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Abstract

The identifying code problem is a newly emerging search lprabchallenging both from a the-
oretical and a computational point of view, even for spegiaphs like bipartite graphs. Hence,
a typical line of attack for this problem is to determine minim identifying codes of special
graphs or to provide bounds for their size.

In this work we study the associated polyhedra and presené ggeneral results on their
combinatorial structure. We demonstrate how the polyHeafsproach can be applied to find
minimum identifying codes for special graphs, and discusthér lines of research in order to
obtain strong lower bounds stemming from linear relaxatiofithe identifying code polyhedron,
enhanced by suitable cutting planes to be used in a B&C framew

Key words: identifying code polyhedron, identifying code clutterddaypercycles

1. Introduction

Many search problems as, e.g., fault detection in netwditesdetection in buildings, or
performing group tests, can be modeled by so-called idengjfcodes in graphs [17].

Consider a grapls = (V, E) and denote byN[i] = {i} U N(i) the closed neighborhood of
i.e., the node together with all its neighbors. A subgetc V is dominating(resp.separating
if N[i] n C are non-empty (resp. distinct) sets forialt V. An identifying codeof G is a node
subset which is dominating and separating, see Fig. 1 fetithtion.
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Figure 1: A graph, where the subset of black nodes forms (ajvargding (but not separating) set, (b) a separating (but
not dominating) set, and (c), (d) minimum identifying codes.
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Not every graplG admits an identifying code or identifiable this holds if and only if there
are no true twins i, i.e., there is no pair of distinct nodigg € V with N[i] = N[j][17]. On the
other hand, for every identifiable graph, its whole noderdgatly forms an identifying code.

Theidentifying code numbey'® (G) of a graphG is the minimum cardinality of and iden-
tifying code of G. Determiningy'®(G) is in general NP-hard [9]. From a combinatorial point
of view, the problem has been actively studied during thedasade. Typical lines of attack
are to determine minimum identifying codes of special gsaphto provide bounds for their
size. Closed formulas for the exact valueyd? (G) have been found so far only for restricted
graph families (e.g. for paths and cycles by [8] and for sbgr§l5]). A linear time algorithm
to determiney'®(G) if G is a tree was provided by [5], but for many other graph clasgesre
several other in general hard problems are easy to solwagniéd out that the identifying code
problem remains hard. This includes bipartite graphs [¢] Bwo classes of chordal graphs,
namely split graphs and interval graphs [11]. This motisatee study of bounds foy'® (G).
For instance, a canonical lower boundlisg(n + 1)] < y'°(G) for general graph§& of order
n by [17]. The trivial upper boung'®(G) < n has been improved for connected gra@hto
¥'P(G) < n- 1 by [15] (with stars being examples where this bound is }Jightl for line graphs
t0y'P(L(G)) < 2)V(G)| - 5 by [12].

As polyhedral methods have been already proved to be stictEssseveral NP-hard com-
binatorial optimization problems, our aim is to apply suebhniques to the identifying code
problem. For that, a reformulation as set covering problsrimiorder. For a Ql-matrix M
with n columns, the set covering polyhedronQs(M) = conv{x e Z7 : Mx > 1} andQ(M) =
{xe R" : Mx > 1} is its linear relaxation. Aoverof M is a ¢ 1-vectorx such thatMx > 1, and
the covering number(M) equals mirl™x, x € Q*(M) (see Section 2 for more details).

We obtain such a constraint systévix > 1 for the identifying code problem as follows.
Domination clearly requires that any identifying cddéntersects the closed neighborhadsfl]
of each nodé € V. Separation means that no two intersecti@nsN[i] andCN N[ j] are equal or,
equivalently, thaC intersects each symmetricfidirenceN[i] A N[j] for distinct nodes, j € V.
Hence, the following constraints encode the dominationsamaration requirements:

min1' x
X(N[JD) = Zieng X = 1 VjeV (domination)
X(N[j] A N[K]) = Zienpjang % = 1 Vj.keV,j#k (separation)
x e {01V

Let M,p(G) be the resultingdentifying code matrixof G, i.e., the matrix having as rows the
incidence vectors of the closed neighborhoods of the nofi€&and their pairwise symmetric
differences. Accordingly, we define thlentifying code polyhedron of &s

Pio(G) = Q" (Mip(G)) = conv{x e 2} : Mip(G) x = 1.

It is clear from the definition that a graph is identifiable iifdeonly if none of the symmet-
ric differences results in a zero-row bfip(G), and thaty'®(G) equals the covering number
T(M|D(G)) = min 1TX, X€ P|D(G)

Our aim is to apply the polyhedral approach to find minimummntdging codes. We first
provide some definitions and results related to coveringtalra (Section 2), then we focus on
general properties of the identifying code polyhedRyn(G) and introduce the canonical linear
relaxation (Section 3). Afterwards, we discuss severaislito apply polyhedral techniques. In
Section 4, we present cases whitg (G) falls into a class of matrices for which the set covering
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polyhedron is known and we, thus, immediately can obtaimapdete description oP,p(G) and
the exact value of'°(G). Furthermore, we present cases where a complete desorgit,p (G)
involves many and complicated facets, but where we canifgeiatet-defining substructures
(related to minors oM, (G)) that allow us to derive the full rank inequalixfV) > 7(M,p(G)) =
¥'®(G) and, thus, the exact value 9P (G) (Section 5).

