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Multi-grid phase field skin tumor segmentation in
3D ultrasound images

Khac Lan Nguyen, MIA, University of La Rochelle, Philippe Delachartre, CREATIS, INSA Lyon,
and Michel Berthier, MIA, University of La Rochelle

Abstract—The aim of this paper is to present a new method for
skin tumor segmentation in 3D ultrasound images. We consider
a variational formulation the energy of which combines a diffuse
interface phase field model (regularization term) and a log-
likelihood computed using non parametric estimates (data attach-
ment term). We propose a multi-grid implementation with exact
solutions that has the advantage to avoid space discretization and
numerical instabilities. The resulting algorithm is simple and is
easy to implement in multi-dimensions. Concerning applications,
we focus on skin tumor segmentation. The clinical dataset used
for experiments is composed of 12 images with groundtruth
given by a dermatologist. Comparisons with reference methods
show that the proposed method is more robust to the choice
of the volume initialization. Moreover, thanks to the flexibility
introduced by the diffuse interface, the sensitivity increases by
12% if the initialization is inside the lesion, and the Dice index
increases by 59%, if the initialization covers the entire lesion.
These results show that this new method is well-designed to tackle
the problem of underestimation of tumor volumes.

Index Terms—3D ultrasound images, tumor segmentation,
phase field model, non-parametric estimation, multi-grid algo-
rithm, exact solutions.

I. INTRODUCTION

ULtrasound imaging is widely used in medical diagnostic
because it is non-invasive and low cost. However, it is

well known that ultrasound images suffer from two major
defects, the low contrast and the presence of speckle noise
making processings more difficult. This explains why many
works are still devoted to improve ultrasound image segmenta-
tion algorithms. In this paper, we focus on the problem of skin
tumor segmentation in 3D ultrasound images [1], [2], [3], [4].
Ultrasounds have the advantage to probe at depths of 3mm or
more while other non-invasive modalities, such as optical co-
herence tomography and reflectance confocal microscopy, are
limited to a depth of 500 µm, which is insufficient to scan the
bottom of deep lesions. Many works on this subject emphasize
approaches based on level set methods [4]. These latters are
well adapted to deal with the variability of lesion shapes and
to remove structures due to speckle patterns. However, level
set segmentations tend to underestimate the size of tumors and
lack accuracy at the boundary of lesions. This is mainly due
to the conservative property of the underlying dynamic.
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To overcome this drawback, we propose an alternative
method based on the Cahn-Hilliard phase field model [5],
[6]. This model is known to be relevant to describe phase
transitions in various physical or chemical applications [7],
[8]. We refer to [9], [10] and [11] for examples of applications
to image processing. In [9] (resp. [10]) a double-well (resp.
multiple-well) potential is added to the piecewise constant
Mumford Shah functional. In both contributions [9] and [10]
experiments are performed on simple 2D images. Note that
the algorithm proposed in [10] appears to be difficult to
implement. Dealing with 2D blood vessel images, the authors
of [11] consider a phase field segmentation driven by a
parametric statistical estimation. This latter is too predicted
and is not relevant for the high frequency ultrasound images
of skin tumors, as shown in [4].

In this work, the Allen-Cahn reaction-diffusion equation,
i.e. the gradient descent of the Cahn-Hilliard energy, appears
as a regularization term of a variational formulation. The
data attachment term is given by a log-likelihood function
measuring the dissimilarity of intensity distributions inside
and outside the tumors. This approach is widely adopted
in ultrasound image processing, see for instance [12], [13],
[3], [14]. In the sequel, we use a nonparametric estimation
based on Parzen estimates [15], [16]. This choice is motivated
by arguments involving the specific characteristics of high
frequency images of the skin. It is shown in [4] and [17]
that the region surrounding a skin tumor is composed of
several tissues of different natures that create heterogeneity
in the medium. This phenomenon makes inadequate the use
of classical parametric distributions such as Rayleigh, Rice,
Nakagami or K distributions [18]. The main contributions of
this work are:

1) A new variational model for skin tumor segmentation in
3D ultrasound images is proposed;

2) A new multi-grid implementation is presented which
makes use of exact analytic solutions and avoid space dis-
cretization and numerical instabilities;

3) The resulting segmentation algorithm is simple to imple-
ment, with readily reproducible simulations, and is low cost
in computational time.

Comparisons are made with state-of-the-art methods,
namely, the Mumford-Shah Cahn-Hilliard (MSCH) segmenta-
tion [9] and the Adaptative Log-Likelihood Level-Set (AdLL)
segmentation [4]. The 3D images used for the experiments
were acquired at the Melanoma Skin Cancer Clinic, Hamil-
ton Hill, Australia. These images are of size 300×299×832
voxels, the last number corresponding to depth, with a lateral
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(resp. depth) resolution of 50 µm (resp. 25 µm). They were
chosen to be representative of the diversity of clinical cases
and have been manually segmented by a dermatologist. For
each one of the 3D images, 150 groundtruth contours are
drawn in the x − z planes (z is the vertical axis) and in the
y− z planes and two corresponding 3D volumes are obtained
by interpolation. Using these two volumes one can evaluate
the intra-observer variability of the segmentation. Results of
the experiments show that the new LLCH, Log-Likelihood
Cahn-Hilliard, algorithm has two major advantages over the
reference ones:

1) The flexibility provided by the transition layer yields the
best results in terms of sensitivity and Dice index. This means
that the algorithm is well-designed to tackle the problem of
underestimation of tumor volumes;

2) The multi-grid implementation with exact analytic solu-
tions avoiding space discretization significantly improves the
robustness to initialization, inside or covering the tumor.

