mostly avoided.

In addition, depending on the policy of the operator of such a system, different technical side
constraints have to be obeyed. If two or many VIPAs circulate on the same (sub)network, the
fleet management has to handle e.g. the

– meeting of two vehicles on a station or an arc,
– blocking the route of a VIPA by another one waiting at a station (if two VIPAs are not

allowed to enter the same node or arc at the same time),

and has to take into account

– the events of breakdown or discharge of a vehicle,
– technical problems with the server, the data base or the communication network between the

stations, VIPAs and the central server.

Our goal is to construct transportation schedules S for the VIPAs respecting all the above con-
straints w.r.t minimizing the total tour length.

This will be addressed by dividing the time horizon [0, T ] in different periods according to
the volume and kind of the requests, and by providing specific solutions within each period.
The global goal is to provide a feasible transportation schedule over the whole time horizon that
satisfies all requests and minimizes the total tour length (Dynamic Fleet Management Problem).
For each period, we partition the network G = (V,E) into a set of subnetworks G′ = (V ′, E′).
The aim of this partition is to solve some technical side constraints for autonomous vehicles, and
to solve the online PDP using different algorithms at the same time on different subnetworks. To
gain precision in solutions by applying a suitable algorithm to a certain subnetwork, the choice
of the design of the network in the industrial site where the VIPAs will operate is dynamic and
will change over time according to the technical features and properties.

In a metric space we partition the network into subnetworks G′ that are either unidirected
cycles, called circuits G′c, or bidirected paths, called lines G′`. This partition is motivated by two
of the operation modes for VIPAs, tram mode and elevator mode, that we will consider in the
sequel of the paper.

3



3 Scenarios: combinations of modes and subnetworks

Based on all the above technical features and properties that have an impact on the feasibil-
ity of the transportation schedule, we can cluster the requests into subproblems, apply to each
subproblem a certain algorithm, and check the results in terms of feasibility and performance.

The choice of the design of the network in the industrial site where the VIPAs will operate
is dynamic and will change over time according to the technical features and properties. We
consider four typical scenarios that occurred while operating a fleet in an industrial site1 based
on some preliminary studies of the transport requests within the site.

Morning/evening: The transport requests are between parkings and buildings. For this time
period we propose the following:

• Design a collection of subnetworks (lines and circuits) s.t.
- all buildings and parkings are covered,
- each subnetwork contains one parking p and all the buildings where p is the nearest

parking (to ensure that for each request, origin (the parking) and destination (a building)
lie in the same subnetwork).

• Depending on the number of employees in the served buildings, assign one VIPA (in elevator
mode) to every line and one or several VIPAs (in tram mode) to each circuit.

Lunch time: The transport requests are between buildings and the restaurant of the industrial
complex. For this time period, we propose the following:

• Design a collection of lines s.t.
- all buildings are covered,
- each line contains the station of the restaurant (to ensure that for each request, to or from

the restaurant, origin and destination lie in the same line).
• Depending on the number of employees in the served buildings, assign one VIPA (in elevator

mode) or one or several VIPAs (in tram mode) to the lines.

Emergency case: In the case of a breakdown of the central servers, the database or the com-
munication system, transports between all possible origin/destination pairs have to be ensured
without any decision by the operator. For that we propose

– to use one Hamilton cycle through all the stations as subnetwork and
– to let half of the fleet of VIPAs operate in each direction on the cycle (all in tram mode).

Other periods: There are mainly unspecified requests without common origins or common des-
tinations. The operator can use all VIPAs in his fleet in taxi mode on the complete network or
design lines and circuits s.t. all stations are covered and the chosen subnetworks intersect (to
ensure transports between all possible origin/destination pairs). E.g., this can be done by

– using one Hamilton cycle through all stations where half of the fleet operates (in tram mode)
in each direction,

1 A long-term experimentation [14] has been performed in the industrial site “Ladoux” of Michelin at
Clermont-Ferrand where a fleet of VIPAs was operating for several months (October 2014 - February
2015).
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– a spanning collection of lines and circuits meeting in a central station where one VIPA (in
elevator mode) operates on each line, one or several VIPAs (in tram mode) on each circuit.

Remark 1. One of these combinations of subnetworks has been used in a long duration exper-
imentation [14] on the industrial site “Ladoux” of Michelin at Clermont-Ferrand. VIPAs were
operating using the tram mode on a unidirected circuit where some of the buildings and parkings
of the industrial site were covered.

4 Online algorithms and competitive analysis

Recall that the customer requests are released over time s.t. the studied PDP has to be considered
in its online version. A detailed introduction to online optimization can be found e.g. in the book
by Borodin and El-Yaniv [5]. It is standard to evaluate the quality of online algorithms with
the help of competitive analysis. This can be viewed as a game between an online algorithm
ALG and a malicious adversary who tries to generate a worst-case request sequence σ which
maximizes the ratio between the online cost ALG(σ) and the optimal offline cost OPT (σ)
knowing the entire request sequence σ in advance.ALG is called c-competitive ifALG produces
for any request sequence σ a feasible solution with

ALG(σ) ≤ c ·OPT (σ)

for some given c ≥ 1. The competitive ratio of ALG is the infimum over all c such that ALG
is c-competitive. Here, we are interested in designing and analyzing online algorithms for two
possible operating modes of a VIPA, tram mode and elevator mode.

4.1 Tram mode

The tram mode is the most restricted operation mode where VIPAs run on predefined circuits in
a predefined direction and stop at stations to let users enter or leave. We consider circuits C with
one distinguished node, the origin of the circuit2.

Optimal offline solution via colorings of interval graphs: An interval graph G(I) is obtained as
intersection of a set I of intervals within a line segment, where

– the nodes of G(I) represent the intervals in I,
– the edges of G(I) represent their conflicts in terms of overlaps (i.e. two nodes are adjacent

if the corresponding intervals have a non-empty intersection).

The clique number w(G(I)) corresponds to the largest number of pairwise intersecting intervals
in I, a coloring corresponds to an assignment of colors to intervals such that no two intersect-
ing intervals receive the same color. In all graphs, the clique number is a lower bound on the
minimum number X (G(I)) of required colors. For interval graphs it was shown in [12] that the
following Greedy coloring algorithm always produces an w(G(I))-coloring of G(I):

– sort all intervals in I according to their left end points.

2 Circuits can also be lines where one end is the origin and the VIPA can change its direction only in the
two ends of the line.
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– color the nodes of G(I) in this order: starting with the first node, assign to each node the
smallest color that none of its already colored neighbors has.