This demonstrates how polyhedral techniques can be appligis context. We close with
a discussion on future lines of research, including how #re lobtained results can be extended
to other classes of graphs.

Some of the results in this contribution appeared withoabpin [2, 4].

2. Properties of set covering polyhedra

We introduce definitions and basic concepts related to sedritg polyhedra and provide
results which are crucial for the proofs in the subsequertit®es.

2.1. Preliminaries

In a setF of vectors in{0, 1}", we sayy € F is a dominating vector (oF) if there exits
x € F with x < y. Alternatively, we say thax is dominated by. From now on, every matrix
has Q1-entries, no zero columns and no dominating rows. Remiatighoverof a matrixM
is a vectorx € {0, 1}" such thatMx > 1. A cover of M is minimalif it is not dominated by any
other cover ofM. The blocker ofM is the matrix whose rows are the minimal coverdvf It
is known thato(b(M)) = M and, thus, we can refer (M) andQ(b(M)) as a blocking pair of
polyhedra. Moreover is an extreme point o®(b(M)) if and only ifa” x > 1 is a facet defining
inequality ofQ*(M) (see [13]). In the sequel we will refer to this propertybdacking duality

Given a matrixM andj € {1,...,n}, we introduce two matrix operations: the contraction of
j, denoted byM/ j, means that columpis removed fromM as well as the resulting dominating
rows and hence, corresponds to settipg= O in the constraintdvx > 1. The deletion ofj,
denoted byM \ j means that columi is removed fromM as well as all the rows with a 1 in
columnj and this corresponds to setting = 1 in the constraintd1x > 1. Then, givenM and
V1, V2 c {1,...,n} disjoint, we will say thatM/V; \ V, is aminor of M and this minor does not
depend on the order of operations or elementd.jn. ., n}. Itis clear thatM is always a minor
of itself and we will say that a mindvl/Vy \ V, is properif V1 UV, # 0. Itis not hard to see that
b(M/j) = b(M) \ jandb(M \ j) = b(M)/] for everyj e {1,...,n}.

The contraction of a séfl of columns fromM is the matrixM/U obtained by deleting the
columns inU and the deletion of a sé&t of columns fromM is the matrixM \ U obtained by
deleting columns itJ and all the rows having at least one 1-entry in the columrmns.in

A rank inequalityassociated with a mindvl”’ = M \ U is

D% = o(M). 1)
ieM’

Remark 1. In[1], it is shown the following. If (1) is a facet of ‘@QV’), then it is also a facet of
Q*(M). In addition, if the rank constraint associated with somaaniinduces a facet defining
inequality of Q(M) then this inequality is also induced by a minor obtained bigtiten.



2.2. Set covering polyhedra associated with g-roses

Let H = (V, &) be a hypergraph with ¢ 2V and letM (%) denote its incidence matrix, i.e.,
M(H) encodes row-wise the incidence vectors of the hyperedgé&s Givenn > q > 2, let
RY = (V. &) be the hypergraph wheké = {1, ...,n} and& contains allg-element subsets of.
Nobili and Sassano [18] called the incidence matrixRfthe complete g-rose of order and
denoted it byRY. In [19] it is proved the following result.

Theorem 2 ([19]). For n > q > 2, the inequality

D xztR)=n-q+1

i=1
is a facet defining inequality for QRY).

For the sake of completeness, we here present the unpublshefs of the results in [4]
describing the set covering polyhedrongefoses of orden. We start with the study of minors
of Rl. It can be easily observed that,

Remark 3. Forn>qg>2andie{l,...,n}

1. RI\i=R,.

2. Rl/i=R1.

In addition, the next result proves that the blocker of a cletey-rose is a complete—q+ 1-
rose.

Lemmad4. Letn> q> 2, then {RY) = R4,

Proof. From Theorem 2r(RY) = n—q+1. Letb a 0/1-vector withn—q+ 1 entries at value one.
By definition every row ofR! hasn — q entries at value zero. It is easy to check tR@h > 1;
i.e.,bis a minimum cover oY, It follows thatR} ™ is a row submatrix ob(RY). Letb’ be a
0/1-vector with more tham — g + 1 entries at value one. It is clear tHatincludes one of the
rows in Ry %!, Hencel is not a minimal cover oR?. Then, the rows iR} ** are the only
minimal covers of}, i.e.,b(R%) = R}, O

Theorem 5. Let n> g > 2. The pointx is a fractional extreme point of @) if and only if

_ { qés ifi ¢ Cs,

1 0 ifiecCs 2)

where s {0,...,q—2}and G c {1,...,n}, with|C4| = s.