The article is organized as follows. Section II is devoted to
the presentation of the new LLCH-exact segmentation method
from both the theoretical and numerical viewpoints. Then, we
introduce in section III the measures used for the evaluation,
describe first experiments and discuss the performance of the
proposed multi-grid solver. Comparisons of our approach with
the reference segmentation methods are presented in section
IV. We end this paper by a discussion of the results and a
conclusion.

II. THE PROPOSED SEGMENTATION METHOD:
LLCH-EXACT SEGMENTATION

There exists a wide literature concerning phase transition
and phase boundary evolution models. One of the most popular
is the Level Set model [19]. As mentioned before, tumor seg-
mentations based on level set approaches tend to underestimate
the size of lesions. This is why we consider a new alternative
model based on diffuse interface phase field. This latter aims
at describing a process of phase separation, by which the two
components of a binary fluid spontaneously separate and form
domains pure in each component [7].

A. The variational formulation

We consider a classical variational formulation with energy
given by

E(u) = EDA(u) + αEreg(u) (1)

where u = u(x, t) denotes a space-time function and x
(resp. t) is the 3D coordinate vector of the image (resp.
the time variable). The term EDA (resp. Ereg) is the data
attachment term (resp. the regularization term). The parameter
α ensures that the detected contour is smooth. In this work,
EDA is chosen so as to maximize the log-likelihood distance
between intensity distributions inside and outside the tumor.
The regularization term can be thought of as the area of the
contour surface. Results on Γ−convergence (see for instance
[20], [21]) allow to consider this regularization term as the
limit, when ε tends to 0, of the Cahn-Hilliard energy

ECHε (u) =

∫
Ω

(
ε
|∇u|2

2
+

1

ε
W (u)

)
dx (2)

up to a multiplicative constant. The gradient flow of the Cahn-
Hilliard energy (2), i.e. the Allen-Cahn reaction-diffusion
equation [6], reads

∂u

∂t
= ε∆u− 1

ε
W ′(u) (3)

where W is the double-well potential, balanced and bistable,
and W ′ is the derivative of W with respect to u. The symbol
∆ is the Laplace operator, ε is the width of the transition
layer. A classical choice for the potential is the polynomial
W (u) = u2(1 − u)2/2, the two global minima of which,
0 and 1, correspond to the two phase equilibria. During the
process, the phase field function u evolves in order to take
the two distinct values, 0 and 1, in each of the phases. A
diffuse interface of size ε is created in which the function u
varies smoothly from 0 to 1. The target (resp. background)
region is defined by: ΩA = {x : u(x, t) > 1/2, t ≥ 0} (resp.
ΩB = {x : u(x, t) < 1/2, t ≥ 0}). The moving interface (or
transition layer) is defined by: Γt = {x : u(x, t) = 1/2, t ≥ 0}.
It is known that the Cahn-Hilliard energy Γ-converges, when
ε tends to 0, to the product cWP where

P (u) =

∫
Γ

dσ, cW =

∫ 1

0

W (s)ds (4)

see for instance [20] or [21]. This means that minimizing the
Cahn-Hilliard energy is equivalent to minimizing the area of
the moving interface.

As said before, the data attachment term EDA is chosen
so as to maximize the log-likelihood of intensity distributions
between the two regions ΩA and ΩB . Consequently, the two
hypothesis of the likelihood are: H0, all image intensities in
ΩA and ΩB are i.i.d. random variables following a single
distribution PΩA∪ΩB , and H1, the image intensities in the two
regions ΩA and ΩB are i.i.d. random variables with different
distributions PA in ΩA and PB in ΩB . The log-likelihood ratio
can be written as

LL =
∑

x∈ΩA

logPA(I(x)) +
∑

x)∈ΩB

logPB(I(x)) + C (5)

where C is a constant that does not enter into consideration
in the minimizing process. Using the equipartition theorem
[22], we can replace (1/|ΩA|)

∑
x∈ΩA

logPA(I(x)) by the
entropy

∑
I PA(I) logPA(I), and the same for PB . A simple

computation shows that∑
I

P̂A(I) log P̂A(I) =
1

|ΩA|
∑

x∈ΩA

log P̂A(I(x))

= DivKL(P̂A||PA) +
∑
I

PA(I) logPA(I)
(6)

where DivKL denotes the Kullback-Leibler divergence [22],
and P̂A is an estimate of PA. Consequently, we may consider
that the log-likelihood ratio is given by

LL = |ΩA|
∑
I

P̂A(I) log P̂A(I) + |ΩB |
∑
I

P̂B(I) log P̂B(I)

(7)
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The nonparametric estimation of the distributions P̂A(I) and
P̂B(I) is performed using Parzen estimates [15], [16]

P̂A(I) =

∫
u2Kλ(I(x)− I)dx∫

u2dx
(8)

P̂B(I) =

∫
(u− 1)2Kλ(I(x)− I)dx∫

(u− 1)2dx
(9)

where Kλ is a centered Gaussian kernel with standard devia-
tion λ. These Parzen estimates involve the phase field function
u and from now on, we set EDA(u) = −LL(u).

