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Abstract

The identifying code problem is a newly emerging search problem, challenging both
from a theoretical and a computational point of view, even for special graphs like
bipartite graphs and split graphs. Hence, a typical line of attack for this problem is
to determine minimum identifying codes of special graphs or to provide bounds for
their size.

In this work we study the associated polyhedra for some families of split graphs:
headless spiders and complete suns. We provide the according linear relaxations, dis-
cuss their combinatorial structure, and demonstrate how the associated polyhedra
can be entirely described or polyhedral arguments can be applied to find minimum
identifying codes for special split graphs. We discuss further lines of research in or-
der to apply similar techniques to obtain strong lower bounds stemming from linear
relaxations of the identifying code polyhedron, enhanced by suitable cutting planes
to be used in a B&C framework.

Key words: identifying code problem, polyhedral approach, split graphs

1 Introduction

Many practical applications can be stated as set covering problems. For in-
stance, some newly emerging search problems like fault detection in networks,
fire detection in buildings, or performing group tests, can be modeled as special
variant of domination problems: so-called identifying codes in graphs [17].

Preprint submitted to Elsevier 22 May 2016



Consider a graph G = (V,E) and denote by N [i] = {i} ∪ N(i) the closed
neighborhood of i. A subset C ⊆ V is dominating (resp. identifying) if N [i]∩C
are non-empty (resp. distinct) sets for all i ∈ V . An identifying code of G is
a node subset which is dominating and identifying, see Figure 1, and the
identifying code number γID(G) of a graph G is the minimum cardinality of
an identifying code of G.

(b) (c)(a) (d)

Fig. 1. A graph, where the subset of black nodes forms (a) a dominating (but not
identifying) set, (b) an identifying (but not dominating) set, and (c), (d) minimum
identifying codes.

Determining γID(G) is in general NP-complete [9]. It even remains hard for
several graph classes where many other in general hard problems are easy
to solve, including bipartite graphs [9], split graphs [11] and, thus, chordal
graphs. From a graph theoretical point of view, the problem has been actively
studied, see e.g. [6,7,12,15] for some recent papers in the area.

Polyhedral studies of the identifying code problem were initiated in [2,3]. For
that, a suitable reformulation of the problem in terms of an integer linear
program is in order. Determining a minimum identifying code in a graph
G = (V,E) can be formulated as set covering problem min1T x,MID(G) ≥ 1,
x ∈ {0, 1}|V | by:

min1T x

x(N [j]) =
∑

i∈N [j] xi ≥ 1 ∀j ∈ V (domination)

x(N [j] △ N [k]) =
∑

i∈N [j]△N [k] xi ≥ 1 ∀j, k ∈ V, j 6= k (identification)

x ∈ {0, 1}|V |.

We call

MID(G) =







N [G]

△[G]







the identifying code matrix of G, encoding the closed neighborhoods of the
nodes of G (N [G]) and their symmetric differences (△[G]), and define the
identifying code polyhedron of G as

PID(G) = conv{x ∈ Z
|V |
+ : MID(G) x ≥ 1}.

It is clear by construction that γID(G) equals the covering number

τ(MID(G)) := min{1T x : x ∈ PID(G)}.
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In addition, a graph G has an identifying code or is identifiable if and only if
MID(G) has no zero-row. As N [G] has clearly no zero-row, G is identifiable if
and only if △[G] has no zero-row which is equivalent to the known condition
that G is identifiable if and only if it has no true twins, i.e., nodes i, j with
N [i] = N [j], see [17].

As MID(G) may contain rows which are equal to or dominated by other rows
in MID(G), we define the corresponding clutter matrix, the identifying code
clutter CID(G) of G, obtained by removing repeated or dominated rows from
MID(G). We clearly have that

PID(G) = conv{x ∈ Z
|V |
+ : CID(G) x ≥ 1},

and obtain as a linear relaxation the fractional identifying code polyhedron

QID(G) = {x ∈ R
|V |
+ : CID(G) x ≥ 1}.

In [2,3] we characterized when PID(G) is full-dimensional and which con-
straints of QID(G) define facets of PID(G):

Lemma 1 ([2,3]) Let G be a graph without isolated nodes and let V1(G) be
the set of nodes k ∈ V (G) such that {k} = N [i]△N [j] for two different nodes
i and j in V (G). Then,

• PID(G) is full-dimensional if and only if V1(G) = ∅.
• The constraint xi ≥ 0 defines a facet of PID(G) if and only if i /∈ V1(G).
• All constraints from CID(G) x ≥ 1 define facets of PID(G).

In this work we study the identifying code problem from a polyhedral point of
view and focus on some families of split graphs: headless spiders and complete
suns.

We provide the according linear relaxations, discuss their combinatorial struc-
ture, and demonstrate how the associated polyhedra can be entirely described
or polyhedral arguments can be applied to find minimum identifying codes
for special split graphs, see Section 2. Parts of the results appeared without
proofs in [4].

We discuss further lines of research in order to apply similar techniques to
obtain strong lower bounds stemming from linear relaxations of the identifying
code polyhedron, enhanced by suitable cutting planes to be used in a B&C
framework, see Section 3.
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1.1 Preliminary definitions

Given a set F of vectors in {0, 1}n, we call y ∈ F a dominating vector (of
F ) if there exists x ∈ F with x ≤ y. It can be also said that x is dominated
by y. From now on, every matrix has 0, 1-entries, no zero columns and no
dominating rows.

As there is a one-to-one correspondence between a vector x ∈ {0, 1}n and the
subset Sx ⊂ {1, . . . , n} having x as characteristic vector, we write x instead
of Sx. Remind that a cover of a matrix M is a vector x ∈ {0, 1}n such that
Mx ≥ 1. According to the previous convention, a cover of M is a subset of
columns ({1, . . . , n}) that intersects all the rows of M .