Proof. Firstly considerx = %1, thens = 0 andC; = 0. It is immediate thaRX = 1. In order to
prove thatxis an extreme point we need to findinearly independent constraints of the system

Rix > 1.

Then, forevery = 1,...,q+ 1, we select a row; such that

(f): = 0 ifj=n-gq-1,...,n0 j=i
YiT1 1 otherwise,

and, for every = g+ 2,...,n, we select a rowf; of R such that the last 1-entry is at position
4



The considered rows can be reordered in a matrix the following way

E-1I 0
M= ( 0 I )
whereE is the square matrix with all its entries at value one.

The submatri>E — | has rankg + 1, since it can be easily checked th&t{ 1)~ = nfllE 1.
It follows thatM has rankn andx is an extreme point o(R?).

It remains to prove that i = 0 thenx = él is the only fractional extreme point @(RY).

Letybe a fractional extreme point 6i(RY) with s = 0. Then then linearly independent facet
inducing inequalities that satisfies at equality are associated with a square row suitinhat of
R with rankn. Observe that iM’x = 1 has a unique solution then= x.

Now, considers € {1,...,q— 1} and an extreme point defined by (2). Observe thate
QR n{x: x =0foralli e Cs}. From Remark 3 we have thBfl /Cs = RIS, hencex'can be
written as £ 0) wherez = .1 with Ze Q(RJ). As a consequence of the case 0 already
proved,Zis an extreme point o(RY-2) and thenxis an extreme point oR(RY).

Conversely, letx be an extreme point d(RY) and suppose it has zero components. Let
Cs={i : X = 0}. Then, the poinz € R™! such thatz = X, i € {1,...,n} — Csis an extreme
point of Q(RY/Cs). From Remark 3.(ii), ifs = |Cs| we have thatis an extreme point oR’¢

with no zero components. Henoe,z_m 1. Then we have,
l ..
_ —=  sii¢Cq
- g-s
X { 0 siieC. ®

O
By blocking duality, an immediate consequence of Theorem 5 i

Corollary 6. Letn> q > 2. A non-Boolean inequality ax 1 is a facet defining inequality
for Q*(b(RY)) = Q*(RI%*) if and only if ax> 1 can be written as (&) > q - s for some
Asc{l,...,nfwhere s {0,...,g—2} and|A{ = n-s.

3. General properties of identifying code polyhedra

In this section, we examine general properties of idemt@ydode polyhedra concerning their
dimension and the question which of the constraints defitiregcanonical linear relaxation
define facets. From the set covering formulation, it is cthat the inequalities

x>0 forieV, 4)
x(N[) =1 forieV, (5)
x(N[[]aN[[) =1 fori,jeV, j#k (6)

are always valid foP,p(G). The inequalities (4) are calledivial, we refer to the inequali-
ties (5) asclosed neighborhood inequalitiesid to the inequalities (6) aymmetric dference
inequalities

Accordingly, the identifying code matrix is composed by

Mip(G) =5( E[[g]] )



encoding row-wise the closed neighborhoods of the nodd€s @h N[G]) and their pairwise
symmetric dfferences (im[G]).

A graphG is identifiable if and only ifP,5 (G) is non-empty. AN[G] has no zero-row is
identifiable if and only ifA[G] has no zero-row (i.e. if and only & has no true twins [17]).

We first address the question whEp, (G) is full-dimensional. It is known from Balas and
Ng [6] that a polyhedror)*(M) is full-dimensional if and only if the matrif has at least two
ones per row. FoP,p(G), this means thaB must not have isolated nodes (to ensiNg]| > 2
foralli € V(G)) and that there are no two adjacent nodasd j with N[i] = N[j] U {k} for some
nodek (to ensurgN[i] o N[j]| > 2 for all distincti, j € V(G)).

Let V1(G) be the set of noddse V(G) such thatk} = N[i] o N[]] for two different nodes$
andj in V(G). We immediately obtain:

Corollary 7. Let G be a graph without isolated nodes. Then, we have:

1. Pip(G) is full-dimensional if and only if MG) = 0.
2. The constraint x> 0 defines a facet of B(G) if and only if i ¢ V1(G).

In addition, M;p(G) may contain rows which are equal to or dominated by othersriow
Mip(G). We, therefore, define the corresponding clutter mattie, itlentifying code clutter
matrix Cp(G) of a graphG, obtained by removing repeated or dominated rows fidp(G).
We clearly haveP p (G) = conx € ZD" : Cip(G) x > 1}. Moreover, we obtain due to Balas and
Ng [6]:

Corollary 8. All constraints from G5 (G) x > 1 define facets of 3(G).

We obtain a linear relaxation, tifeactional identifying code polyhedron,QG) of G, by
considering all vectors satisfying the above inequalities

Qin(G) = {xe RY": Cip(G) x = 1}.

