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Abstract

The reconstruction of models from experimental data is a challenging problem due to the inherited
complexity of the studied biological systems. We discuss an exact, exclusively data-driven approach
to reconstruct Petri nets, a framework which turned out to coherently model static interactions and
dynamic processes. The reconstructed models shall reproduce the experimentally observed dynamic
behavior in a simulation. For that, we consider Petri nets with two types of extensions, priority relations
among the transitions and control-arcs, to obtain additional activation rules that control the dynamic
behavior. Here, we give an overview on results concerning the reconstruction of standard networks with
and without priorities, extended Petri nets, and extended Petri nets with priorities. All these approaches
aim at reconstructing all networks of the studied type that fit the given experimental data, to provide all
possible alternatives of mechanisms behind the experimentally observed phenomena.

Zusammenfassung

Die Rekonstruktion von Modellen ausgehend von experimentellen Daten ist aufgrund der Komplexität
biologischer Systeme ein schwieriges Problem. Wir stellen ein exaktes, ausschließlich auf der Analyse
der gegeben Daten beruhendes Verfahren vor, um Petri-Netze zu rekonstruieren: Modelle, die sowohl
statische Interaktionen als auch dynamische Prozesse abbilden können. Die rekonstruierten Modelle
sollen dabei in einer Simulation das experimentell beobachtete dynamische Verhalten aufweisen. Dafür
betrachten wir Petri-Netze mit zweierlei Erweiterungen, Prioritäten auf Transitionen und Testkanten,
um zusätzliche Aktivierungsregeln zu erhalten, die das dynamische Verhalten kontrollieren. Wir geben
einen Überblick über Resultate zur Rekonstruktion von Standard-Netzwerken mit und ohne Prioritäten
sowie erweiterten Petri-Netzen mit und ohne Prioritäten. Alle diese Verfahren haben zum Ziel, alle
Netzwerke des betrachteten Typs zu rekonstruieren, die konform mit den gegeben experimentellen Daten
sind, um alle möglichen Alternativen von Mechanismen aufzuzeigen, die den experimentell beobachteten
Phänomenen zugrunde liegen können.
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1 Introduction

The overall aim of systems biology is to analyze bi-
ological systems and to understand different phenom-
ena therein as, e.g., responses of cells to environmental
changes, host-pathogen interactions, or effects of gene
defects. To gain the required insight into the underly-
ing biological processes, experiments are performed and
the resulting experimental data are interpreted in terms
of models that reflect the observed phenomena.

Depending on the biological aim and the type and
quality of the available data, different types of math-
ematical models are used and corresponding methods
for their reconstruction have been developed, see for
instance [1, 15, 16]. Our work is dedicated to Petri
nets, a framework which turned out to coherently model
both static interactions in terms of networks and dy-
namic processes in terms of state changes, see e.g.
[2, 13, 14, 18, 19].

In fact, a network P = (P, T, A, w) reflects the in-
volved system components by places p ∈ P and their
interactions by transitions t ∈ T , the arcs in A ⊂
(P × T ) ∪ (T × P ) link places and transitions, and the
arc weights w : A → N reflect stoichiometric coefficients
of the corresponding reactions. Moreover, each place
p ∈ P can be marked with an integral number xp of

tokens defining a system state x ∈ Z
|P |
+ ; we denote by

X the set of all potential system states. A transition
t ∈ T is enabled in a state x if xp ≥ w(p, t) for all p

with (p, t) ∈ A, switching or firing t leads to a successor
state x′ with x′

p = xp − w(p, t) for all (p, t) ∈ A and
x′

p = xp + w(t, p) for all (t, p) ∈ A. Dynamic processes
are represented by sequences of such state changes.

Our central question is to reconstruct models of this
type from experimental time-series data by means of an
exact, exclusively data-driven approach. This approach
takes as input a set P of places and discrete time-series
data X ′ given by sequences (x0, x1, . . . , xk) of experi-
mentally observed system states. The goal is to deter-
mine all Petri nets (P, T, A, w) that are able to repro-
duce the data, i.e., where T contains enough transitions
to perform for each xj ∈ X ′ the experimentally observed
state change to xj+1 ∈ X ′, and where this behavior is
indeed shown in a simulation. Hence, in contrast to the
normally used stochastic simulation, we require that for
states where at least two transitions are enabled, the de-
cision between the alternatives is not taken randomly,
but a specific transition is selected.

Thus, (standard) Petri nets have to be equipped with
additional activation rules to force the switching of spe-
cial transitions (to reach xj+1 from xj), and to prevent
all others from switching. For that, different types of
additional activation rules are possible.