B. The multi-grid implementation with exact solutions

Now, we explain how to implement the gradient descent of
the variational formulation discussed above. The energy to be
minimized reads

Eε(u) = −LL(u) +
α

cW
ECHε (u) (10)

Note that this functional is not convex and converges to
−LL(u)+αP (u) when ε tends to zero (cf. equation (4)). The
gradient descent is given by the Partial Differential Equation,
PDE, ∂u/∂t = −δEε/δu, that is

∂u

∂t
= 2u log P̂A(I(x)) + 2(u− 1) log P̂B(I(x))+

α

cW

(
ε∆u− 1

ε
W ′(u)

) (11)

(see appendix). Due to non convexity, the gradient flow
converges to local minima depending on initializations.

It is important to notice at this stage that the theoretical
model we propose allows us to optimize the implementation
in the following sense. First, in order to reduce computational
times, a crucial issue for practical use in a clinical context,
we propose a multi-grid scheme. Second, thanks to a Lie
splitting, we decompose the above PDE into three equations
and compute the exact solutions of each one of these equations.
Avoiding the use of space discretization, this approach ensures
numerical stability for large time steps and improves robust-
ness to initialization. The resulting new algorithm is simple
and is easy to implement in multi-dimensions. The multi-grid
scheme is given as follows. The image is decomposed into
cells of size a whose coordinates are denoted x̄. We denote
Ωx̄ = {x ∈ x̄}, P̂x̄(I) the Parzen estimate of the intensity
distribution in the volume Ωx̄ and ū = ū(x̄, t). Writting
(δEε/δū)(ū) = |Ωx̄|(δEε/δu)(ū), we obtain

∂ū

∂t
= |Ωx̄|

[
δSA
δu

(ū) +
δSB
δu

(ū) +
α

cW

(
ε∆ū− 1

ε
W ′(ū)

)]
(12)

where

SA = |ΩA|
∑
I

P̂A(I) log P̂A(I)

SB = |ΩB |
∑
I

P̂B(I) log P̂B(I)
(13)

The following equation must be satisfied

|Ωx̄|
δSA
δu

(ū) = 2ū(
∑
x∈x̄

log P̂A(I(x))) (14)

and the same for SB . Using the approximation∑
x∈x̄

log P̂A(I(x)) = |Ωx̄|
∑
I

Px̄(I) log P̂A(I) (15)

we deduce

δSA
δu

(ū) = 2ū
∑
I

P̂x̄(I) log P̂A(I) (16)

and
δSB
δu

(ū) = 2(ū− 1)
∑
I

P̂x̄(I) log P̂B(I) (17)

Finally, the multi-grid flow reads

∂ū

∂t
= 2ū|Ωx̄|

∑
I

P̂x̄(I) log P̂A(I)

+ 2(ū− 1)|Ωx̄|
∑
I

P̂x̄(I) log P̂B(I)

− |Ωx̄|
α

εcW
W ′(ū)

+ |Ωx̄|
εα

cW

(
∂2ū

a2∂x̄2
+

∂2ū

a2∂ȳ2
+

∂2ū

a2∂z̄2

)
(18)

where x̄ = (x̄, ȳ, z̄) is a coordinate vector on a grid cell.
Thanks to a Lie splitting, the equation (18) can be split into
three equations [23]. The first and the second ones are first
order Ordinary Differential Equations, ODE, and correspond
to the data attachment and reaction terms (see lines 3 and
4 of Algorithm 1 below). Using Fourier transform, the third
equation can also be seen as a first order ODE. It corresponds
to the diffusion term (see line 5 of Algorithm 1 below). Now,
we detail how to obtain exact solutions of these ODE.

1) Exact solutions of the data attachment term: Under the
assumption that

TA(x̄) = 2
∑
I

P̂x̄(I) log(P̂A(I)P̂B(I)) (19)

and
TB(x̄) = 2

∑
I

P̂x̄(I) log(P̂B(I)) (20)

are constant in a discrete time interval [tn, tn+1], the first ODE
can be written as

∂ū

∂t
= ū(x̄, t)HA(x̄)−HB(x̄) (21)

where HA = |Ωx̄|TA and HB = |Ωx̄|TB . Solutions are given
by

ū(x̄, t) =

(
ū0(x̄)− HB(x̄)

HA(x̄)

)
eHA(x̄)t +

HB(x̄)

HA(x̄)
(22)

with ū0(x̄) = ū(x̄, 0). Writing tn+1 = tn + δt, this leads to
the discrete iteration

Un+1(x̄) =

(
Un(x̄)− HB(x̄)

HA(x̄)

)
eHA(x̄)δt +

HB(x̄)

HA(x̄)
(23)

where Un(x̄) ≈ ū(x̄, tn).
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2) Exact solutions of the reaction term: Using W ′(ū) =
ū(1− ū)(1− 2ū), we have

∂ū

∂t
= −|Ωx̄|

α

εcW
(ū(1− ū)(1− 2ū)) (24)