We, therefore, propose to firstly determine the identify@ogle clutter matrixC,p(G) and then
to study which further constraints have to be adde@(G) to obtainP,p (G).

In order to discuss which rows froM,p (G) remain inC,p (G) it is convenient to consider the
hypergraph associated wi@ip (G). We define thédentifying code hypergraph H(G) to be the
hypergraph whose incidence matiVi(H,p (G)) equalsC,p (G). Clearly,H;p(G) cannot contain
any closed neighborhood or symmetrifdience containing a node frovi(G). In addition, we
observe that if and j are neither adjacent nor have a common neighbor, j@reand N[ j] are
disjoint, henceN[i] A N[j] = NJi] U N[]] follows and is dominated from botN[i] and N[ j].
This implies: A symmetric dierenceN[i] o N[]] is a hyperedge oH,p(G) only if i and | are
adjacent or have a common neighbor.

4. Identifying code polyhedra of complete p-partite graphs

In this section, we consider complgtepartite graphs and establish a connection to complete
2-roses of orden, R?, already mentioned in Section 2.2.

First we consider complete bipartite grapgRs, with bipartition A = {1,...,m} andB =
{m+1,....,m+ n}. We begin with the case of stakg ,, i.e.,A = {1} andn > 3.

Lemma9. For a star Ky, we have hb(Kin) = Kiin and Gp(Kyn) = R2, ;.
6



Proof. For a staK; ,,, we have that

e N[1] = {1} UB,

e N[i] ={1,i} foralli € B,

e N[1] A N[|] =B-{i}foralli € B,

e N[j] a N[K] = {], k} for distinct j, k € B.
This shows thatx/l(Kln) = (. After removing dominated sets, naméiij1] = {1} U B and
N[1] A N[i] = {i} for alli € B, we obtain thaH,p (K1) exactly contains all 2- element subsets
of AU B and, thus itinduces a cliqu€,,n andCip (K1) = Rﬁ+l follows. O

Then we deduce from Corollary 6:

Corollary 10. P,p(Ky,) is described by the inequalitie$®) > |C| — 1 for all nonempty subsets
Cci{l..n+1}.

The above inequalities yield, f¢€| = 1, the trivial inequalitiesq > 0 and, for|C| = 2, the
closed neighborhood and symmetridteience inequalities; + x; > 1 withi # j describing
Qip(Kin). On the other handC = V yields the full rank facet which immediately implies
¥'P(Kyn) = [V] - 1 (and provides an alternative proof for the result giverLs).

For general complete bipartite grapkg, with m > 2,n > 3, we obtain:

Lemma 11. For a complete bipartite graph K., we have hb(Kmn) = Kn + K, and

Cip(Kmn) =( F\gz“ % )

Proof. Observe that for all € A, N[i] = {i} U BandN[i] A N[j] = (AuB) —{i,j}for j € B
includeN[K] A N[I] = {k, I} for distinctk, I € B. Symmetric considerations fore B show that
only symmetric diterencedN[i] AN[ j] remain where, j come either both frorA or both fromB.
Thus,H,p (K1) exactly contains all 2-element subsetsAcdnd all 2-element subsets Bf [

It is known that the set of facet-defining inequalities@i{M) whenM is a block matrix of

the form
(M 0
M ‘( 0 M )

is the union of the sets of facet-defining inequalities@j(M;) andQ*(M,).
As consequence of Lemma 11, Corollary 6 and the above remadonclude the following:

Corollary 12. Pip(Kmp) is given by the inequalities

1. X(C) > |C| — 1 for all nonempty CC A,
2. X(C) = |C| — 1 for all nonempty Cc B.

Moreover,y'® (Kyn) = [V| -

This result can be further generalized for complefeartite graph&p, .. n, = (Vi,...,Vp, E)
where eachV; = {vi1,...,Vin;} induces a stable set and all edges between\argndV; are
present. We usb/i| =nifori=1,...,p, [V]=nandassume; < n, < ... < nyas well as
p=3.

V, = {V»1} holds such tHéwll andvy; become true twms)
7



Lemma 13. For a complete p-partite graph K,
n>3fori=r+1,...,p, we have:

n, Withmg =1, 0y = 2foralli =2...,r, and

.....

0 Iy O ... O
0 0

r+1

Cio(Kin,,..ny) = . R :
o ... 0 Rﬁp
Proof. For a complete-partite graplG = Ky, n,..n, Withny = 1,n = 2foralli=1,...,r, and
n >3fori=r+1,...,p, we have the following closed neighborhoods:

e N[vig] =V,

e N[vi1] =V —{vio} andN[v;z] =V = {vi1} fori=2,...,r,

o N[vijl=(V-Vi)Ulvjlfori=r+1,....,p
Hence,N[vi1] A N[vi1] = {viz} andN[vi11] A N[vi2] = {vi1} foralli = 2,...,r shows thav, U
... UV, € V1(G). All closed neighborhoods contain at least one node f¥Q(®) and are, thus,

all dominated. Moreover, all symmetricftirences dierent fromN[vi;] A N[vi] = {vij, vi} for
i=r+1,...,pare dominated:

o N[vii] AN[vij] =Vi—{vj}fori=r+1,..., pis dominated byN[v;;] A N[vi] (by nj > 3),

o N[vi1] A N[vio] and N[vy] o N[vy] for all i,j = 2,...,r, as well asN[v;] A N[vj.] for
i=2,...,r,j=r+1,..., pintersectvi(G).