On the one hand, in [17, 21, 22] the concept of pri-

ority relations among the transitions of a network was
introduced in order to allow the modeling of determin-
istic systems. Note that these priorities typically reflect

the rate of the corresponding reactions where the fastest
reaction has highest priority and, thus, is taken. Priori-
ties can prevent enabled transitions from switching: for
each state, only a transition is allowed to switch if it is
enabled and there is no other enabled transition with
higher priority. In Marwan et al. [17] it is proposed to
model such priorities with the help of partial orders O
on the transitions. We call (P ,O) an Petri net with pri-

orities, if P = (P, T, A, w) is a Petri net and O a priority
relation on T × T .

On the other hand, the concept of control-arcs can
be used to represent catalytic or inhibitory dependen-
cies. An extended Petri net P = (P, T, (A∪AR∪AI), w)
is a Petri net which has, besides the (standard) arcs in
A, two additional sets of so-called control-arcs: the set
of read-arcs AR ⊂ P × T and the set of inhibitor-arcs
AI ⊂ P × T . Also control-arcs can prevent enabled
transitions from switching: an enabled transition t ∈ T

coupled with a read-arc (resp. an inhibitor-arc) to a
place p ∈ P can switch only if a token (resp. no to-
ken) is present in p. We denote the set of all arcs by
A = A ∪ AR ∪ AI .

For consistently integrating both concepts, priority
relations and control-arcs, into the modeling framework,
the difficulty is that both are concurrent concepts to
force or prevent the switching of enabled transitions.

Let (P ,O) be an extended Petri net with priorities

with a network P = (P, T, (A ∪ AR ∪ AI), w) and a
partial order O ⊂ T × T on its transitions. To en-
force a deterministic behavior, the network has to be
equipped with appropriate control-arcs in (AR ∪ AI)
and priorities in O such that each state x ∈ X has
a unique successor succX (x), see [21] for more details.
Extended Petri nets with priorities satisfying this prop-
erty are said to be X -deterministic. For our purpose, we
consider a relaxed condition, namely that each experi-
mentally observed state x ∈ X ′ has a unique successor
succX ′(x) ∈ X ′, but we do not require this property for
non-observed states x ∈ X \X ′. To this end, in [23, 24],
the notion of X ′-deterministic extended Petri nets is in-
troduced as the desired output of an integrative recon-
struction method, which show a prescribed behavior on
the experimentally observed subset X ′ of states: the re-
constructed Petri nets (P, T,A, w) do not only contain
enough transitions to reach the experimentally observed
successors xj+1 from xj , but exactly this transition will
be selected (due to appropriate priorities and control-
arcs) among all enabled ones in xj which is necessary
to reach xj+1.

In Section 2, we survey results on the reconstruction
of standard networks [8, 17], standard networks with pri-
orities [17, 22], extended Petri nets [4, 5] and extended
Petri nets with priorities [10, 11].

In Section 3, we discuss possible further extensions,
future applications and the potential impact of the pre-
sented approaches.
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2 Reconstruction approaches

We briefly describe the common input (P,X ′) for net-
work reconstruction, the main ideas, and the generated
output of the different approaches to reconstruct Petri
nets from experimental time-series data X ′.

Firstly, a set of components P (later represented by
the set of places of the reconstructed networks) is cho-
sen which is expected to be crucial for the studied phe-
nomenon.

To perform an experiment, one first triggers the sys-
tem in some state (by external stimuli like the change
of nutrient concentrations or the exposition to some
pathogens), to generate an initial state x1. Then the
system’s response to the stimulation is observed and
the resulting state changes are measured for all com-
ponents at certain time points. This yields a sequence
of (discrete or discretized1) states xj ∈ Z

|P | reflecting
the time-dependent response of the system to the stim-
ulation in x1, which typically terminates in a terminal
state xk where no further changes are observed. The
corresponding experiment is

X ′(x1, xk) = (x1, . . . , xk).

Several experiments starting from different initial states
in a set X ′

ini ⊆ X ′, reporting the observed state changes
for all components p ∈ P at certain time points, and
ending at different terminal states in a set X ′

term ⊆ X ′

describe the studied phenomenon, and yield experimen-
tal time-series data of the form

X ′ = {X ′(x1, xk) : x1 ∈ X ′
ini, x

k ∈ X ′
term}.

Thus, the input of the reconstruction approach is given
by (P,X ′).

In the best case, two consecutively measured states
xj , xj+1 ∈ X ′ are also consecutive system states, i.e.,
xj+1 is reached from xj by switching a single transition.
This is, however, in general not the case (and depends
on the chosen time points to measure the states in X ′),
but xj+1 may be obtained from xj by a switching se-
quence of some length, where the intermediate states
are not reported in X ′.

For a successful reconstruction approach, the data
X ′ need to satisfy two properties:

• reproducibility (each xj ∈ X ′ has a unique ob-
served successor state xj+1 ∈ X ′) and

• monotonicity (the values of each place must not
oscillate in the intermediate states between xj and
xj+1).

Whereas reproducibility is obviously necessary, it
was shown in [7] that monotonicity has to be required
or, equivalently, that all essential responses are indeed
reported in the experiments. Note that reproducibility
can be tested in a preprocessing step, which includes
strategies to modify the given experimental data in or-
der to ensure the required properties, see [7, 22, 25] for
details.