This equation has three stationary solutions given by ū(x̄, t) =
ū(x̄, 0) = ū0(x̄) = 0, 1/2, 1. The first and the last ones are of
no interest because 0 ≤ ū(x̄, t) ≤ 1, for all x̄ and t. Simple
computations show that the solutions of (24) are given by

ū(x̄, t) = 1/2 if ū0(x̄) = 1/2

ū(x̄, t) =

√
1 + 4c(t, ε, ū0) + 1

2
√

1 + 4c(t, ε, ū0)
if ū0(x̄) > 1/2

ū(x̄, t) = 1−
√

1 + 4c(t, ε, ū0) + 1

2
√

1 + 4c(t, ε, ū0)
if ū0(x̄) < 1/2

(25)
where:

c(t, ε, ū0(x̄)) =
ū0(x̄)(1− ū0(x̄))

(1− 2ū0(x̄))2
e
−α|Ωx̄|t
εcW (26)

As before, we denote tn+1 = tn +nδt and Un(x̄) ≈ ū(x̄, tn).
We set

g+
C =

√
1 + 4C + 1

2
√

1 + 4C
, g−C = 1−

√
1 + 4C + 1

2
√

1 + 4C
(27)

with

C = Un(1− Un)/(1− 2Un)2e
−α|Ωx̄|δt

εcW (28)

The discrete iteration obtained from (25) is given by

Un+1 =
1

2
X{Un=1/2}+ g+

CX{Un>1/2}+ g−CX{Un<1/2} (29)

where XS is the caracteristic function of the set S, i.e. it is
equal to 0 (resp. 1) outside S (resp. inside S).

3) Exact solutions of the diffusion term: The equation

∂ū

∂t
= |Ωx̄|

εα

cW

(
∂2ū

a2∂x̄2
+

∂2ū

a2∂ȳ2
+

∂2ū

a2∂z̄2

)
(30)

is solved with periodic boundary conditions. In the Fourier
domain, this equation is the ODE

∂̂̄u
∂t

= −4π2|Ωx̄|
εα

cW

∣∣∣∣ k̄a
∣∣∣∣2 ̂̄u (31)

with k̄ = (kx̄, kȳ, kz̄) the Fourier variable, ̂̄u = ̂̄u(k̄, t) and

|k̄/a|2 = (kx̄/a)2 + (kȳ/a)2 + (kz̄/a)2 (32)

The solutions are given by

̂̄u(k̄, t) = ̂̄u(k̄, 0)e
−4π2|Ωx̄| εαcW | k̄

a |2t (33)

and lead to the discrete iteration

Un+1 = IFFT (G(k̄)FFT (Un)) (34)

where, as above, tn+1 = tn + nδt, Un(x̄) ≈ ū(x̄, tn), and

G(k̄) = e
−4π2|Ωx̄| εαcW | k̄

a |2δt (35)

In (34), FFT (resp. IFFT) denotes the Fast Fourier
Transform (resp. the Inverse Fast Fourier Transform).
Finally, the new algorithm that we propose, using
multi-grid implementation and exact solutions, is
described as follows. The initialization U0 ≈ ū(x̄, 0)
is the caracteristic function of the initialization volume.

Algorithm 1: LLCH-exact segmentation

1) Input: Un=0, δt, ε, α and I
2) For: n = 1, ..., until convergence do
3) Computation of the data attachment term, see (23):

Un ←
(
Un − TB

TA

)
exp (2|Ωx̄|TAδt) +

TB
TA

4) Computation of the reaction term, see (29):

Un ← 1

2
X{Un=1/2} + g+

CX{Un>1/2} + g−CX{Un<1/2}

5) Computation of the diffusion term, see (34):

Un+1 = IFFT (G(k)FFT (Un))

6) End for
7) Output: Un+1

III. EVALUATION OF THE PROPOSED LLCH-EXACT
ALGORITHM

In this and the following sections, the performance criteria
of the segmentation is evaluated with four measures.

- The Dice (or Sorensen-Dice) index is an indicator of the
accuracy of a segmented volume Ω with respect to a reference
volume R. It is given by D(Ω, R) = 2|Ω ∩ R|/(|Ω| + |R|).
The Dice index can be expressed as the harmonic mean of the
sensitivity S and the precision P .

- The sensitivity S is defined by S(Ω, R) = |Ω ∩R|/|R|.
- The precision P reads P (Ω, R) = |Ω ∩ R|/|Ω|. We thus

have:
D = 2/(1/S + 1/P ) (36)

- The Mean Absolute Distance allows to determine if the
boundary of the segmented volume fits well with the boundary
of the reference volume. Let N∂Ω (resp. N∂R) denotes the
number of voxels in the boundary ∂Ω (resp. ∂R) of the
segmented (resp. reference) volume. The (symetric) Mean
Absolute Distance MAD(Ω, R) is defined by:

MAD(Ω, R) =
∑
x∈∂Ω

d(x|R)

2surf(∂Ω)
+
∑
x∈∂R

d(x|Ω)

2surf(∂R)
(37)

In this definition, d(x|R) = minx’∈∂R ‖x’− x‖ is the distance
of the point x to the boundary ∂R, and the same replacing R
by Ω. The terms surf(∂R) and surf(∂Ω) denote the number
of voxels in the boundaries ∂R and ∂Ω. Note that the MAD
is measured in µm (1 pixel = 50µm).