Thus, there is no hyperedgeli)p (G) containingvy;. The nodes fronV, U ... UV, form V1(G)
(leading to an identity matrix i€p(G)), and each/; with i = r + 1,..., pinduces a 2-rose of
ordern; in Cp(G). O

As consequence of Lemma 13, Corollary 6 and the above renratdazk matrices, we
conclude:

Corollary 14. For a complete p-partite graph G= Kn p,...n, With iy = 1, nj = 2 for all
i=2,...,r,andn >3fori=r+1,...,p, Pp(G) is given by the inequalities

1. X(vi1) > Oand Xvij) > Oforallvi; e Vj,i=r+1,...,p,
2. X(vij) = Lforallvi; e Vi, i=2,....r,
3. X(V’) = |V’| — 1for all nonempty subsets’\t V; fori=r+1,...,p.

Moreovery'®(G) =n—-p+r - 1.
Using similar arguments as in the proof of Lemma 13, we obtain

Lemma 15. For a complete p-partite graph Kn,
i=r+1,...,p, we have:

n, Withny = 2fori =1,....randn > 3for

,,,,,

R 0 .. O
0 0

r+1

Cio(Kin,.np) =| . . :

o ... O Rﬁp

Lemma 15, Corollary 6 and the above remark on block matricedyi:
8



Corollary 16. For a complete p-partite graph @ Ky, p, .., Withnp = 2foralli = 1,...,r, and
n>3fori=r+1,...,p, Pp(G) is given by the inequalities

1. x(v) > OforallveV,
2. X(V’) = |V’| = 1for all nonempty subsets’'\& V, U ... UV,
3. x(V’) = |V'| - 1 for all nonempty subsets’\£ Vi fori=r+1,...,p.

Moreovery'®(G) =n-p+r-1.

Remark 17. Note that any 2-rose minor i@,y (G) corresponds to a clique id;p(G). Lemma 9
shows that the identifying code hypergraph of stars is aueliand Lemma 10 implies that
cligues form facet-defining substructers. In particulagrg set of pairwise false twins in a
graph gives rise to a clique id,p(G) since for non-adjacent nodeand j with N(i) = N(j), we
haveN[i] o N[]] = {i, j} (see complete multi-partite graphs for examples). Heraeh eel’ of
pairwise false twins in a grap@ leads to a facex(V’) > |[V’| — 1 of P,p(G).

5. ldentifying code polyhedra of suns

In this section, we discuss hypercycles as further relesahstructers irH;p (G) that can
lead to valid or facet-defining inequalities Bfp (G).

Let H = (V,&) be a hypergraph witls  2¥. A hypercycleC = (V’,&’) of lengthmis a
hypergraph defined by an alternating sequenEgi- . ..imEmi; 0f m nodes andn hyperedges
with {ij,ij41) € Ej, ime1 = i1. Itis an induced hypergraplof H if M(C) is a deletion minor
of M(H), i.e., if it is obtained by removing the columns outsiMeand the rows with a 1-entry
outsideV’. The result in Remarkl can be restated as follows:

Lemma18. LetH’ = (V’,&’) be an induced hypergraph &f = (V,&). The inequality g/*) >
7(M(H")) is always valid for Q(M(H)). Moreover if it is a facet of M(H”)) then it is also a
facet of Q(M(H)).

In the sequel, we consider three families of suns and stugegrgycles in their identifying
code hypergraphs in order to determine minimum identifyiodes.

It will turn out that the corresponding identifying code ttrs are related to fierent circu-
lant matrices. Acirculant matrixis a square matrix where each row vector is shifted one elemen
to the right relative to the preceding row. We denoteQtfya matrix in{0, 1}™" having as first
row the vector starting witk 1-entries and having 0-entries otherwise. In contrary ¢octise of
g-roses, the covering polyhedron of general circulant roesrhas not yet been described, even
not for all matrice<CK but only for some special cases (see [1] and [10] for furtbéerences).

A sunis a graphG = (C U S, E) whose node set can be partitioned i®@ndC, where
S={s,..., S} isastable setand = {cy, ..., Cy} is a (not necessarily chordless) cycle.