In addition, the cardinality of a cover x is denoted by |x| and equals 1x. A
cover x is minimum if it has the minimum cardinality and in this case |x| is
called the covering number of the matrix M , denoted by τ(M).

Recall that the set covering polyhedron of M , denoted by Q∗(M), is defined
as the convex hull of its covers. The polytope Q(M) = {x ∈ [0, 1]n : Mx ≥ 1}
is known as the linear relaxation of Q∗(A). When Q∗(A) = Q(A) the matrix
A is ideal and the set covering problem can be solved in polynomial time (in
the size of M).

A cover of M is minimal if it does not dominate any other cover of M . The
blocker of M , denoted by b(M), is the matrix whose rows are the minimal
covers of M . It is known that b(b(M)) = M and also that a matrix M is
ideal if and only if its blocker is (see [18]). In addition, since b(b(M)) = M we
can refer to Q∗(M) and Q(b(M)) as a blocking pair of polyhedra. Moreover,
a is an extreme point of Q(b(M)) if and only if aT x ≥ 1 is a facet defining
inequality of Q∗(M) (see [14]). In the sequel we will refer to this property as
blocking duality.

Given a matrix M and j ∈ {1, . . . , n}, we introduce two matrix operations:
the contraction of j, denoted by M/j, means that column j is removed from
M as well as the resulting dominating rows and hence, corresponds to setting
xj = 0 in the constraints Mx ≥ 1. The deletion of j, denoted by M \ j means
that column j is removed from M as well as all the rows with a 1 in column
j and this corresponds to setting xj = 1 in the constraints Mx ≥ 1.

Given M and V1, V2 ⊂ {1, . . . , n} disjoint, we will say that M/V1 \ V2 is a
minor of M and this minor does not depend on the order of operations or
elements in {1, . . . , n}. It is clear that M is always a minor of itself and we
will say that a minor M/V1 \ V2 is proper if V1 ∪ V2 6= ∅. It is not hard to see
that b(M/j) = b(M) \ j and b(M \ j) = b(M)/j for every j ∈ {1, . . . , n}. In
addition, if a matrix is ideal then so are all its minors (see [10] for details).
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A rank inequality is
∑

i∈M ′

xi ≥ τ(M ′) (1)

associated with a minor M ′ = M \ U . If (1) is a facet of Q∗(M ′), then it is
also a facet of Q∗(M) (see [19]).

In addition, if the rank constraint associated with some minor induces a facet
defining inequality of Q∗(M) then this inequality is also induced by a minor
obtained by deletion (see [1] for further details).

2 Identifying code polyhedra of some split graphs

A graph G = (C ∪ S,E) is a split graph if its node set can be partitioned
into a clique C and a stable set S. Hence, split graphs are closed under taking
complements by definition.

Moreover, split graphs form the complementary core of chordal graphs (graphs
without chordless cycles of length ≥ 4) since G is a split graph if and only if G
and G are chordal [13]. This is also reflected in terms of forbidden subgraphs
since a graph is a split graph if and only if it is (C4, C4, C5)-free [13] (note
that C5 is self-complementary and that C4 occurs as induced subgraph in any
chordless cycle Ck with k ≥ 6 such that all chordless cycles Ck with k ≥ 4 are
excluded in G as well as in G). The relation between chordal and split graphs
can also be interpreted in terms of intersection graphs: while chordal graphs
are the intersection graphs of distinct subtrees of a tree, split graphs are the
intersection graphs of distinct substars of a star, see e.g. [8].

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. First note that a split graph is identifiable if and only if no two nodes
in C have the same neighbors in S. For instance, a complete split graph (i.e.,
a split graph where all edges between C and S are present) is not identifiable
as soon as C contains 2 nodes (as any two nodes in C are true twins). For
instance, crowns (the complete split graphs with |C| = 2) are not identifiable.

Next, recall that finding a minimum identifying code in split graphs is NP-hard
[11]. So far, γID(G) is only known for two families: on the one hand, stars (the
complete split graphs G = (C ∪ S,E) with |C| = 1) are the only identifiable
complete split graphs and have γID(G) = |S|; on the other hand, split graphs
G = (C∪S,E) where every node in S is connected to a distinct 2-node subset
of C have γID(G) of order log(|S| + |C|), see [11]. The two families show the
wide range of the possible size of minimum identifying codes in split graphs:
while the lowest possible lower bound of log n is attained for the latter, stars
achieve almost the highest possible value n.
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Moreover, a split graph is connected if and only if no node in S is isolated.
Every non-connected split graph G contains a connected split graph G′ and a
non-empty subset S ′ ⊂ S of isolated nodes, and clearly γID(G) = γID(G′)+|S ′|
holds.

This motivates the study of identifying codes in non-complete, connected split
graphs G. We concentrate on three families of split graphs with a regular
structure. This allows us to benefit from a certain combinatorial structure
of the identifying code clutter CID(G) of G and to draw conclusions for the
polyhedra PID(G) and the identifying code number γID(G) in a similar way
as discussed for families of bipartite graphs in [2,3].

In particular, note that stars K1,n are bipartite graphs as well as split graphs.
Their identifying code clutter is related to q-roses Rq

n, 0, 1-matrices with n
columns whose rows encode the incidence vectors of all the q-element subsets
of {1, . . . , n}. We have:

Theorem 1 ([2,3]) For a star K1,n = (V,E) with n ≥ 3, we have

• CID(K1,n) = R2
n+1;

• PID(K1,n) is entirely described by the inequalities x(V ′) ≥ |V | − 1 for all
nonempty subsets V ′ ⊂ V ;

• γID(K1,n) = n.

In this paper, we study three families of split graphs with |S| = |C| ≥ 2 having
a regular structure. A headless spider is a split graph G = (C ∪ S,E) with
S = {s1, . . . , sn}, C = {c1, . . . , cn}, and n ≥ 2. In a thin headless spider, si is
adjacent to cj if and only if i = j, and in a thick headless spider, si is adjacent
to cj if and only if i 6= j. It is straightforward to check that the complement
of a thin spider is a thick spider, and vice-versa. Moreover, headless spiders
where si is adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n are complete suns.