We next interpret the offline solution for VIPAs operating in tram mode on a circuit in this
context. We have given a circuit C = {vo, v1, . . . , vn} and a sequence σ of m requests rj =
(tj , xj , yj , zj) with origin/destination pairs (xj , yj) ∈ C × C. W.l.o.g. we may assume that the
origin v0 of the circuit does not lie in the interior of (xj , yj) for any rj ∈ σ. We transform C
into a path P = {v0, v1, . . . , vn, v0} having the origin v0 of C as start and end node (as the line
segment), and we split each request rj into zj many uniform requests (resp. single passengers),
interpreted as subpaths (xj , yj) ⊆ P (to obtain the (multi) set I of intervals). By construction,
we have for the resulting interval graph Gσ = G(I):

– the clique numberw(G(I)) corresponds to the maximum number of requests rj in σ (counted
with their multiplicities zj) traversing a same edge of P ,

– a coloring of Gσ corresponds to an assignment of places in the VIPA(s) to passengers.

Clearly one VIPA can serve all (uniform) requests from up-to Cap color classes in a sin-
gle subtour traversing C. We can, thus, turn any coloring of Gσ into a feasible transportation
schedule by

– waiting until time tm in the origin v0 ( to ensure that all requests are released before they are
served)

– selecting up to Cap many color classes and assigning the corresponding uniform requests
(i.e. single passengers) to one VIPA, to be served within the same subtour traversing C,
until all requests are served.

This leads to the following algorithm to compute optimal offline solutions for the tram mode:
OPT-TRAM
Input: σ = {r1, r2, . . . , rm}, C = {vo, v1, . . . , vn}, Cap and k
Output: transportation schedule

1. for each rj = (tj , xj , yj , zj) ∈ σ: create zj many intervals (xj , yj) to obtain I,
2. sort all intervals in I according to their left end points,
3. create the interval graph G(I) and apply the Greedy algorithm to color it,
4. wait until tm (the release date of the last request),
5. as long as there are unserved requests:

select Cap many (or all remaining) color classes, assign the corresponding passengers to a
VIPA and perform one subtour traversing C to serve them.

Example 1. Consider a circuit C = (a, b, c, d, e) with origin a and one unit-speed server with
capacity Cap = 2 (i.e. a VIPA that travels 1 unit of length in 1 unit of time), and a sequence σ of
6 requests:

r1 = (1, c, e, 2) r4 = (4, b, c, 2)

r2 = (2, a, d, 1) r5 = (5, a, b, 1)

r3 = (3, d, e, 1) r6 = (6, b, e, 1)
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1. for each rj ∈ σ we create zj many intervals (xj , yj) to obtain I:

a b c d e

I11 = (c, e)

I12 = (c, e)

I2 = (a, d)

I3 = (d, e)

I41 = (b, c)

I42 = (b, c)

I5 = (a, b)

I6 = (b, e)

2. We sort all intervals in I according to their left end points: I5, I2, I41, I42, I6, I11, I12, I3.
3. We create the interval graph G(I):

I5 I2 I41 I42 I6 I11 I12 I3

4. We apply the Greedy algorithm to color it:

a b c d e

color 1:
I5 I41 I11

color 2:
I2 I3

color 3:
I42 I12

color 4:
I6

5. As long as there are unserved requests, we select 2 random color classes, assign the cor-
responding passengers to a VIPA and perform one subtour traversing C to serve them, for
instance:

– first VIPA, first round: color 1 and 2 (r5, r2, r41, r11, r3)
– second VIPA, or second round of first VIPA: color 3 and 4 (r42, r12, r6)

Theorem 1. Algorithm OPT-TRAM provides a load-preemptive optimal offline solution w.r.t.
minimizing the total tour length for VIPAs operating in tram mode on a circuit.
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Proof. By construction, splitting the requests rj from σ according to their multiplicities zj gives
a (multi)set I of intervals where each of them stands for a uniform request of a single passenger.
Accordingly, the clique number w(G(I)) of the resulting interval graph G(I) corresponds to the
maximum number of passengers traversing a same edge e of the circuit C, that is

w(G(I)) = max{
∑

e∈(xj ,yj),rj∈σ

zj ; e ∈ C}

On the other hand, a coloring of G(I) corresponds to an assignment of places in the VIPA(s) to
passengers, and subtours for the VIPA(s) can be easily created by repeatedly choosing Cap color
classes and assigning the passengers colored that way to the Cap places of one VIPA. Clearly, at
least

⌈
w(G(I))

Cap

⌉
many such subtours are needed to serve all requests. The transportation schedule

obtained is feasible because, by waiting until tm to start any subtour, we ensure that all requests
have been released before. As the Greedy coloring algorithm provides an optimal w(G(I))-
coloring of G(I), we can guarantee to obtain a feasible transportation schedule performing the
minimal number of subtours by always choosing Cap colors (except for the last subtour where
we choose all remaining ones) so that the minimal total tour length equals

OPT (σ) =

⌈
w(G(I))

Cap

⌉
· |C|.

The resulting solution is a load-preemptive transportation schedule because it cannot be ensured
that all zj passengers coming from the same request rj are served by the same VIPA (even if
zj ≤ Cap holds). �

Remark 2.
• The minimal total tour length does not depend on the number of VIPAs used to serve all

requests.
• Algorithm OPT-TRAM is clearly polynomial because all the steps of the algorithm can be

computed in polynomial time.
• By not selecting Cap color classes randomly to create subtours, it is possible to:

– reduce load-preemption,
– minimize the number of stops performed to let passengers leave/enter a VIPA,
– handle the case of more than one VIPA,
but the so modified algorithm is not necessarily polynomial anymore.

Online algorithms: For the online situation, we propose the following simple algorithm for
VIPAs operating in tram mode on a circuit C:

SIR (“Stop If Requested”)
– each VIPA waits in the origin of C; as soon as a request is released, a VIPA starts a full

subtour in a given direction, thereby it stops at a station when a user requests to enter/leave.