Here, we focus our consideration on three cases:

e n-sunsM, whereC induces a hole ang is adjacent to exactlg; andc;,; forall 1 <i < n,

e complete sun§, whereC induces a clique ang is adjacent to exactlyg; andc;,; for all
l<i<nand

e CO-suUNsS, (the complements of complete suBg

(indices are taken moduly, see Figure 2 for examples. By definition, we immediately that
all such suns witm > 3 are identifiable.
We start our considerations withsuns. Note thag,p(M3) = 3 is easy to see.
9
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Figure 2: Three examples of suns (a) the 5-M#; (b) the complete su8s and (c) its complement, the co-sBg.

Theorem 19. For an n-sun M = (C U S, E) with n> 4, we have

Cio(My) =( Clw I| )

where G, is the circulant matrix whose first row (8, 1,0, . . ., 0). Moreover, Hp (M) = C,, and
Cip(Mp) =C3..

Proof. The neighborhood matrix d¥l, can be writen as

N[M,] ( G | )
Tla c

because we have thalfs] = {s.c,Ci.1} andN[ci] = {Gi-1,Gi, Giv1. S-1. S} Clearly, N[ci] is

dominated byN[s] for all i < n. To find A[M,], we consider the following cases:

e We haveN[s] aN[c] ={s, Ci, Ci+1}A{Ci-1, Ci, Civ1, S-1, S} ={Ci-1, S-1} andN[s 1] AN[c] =
{Ci+1, S}, which clearly dominate all rows iN[M,].

e Considerc, c; € C. If ¢ andc; are adjacent nodes, say,jif= i + 1 holds, therN[c] A
N[Ci+1] = {Ci-1,Ci, Cis1, S-1, S} A {Ci, Cis1, Civ2, S, S1} = {Ci-1, Giv2, S-1, Si+a} follows. Due
to {Ci—1, S—1} € N[ci] A N[ci,4], itis dominated byN[s] A N[c]. Otherwise N[c] 2 N[c;]
clearly contaings, ¢} and is, thus, dominated BY[S.1] A N[Ci1].

e Lets,s; € S. If s ands; have a common neighbor, say,; and j = i + 1 holds,
thenN[s] A N[s.:1] = {S.Gi, Cis1} A {S+1.Cis1, G2} = (S, Si+1. G, CGis2}. Due tofs, ¢}
N[s] & N[s.1], it is dominated byN[s.1] A N[ci1]. Otherwise N[s] andN[s;] are dis-
joint and{s;, ¢} € N[s] A N[s;] follows, too.
Since all rows ofC,p(M,) have exactly two 1-entries, it is clear thd{p (M,) is a graph. Itis a
cycle sinceN[s] A N[ci] = {c¢i_1, S-1} andN[s_2] 2o N[ci_1] = {ci, S_1} share the nods_;, and
N[s-2] 2 N[ci-1] andN[s.1] A N[ci;1] = {S,Ci} share node;. Accordingly, its incidence matrix
Cip(My) can be re-arranged égn (by ordering the columns as, s1,C2, S, - - -, Cn, Sy and the
rows asN[cz] A N[sz], N[c1] & N[sq], N[cs] & N[sg], N[cz] & N[s1], ..., N[c1] & N[s1], N[cn] &
N[sh-1])- O

HenceH,p(M,) is an even (hyper)cycle andM,) = n clearly holds. In additiorC:gn is one
of the few circulant matrices Whet@"‘(an) is known [10], and we conclude:

Corollary 20. For M, = (C U S,E) with n > 4, Pip(M;) coincides with its linear relaxation

Q(Cip(Mp)) andyp(Mp) = n.
10



Let us now consider a complete s8p = (C U S, E) with n > 4. In contrary ton-suns, the
identifying code clutters of complete suns have a much monaptex structure [3], involving
different combinations of circulant matrices, where some stiea occur for alh > 4, others
not (depending on the parity of and the size of the graph). Accordingly, the description of
Pip(Sn) requires many and complex facets. However, an analystsgqS,) shows that

S is an identifying code ang'®(S,)) < |S| = n. In [3] we conjectured that this bound is tight.
In order to prove the conjecture, we rely on the followingutes

Lemma?2l. Let S, = (CU S, E) be a complete sun whith:n 4. The hyperedges[§], N[S.1],
and N's]AN[s,1] form a hypercycle in b (S;) that induces arank face({ci, Ci;1, Cis2, S» S+1})
>2 of PID(Sn)-

Proof. Consider the following hyperedges frdtp (Sy): the neighborhoodN[s] = {ci, Ci11, S},
N[s1] = {Gi+1, Cis2, S+1} @nd their symmetric dierenceN[s] A N[si11] = {ci, Ci+2, S, Sl

They form, for alln > 4, a hypercycle of length 3 with suppdd, Ci;1,Cis2, S, S+1}. It is
clear that this hypercycle is obtained by deletion of theigois inV - {c, Ciy1, Cii2, S, S+1} In
Cip(Sn). As x({Ci, Ci;1,Ciy2, S, Sie1)) = 2 forn > 4 is a facet of this deletion minor, it is also a
facet of P\p(S;) by Lemma 18. O

Theorem 22. For a complete sun $= (C U S, E) with n > 4, the stable set S is a minimum
identifying code and, thus/P(S,) = n.