It is easy to see that for n = 2, the path P4 equals the thin and thick headless
spider, whereas the complete sun is not identifiable. For n = 3, the thin
headless spider equals the net, and thick headless spider and complete sun its
complement, the 3-sun. We consider headless spiders with n ≥ 4; Figure 2
illustrates all studied three families for n = 4. The partition (C, S) is called
the spider partition and can be found in linear time [16].

(b)(a) (c)

Fig. 2. (a) thin headless spider, (b) complete sun, (c) thick headless spider.
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2.1 Thick headless spiders

For simplicity, we will denote thick headless spiders by their partition and we
will consider that C = {1, . . . , n} and S = {n+1, . . . , 2n}. Also, we denote by
E a matrix with all entries at value one and recall that Rq

n stands for a q-rose
of order n.

Lemma 2 For a thick headless spider G = (C ∪ S,E) with n ≥ 4, we have

CID(G) =







Rn−1
n I

0 R2
n





 .

Proof. Let G = (C∪S,E) be a thick headless spider. The neighborhood matrix
of G can be written as

N [G] =







E Rn−1
n

Rn−1
n I





 .

Now, in order to find △[G]:

(1) If i, j ∈ C, N [i] △ N [j] = {i + n, j + n}.

(2) If i, j ∈ S, N [i] △ N [j] = [{i} ∪ (C − {i − n})] △ [{j} ∪ (C − {j − n})] =
{i, j, i − n, j − n} and are dominated by a row of the case (1).

(3.a) If i ∈ C and j ∈ S, j 6= i + n, N [i]△N [j] = [C ∪ (S −{i + n})]△ [{j}∪
(C − {j − n}) = {j − n} ∪ (S − {j, i + n}) is dominated by N[i].

(3.b) If i ∈ C and j = i + n ∈ S, N [i] △ N [j] = [C ∪ (S − {i + n})] △ [{j} ∪
(C − {j − n}) = [C ∪ (S − {i + n})]△ [{i + n} ∪ (C − {i}) = {i} ∪ S and are
dominated by a row of the case (1).

As the first n rows of the matrix N [G] above are also dominated, we have that
the clutter matrix CID(G) can be written as

CID(G) =







Rn−1
n I

0 R2
n





 .

2

As an immediate consequence, we obtain:
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Corollary 1 Let G = (C ∪ S,E) be a thick headless spider. Then:

• PID(G) is full-dimensional.
• The constraint xi ≥ 0 defines a facet of PID(G) for each i ∈ C ∪ S.
• All constraints from CID(G) x ≥ 1 define facets of PID(G).

Observe that τ(I, I) = n. Then if G = (C ∪ S,E) is a thick headless spider,
γID(G) ≥ n. In fact, we have:

Corollary 2 Let G = (C ∪ S,E) be a thick headless spider. Then S is a
minimum identifying code and, thus, γID(G) = n.

Proof. It is clear that every cover of CID(G) must contain a subset of S having
n − 1 elements. Nevertheless no subset of S having n − 1 elements covers the
matrix CID(G), but S does. Then, γID(G) = n. 2

In [5], the set covering polyhedron Q∗(Rq
n) = conv

{

x ∈ Zn
+ : Rq

nx ≥ 1
}

of com-
plete q-roses was studied.

Theorem 2 ([5]) Let n ≥ q ≥ 2. An inequality ax ≥ 1 is a facet defining
inequality for Q∗(Rq

n) if and only if ax ≥ 1 can be written as x(As) ≥ |As|−q+1
for some As ⊂ {1, . . . , n} where s ∈ {0, . . . , n − q − 1} and |As| = n − s.

As R2
n is a minor of CID(G) obtained from the deletion of the nodes of C in

the underlying graph G = (C ∪ S,E), we have:

Corollary 3 Let G = (C ∪ S,E) be a thick headless spider. Then, for all
nonempty subsets A ⊂ S, the inequalities x(A) ≥ |A|−1 are facets of PID(G).

In order to study the remaining facets of PID(G) we need a description of the
blocker of CID(G).

From now on we consider vectors in {0, 1}l+k of the form ei ⊕ fj where ei for
i = 1, . . . , l is the unit vector in {0, 1}l and fj for j = 1, . . . , k is a vector in
{0, 1}k such that (fj)t = 0 if j = t and (fj)t = 1 if j 6= t.

Theorem 3 Let CID(G) be the clutter matrix of a thick headless spider G =
(C ∪ S,E). Every minimal cover x of CID(G) is minimum. Moreover, either
x = 0⊕1 where 0,1 ∈ {0, 1}n or x = ei ⊕ fj where ei, fj ∈ {0, 1}n with i 6= j.

Proof. From Corollary 2, S is a minimum cover of CID(G). Now, let x be
a minimal cover of CID(G) such that xj = 0 for some j ∈ {n + 1, . . . , 2n}.
It is known that every row of Rn−1

n covers (ei + ej) for every i, j = 1, . . . , n
[5], then any cover x with xn+j = 0 for some j ∈ {n + 1, . . . , 2n} must be
of the form x = y ⊕ fj with some y ∈ {0, 1}n. In order to cover the rows of
submatrix (Rn−1

n , I) it is enough to consider xi,j = ei ⊕ fj for i, j = 1, . . . , n

8



and i 6= j. Then |x| = |xi,j| = n for every i, j = 1, . . . , n and i 6= j and they
are all minimum covers. Now, let v be a cover of CID(G), with vn+j = 0. Then
v = y ⊕ fj and y ∈ {0, 1}n. But y must be a cover of Rn−1

n , i.e., y = ei + h for
some i 6= j and some h ∈ {0, 1}n. Then y is not minimal. 2

Now, we present some technical lemmas:

Lemma 3 Let l ≥ k ≥ 2 and M be a matrix with l + k columns and rows

• 0 ⊕ 1 where 0 ∈ {0, 1}l and 1 ∈ {0, 1}k,
• e1 ⊕ fj, where e1 ∈ {0, 1}l, fj ∈ {0, 1}k with j = 2, . . . , k,
• ei ⊕ f1, where ei ∈ {0, 1}l, f1 ∈ {0, 1}k and i = 2, . . . , l,
• el ⊕ fk

Then M has rank l + k.