These measures, D, S, P and MAD, involve an avail-
able reference volume R. Recall that in the experiments we
propose, this reference volume is given by interpolation of
contours manually drawn in 2D sections by a dermatologist.
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(a) (b)
Fig. 1. Evaluation of the solver. LLCH-Exact segmentation of the 12 tumors
of the clinical dataset for different grid sizes: a = {1, 2, 3, 4, 5, 6}. Black
diamonds are the averaged values. (a) Segmentation time. (b) Dice index
D(Ω, R) of the segmented volume with respect to reference contour R.

Practically, we consider 50 values of intensity I between 0
and max(Ix) and remove the gel area (black area above
the epidermis, see Fig. 2c) before the tumor segmentation
is performed. The segmentation process is stopped when the
volume change between two steps is less than 0.001% of the
segmented volume. This applies for all the tests and for all
the methods described in the following.

We evaluate the accuracy of the segmentation on a grid
as a function of the grid size a, with a = {1, 2, 3, 4, 5, 6}
in pixels. The 12 images of the clinical dataset used are of
size 300 × 299 × 832, with about 75 millions voxels, and
the largest region of interest is of size 232 × 180 × 226,
with about 9 millions voxels. The initialization volume is
inside the tumor. The parameters are chosen as follows: for a
fixed scale a, α ∈ [0.02, 2.4], δt ∈ [0.1, 1], ε ∈ [1/N , 4/N ]
(N = max(Nx, Ny, Nz) where Nx, Ny, Nz correspond re-
spectively to the dimension of the image in each direction x, y
and z). These parameters are adaptively tuned to maximize
the Dice index. Fig. 1 shows the evolutions of the average
computational time and of the average Dice index with respect
to the grid size. The average time decreases rapidly as a
increases and becomes acceptable for a = 4. It yields a
speedup factor of 90 compared to the fine grid with a = 1.
The average Dice index remains almost unchanged. It varies
between 0.852 and 0.863. This means that the grid size does
not affect significantly the result of the segmentation.

One important feature of the proposed algorithm is that it
produces a diffuse interface or transition layer with thickness
of order ε. This transition layer can be though as a fuzzification
of the sharp contour to be detected. We illustrate now the key
role that the parameter ε plays in improving sensitivity. We
set α = 0.2, δt = 0.1 and make ε vary from 0.009 to 0.038.
As shown in Fig. 2, both the Dice index and the sensitivity
increase when ε increases. Note also that if ε is too small,
the active contour does not move because the transition layer
does not exist yet. If ε is too large, the segmentation fails to
be accurate.

IV. VALIDATION AND COMPARISONS WITH REFERENCE
METHODS ON A CLINICAL DATASET

In this section we compare the results obtained following
the proposed approach with those given by two reference

methods, namely the Mumford-shah Cahn-Hilliard (MSCH
[9]) and the adaptative Log-Likelihood Level-Set (AdLL [4])
methods. These latters are based on variational formulations.
Tab. 1 shows the terms involved in (1) for the two methods
(see [9] and [4] for details). LLCH-exact and MSCH methods
share the same regularization term. The data attachment term
of the MSCH method is the piecewise constant Mumford-Shah
functional. We refer to [4] for the validation of the AdLL
method.

For the purpose of a fair comparison between LLCH-exact
and MSCH methods, we propose, beside the implementation
by Algorithm 1, another implementation using a Backward
Euler scheme for the computation of the data attachment
term. Practicaly, it consists in replacing the equation (23)
by: Un ← (Un − δtTB)/(1 − δtTA). In the sequel, we
refer to this alternative implementation as LLCH-BE method.
Since the choice of the regularization parameter α depends
on the method used, we write α = αLLCH−exact (resp.
α = αLLCH−BE , αMSCH , αAdLL) when dealing with the
LLCH-exact (resp. LLCH-BE, MSCH, AdLL) method.

A. Validation using synthetic tumor images
Two phantom volumes are generated with different scatterer

densities in the dermis, epidermis and tumor, see Fig. 3.
The various parameters are chosen as follows. The regu-
larization parameter ranges are: αLLCH−exact ∈ [0.03, 0.7],
αLLCH−BE ∈ [0.025, 0.3], αAdLL ∈ [0.04, 2] and αMSCH =
γ/max(N)2 where γ ∈ [0.6, 10]. The diffuse interface thick-
ness range is: ε ∈ {1/N , 2/N} (LLCH-exact, LLCH-BE and
MSCH methods). The time step δt must be chosen not too
large when applying LLCH-exact and LLCH-BE methods:
δt ∈ [0.1, 1]. On the contrary, it must be chosen large
when applying MSCH and AdLL methods: δt ∈ [40, 50] and
δt ∈ [0.5, 10], respectively. The AdLL method involves an
additional parameter (threshold) T (see [4]). In what follows
T ∈ [2, 20]. All these parameters are tuned adaptively in order
to maximize the Dice index. The grid size is fixed, with a = 4,
for all methods.