Proof. Let us firstly observe that the stable Sa6 an identifying code i18,: indeed N[S] NS =
{s}andN[¢] NS = {s_1, 5} holds fori = 1,...,n, thus each node is dominated and separated.

In order to show tha$ is a minimum identifying code i$,, we consider an arbitrary iden-
tifying codel in S, with | # S and show thafl| > n.

Observe that contains nodes from bot andS: we can neither have c S (otherwisel
does not dominate any node &1+ | nor we can havé c C (otherwisel does not separate any
two nodes irC).

In order to showl| > n, we provide arguments implyingC| > |S—1|. Note thatS—1 cannot
contain 3 consecutive nodsss, S, S+1 from S (otherwisel NN[¢;] = I NC = I nN[cj;1] holds).
Hence,S — | can be partitioned into blocks containing either a singldenor two consecutive
nodes frons, where no two blocks are consecutive. SupposeShdtconsists of blocksA; of
cardinality 1 andy blocksBy with two consecutive nodes each and consequgntl2q = |S—1].

For each blocld; = {s}, it clearly follows|l N{ci,1, Gi}| > 1 from the inequalit,({s;, Ci+1, Gi})
> 1 associated to the hyperedygs] in Hip(Sn).

For each blockBx = {s,s.:1}, we have by Lemma 21 thall[s], N[s.1], and N[s] &
N[s.1] form a hypercycle with rank facet({c;, Ci+1,Cii2, S, S+1}) = 2, which clearly implies
[ N {Ci, Ciy1, Gy}l = 2.

In addition, if 5 ands; belong to diferent blocks o5 — |, then the sets of their neighbors in
C are disjoint. This finally showg N C| > p + 2q and impliegl| > n. O

Finally, let us consider co-suns. Note tiSt= M3 andS, = S, holds.

Also the identifying code clutters of complete suns haveramex structure [3], involving
different combinations of circulant matrices, where some stiixea occur for alh > 4, others
not (depending on the parity of and the size of the graph). Accordingly, the description of
Pio(Sy) requires many and complex facets. However, an analysisg(BS,,) shows thaS is an
identifying code and'®(S,) < |S| = n holds. However, this bound is tight only far= 5, 6.

Hence, in the sequel, we will consider the cases wherv.
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Remark 23. From the definition 08, we obtain the following hyperedges offiS,):

(1) N[s] =(C-{c.c-1}) Uis})
(2) N[s] 2 N[sj] = {¢i-1,Ci, Cj-i, Cj, S, S}, in particular N[s] A N[s;1] = {Gi-1, Ci+1, S, Sl
(3) N[c] a N[¢j] = {s, S+, Sj, Sj+1}, in particular N[¢] A N[ci;1] = (s, Siv2}.

Theorem 24. The identifying code number 8f, with n> 7is n— 1.

Proof. Let us show that* = {c1,C3, S, 3, S5, 6 - - -» Sh-1} IS @n identifying code. Indeed, all
nodes inC U S are separated and dominated since we have that:
N[g] N I* = 1"\ {s41} withi =1 ori = 4.
N[c]nI*=1*\{s}withi=3ori=n-1.
N[c] N I* =1*\{s,sS;1} withi=2orie{5,....,n-2}.
N[c, ] nI*=1*

I*.
N[si] N 1" = {cs}.
N[s] N'1" = {s, C3}.
N[ss] N 1" = {s3,C1}.
N[sa] N 1" = {c}
N[s] N I* ={s,c,c3} withi =5,6,...,n— 1.
N[sa] N 1" = {c1, Ca}.

Also we can observe thét| =n-1, hencey'®(S,) < n— 1 follows. Letl be an identifying
code ofS,,, we will show thatl| > n— 1.

Claim 1: There cannot b8 consecutive nodes in-Sl. Suppose tha ¢ | holds. Then we have
by Remark 23(3) thats_», S12} ¢ |. Moreover{s_1, S} N1 # 0. ¢

Clam2: LetS ={s,,s,,...,5} cS-lwitht <nsuchthats, > s.3forall je{l,....t}
(the addition in the indices is modulo n). Let& | such that Ns;] N H = N[s,] n H for all
lefd,...,t}. Then|l| > H|+t-1.

From assumptioN[s;] " H = N[s ] nH forall j,I € {1,...,t} then given a paig, s, in S’
there must bev € | — H that separates them.