Proof. The proof follows from the fact that the l + k rows of matrix M are
linearly independent. 2

As a consequence we can prove the following:

Corollary 4 Consider CID(G) of a thick headless spider G = (C ∪ S,E). If
x̄ ∈ R2n is an extreme point of Q(b(CID(G))) such that xi 6= 0 for all i ∈ C∪S
then x̄ = 1

n
1 ∈ R2n.

Proof. From Theorem 3 it follows that every row of b(CID(G)) is either 0⊕ 1
where 0,1 ∈ {0, 1}n or ei ⊕ fj for i, j = 1, . . . , n and i 6= j. Then they all
have n ones per row. By Lemma 3 there are 2n linearly independent rows in
b(CID(G)). It follows that if x̄ = 1

n
1 ∈ Rn then it satisfies b(CID(G))x̄ = 1.

Hence x̄ is a fractional extreme point of Q(b(CID(G))). Now, if ȳ is an extreme
point of Q(b(CID(G))) with all nonzero components then it must satisfy 2n
linearly independent inequalities of Q(b(CID(G))) at equality having n ones
per row. It follows that ȳ = x̄. 2

Using blocking duality it can be seen that Corollary 4 gives an alternative proof
of γID(G) = n and states that the only facet of PID(G) with full support is
the rank inequality associated with G.

In order to obtain the complete description of PID(G), we need some fur-
ther results. The proofs of the next two lemmas follow from straightforward
computation of contraction of columns in matrices.

Lemma 4 Consider M = CID(G) of a thick headless spider G = (C ∪ S,E)
and let i ∈ C. Then M/i is a matrix with 2n− 1 columns and whose rows are

(1) eh ⊕ fi where fi ∈ {0, 1}n and eh ∈ {0, 1}n−1 for h = 1, . . . , n − 1, h 6= i.
(2) 0 ⊕ fj where 0 ∈ {0, 1}n−1 and fj ∈ {0, 1}n for j = 1, . . . , n and j 6= i.
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Lemma 5 Consider M = CID(G) of a thick headless spider G = (C ∪ S,E)
and let i ∈ S. Then M/i is a matrix with 2n − 1 columns, having n − 1 ones
per row and whose rows are

(1) ei ⊕ fj where ei ∈ {0, 1}n and fj ∈ {0, 1}n−1 forj = 1, . . . , n − 1,
(2) eh ⊕ fj where eh ∈ {0, 1}n and fj ∈ {0, 1}n−1 forj = 1, . . . , n − 1, j 6= h

when i > h and j − 1 6= h when i < h,
(3) 0 ⊕ 1 where 0 ∈ {0, 1}n and 1 ∈ {0, 1}n−1.

Lemma 6 Let M be a matrix with 2n − 1 columns and 2(n − 1) rows such
that the first n − 1 rows are of the form ei ⊕ f1 where ei ∈ {0, 1}n−1 for
i = 1, . . . , n − 1 and f1 ∈ {0, 1}n and the remaining n − 1 rows are 0 ⊕ fi

where 0 ∈ {0, 1}n−1 and fi ∈ {0, 1}n for i = 2, . . . , n. Then every extreme
point x ∈ Q(M) having xl 6= 0 for some l = 1, . . . , n− 1 is of the form xj = 1
for all j = 1, . . . , n and xj = 0 if j = n + 1, . . . , 2n − 1.

Proof. Consider the system Mx ≥ 1 with 2(n−1) rows. Adding a slack variable
si to each row i of the system, we get Mx − Is = 1 where I is the identity
matrix of size 2(n − 1).

If x̄ is an extreme point of Q(M) then there must be a basic feasible solution
associated with it, i.e., there must be a subdivision of (M, I) of the form (B,N)
where B is a regular submatrix of M of maximum rank. Also, if j is an index
corresponding to a column in N then xj = 0.

It is easy to check that the rows of M are linearly independent, so the rank
of B is 2(n− 1). The total number of variables in Mx− Is = 1 including the
original variables and the slack variables is 2n−1+2(n−1), but 2(n−1) must
be basic variables then there are at least 2n− 1 variables at value zero. Then,
there must be at least one index of a column in M , say j, such that x̄j = 0.
Observe that for every i = 1 . . . , n− 1 the variable xi and the slack si appear
in the system Mx − Is = 1 only in row i, i.e., the columns corresponding
to variables si and xi are the same for all i = 1, . . . , n − 1. Hence, for all
i = 1, . . . , n − 1 if xi is a basic variable then si is a nonbasic variable.

From assumption x̄l > 0 we obtain sl = 0 and then it holds that

x̄l +
∑

i=1,...,n−1

x̄n+i = 1.

If
∑

i=1,...,n−1 x̄n+i = 0 then x̄i = 1 for all i = 1, . . . , n and the lemma follows.

Assume that
∑

i=1,...,n−1 x̄n+i = t > 0. Then x̄i = 1 − t + si = x̄l + si > 0 for
all i = 1, . . . , n with i 6= l. Then xi with i = 1, . . . , n− 1 are all basic variables
and consequently si are nonbasic for i = 1, . . . , n − 1.
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Now, consider the last n − 1 equalities of Mx − Is = 1. They are:

x̄n +
∑

i=1,...,n−1 i6=k

x̄n+i − sn−1+k = 1 for all k = 1 . . . , n − 1.

Then it holds that

x̄n = 1 − t + x̄n+k + sn−1+k for all k = 1 . . . , n − 1.