In fact, in tram mode, the possible decisions of the VIPA are either to continue its tour or to wait
at its current position for newly released requests. This can be used by the adversary to “cheat”
an online algorithm, in order to maximize the ratio between the online and the optimal costs.
Here, the strategy of the adversary is to force SIR to serve only one uniform request per subtour,
whereas the adversary only needs a single subtour traversing C to serve all requests.
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Example 2. Consider a circuit C = (v0, v1, . . . , vn) with origin v0, a unit distance between
vi and vi+1 for each i, and one unit-speed server with capacity Cap. The adversary releases a
sequence σ of Cap · n uniform requests that force SIR to perform one full round (subtour) of
length |C| = n+ 1 for each uniform request, whereas the adversary is able to serve all requests
in a single subtour (fully loaded on each edge):

– Cap requests rj = ((j − 1)|C|, v0, v1, 1) for 1 ≤ j ≤ Cap
– Cap requests rj = ((j − 1)|C|, v1, v2, 1) for Cap + 1 ≤ j ≤ 2Cap

...
– Cap requests rj = ((j − 1)|C|, vn−1, vn, 1) for (n− 1)Cap + 1 ≤ j ≤ nCap
– Cap requests rj = ((j − 1)|C|, vn, v0, 1) for nCap + 1 ≤ j ≤ (n+ 1)Cap

SIR starts its VIPA at time t = 0 to serve r1 = (0, v0, v1, 1) and finishes the first subtour of
length |C| without serving any further request. When the VIPA operated by SIR is back to the
origin v0, the second request r2 = (|C|, v0, v1, 1) is released and SIR starts at t = |C| = n+ 1
a second subtour of length |C| to serve r2, without serving any further request in this subtour.
This is repeated for each request yielding SIR(σ) = Cap · |C| · |C|.

The adversary waits at the origin v1 until t = (Cap−1)|C| and serves all requests r1, . . . , rCap
from v0 to v1. Then he waits until t = (2Cap−1)|C| at v1 and serves all requests rCap+1, . . . , r2Cap
from v1 to v2. This is repeated for all Cap requests from vi to vi+1, yielding OPT (σ) = |C|.
The tours performed by SIR and OPT are illustrated in Fig 1. Therefore, we obtain

SIR(σ)

OPT (σ)
=

Cap · |C| · |C|
|C|

= Cap · |C|

as a lower bound for the competitive ratio of SIR.

t, d
O C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C

C

Fig. 1. This figure illustrates the tour performed by SIR (in blue) and the adversary (dotted in green) in
order to serve the requests (dashed arcs in red) from Example 2 for Cap = 3, n = 3 and |C| = 4.

In the special case of the lunch scenario, we may consider VIPAs operating in tram mode on
circuits, where each circuit has the restaurant as its distinguished origin. A sequence σ′ contain-
ing the first Cap and the last Cap requests from the sequence presented in Example 2 shows that
2Cap is a lower bound on the competitive ratio of SIR, see Figure 2 for an illustration.

As for the morning resp. evening scenario, we consider VIPAs operating in tram mode on a
circuit C where the parking is the distinguished origin of C. A sequence σ′′ containing the first
Cap resp. last Cap requests from the sequence presented in Example 2 shows that Cap is a lower
bound on the competitive ratio of SIR, see Figure 3 and Figure 4, respectively.
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t, d
O C 2C 3C 4C 5C 6C

C

Fig. 2. This figure illustrates the tour performed by SIR (in blue) and the adversary (dotted in green) in
order to serve the first Cap and the last Cap requests (dashed arcs in red) from the sequence presented in
Example 2 for Cap = 3, n = 3 and |C| = 4. These requests satisfy the criterias of the lunch scenario.

t, d
O C 2C 3C

C

Fig. 3. This figure illustrates the tour performed by SIR (in blue) and the adversary (dotted in green) in
order to serve the first Cap requests (dashed arcs in red) from the sequence presented in Example 2 for
Cap = 3, n = 3 and |C| = 4. These requests satisfy the criterias of the morning scenario.

We can prove that the previously presented examples are indeed worst cases for SIR:

Theorem 2. For one or several VIPAs with capacity Cap operating in tram mode on a circuit C
with length |C|, SIR is w.r.t the objective of minimizing the total tour length

– Cap · |C|-competitive in general,
– 2 · Cap-competitive during the lunch scenario,
– Cap-competitive during the morning scenario resp. the evening.

Proof. Recall that a transportation schedule is based on a coloring of the interval graph Gσ ,
whose nodes stand for passengers from σ, i.e. to the requests rj ∈ σ counted with their mul-
tiplicities zj . The worst coloring of Gσ is to assign different colors to all nodes, i.e. using
|Gσ| =

∑
rj∈σ zj many colors. The worst transportation schedule results if, in addition, each

VIPA performs a separate subtour of length |C| for each color (i.e. serving a single uniform re-
quest only per subtour), yielding |Gσ| · |C| as total tour length.

SIR can indeed be forced to show this behavior by releasing the requests accordingly (i.e. by
using uniform requests with zj = 1 each and with sufficiently large delay between tj and tj+1),

– in general: using the sequence σ from Example 2,
– during lunch: using the sequence σ′ restricted to the first Cap and the last Cap requests
(tj , v0, v1, 1) and (tj , vn, v0, 1) from the sequence σ presented in Example 2 as in Figure 2,
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t, d
O C 2C 3C

C

Fig. 4. This figure illustrates the tour performed by SIR (in blue) and the adversary (dotted in green) in
order to serve the last Cap requests (dashed arcs in red) from the sequence presented in Example 2 for
Cap = 3, n = 3 and |C| = 4. These requests satisfy the criterias of the evening scenario.

– during morning/evening: using the sequence σ′′ restricted to the first Cap requests (tj , v0, v1, 1)
(resp. the last Cap requests (tj , vn, v0, 1)) from the sequence σ presented in Example 2, as
Figure 3 (resp. Figure 4) shows.

Furthermore, to maximize the ratio between this total tour length obtained by SIR and the optimal
offline solution, we need to ensure that all requests in σ can be served with as few subtours of
length |C| as possible. This is clearly the case if all requests have length 1 and there are Cap
many requests traversing the same edge of C s.t. a single subtour suffices to serve all of them
(see again Example 2). This leads to

– |Gσ| = |σ| = Cap · |C| and w(G(I)) = Cap s.t.

SIR(σ)

OPT (σ)
=

Cap · |C| · |C|
1 · |C|

= Cap · |C|

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible se-
quences in general.

– |Gσ′ | = |σ′| = 2Cap and w(G(I)) = Cap s.t.

SIR(σ′)

OPT (σ′)
=

2 · Cap · |C|
1 · |C|

= 2 · Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible se-
quences during the lunch.

– |Gσ′′ | = |σ′′| = Cap and w(G(I)) = Cap s.t.