According to Remark 23(2\ € {Cj;-1,Cij, Ci-1,Ci;, S;» S;}. MoreoverasH NS’ = 0, w €
{Gi;-1,Ci;» Ci-1, G }. If w e {1, G} thenw separates; from s, for everyk # 1. If w € {¢,_1, G }
thenw separates;, from s, for everyk # j. Butw does not separate the remaining pairs since
S, = S.sforallke{l,...,t}

W.l.0o.g. assumev € {cI| 1, G, }. With the same arguments used above, there is at least a node
wW el -H,w # wthat separatesJ or s, from the remaining nodes i - {s,}. Following
thisidea, itis clear that there must be at léadtdifferent nodes ih—H and the lemma follows:

Let us partitionS — | into the setsAy = {s¢} withi = 1,...,t andBj = {5, S+1} With
j=1,...,r. If r = 0then the proof follows from Claim 2. Hence, assume nowitha.

Claim 3: r = 1. Suppose to the contrary that 2. LetB;, B; with j < I. From Claim 1 and Re-
mark 23(3) we have thds, S +1, Sk» S+1} N | = 0 contradicting the fact thatis an identifying
code.o
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Therefore, we have thé& N 1| = n—t - 2. W.l.o.g. assume thdt;, s} ¢ |. By Remark
23(2){cz,cn) NI # 0. Let us assume tha:§ € | (the same argument can be appliedtic 1).
t

Thenc, € N[w] for everyw € {s;} U (U Aj). Using Claim 2. withS” = {s;} U (U A) and
i=1
H = {cy} U(SmI)Weobtalnthatl|>|H|+t—(1+n—t—2)+t—n 1. O

6. Concluding remarks

The identifying code problem is hard in general and challepgoth from a theoretical and
a computational point of view, even for special graphs likgktite graphs [9] and split graphs
[11]. Hence, a typical line of attack is to determine minimigi@ntifying codes of special graphs
(as paths [7, 14], stars [15] and cycles [7, 14]), or to prev@ver and upper bounds [12, 15, 17].

In this paper, we demonstrated how polyhedral technique$ehp to find identifying codes
of minimum size. For that, we rely on a reformulation of theritifying code problem in terms
of a set covering problem in a suitable hypergréph(G) and study the identifying code polyhe-
dronP,p(G) = Q*(C,p(G)) as covering polyhedron associated with its incidenceaim@;p (G).

We provided some general properties of the identifying cpdighedronP,p(G) and its
canonical linear relaxation (Section 3). Afterwards, wecdssed several lines to apply poly-
hedral techniques to the identifying code problem. In argecahe first step is to determine
Hip(G) and its incidence matri€,p (G).

If Cip(G) falls into a class of matrices! for which the set covering polyhedra®‘(M) is
already known, then we immediately obtain a complete desen of P,p(G) and can deduce
the exact value of'°(G). This turned out to be the case for stirs, (whereCp(Ky,) equals
a 2-roseRZ ) and for general complete multipartite gragBgwhereCp(G) is composed by
blocks of 2-roses). Moreover, the identifying code clutém-sunsM, turned out to equal
the circulant matri>(3§n which impliedPp (M) = Qp(My). In all these cases, we obtained a
complete description d?(G) and a closed formula for the exact valueyt (G).

A matrix M is ideal if Q*(M) = Q(M). Hence, we can conclude from our resultreauns:

Coroallary 25. The identifying code clutters of n-sunsg, e ideal for all n> 3.

A way to evaluate how far a nonideal matrix is from being ide@hsists in classifying the
inequalties that have to be addedQV) in order to obtairQ*(M). In [1], a matrixM is called
rank-idealif Q*(M) is described by rank constraints only. Thus, the resul&eiction 4 imply:

Corollary 26. The identifying code clutters of complete multipartite @ia G are rank-ideal
since rank constraints associated with cliques i (&) syfice to describe R (G).

In general, we cannot expect identifying code clutters t¢rapk-)ideal. Complete sur;,
and their complements are examples of graBhshereC,p(G) is far from being rank-ideal.
However, an analysis &p (G) impliesy'®(S,) < nand rised a conjecture in [3] that this bound
is tight. Here, we were able to verify this conjecture by camirly polyhedral and combinato-
rial arguments. Finally, we provided a purely combinatopiaof for y'®(S,) < n - 1 for all
complements of complete suns wiite 7.

Note that the arguments and techniques applied to complatease rather general and have
the potential to be applied to all grapfds even if their identifying code clutters are matrices
with a complex structure and a complete descriptioRP@f(G) involves many and complicated
facets. In all such cases, an analysi€gf(G) can provide, on the one hand, upper bounds for
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v'P(G) and, on the other hand, minors@j (G) (e.g. associated with cliques or odd hypercycles
in Hp(G)) whose rank constraints strengthen the linear relaxa@@{G) and can be used to
obtain lower bounds foy'P (G).

Future lines of our research include to identify more fatefining substructures iH 5 (G)
(related to minors o€ (G)) that allow us to strengthen the linear relaxat@s (G). Thereby,
our goal is to obtain either the identifying code of minimuizesor strong lower bounds stem-
ming from linear relaxations of the identifying code polghen, enhanced by suitable cutting
planes. Recall that facets associated with deletion miofo@sp (G) remain facets iPp (G), so
according facets identified for special graphs are relefear@very graph having such subgraphs.
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