So, x̄n > 0 and then xi is basic for i = 1, . . . , n. Remind that x̄j = 0 for some
j ∈ {1, . . . , 2n − 1} then n + 1 ≤ j ≤ 2n − 1. But, x̄n = 1 − t + x̄n+j + sn−1+j

and if sn−1+j > 0 then one of x̄n+k and sn−1+k must be positive for every k =
1 . . . , n−1. This implies that we have n−1 more basic variables, contradicting
the fact that they are 2(n − 1).

Then the basic solution of Mx−Is = 1 corresponds to x̄j = 1 for j = 1, . . . , n,
sj = 0 for j = 1, . . . , 2(n − 1) and x̄j = 0 if j = n + 1, . . . , 2n − 1. 2

Now, we can further show:

Theorem 4 Let b(CID(G)) be the blocker of the identifying code clutter ma-
trix of a thick headless spider G = (C ∪ S,E). Let x̄ ∈ R2n be a fractional
extreme point of Q(b(CID(G))) such that the set A = {i : x̄i = 0} is nonempty.
Then either

(1) A ( S and x̄i = 1
n−|A|

when i /∈ A or

(2) C ( A and |A| ≤ 2(n − 1) and x̄i = 1
2n−|A|−1

for all i /∈ A.

Proof. Let x̄ be a fractional extreme point of Q(b(CID(G))) and let A = {i :
xi = 0} with A a nonempty set.

It is clear that x̄ ∈ Q(b(CID(G)))∩{xi = 0 : i ∈ A}. Then x̄ can be partitioned
into (x̄A, x̄Ā) where Ā is the complement of A in {1, . . . , 2n}. In order to ease
notation let us call ȳ = x̄Ā ∈ Rn−|A|. Then it holds that ȳ is an extreme point
of Q(b(CID(G))/A) with all components different from zero.

First consider A ⊂ S = {n + 1, . . . , 2n}. If n − |A| = 1, it is easy to check
that matrix b(CID(G)/A) is the n × n identity matrix. Then ȳ ∈ {0, 1}n+1

contradicting the fact that x̄ is a fractional extreme point.

If n − |A| ≥ 2 we can iteratively apply Lemma 5 and then we get a matrix
b(CID(G)/A) whose rows all have n − |A| ones and using Lemma 3 it holds
that there are n + n − |A| linearly independent rows of b(CID(G))/A with
n − |A| ones per row. Then if ȳ is an extreme point of Q(b(CID(G))/A) with
all nonzero components then ȳ = 1

n−|A|
1.
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Now, let A be such that i ∈ A and j /∈ A with {i, j} ⊂ {1, . . . , n}. W.l.o.g. we
may assume that i = 1. Then, by Lemma 4 we can see that matrix b(CID(G))/i
is of the form of matrix M in Lemma 6 with 2(n−2) rows and 2n−1 columns.
Then using Lemma 6, the extreme point ȳ ∈ {0, 1}2n−|A| contradicting the fact
that x̄ is a fractional extreme point. Hence if i ∈ A for some i ∈ {1, . . . , n}
then C ⊂ A. In this case the rows of matrix b(CID(G)/A) are of the form
fi ∈ {0, 1}2n−|A| for every i = 1, . . . , 2n − |A|. Then the only possible solution
is ȳi = 1

2n−|A|−1
for all i = 1, . . . , 2n − |A|. 2

As a consequence of Theorem 4 and blocking duality, we conclude:

Corollary 5 Let G = (C ∪ S,E) be a thick headless spider and S ′ ⊂ S
nonempty. Then, the inequalities x(C)+x(S ′) ≥ n− |S −S ′| when 2 ≤ |S ′| ≤
n − 1 and x(S ′) ≥ |S ′| − 1 when 2 ≤ |S ′| ≤ n are facets of PID(G).

As a consequence of Corollary 5 and Theorem 4, we obtain the main result of
this section:

Corollary 6 Let G = (C ∪ S,E) be a thick headless spider. Then, the facets
of PID(G) are

• the constraint xi ≥ 0 for all i ∈ C ∪ S,
• the constraints CID(G) x ≥ 1,
• the constraints x(C) + x(S ′) ≥ n − |S − S ′| and x(S ′) ≥ |S ′| − 1 for every

S ′ ⊆ S with 2 ≤ |S ′|.

2.2 Thin headless spiders

Lemma 7 For a thin headless spider G = (C ∪ S,E) with n ≥ 4, we have

CID(G) =















I I

0 R2
n

Rn−1
n 0















.

Proof. Let G = (C ∪ S,E) be a thin headless spider with C = {1, . . . , n} and
S = {n + 1, . . . , 2n}. The neighborhood matrix of (C, S) can be written as

N [G] =







E I

I I





 .

Now, in order to find △[G]:
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(1) If i, j ∈ C, N [i] △ N [j] = {i + n, j + n}.

(2) If i, j ∈ S, N [i]△N [j] = {i, i−n}△{j, j−n} and are dominated by N [i].

(3.a) If i ∈ C and j ∈ S, j 6= i+n, N [i]△N [j] = [C ∪{i+n})]△{j, j−n} =
{j, i + n} ∪ (C − {j − n}) is dominated by N [i].

(3.b) If i ∈ C and j = i + n ∈ S, N [i] △ N [j] = [C ∪ {i + n})] △ [{i, i + n} =
C − {i}.

As the first n rows of the matrix N above are also dominated, we have that
the clutter matrix CID(G) can be written as claimed. 2

Corollary 7 Let G = (C ∪ S,E) be a thin headless spider. Then we have:

• PID(G) is full-dimensional.
• The constraint xi ≥ 0 defines a facet of PID(G) for all i ∈ C ∪ S.
• All constraints from CID(G) x ≥ 1 define facets of PID(G).