SIR(σ′′)

OPT (σ′′)
=

Cap · |C|
1 · |C|

= Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible se-
quences during the morning or evening. �

Moreover, SIR can be adapted to follow the strategy of the adversary. For that, we propose
two other algorithms for VIPAs operating in tram mode in the morning resp. evening:
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SIFM (“Start if fully loaded”) for the morning scenario
– each VIPA waits in the parking until Cap passengers have entered,
– it starts a full round (as soon as it is fully loaded) and stops at stations where passengers

request to leave.

SIFE (“Start if fully loaded”) for the evening scenario
– each VIPA waits in the parking until enough requests are released to reach Cap,
– it starts a full round and stops at stations where passengers request to enter and returns (fully

loaded) to the parking.

We can ensure optimality for these two strategies:

Theorem 3. SIFM (resp. SIFE) is 1-competitive w.r.t minimizing the total tour length for one
or several VIPAs operating in tram mode on a circuit during the morning (resp. evening).

Proof. Both variants of SIF are optimal, because due to the special request structure during the
morning resp. evening, all requests traverse the first (resp. last) edge of P in the morning (resp.
evening) s.t.Gσ becomes a clique. In other words, no two passengers can share a same place in a
VIPA s.t. starting fully loaded from the origin (resp. returning fully loaded to the origin) indeed
provides the optimal solution w.r.t. minimizing the total tour length. �

The two previous algorithms SIFE and SIFM can be merged together to obtain a version
for the lunch scenario:

SIFL (“Start if fully loaded on at least one arc”)
– each VIPA waits in the restaurant until enough requests are released s.t. by serving these

requests using one VIPA, the VIPA is fully loaded at least on one arc in the circuit.
– it starts a full round and stops at stations where passengers request to enter or leave and

returns to the restaurant.

Theorem 4. SIFL is 2-competitive w.r.t minimizing the total tour length for one or several
VIPAs operating in tram mode on a circuit during the lunch.

Proof. Due to the special request structure during the lunch, all requests start and end in the
restaurant and, thus, traverse the first and the last edge of P s.t. Gσ consists of two cliques Q1

and Q2 resulting from all uniform requests traversing the first and the last edge, respectively.
The worst transportation schedule of SIFL results if the requests are released in a way that
SIFL never serves a request from Q1 with one from Q2 together, therefore by each subtour of
length |C| performed by SIFL Cap requests are served either from the clique Q1 or from Q2,
yielding SIFL(σ) = d |Gσ|Cap e · |C| as total tour length.
In order to maximize the ratio, OPT needs to serve as many requests as possible using the least
total tour length possible. OPT always combines Cap requests from Q1 with Cap requests from
Q2 and serves them together by performing a subtour of length |C|. In addition, to avoid not
fully loaded moves for OPT, the adversary choses |Q1| = |Q2| and as a multiple of Cap which
leads to OPT (σ) = |Gσ|

2Cap · |C|, therefore

SIFL(σ)

OPT (σ)
=

|Gσ|
Cap · |C|
|Gσ|
2Cap · |C|

= 2

is the maximum possible ratio between SIFL(σ) andOPT (σ) taken over all possible sequences
on a circuit of length |C| during the lunch. �
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4.2 Elevator mode

The elevator mode is a less restricted operation mode where one VIPA runs on a predefined line
and can change its direction at any station of this line to move towards a requested station. One
end of this line is distinguished as origin O (say, the “left” end).

Optimal offline solution: In order to obtain the optimal offline solution OPT (σ) w.r.t. mini-
mizing the total tour length, we compute a min cost flow in a suitable network. Given a line
L = (v0, . . . , vn) with origin v0 as a subnetwork, capacity Cap of a VIPA, and a request se-
quence σ with requests rj = (tj , xj , yj , zj).
In the sequel, we distinguish in which direction an edge vivi+1 of L is traversed and speak of
the up arc (vi, vi+1) and the down arc (vi+1, vi). In order to construct the network, we proceed
as follows:

• Neglect the release dates tj and only consider the loads of the requests zj , their origins xj
and their destinations yj .

• Partition the requests into two subsets:
– U of “up-requests” rj ∈ σ with xj < yj ,
– D of “down-requests” rj ∈ σ with xj > yj .

• Determine the loads of all up arcs (vi, vi+1)) or down arcs (vi+1, vi) of the line L as a
weighted sum of the load of all request-paths (xj , yj) containing this arc:
– load(vi, vi+1) =

∑
(vi,vi+1)∈(xj ,yj),xj<yj zj ∀i ∈ {0, n− 1}, ∀rj ∈ U

– load(vi+1, vi) =
∑

(vi+1,vi)∈(xj ,yj),xj>yj zj ∀i ∈ {0, n− 1}, ∀rj ∈ D
• Determine the “multiplicities” m of all up/down arcs: in order to serve all the requests in σ,

each arc (vi, vi+1) must be visited m(i,i+1) = d load(vi,vi+1)
Cap e times and each arc (vi+1, vi)

must be visited m(i+1,i) = d load(vi+1,vi))
Cap e times. In case the multiplicity m(i,i+1) resp.

m(i+1,i) is equal to zero, then the corresponding up resp. down arc is removed.

Now we build a network GE = (VE , AE), where

• the node set VE = V up(o) ∪ V up(d) ∪ V down(o) ∪ V down(d) contains
– the origin nodes of all up arcs where the multiplicity is different from zero in V up(o),
– the destination nodes of all up arcs where the multiplicity is different from zero in V up(d),
– the origin nodes of all down arcs where the multiplicity is different from zero in V down(o),
– the destination nodes of all down arcs where the multiplicity is different from zero in
V down(d),
– the origin v0 of the line L as source s and as sink t.

• The arc set AE = As ∪AU ∪AD ∪AL ∪At is composed of:
– source arcs from the source s to all vup(o)i ∈ V up(o) and all vdown(o)i ∈ V down(o) in As,
– up arcs (vup(o)i , v

up(d)
i+1 ) whenever m(i,i+1) 6= 0 in AU ,

– down arcs (vdown(o)i+1 , v
down(d)
i ) whenever m(i+1,i) 6= 0 in AD,

– link arcs in AL going from all vup(d)i ∈ V up(d) to all vdown(o)i ∈ V down(o), and from all
v
down(d)
i ∈ V down(d) to all vup(o)i ∈ V up(o),

– sink arcs from all vup(d)i ∈ V up(d) and from all vdown(d)i ∈ V down(d) to the sink t in At.

Accordingly, the objective function considers costs d(a) = d(u, v) for the flow f on all arcs
a = (u, v) in AE , where d(u, v) is the length of a shortest path from u to v in the line L. To
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correctly initialize the system, we use the source node s as source for the flow and the sink node t
as its destination. For all internal nodes, we use normal flow conservation constraints. We require
a flow on all up/down arcs f(a) = m(a) for all a ∈ {AU ∪AD}, see constraint (1e). We finally
add the constraint (1d) to eliminate all possible isolated cycles that the flow may contain (since
the network contains directed cycles).