The two synthetic tumors are quite different: one is con-
nected and the other has two connected components. A
major asset of the proposed approach, is that it is robust
to initialization changes, from volume inside the tumor to
volume covering the tumor. We discuss now this point in
more detail. As shown by Fig. 3 and Tab. II, the four studied
methods give satisfactory resuts in cases (a) and (b), that is
for initialization inside the tumor. LLCH-exact and LLCH-BE
methods perform slightly better. It is dramatically different in
cases (c) and (d), that is for initialization covering the tumor.
MSCH segmentation fails in both cases (c) and (d) and gives
unusable results. AdLL segmentation does not detect one of
the component in case (c) and gives a quite poor Dice index in
case (d). This illustrates one of the defects of this last method
mentioned in the introduction: level set segmentations tend
to underestimate the size of tumors. It is worth noting that
the results remain unchanged for both the LLCH-exact and
LLCH-BE segmentations.

These first experiments show clearly that the propose ap-
proach has some major advantages over the reference ones.
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Fig. 2. Influence of the thickness of the diffuse interface illustrated on slices of tumor 8 LLCH-Exact segmention (Fig. 4h). (a,b,c) Dice index and Sensitivity
for three increasing values of ε, (d,e,f). The more the transition layer expands, the better the Dice index and the sensitivity S become. The yellow contour is
the slice of the segmented volume and the red contour is the reference contour drawn nanually by a dermatologist.

TABLE I
DATA ATTACHMENT AND REGULARIZATION TERMS OF THE TWO REFERENCE METHODS: MSCH [9] AND ADLL [4]

XXXXXXXXMethod
Term Data attachment Regularization

MSCH 1
2

[∫
u2(I − c1)2dx +

∫
(u− 1)2(I − c2)2dx

]
ECHε (u)/cW

AdLL |∇φ| log(P̂A(Ix)/P̂B(Ix)) |∇φ|∇. (φ/|∇φ|)

(a) (b) (c) (d)
Fig. 3. Validation using synthetic tumor images. Slice of the segmentation result. LLCH-exact: yellow solid line, LLCH-BE: pink dash line, MSCH: cyan
dash line and AdLL: green solid line. The blue box is the slice of the initialization volume, inside the tumor, (a), (b), and covering the entire tumor, (c), (d).
The red contour is the reference contour drawn manually by a dermatologist.

TABLE II
DICE INDEX OF THE SEGMENTATION OF SYNTHETIC IMAGES (FIG. 3)

WITH THE FOUR METHODS: LLCH-EXACT (ALGORITHM 1), LLCH-BE,
ADLL [4] AND MSCH [9].

XXXXXXXXMethod
Fig. 3 (a) (b) (c) (d)

LLCH-exact/BE 0.872/ 0.876 0.934/0.942 0.872/ 0.864 0.922/0.932
AdLL 0.826 0.898 0.405 0.773
MSCH 0.847 0.933 3× 10−5 0.027

These advantages may be greatly useful for medical applica-
tions.

B. Comparisons on a clinical dataset

Now, we propose experiments using the 12 tumor images
of the clinical dataset. As before, we discuss the influence of
the initialization. The parameters are chosen as follows.

- LLCH-exact: αLLCH−exact ∈ [0.09, 1], δt ∈ [0.1, 1] and
ε ∈ [1/N , 5/N ].

- LLCH-BE: αLLCH−BE ∈ [0.05, 2.5], δt ∈ [0.1, 1] and
ε ∈ [1/N , 5/N ].

- AdLL: αAdLL ∈ [0.03, 0.8], δt ∈ [2, 10] and T ∈ [2, 10].
- MSCH: αMSCH ∈ [γ/max(N)2] with γ ∈ [1.5, 100],

δt ∈ [10, 20] and ε ∈ [1/N , 10/N ].
All these parameters are tuned adaptively in order to max-

imize the Dice index for each tumor. The grid size is fixed,
with a = 4, for all methods. All computations are performed
under Matlab by a single machine with the core i7 processor
6500U, 2.5 GHz and 16GB of RAM.

1) Initialization inside the tumor: Results of the segmen-
tation are shown in Fig. 4. Tab. III summarizes all the results
for the Dice index, MAD, sensitivity S and precision P .
The sensitivity S is high if the segmented volume covers a
large part of the tumor and the precision P is high if the
segmented volume is really part of the tumor. As in the
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
Fig. 4. Results of the LLCH-exact segmentation for the 12 tumors of the clinical dataset. (a) Tumor 1. (b) Tumor 2. (c) Tumor 3. (d) Tumor 4. (e) Tumor
5. (f) Tumor 6. (g) Tumor 7. (h) Tumor 8. (i) Tumor 9. (j) Tumor 10. (k) Tumor 11. (l) Tumor 12.

case of the two synthetic tumor images, the four studied
methods give satisfactory results in terms of Dice index,
the LLCH-exact and LLCH-BE methods performing slightly
better. However, we may notice that the Dice index for the
MSCH method is a bit lower than the others. This method
is not really appropriate to segment clinical images which
have very low contrast and complex shapes. In particular, a
closer look at the segmentation of tumor 2 shows that the
MSCH segmentation fails to detect the smallest component
of the tumor. It can be also seen that it fails to detect the
entire tumor 10, the segmented region corresponding to the
epidermis. As expected, the sensitivity of the AdLL is low
compared to the sensitivity of the LLCH-exact method with
a significant difference of 12%. Since AdLL and LLCH-exact
methods share the same data attachment term, this difference
is due only to the choice of the regularization term, and more
precisely to the flexibility introduced by the transition layer.
With no suprise, the AdLL method gives the best precision.
But it is worth noting that the LLCH-exact method has also a
good precision. Concerning the MAD measure, the difference
between LLCH-exact and AdLL methods is also significant.
It is about 21%. It appears that the MSCH method is the
worst method for this criterium. The AdLL method has the
best precision, but significantly lower sensitivity and MAD.
These results show on one hand, that the segmented volumes
obtained by level set methods are small and far from the true
boundary, and on the other hand, that our approach is relevant
to tackle the problem of underestimation.