In [19], it is proved that τ(R2
n) = n − 1. Then if G = (C ∪ S,E) is a thin

headless spider, γID(G) ≥ n − 1. In fact, we have:

Corollary 8 Let G = (C ∪ S,E) be a thin headless spider. Then, γID(G) =
n + 1.

Proof. Let G = (C ∪ S,E) be a thin headless spider with C = {1, . . . , n} and
S = {n + 1, . . . , 2n}. It is immediate to observe that γID(G) ≥ τ(Rn−1

n ) +
τ(R2

n) = 2 + n− 1 = n + 1. In addition, if T = {1, 2, 2 + n, 3 + n, . . . , 2n} then
xT satisfies CID(G)xT ≥ 1 and |T | = n + 1, we conclude γID(G) = n + 1. 2

Moreover, we obtain:

Corollary 9 Let G = (C ∪ S,E) be a thin headless spider. Then,

(1) the inequalities x(A) ≥ |A|− 1 for all nonempty subsets A ⊂ S are facets
of PID(G),

(2) the inequality x(C) ≥ 2 is a facet of PID(G).

Proof. As R2
n is a minor of CID(G) obtained after deletion of the nodes in C,

as a consequence of Theorem 2 we have that the inequalities x(A) ≥ |A| − 1
for all nonempty subsets A ⊂ S are facets of PID(G). Also, Rn−1

n is a minor of
CID(G) obtained after deletion of the nodes in S, and again using Theorem 2
we obtain x(C) ≥ 2 as a facet of PID(G). 2

In [4], it was conjectured that there are no further facets necessary to en-
tirely describe the identifying code polyhedron of thin headless spiders. In the
remaining part of this section, we present the proof of this conjecture.
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As an immediate observation, the rank inequality x(C ∪ S) ≥ n + 1 is not a
facet of PID(G) since it can be obtained as the sum of the facets x(S) ≥ n− 1
and x(C) ≥ 2.

Theorem 5 Let CID(G) be the clutter matrix of a thin headless spider G =
(C ∪ S,E). Every minimal cover x of CID(G)) is minimum. Moreover, x =
(ei + ej) ⊕ fj where ei, fj ∈ {0, 1}n with i 6= j.

Proof. Let x be a minimal cover of CID(G)). It is clear that x = v ⊕ u where
v ∈ {0, 1}n covers the rows of matrix Rn−1

n and u ∈ {0, 1}n covers the rows
of R2

n. Hence v = ei + ej with i, j ∈ {1, . . . , n} and i 6= j and u = fl with
l ∈ {1, . . . , n}. Also, x must cover the first n rows of matrix CID(G)), then if
x = v ⊕ u with v = ei + ej then either u = fi or u = fj. Then |x| = n + 1 for
every i, j = 1, . . . , n and i 6= j and they are all minimum covers. 2

In order to identify the complete description of PID(G) when G = (C∪S,E) is
a thin headless spider, we use blocking duality again. Consider the polyhedron
Q(b(CID(G))).

As a consequence of the previous theorem all the rows in matrix b(CID(G))
have n + 1 ones, then the point x̄ = 1 1

n+1
∈ Q(b(CID(G))). But x̄ cannot be

an extreme point of Q(b(CID(G))) since we have already mentioned that the
rank inequality x(C ∪S) ≥ n+1 is not a facet of PID(G). So, every fractional
extreme point of Q(b(CID(G))) must have some of its components at value
zero. From Corollary 9 we know that the point x of the form xi = 1

2
for all

i ∈ C and xi = 0 for all i ∈ S is an extreme point as well as all the points of
the form xi = 1

|A|−1
for all i ∈ A ⊂ S with A nonempty and xi = 0 for i /∈ A.

The following results show that these are the only fractional extreme points
of Q(b(CID(G))).

Lemma 8 Let M be the n × 2n matrix whose rows are the characteristic
vectors of ei⊕fi for i ∈ {1, . . . , n} and ei, fi ∈ {0, 1}n for every i ∈ {1, . . . , n}.
Let x̄ ∈ Q(M) such that x̄l 6= 0 for some l ∈ {1, . . . , n}. If x̄ is an extreme
point of Q(M) then x̄ ∈ {0, 1}2n.

Proof. It is easy to check that the nontrivial inequalities describing Q(M) are

xi +
∑

k=1,...,n;k 6=i

xn+k ≥ 1 for all i = 1, . . . , n.

After adding the slack variables to the inequalities above we obtain

xi +
∑

k=1,...,n;k 6=i

xn+k − si = 1 for all i = 1, . . . , n.

For every i = 1, . . . , n it holds that variable xi is basic if and only if variable si

is nonbasic, since their respective columns are the same. By assumption there
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is l ∈ {1, . . . , n} such that x̄l > 0, then sl = 0 and x̄l = 1−
∑

k=1,...,n;k 6=l x̄n+k. If
x̄i > 0 for all i ∈ {1, . . . , n} then all basic variables are xi with i ∈ {1, . . . , n}.
Then x̄n+i = 0 for i ∈ {1, . . . , n} and x̄1 = 1 for i ∈ {1, . . . , n} and the lemma
follows.

Observe that there is i ∈ {1, . . . , n} such that x̄n+i = 0, otherwise vari-
ables xn+i with i = 1, . . . , n are basic contradicting the fact that xl > 0
for some l ∈ {0, . . . , n}. So, let I = {i : 1 ≤ i ≤ n and x̄i = 0}. By as-
sumption I 6= {1, . . . , n} and consider I nonempty. Recall that x̄l > 0 and
x̄l +

∑

k=1,...,n;k 6=l x̄n+k = 1. Let i ∈ I then
∑

k=1,...,n;k 6=i x̄n+k − si = 1. Thus
xn+l − xl − xn+i = si and then xn+l ≥ xl > 0. Therefore, if x̄ is an extreme
point then xi, xi+n is a pair of basic variables for every i /∈ I. Since there are
n basic variables, then n − |I| ≤ n

2
.