This leads to a Min-Cost Flow Problem, whose output is a subset of arcs needed to form a
transportation schedule for a metric task system, whose tasks are induced by the requests. The
corresponding integer linear program is as follows:

min
∑
a∈AE

d(a)f(a) (1a)

s.t.
∑

a∈δ−(s)

f(a) = 1 (1b)

∑
a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a) ∀v 6= {s, t} (1c)

∑
a∈δ(W )

f(a) ≥ 2 ∀W ⊂ VE \ {s, t}, 2 ≤ |W | ≤ |VE | − 3 (1d)

f(a) = m(a) ∀a ∈ {AU ∪AD} (1e)
f(a) ∈ Z+ (1f)

where δ−(v, t) denotes the set of outgoing arcs of v, δ+(v) denotes the set of incoming arcs of
v and δ(W ) denotes the set of incoming or outgoing arcs (u, v) of W s.t. u ∈ W and v /∈ W or
u /∈W and v ∈W . The time required to compute the integer linear program grows in proportion
to 2|V | due to the constraint (1d) that eliminates all possible isolated cycles, and, hence, it may
grow exponentially. However, this integer linear program can be computed in reasonable time
provided that the number V of nodes in the original network (the line) is small.

Remark 3. The family of constraints (1d) can be generated and then each inequality is separated
to verify if it is violated or not. However, due to their exponential number, the process of sepa-
ration in order to verify if a solution satisfies all constraints is exponential. Since the number of
subtour elimination constraints is exponential, we may firstly compute the integer linear program
without the constraints (1d). Then we check if there is an isolated cycle in the solution obtained,
if yes, we add only the constraint (1d) using the nodes of this isolated cycle. This procedure is
repeated until a solution without isolated cycles is found.

Finally, the flow in the time-expanded network is interpreted as a transportation schedule. The
tracks of the VIPA over time can be recovered from the flow f(a) on the arcs by standard flow
decomposition, see [1]. Hereby, a flow f(a) on an arc a = (u, v) corresponds to a move of a
VIPA on this arc. Based on the flow values, one can construct a unique path from source s to
sink t traversing all arcs a with positive flow exactly f(a) times. This shows that the optimal
solution of system (1) corresponds to a transportation schedule with minimal total tour length
for the offline problem behind the elevator mode.

Example 3. Consider a line L = (v0, . . . , vn) with origin v0, a unit distance between vi and
vi+1 for each i, with a set σ of 9 requests shown in Figure 5, and a VIPA with capacity Cap = 2.
The resulting network GE = (VE , AE) of the line presented in this example is illustrated in
Figure 6. The optimal offline solution, the transportation schedule of the VIPA with a minimal
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total tour length, is obtained by computing the presented integer linear program for a min-cost
flow problem in the constructed network GE = (VE , AE).

v0 v1 v2 v3 v4

r1 = (t1, v0, v4, 1)

r2 = (t2, v4, v3, 1)

r3 = (t3, v3, v4, 2)

r4 = (t4, v4, v3, 1)

r5 = (t5, v3, v4, 1)

r6 = (t6, v4, v3, 2)

r7 = (t7, v4, v2, 1)

r8 = (t8, v0, v1, 2)

r9 = (t9, v1, v0, v1)

load(uparcs) 3 1 1 4
load(downarcs) 1 0 1 5

m(uparcs) = d loadCap e 2 1 1 2
m(downarcs) = d loadCap e 1 0 1 3

Fig. 5. This figure illustrates the line L = (v0, . . . , vn) with origin v0, and a set σ of 9 requests and a
VIPA with capacity Cap = 2. The requests are partitioned into two subsets “up-requests” (arcs in black)
and “down-requests” (arcs in red). Each arc represents a load of 1, for example r3 is represented by 2 arcs
going from v3 to v4. The loads of all up arcs (all arcs (vi, vi+1)) or down arcs (all arcs (vi+1, vi)) of the
line L are shown in the first and second row of the table. Then the third and the forth rows contain the
“multiplicities” m of all up/down arcs.

Online algorithm: An algorithm MRIN (“Move Right If Necessary”) has been proposed for the
Online-Traveling Salesman Problem (where no transports have to be performed, but only points
to be visited) on a line and analyzed w.r.t. minimizing the makespan [4], giving a competitive
ratio of 3/2. We generalize MRIN to the Pickup and Delivery Problem and analyze it w.r.t.
minimizing the total tour length. In elevator mode, the server (VIPA) has the choice to continue
its tour in the current direction, to wait at its current position or to change its driving direction.
Accordingly, we propose the algorithm MAIN. The adversary can again “cheat” the strategy of
MAIN as the following example shows.

Example 4. Consider a line L = (v0, . . . , vn) with origin v0, a unit distance between vi and
vi+1 for each i, and one unit-speed server with capacity Cap. The adversary releases a sequence
σ of uniform requests that force MAIN to leave the origin of the line and perform a subtour of
a certain distance for each request, whereas the adversary is able to serve all requests in a single
subtour of length 2|L|:
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Fig. 6. This figure illustrates the flow computed by the presented integer linear program for a min-cost flow
problem in the network GE = (VE , AE) of Example 3. The values above the arcs correspond to the value
of the flow f(a) or the number of times the VIPA traverses the arc a in the transportation schedule.

MAIN (“Move Away If Necessary”)
Input : request sequence σ, line L with origin vO , Cap
Output: tour on L to serve all requests in σ
initial server position s := vO;
initial set of currently waiting requests (already released but not yet served requests)
σ′ := {rj ∈ σ : tj = 0};

while σ′ 6= ∅ do
determine the subset σ′

up of requests rj = (tj , xj , yj , zj) ∈ σ′ with s ≤ xj ≤ yj ;
if σ′

up 6= ∅ then
Serve all requests (or up to Cap passengers) in σ′

up (moving away from vO to furthest
destination yk among all rj ∈ σ′

up);
end
else

determine subset σ′
down of requests rj = (tj , xj , yj , zj) ∈ σ′ with xj > yj ;

serve all requests (or up to Cap passengers) in σ′
down while moving to the origin;

end
update s and σ′ (remove all served requests, add all newly released requests);

end

The first block σ1 of n · Cap requests:
r1 = (0, v0, v1, 1)