Compared to the intra-observability, our approach gives
similar Dice index, sensitivity and precision with a faster
execution time. However, the LLCH-exact method gives a
slightly higher MAD. This means that our algorithm is still
less accurate than the manual expert segmentation. The trade-
off diagrams of Fig. 5 allow to visualize more precisely the
main differences between the four methods. For an accurate

TABLE III
AVERAGED ACCURACY OF THE SEGMENTATION: PROPOSED LLCH-EXACT

METHOD (ALGORITHM 1), LLCH-BE METHOD (ALTERNATIVE
IMPLEMENTATION), ADLL METHOD [4] AND MSCH METHOD [9]. THE

INDICATED VALUES ARE MEAN AND STANDARD DEVIATION (±) OVER ALL
CASES WITH THE VOLUME INITIALIZATION INSIDE THE TUMOR.

XXXXXXXXIndex
Method LLCH-exact LLCH-BE AdLL MSCH Intra-ob

Dice 0.862 ± 0.053 0.861 ± 0.049 0.826 ± 0.061 0.769 ± 0.247 0.864 ± 0.051
S 0.853 ± 0.049 0.838 ± 0.073 0.763 ± 0.081 0.778 ± 0.248 0.855 ± 0.070
P 0.874 ± 0.073 0.891 ± 0.069 0.910 ± 0.086 0.776 ± 0.258 0.879 ± 0.068

MAD (µm) 191 ± 68 194 ± 72 231 ± 79 320 ± 222 177 ± 60
Times (s) 41.0 57.0 14.7 13.4 300

segmentation, both the sensitivity and the precision should be
as close to 1 as possible. Recall that the Dice index D is given
by D = 2/(1/S + 1/P ). The level curves of the Dice index
are drawn in gray. We propose also in Fig. 6, examples of
segmentation that illustrate the difference of behavior between
LLCH-exact and AdLL methods.

2) Initialization covering the tumor: Now, we propose
experiments to test the robustness to intialization changes,
from volume inside the tumor to volume covering the tumor.
The aim is to confirm the results already described in the
case of synthetic tumor images. As shown in the table IV.
LLCH-exact and LLCH-BE methods have Dice index and
MAD measure quite similar to those obtained for initialization
inside the tumor, with a difference less than 5%. As before,
the LLCH-exact method yields the best results. The AdLL
and MSCH segmentations fail in almost all cases and give
very poor averaged Dice index and MAD measure. As shown
in Fig. 7, in the case of tumor 6, the segmented volume for
the AdLL segmentation is unusable whereas the result is still
very good for the LLCH-exact segmentation.

V. DISCUSSION

One of the main topics of this work is to emphasize the
advantages of the regularization term ECHε (u)/cW over the
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(a) LLCH Exact. (b) LLCH BE (c) ADLL (d) MSCH (e) Intra-ob.
Fig. 5. Sensitivity S versus precision P for the studied segmentation methods. For an accurate segmentation, both the sensitivity and the precision should be
as close to 1 as possible. The Dice index D is given by D = 2/(1/S+ 1/P ). The level curves of the Dice index are drawn in gray. (a) LLCH-exact method
with the best sensitivity/precision trade-off. (b) LLCH-BE method with results comparable to LLCH-exact method. (c) ADLL method with low sensitivity.
(d) MSCH method: in some cases the sensitivity and/or precision is too low. (e) Intra-observer variability.

(a) (b) (c) (d)
Fig. 6. Comparisons between LLCH-exact and AdLL methods. Slices of 4 segmentations: LLCH-exact contours in yellow, AdLL contours in green, reference
contours in red.

widely used level set term |∇φ|∇. (φ/|∇φ|). However, as
observed in section V, the MSCH method gives quite poor
results. In fact, the data attachment term in this case, i.e. the
piecewise constant Mumford-Shah functional, is not adapted
to ultrasound images. The regularization term ECHε (u)/cW
is unable to correct this problem. The log-likelihood distance
between intensity distributions inside and outside the tumor,
LL(u), seems to be a relevant data attachment term, especially
when using nonparametric estimations. Combined with this
data attachment term, the regularization term ECHε (u)/cW
performs much better than the level set term |∇φ|∇. (φ/|∇φ|).
On one hand, for initialization inside the tumor, the LLCH-
exact method yields the best Dice index, MAD measure
and sensitivity with a good precision. This means that the
LLCH-exact method is well-designed to tackle the problem of
underestimation of tumor volumes. On the other hand, it is the
only method (with the alternative implementation LLCH-BE)
that is robust to initialization changes from volume inside the
tumor to volume covering the tumor, the parameters remaining

unchanged.
As discussed before, the multi-grid implementation does not

affect significantly the result of the segmentation. Working
on a grid with a = 4 yields a speed-up factor of 90. The
computational time of the LLCH-exact method is twice the
computational time of the AdLL method when the initializa-
tion volume is inside the tumor. It is slightly smaller when
the initialization volume covers the tumor. A parallel C++
implementation of the proposed LLCH-exact algorithm using
Open MP allows to divide the computational time by a factor
4.