W.l.o.g assume that I = {1, . . . , l} with l ≤ n
2
. If x̄n+i > 0 for some i ∈ I

then variable si is nonbasic, since adding the columns corresponding to the
variables xn and x2n yields the sum of columns corresponding to the variables
si and xn+i. Let us call J = {i ∈ I : x̄n+i = 0}.

Again, we can assume that J = {1, . . . ,m} with m < l ≤ n
2
. Hence we have

∑

k=m+1,...,n

x̄n+k − si = 1 for all i = 1, . . . ,m

and
∑

k=m+1,...,n;k 6=i

x̄n+k = 1 for all i = m + 1, . . . , l.

It holds that for every j ∈ J , sj > 0 follows and is thus basic. But, we have
that for every i = 1 . . . , n either xn+i > 0 and is thus basic or si > 0 and is
thus basic. These variables together with every xi with i /∈ I make more than
n positive variables. It follows that x̄ is not an extreme point. 2

Lemma 9 Let x̄ ∈ Q(b(CID(G))) such that x̄l 6= 0 and x̄j = 0 for l, j ∈
{1, . . . , n}. If x̄ is an extreme point of Q(b(CID(G))) then x̄ ∈ {0, 1}2n.

Proof. W.l.o.g. assume j = 1 and consider an extreme point x̄ of Q(b(CID(G)))
with x̄1 = 0 and x̄l > 0. If x̄n+1 = 0 we can study the extreme points of
Q(b(CID(G))) ∩ {x ∈ R2n : x1 = xn+1 = 0}. It is easy to see that the matrix
b(CID(G))/1, n + 1 corresponds to a n − 1 × 2(n − 1) matrix whose rows are
the characteristic vectors of ei ⊕ fi for i ∈ {1, . . . , n − 1} and ei, fi ∈ {0, 1}n

for every i ∈ {1, . . . , n − 1}. Hence the result follows from Lemma 8.

Now, assume that x̄n+1 > 0. Moreover, we assume that any time if x̄i = 0
then x̄n+i > 0. Observe that the rows of matrix b(CID(G))/1 correspond to
the characteristic vectors of ei ⊕ f1 and ei ⊕ fi+1 for i ∈ {1, . . . , n − 1} where
ei ∈ {0, 1}n−1 and fi ∈ {0, 1}n. So the inequalities describing Q(b(CID(G))/1)
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are
xi +

∑

k=2,...,n

xn+k ≥ 1 for all i = 2, . . . , n

and
xi +

∑

k=1,...,n;k 6=i

xn+k ≥ 1 for all i = 2, . . . , n.

Consider the system of equalities obtained after adding the slack variables to
the inequalities above as follows:

xi +
∑

k=2,...,n

xn+k − si = 1 for all i = 2, . . . , n

and
xi +

∑

k=1,...,n;k 6=i

xn+k − sn+i−1 = 1 for all i = 2, . . . , n.

So we have 2n− 2 basic variables and 2n− 1 nonbasic variables. Suppose that
x̄i > 0 for every i ∈ 2, . . . , n, then x̄n+i > 0 for i ∈ 1, . . . , n. This implies
that variables xi for every i ∈ {2, . . . , n} and xn+i for i ∈ {1, . . . , n} are basic
variables, a contradiction.

There must be some l ∈ {2, . . . , n} such that xl = 0. Therefore, our set of basic
variables includes variables xi for every i such that x̄i > 0 and every xn+i for
wich x̄i = 0. These are n basic variables. W.l.o.g assume I = {1, . . . ,m} such
that x̄i = 0 when i ∈ I and x̄i > 0 otherwise. Then let l /∈ I. Then

x̄l +
∑

k=2,...,m

x̄n+k − sl = 1,

but also
x̄l +

∑

k=1,...,m

x̄n+k − sl+n−1 = 1.

Observe that one between sl and sl+n−1 must be nonbasic, since xl is a basic
variable. It follows that sl+n−1 > 0 and sl = 0. Also x̄l +

∑

k=2,...,m x̄n+k = 1.
So we have that for every j /∈ I, sj+n−1 is a basic variable. Now, let i ∈ I it
holds that

∑

k=2,...,m

x̄n+k − sj = 1.

But as we have already seen
∑

k=2,...,m x̄n+k < 1 and hence sj > 0 for all j ∈ I.
So we have 2n basic variables which is a contradiction. 2

In summary, we obtain the main result of this section:

Corollary 10 Let G = (C ∪ S,E) be a thin headless spider. Then, the facets
of PID(G) are

• the constraint xi ≥ 0 for all i ∈ C ∪ S;
• all constraints from CID(G) x ≥ 1;
• the constraint x(C) ≥ 2;
• the constraints x(A) ≥ |A| − 1 for all nonempty subsets A ⊂ S.
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2.3 Complete suns

As third family of headless spiders G = (C ∪S,E) having a regular structure,
we consider complete suns, where S = {s1, . . . , sn}, C = {c1, . . . , cn} and si is
adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n (indices are taken modulo n).

In contrary to thin and thick headless spiders whose identifying code clutters
are composed by few q-roses, the identifying code clutters of complete suns
have a more complex structure, involving different combinations of subma-
trices with a circular structure, where some submatrices occur for all n ≥ 4,
others not (depending on the parity of n and the size of the graph).

A circulant matrix is a square matrix where each row vector is shifted one
element to the right relative to the preceding row vector. We denote by Ck

n a
circulant matrix in {0, 1}n×n having as first row the vector starting with k 1-
entries and having 0-entries otherwise. Moreover, we denote by Ck+k

n a matrix
in {0, 1}n×n with n ≥ 2k + 2 having as first row the vector starting with k
1-entries, then having at least two 0-entries, again k 1-entries, and 0-entries
otherwise (at least two again).