rj = (tj−1 + 2d(v0, v1), v0, v1, 1) for 2 ≤ j ≤ Cap
rj = (tj−1 + 2d(v0, v1), v1, v2, 1) for j = Cap + 1

rj = (tj−1 + 2d(v0, v2), v1, v2, 1) for Cap + 2 ≤ j ≤ 2Cap
rj = (tj−1 + 2d(v0, vn−1), vn−1, vn, 1) for j = (n− 1)Cap + 1

rj = (tj−1 + 2d(v0, vn), vn−1, vn, 1) for (n− 1)Cap + 2 ≤ j ≤ nCap
The second block σ2 of 2` · Cap requests
rj = (tj−1 + 2d(v0, vn), vn, vn−1, 1) for nCap + 1 ≤ j ≤ (n+ 1)Cap
rj = (tj−1 + 2d(v0, vn), vn−1, vn, 1) for (n+ 1)Cap + 1 ≤ j ≤ (n+ 2)Cap
rj = (tj−1 + 2d(v0, vn), vn, vn−1, 1) for (n+ 2`− 2)Cap + 1 ≤ j ≤ (n+ 2`− 1)Cap
rj = (tj−1 + 2d(v0, vn), vn−1, vn, 1) for (n+ 2`− 1)Cap + 1 ≤ j ≤ (n+ 2`)Cap
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The third block σ3 of n · Cap requests:
rj = (tj−1 + 2d(v0, vn), vn, vn−1, 1) for (n+ 2`+ 1)Cap + 1 ≤ j ≤ (n+ 2`+ 2)Cap
rj = (tj−1 + 2d(v0, vn), vn−1, vn−2, 1) for j = (n+ 2`+ 2)Cap + 1

rj = (tj−1 + 2d(v0, vn), vn, vn−1, 1) for (n+ 2`+ 2)Cap + 2 ≤ j ≤ (n+ 2`+ 3)Cap
rj = (tj−1 + 2d(v0, v2), v1, v0, 1) for j = (2n+ 2`− 1)Cap + 1

rj = (tj−1 + 2d(v0, v1), v1, v0, 1) for (2n+ 2`− 1)Cap + 2 ≤ j ≤ (2n+ 2`)Cap

MAIN starts its VIPA at time t = 0 to serve r1 = (0, v0, v1, 1) and finishes the first subtour of
length 2d(v0, v1) = 2 without serving any further request. When the VIPA operated by MAIN is
back to the origin v0, the second request r2 = (2, v0, v1, 1) is released and MAIN starts at t = 2
a second subtour of length 2 to serve r2, without serving any further request in this subtour. This
is repeated for each request until serving the first block of n · Cap requests yielding

MAIN(σ1) = 2 · Cap
∑

1≤i≤n

i = Cap · |L| · (|L|+ 1)

Then at t = tnCap+1 MAIN starts to serve rnCap+1 from vn to vn−1 and performs a subtour
of length 2d(v0, vn) = 2|L|. When the VIPA operated by MAIN is back to the origin v0, the
request rnCap+2 is released and MAIN performs a new subtour of length 2|L| to serve it. This is
repeated for each request until serving the second block of ` · 2Cap requests yielding

MAIN(σ2) = 2` · 2Cap|L|.

Finally in order to serve the third block MAIN has the same behavior as to serve the first block
of requests yielding

MAIN(σ3) = 2 · Cap
∑

1≤i≤n

i = Cap · |L| · (|L|+ 1).

Therefore

MAIN(σ) = Cap · |L| · (|L|+ 1) + 2` · 2Cap|L| = (|L|+ 1 + 2`) · 2|L| · Cap.

The adversary waits at the origin v0 until t = tCap and serves all requests r1, . . . , rCap from v0
to v1. Then he waits until t = t2Cap at v1 and serves all requests rCap+1, . . . , r2Cap from v1 to v2.
This is repeated for all Cap requests from vi to vi+1 until the adversary arrives to vn. OPT served
the first block of n ·Cap requests with a total tour length equal to |L|. Then the adversary begins
to oscillate his VIPA between vn and vn−1 and serves each time Cap requests, this is repeated
2` times leading to a total tour length for σ2 equal to 2`. Finally the adversary follows the other
direction and waits each time until Cap requests are released to serve them, for all Cap requests
from vi to vi−1 until reaching v0, yielding OPT (σ) = 2|L|+ 2`. Therefore, we obtain

MAIN(σ)

OPT (σ)
=

2 · Cap · |L| · (|L|+ 1) + (` · 2 · Cap · 2|L|)
2(|L|+ `)

=
2 · Cap · |L| · (|L|+ 1 + 2`)

2(|L|+ `)

= Cap · |L|+ (1 + `)

|L|+ `
Cap · |L| −→

`→+∞
2Cap · |L|

as a lower bound for the competitive ratio of MAIN.
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Fig. 7. This figure illustrates the set σ = σ1 ∪ σ2 ∪ σ3 of requests (arcs under the line L = (v0, . . . , v5)
with origin v0) from Example 4 for Cap = 3, n = 5 and ` = 1.

We can determine an upper bound for the competitive ratio of MAIN close to the ratio ob-
tained by the previous example:

Theorem 5. MAIN is 2Cap · |L|-competitive w.r.t minimizing the total tour length for one VIPA
operating in elevator mode on a line L with length |L|.

Proof. The worst transportation schedule results if all requests are uniform and the VIPA oper-
ated by MAIN performs a separate subtour serving a single request rj = (tj , xj , yj , 1) each time
the VIPA leaves the origin v0 of the line, yielding

∑
rj∈σ 2max(d(v0, xj), d(v0, yj)) as total

tour length.
To maximize the ratio between the total tour length obtained by MAIN and the optimal offline
solution, we need to ensure that

– we do not have a move with a load less than the capacity Cap of the VIPA in the transporta-
tion schedule of OPT ;

– all requests in σ can be served with as few and as short subtours as possible in OPT.

The worst ratio of subtours can be obtained when

– OPT oscillates fully loaded between two neighbored nodes of L,
– MAIN is forced to traverse the whole line twice per passenger, i.e. oscillates between v0 and
vn.
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For that, vn needs to be either origin or destination of each request, and the delay between the
release dates needs to be sufficiently large. This can be achieved with subsequence σ2 from
Example 4, with ` blocks each consisting of

– Cap consecutive uniform requests from vn to vn−1, alternated by
– Cap consecutive uniform requests from vn−1 to vn,

always with a delay 2|L| between the release dates of any two requests rj and rj+1. We obtain
OPT (σ2) = 2` and MAIN(σ2) = ` · 2 ·Cap · 2 · |L| which leads to the studied subtour ratio of

MAIN(σ2)

OPT (σ2)
=
` · 2 · Cap · 2 · |L|

2`
= 2 · Cap · |L|.