We end this discussion by giving some precisions about the
choice of the three parameters δt (time step), ε (size of the
diffuse interface) and α (smoothness of the moving interface).
Concerning the time step, MSCH and AdLL methods require
large δt to ensure that the contour can move. On the contrary,
LLCH-exact and LLCH-BE mehods give the best results for
δt ∈ [0.1, 1], whereas too large time steps can give inaccurate
segmentations. The width ε is chosen with respect to the order

(a) (b) (c)
Fig. 7. Initialization covering the tumor. (a) Slice of the initial volume for tumor 6, see Fig. 4f. (b) Slice of the segmented volume using the LLCH-exact
method. (c) Slice of the segmented volume using the AdLL method.
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TABLE IV
AVERAGED ACCURACY OF THE SEGMENTATION: PROPOSED LLCH-EXACT

METHOD (ALGORITHM 1), LLCH-BE METHOD (ALTERNATIVE
IMPLEMENTATION), ADLL METHOD [4] AND MSCH METHOD [9]. THE

INDICATED VALUES ARE MEAN AND STANDARD DEVIATION (±) OVER ALL
CASES WITH THE VOLUME INITIALIZATION COVERING THE TUMOR.

XXXXXXXXIndex
Method LLCH-exact LLCH-BE AdLL MSCH

Dice 0.860 ± 0.052 0.849 ± 0.065 0.540 ± 0.266 0.594 ± 0.316
MAD (µm) 196 ± 73 207 ± 74 854.8 ± 499.1 762.2 ± 682.1

Times (s) 57.8 72.4 78.1 23.4

of the mesh grid size. If ε is too small, the transition layer does
not move and numerical problems such as stiff problems can
appear. In the experiments we propose, these three parameters
are adaptively tuned in order to maximize the Dice index. This
is justified by the fact that the Dice index takes into account
both the sensitivity and the precision.

VI. CONCLUSION

We have proposed a new method for skin tumor seg-
mentation in 3D ultrasound images. Our motivation was to
overcome the fact that level set segmentations tend to underes-
timate segmented volumes and are not robust to initialization
changes. We have introduced a reaction diffusion PDE as a
regularization term of a variational formulation, with a data
attachment term given by a log-likelihood distance between
intensity distributions. This PDE, the Allen-Cahn equation,
aims at describing diffuse interface phase field evolutions.We
have shown that, thanks to the flexibility introduced by the
diffuse interface and thanks to an exact implementation, the
new approach, i.e. the LLCH-exact method, has some major
advantages over reference ones. Especially, experiments on
synthetic and clinical data have shown that the LLCH-exact
segmentation is well-designed to tackle the problem of un-
derestimation of tumor volumes, and is robust to initialization
changes, from volume inside the tumor to volume covering the
tumor. The multi-grid implementation that we have proposed
allows to obtain reasonable computational times for medical
applications.

APPENDIX
GRADIENT DESCENT OF THE ENERGY Eε

We only need to compute the functional derivative δSA/δu
with SA given by formula (13). We have

δSA
δu

=
δ|ΩA|
δu

∑
I

P̂A(I) log P̂A(I)

+|ΩA|
∑
I

δP̂A(I)

δu
log P̂A(I) + |ΩA|

∑
I

δP̂A(I)

δu

(38)

Since |ΩA| =
∫

ΩA
dx '

∫
Ω
u2dx, assuming Kλ(I(x) − I) '

δ(I(x)− I), where δ is the Dirac distribution, we have

|ΩA|P̂A(I) =

∫
u2δ(I(x)− I)dx (39)

δ|ΩA|
δu

P̂A(I) + |ΩA|
δP̂A(I)

δu
= 2uδ(I(x)− I) (40)

|ΩA|
δP̂A(I)

δu
= 2u[δ(I(x)− I)− P̂A(I)] (41)

Consequently, we obtain

δSA
δu

= 2u
∑
I

P̂A(I) log P̂A(I)

+
∑
I

2u[δ(I(x)− I)− P̂A(I)] log P̂A(I)

+
∑
I

2u[δ(I(x)− I)− P̂A(I)]

(42)

and
δSA
δu

= 2u
∑
I

δ(I(x)− I) log P̂A(I)

+2u
∑
I

δ(I(x)− I)− 2u
∑
I

P̂A(I)
(43)

We have also∑
I

δ(I(x)− I) log P̂A(I) ' δ ∗ log P̂A(I(x))

= log P̂A(I(x))

(44)

∑
I

δ(I(x)− I) ' δ ∗ 1 = 1 (45)

∑
I

P̂A(I) = 1 (46)

This means that
δSA
δu

= −2u log P̂A(I(x)) (47)

We obtain in the same way

δSB
δu

= −2(u− 1) log P̂B(I(x)) (48)
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