Lemma 10 For a complete sun G = (C ∪ S,E) with n ≥ 4, the identifying
code clutter CID(G) is composed by the following submatrices

( C2
n | I ) ∀n ≥ 4

( 0 | C1+1
n ) ∀n ≥ 5

( 0 | C1
n

2

, C1
n

2

) for n = 4

( 0 | C2+2
n ) ∀n ≥ 9

( 0 | C2
n

2

, C2
n

2

) ∀n ≥ 8, n even

( Cn−2
n | I ) ∀n ≥ 4

( C1+1
n | C2

n ) ∀n ≥ 4

where the first part refers to C, the second part of the matrices to S.

Proof. Let G = (C ∪S,E) be a complete sun. The neighborhood matrix N [G]
of (C, S) is composed by

( E | C2
n ) for N [C],

( C2
n | I ) for N [S].

Thus, only N [S] is in CID(G). To find △[G], we distinguish three cases.
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Case 1: the symmetric differences between two nodes in C have the form

• N [ci] △ N [ci+1] = {si−1, si+1};
• N [ci] △ N [ci+j] = {si−1, si, si+j−1, si+j} for 1 < j ≤ n

2
.

For all n ≥ 4, the former symmetric differences remain in CID(G) as submatrix

( 0 | C1+1
n ) ∀n ≥ 5

(but yield for n = 4 not the whole circulant matrix). The latter symmetric
differences are dominated by the former if j = 2, 3. Thus, for each 4 ≤ j ≤ n

2
,

the symmetric differences N [ci] △ N [ci+j] remain in CID(G) as submatrix

( 0 | C2+2
n ) ∀n ≥ 9

(but yield for j = n
2

not the whole circulant matrix).

Case 2: the symmetric differences between nodes in C and S have the form

• N [ci] △ N [si] = (C − {ci−1, ci}) ∪ {si−1};
• N [ci] △ N [si−1] = (C − {ci−2, ci−1}) ∪ {si};
• N [ci] △ N [sj] = (C − {cj−1, cj}) ∪ {si−1, si} for j 6= i, i − 1.

Thus, N [ci]△N [sj] is dominated by N [si] if j 6= i, i−1, and remains in CID(G)
for j = i, i − 1, forming two submatrices of the form

( Cn−2
n | I ) ∀n ≥ 4.

Case 3: the symmetric differences between two nodes in S have the form

• N [si] △ N [si+1] = {ci, ci+2, } ∪ {si, si+1};
• N [si] △ N [sj] = {ci, ci+1, cj, cj+1} ∪ {si, sj} for j 6= i.

Thus, N [si]△N [sj] is dominated by N [si] if j 6= i+1, and remains in CID(G)
for j = i + 1, forming a submatrix of the form

( C1+1
n | C2

n ) ∀n ≥ 4.

This together completely describes the identifying code clutter CID(G). 2

Corollary 11 Let G = (C ∪ S,E) be a complete sun with n ≥ 4.

• PID(G) is full-dimensional.
• The constraint xv ≥ 0 defines a facet of PID(G) for each v ∈ C ∪ S.
• All constraints from CID(G) x ≥ 1 define facets of PID(G).
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Unfortunately, the whole system of facet-defining inequalities for the identi-
fying code polyhedra PID(G) of complete suns is not easy to describe since
non-rank facets are required for all cases n ≥ 4 (in fact, most facets of PID(G)
are non-rank and involve large coefficients). However, from a careful analysis
of the constraints involved in the identifying code clutter CID(G) of complete
suns, we derive at the following conjecture:

Conjecture 1 For a complete sun G = (C ∪ S,E) with n ≥ 4, the stable set
S is a minimum identifying code.

Note that it is easy to see that S is always an identifying code for a complete
sun G = (C ∪ S,E), since all rows of CID(G) have at least one 1-entry in S.
Hence, γID(G) ≤ |S| = n follows. On the other hand, for some cases, it has
been already verified that S is a minimum identifying code, by generating the
full rank constraint x(C) + x(S) ≥ |S| = n by means of the Chátal-Gomory
procedure. This implies γID(G) ≥ |S| = n, and together equality follows for
these cases. Our goal is to find a general construction of this type for all n ≥ 4.

3 Concluding remarks

The identifying code problem is hard in general and challenging both from a
theoretical and a computational point of view, even for special graphs like split
graphs [11]. Hence, a typical line of attack for this problem is to determine
minimum identifying codes of special graphs, or to provide lower and upper
bounds.

In this paper, we studied three families of split graphs with |S| = |C| ≥
2 having a regular structure: thin headless spiders, thick headless spiders,
and complete suns. For all three families, we determined the identifying code
clutter and discussed according consequences.

In the case of thin and thick spiders G, CID(G) is composed from certain
q-roses. Based on related results from [5,19], we could give the complete de-
scription of PID(G) for thick and thin spiders. As a consequence for both
classes, we found the exact value for γID(G): |S| for thick spiders and |S|+ 1
for thin spiders. Moreover, the complete descriptions of PID(G) also allow us
to compute minimum weight identifying codes of thin and thick spiders for all
possible node weights.

It turned out that the identifying code clutters of complete suns have a more
complex structure involving different circulant matrices and, accordingly, more
involved facets are required to describe PID(G). For this class, we showed
γID(G) ≤ |S| and conjecture that γID(G) = |S| holds, too. So, all three
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families seem to have small minimum identifying codes close to the lower
bound of order log(|S| + |C|).

This demonstrates how the polyhedral approach can be applied to find iden-
tifying codes of minimum size for special graphs G, just by determining and
analyzing the identifying code clutter CID(G), even in cases where no complete
description of PID(G) is known yet.

As future lines of research, we plan to apply similar and more advanced tech-
niques to obtain either the identifying code of minimum size or strong lower
bounds stemming from linear relaxations of the identifying code polyhedron,
enhanced by suitable cutting planes. For that, note that facets associated with
deletion minors of CID(G) remain facets in PID(G), so according facets iden-
tified for special graphs are relevant for every graph having such subgraphs.
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