However, this ratio so far neglects the initial and final server position v0 for the VIPA operated
by OPT. The requirement of starting and ending the tour in v0 leads to a total tour length for
OPT of

OPT (σ) = |L| · 2` · |L|.

In order to maximize the ratio of the complete tours, the adversary releases more requests to
ensure that the VIPA operated by

– OPT can arrive at vn (resp. return from vn to v0) fully loaded on each arc,
– MAIN is forced to oscillate between v0 and the destination yj (resp. the origin xj) of each

uniform request rj .

This can be achieved with the subsequences σ1 and σ3 from Example 4 with

– Cap consecutive uniform requests from vi to vi+1 for each 0 ≤ i < n and
– Cap consecutive uniform requests from vi to vi−1 for each n ≥ i ≥ 1,

always with delay 2 · d(v0, yj) resp. 2 · d(xj , v0) between the release dates of any two requests
rj and rj+1 within these subsequences. We obtain (as in Example 4) that

MAIN(σ1) =MAIN(σ3) = 2 · Cap
∑

1≤i≤n

i = Cap · |L| · (|L|+ 1).

This finally leads to

MAIN(σ)

OPT (σ)
=

2 · Cap · |L| · (|L|+ 1) + (` · 2 · Cap · 2|L|)
2(|L|+ `)

=
2 · Cap · |L| · (|L|+ 1 + 2`)

2(|L|+ `)

= Cap · |L|+ (1 + `)

|L|+ `
Cap · |L| −→

`→+∞
2Cap · |L|

as the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all possible se-
quences on a line L. �

Concerning the lunch scenario, we may consider VIPAs operating in elevator mode on lines,
where each line has the restaurant as its distinguished origin. A sequence σ′ containing the first
Cap requests of the first block σ1 and the last Cap requests from the third block σ3 from the
sequence presented in Example 4 shows that 2 ·Cap is a lower bound on the competitive ratio of
MAIN. As for the morning resp. evening scenario, we may consider VIPAs operating in elevator
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mode on lines, where each line has a parking as its distinguished origin. A sequence σ′ containing
the first Cap requests of the first block σ1 resp. the last Cap requests from the third block σ3 from
the sequence presented in Example 4 shows that Cap is a lower bound on the competitive ratio of
MAIN. We can show that these examples are the worst cases for MAIN during lunch, morning
and evening:

Theorem 6. For one VIPA with capacity Cap operating in elevator mode on a line, MAIN is
w.r.t. the objective of minimizing the total tour length

– 2 · Cap-competitive during the lunch scenario,
– Cap-competitive during the morning resp. the evening scenario.

Proof. The worst transportation schedule results if the VIPA operated by MAIN performs a
separate subtour serving a single uniform request rj = (tj , v0, v1, 1) or rj = (tj , v1, v0, 1) each
time the VIPA leaves the origin v0 of the line, yielding

∑
rj∈σ 2d(v0, v1) as total tour length.

MAIN can indeed be forced to show this behavior by releasing the requests accordingly (i.e. by
using requests with zj = 1 each and with sufficiently large delay between tj and tj+1). In order
to maximize the ratio between the total tour length obtained by MAIN and the optimal offline
solution, we need to ensure that

• we do not have a move from or to the origin with a load less than the capacity Cap of the
VIPA in the transportation schedule of OPT . For that, the adversary releases
– during the lunch Cap many requests traversing the same arc. Whereas MAIN traverses
d(v0, v1) twice to serve a request rj = (tj , v0, v1, 1) or rj = (tj , v1, v0, 1), OPT travels
d(v0, v1) once to serve the request and can share it with Cap− 1 others.
– during the morning/evening Cap many requests traversing the same arc. Whereas MAIN
traverses d(v0, v1) twice to serve a request rj = (tj , v0, v1, zj) resp. rj = (tj , v1, v0, zi),
OPT travels the same distance to serve the request but can share it with Cap− 1 others.

• all requests in σ can be served with as few and as short subtours as possible in OPT. For that,
the adversary releases
– during the lunch a sequence σ of 2Cap requests: Cap many requests v0 → v1 followed by
Cap many requests v1 → v0. Therefore we obtain

MAIN(σ) =
∑
rj∈σ

2d(v0, v1) = 2 · Cap · 2d(v0, v1) and OPT (σ) = 2d(v0, v1)

s.t.
MAIN(σ)

OPT (σ)
=

2 · Cap · 2d(v0, v1)
2d(v0, v1)

= 2Cap

is the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all possible
sequences on a line during the lunch.
– during the morning/evening a sequence σ of Cap requests: Cap many requests v0 → v1
resp. Cap many requests v1 → v0. Therefore we obtain

MAIN(σ) =
∑
rj∈σ

2d(v0, v1) = Cap · 2d(v0, v1) and OPT (σ) = 2d(v0, v1)

s.t.
MAIN(σ)

OPT (σ)
=

Cap · 2d(v0, v1)
2d(v0, v1)

= Cap

is the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all possible
sequences on a line during the morning resp. evening. �
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4.3 Computational results

This section deals with computational experiments for the proposed online algorithms. In fact,
due to the very special request structures of the previously presented worst case instances, we
can expect a better behavior of the proposed online algorithms in average. The computational re-
sults presented in Table 1 and 2 support this expectation, they compare the total tour length TTL
computed by the online algorithms with the optimal offline solution. The computations use in-
stances based on the network from the industrial site of Michelin and randomly generated request
sequences resembling typical instances that occurred during the experimentation [14].The com-
putations are performed with the help of a simulation tool developed by Yan Zhao [15]. The
instances use subnetworks as a circuit or a line depending on the mode and the algorithm with 1
to 5 VIPAs, 5-200 requests, 1-12 as the maximum load zj of a request. For every parameter set
we created 6 test instances. In these tables, the instances are grouped by the number of requests
and the capacity of the VIPA. The average results of the instances are shown. The operating
system for all tests is Linux (CentOS with kernel version 2.6.32). The algorithms SIR, SIFL,
MAIN and OPT-TRAM have been implemented in Java. For solving the integer linear program
to get the optimal solution for the elevator mode, we use Gurobi 8.21.

Table 1. This table shows the computational results for several test instances of the algorithms SIR and
SIFL in comparison to the value of the optimal solution. In this table, the instances are grouped by the
number of requests (1st column) and the capacity (2nd column). Furthermore the values of the total tour
length TTL found by SIR with morning, evening and lunch instances are shown in comparison with the
optimal solution OPT and the ratio between them. Then the values of the total tour length TTL found by
SIFL with lunch instances are shown in comparison with the optimal solution OPT and the ratio between
them. Finally, the results for instances respecting the general scenario are shown: the total tour length TTL
found by SIR, the optimal solution OPT and the ratio between them. The competitive ratio c is shown
for each of the scenarios, it is always greater than TTL

OPT
unless c = TTL

OPT
= 1. In these test instances the

length of the circuit used is equal to |C| = 25

SIR (morning) SIR (Evening) SIR (Lunch) SIFL (Lunch) SIR (General)
c = Cap c = Cap c = 2Cap c = 2 c = Cap · |C|

m Cap TTL OPT TTL
OPT TTL OPT TTL

OPT TTL OPT TTL
OPT c TTL TTL

OPT TTL OPT TTL
OPT c

5 1 125 125 1,00 125 125 1,00 112,5 93,75 1,20 2 100 1,07 143,75 106,25 1,35 25
5 5 50 25 2,00 100 25 4,00 75 25 3,00 10 25 1,00 131,25 25 5,25 125
5 10 50 25 2,00 81,25 25 3,25 68,75 25 2,75 20 25 1,00 87,5 25 3,50 250
20 1 500 500 1,00 500 500 1,00 418,75 337,5 1,24 2 400 1,19 593,75 337,5 1,76 25
20 5 125 100 1,25 275 100 2,75 206,25 75 2,75 10 81,25 1,08 287,5 75 3,83 125
20 10 106,25 50 2,13 275 50 5,50 206,25 43,75 4,71 20 56,25 1,29 268,75 50 5,38 250

200 1 5000 5000 1,00 5000 5000 1,00 4300 2818,75 1,53 2 2968,75 1,05 5400 2706,25 2,00 25
200 5 1025 1000 1,03 2881,25 1000 2,88 2125 562,5 3,78 10 600 1,07 2600 550 4,73 125
200 10 637,5 500 1,28 2543,75 500 5,09 1512,5 275 5,50 20 468,75 1,70 2168,75 275 7,89 250

5 Concluding Remarks

Vehicle routing problems integrating constraints on autonomy are new in the field of operational
research but are important for the future mobility. Autonomous vehicles, which are intended to
be used as a fleet in order to provide a transport service, need to be effective also considering to
their management. We summarize the results of competitive analysis presented in this paper in
Table 3. Competitive analysis has been one of the main tools for deriving worst-case bounds on
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Table 2. This table shows the computational results for several test instances of the algorithm MAIN
in comparison to the value of the optimal solution. In this table, the instances are grouped by number of
requests (1st column) and the capacity (2nd column). First the values of the total tour length TTL found
by MAIN for the instances respecting the morning scenario are shown, the optimal solution OPT and
the ratio between them. Then the results for instances respecting the evening scenario are shown: the total
tour length TTL found by MAIN and, the optimal solution OPT and the ratio between them. Finally, the
values of the total tour length TTL found by MAIN with general instances are shown in comparison with
the optimal solution OPT and the ratio between them. The competitive ratio c is shown for each of the
scenarios, it is always greater than TTL

OPT
unless c = TTL

OPT
= 1. In these test instances the length of the line

used is equal to |L| = 32

MAIN (Morning) MAIN (Evening) MAIN (Lunch) MAIN (General)
c = Cap c = Cap c = 2Cap c = 2Cap · |L|

m Cap TTL OPT TTL
OPT TTL OPT TTL

OPT TTL OPT TTL
OPT c TTL OPT TTL

OPT c
5 1 96 96 1,00 103,5 103,5 1,00 49,5 49,5 1,00 2 57 35 1,63 64
5 5 50,5 24,5 2,06 77 27 2,85 48 27 1,78 10 60 27 2,22 320
5 10 54 28 1,93 97 28 3,46 64,5 27 2,39 20 63,5 27 2,35 640
20 1 319 326 0,98 352 359 0,98 225,5 177 1,27 2 211 172 1,23 64
20 5 134,5 72,5 1,86 315 72,5 4,34 194,5 57,5 3,38 10 186,5 43 4,34 320
20 10 107 46,5 2,30 316 41,5 7,61 160,5 34 4,72 20 216 33,5 6,45 640

200 1 3253,5 3393,5 0,96 3304,5 3426,5 0,96 2240 1855,5 1,21 2 1713 1435,5 1,19 64
200 5 1049 693,5 1,51 3317,5 695 4,77 1560 368,5 4,23 10 1171 292 4,01 320
200 10 859,5 361 2,38 3359,5 355 9,46 1679 185 9,08 20 1085 152,5 7,11 640

Table 3. This table shows the competitive ratios obtained in this paper. For each case we show the compet-
itive ratio for the algorithm on which type of graphs, using which mode.

Mode (type of graph) Algorithm General Lunch Morning Evening
Tram mode (Circuit) SIR Cap · |C| 2Cap Cap Cap
Tram mode (Circuit) SIFM - - 1 -
Tram mode (Circuit) SIFE - - - 1
Tram mode (Circuit) SIFL - 2 - -
Elevator mode (Line) MAIN 2Cap · |L| 2Cap Cap Cap

the performance of algorithms but an online algorithm having the best competitive ratio in theory
may reach the worst case more frequently in practice with a certain topology. That is the reason
why we are not only interested in the “worst-case” but also in the “best-case” performance of
the algorithms, thus we need to determine properties which govern the behavior of each chosen
algorithm and define the cases where it can be applied and give the best results in terms of
performance. So far, we can suggest the following:

– Morning/evening: partition the network into disjoint circuits as subnetworks such that each
subnetwork contains one parking p, assign one or several VIPA to every circuit operating in
tram mode using SIFM resp. SIFL.

– Lunch time: consider a collection of circuits all meeting in a central station (the restaurant),
one or several VIPAs on each circuit operating in tram mode using SIFL.

– in general: consider a spanning collection of lines and circuits meeting in a central station
where one VIPA (in elevator mode) operates on each line using MAIN , one or several
VIPAs (in tram mode) on each circuit using SIR.

The future works are to analyze the proposed scenarios and algorithms further, e.g., by

– providing competitive ratios w.r.t. the objective of minimizing the makespan,
– studying also the quality of service aspect by minimizing the waiting time for customers,
– providing solution approaches for the taxi mode.
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