A network P = (P, T, A, w) fits the given data X ′

when it is able to perform every observed state change
from xj ∈ X ′ to xj+1 ∈ X ′. More formally, with P ,
an incidence matrix C ∈ Z

|P |×|T | is associated whose
rows correspond to places and whose columns C·t to the
update vectors rt of the transitions t ∈ T :

rt
p = Cpt :=











−w(p, t) if (p, t) ∈ A,

+w(t, p) if (t, p) ∈ A,

0 otherwise.

Reaching xj+1 from xj by a switching sequence using
the transitions from a subset T ′ ⊆ T is equivalent to
obtain the state vector xj+1 from xj by adding the cor-
responding columns C·t of C for all t ∈ T ′:

xj +
∑

t∈T ′

C·t = xj+1.

Hence, T has to contain enough transitions to perform
all experimentally observed switching sequences: P is
conformal with X ′ if, for any two consecutive states
xj , xj+1 ∈ X ′, the linear equation system

xj+1 − xj = Cλ

has an integral solution λ ∈ N
|T | such that λ is the

incidence vector of a sequence (t1, ..., tm) of according
transition switches.

Moreover, an extended Petri net is catalytic con-

formal with X ′ and a Petri net with priorities is X ′-

deterministic if there is a unique choice for the transi-
tions to realize the switching sequences (due to appro-
priate control-arcs respectively appropriate control-arcs
and priorities). Note that in all cases, the reconstructed
networks have the same set P of places, as part of the
input.

We next survey results on the reconstruction of

• standard networks [8, 17],

• standard networks with priorities [17, 22],

• extended Petri nets [4, 5] and

• extended Petri nets with priorities [10, 11].

1Some measured data are of a discrete nature, e.g., a gene can be expressed or not, an enzyme can be present or not, a protein occurs
in one of its conformational states. If some measured data are continuous, e.g., concentrations of certain metabolites, it is necessary to
appropriately discretize the continuous data into finitely many discrete states. Hereby, the chosen level of discretization has to be fine
enough to preserve all dynamic features of the time course (in particular all local maxima or minima of the values), but rough enough to
be robust to noise in the experimental data.
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2.1 Reconstructing standard networks

To reconstruct standard networks, the following ap-
proach is proposed in [8, 17].

Extraction of difference vectors. As initial step,
extract the observed changes of states from the experi-
mental data. For that, define the set

D :=
{

dj = xj+1 − xj : = (xj, xj+1) ∈ X ′
}

.

Decomposition of difference vectors. The first
step is to describe the set of potential update vectors
which might constitute the columns of C. Recall that
two consecutively measured states xj , xj+1 ∈ X ′ are not
necessarily consecutive system states, but xj+1 may be
obtained from xj by some switching sequence whose in-
termediate states are not reported in X ′.

Due to monotonicity, the values of the elements can-
not oscillate in the intermediate states between xj and
xj+1. By [7], it suffices to decompose any dj ∈ D using
only sign-compatible vectors from the following set

Box(dj) =







r ∈ Z
|P | :

0 ≤ rp ≤ dj
p if dj

p > 0
dj

p ≤ rp ≤ 0 if dj
p < 0

rp =0 if dj
p = 0







\{0}.

Due to [8], none of the reconstructed networks must
contain a transition enabled at any of the observed ter-
minal states xk of a time-series (x0, x1, . . . , xk); hence
all such vectors in Box(dj) can be removed, resulting in
a reduced set Boxred(d

j).

Next, we determine for any dj ∈ D the set Λ(dj) of
all integral solutions λ of the equation system

dj =
∑

rt∈ Boxred(dj)

λtr
t, λt ∈ Z+.

Due to [8], Λ(dj) is non-empty if and only if dj is not
enabled at any of the terminal states.

For each λ ∈ Λ(dj), construct the (multi-)set
R(dj , λ) = {rt ∈ Boxred(d

j) : λt 6= 0} of update vectors
used for this decomposition λ.

Composition of networks. Selecting exactly one so-
lution λ ∈ Λ(dj) for each dj ∈ D and taking the union
of the corresponding sets R(dj , λ), we yield the columns
C·t = rt of an incidence matrix C of a (standard) net-
work P . By construction, P is conformal with X ′ since
the selected update vectors (corresponding to the tran-
sitions of the network) are able to reproduce all experi-
mentally observed state changes.

We obtain all such networks by taking all possi-
ble combinations of sets R(dj , λ) for different choices
λ ∈ Λ(dj) for all dj ∈ D, see [17, 22].

2.2 Reconstructing standard networks

with priorities

To generate standard networks with priorities, the first
two steps of extracting and decomposing difference vec-
tors are as in the case of standard networks without pri-
orities. However, not all possible combinations of sets
R(dj , λ) for different λ ∈ Λ(dj) lead to X ′-deterministic
networks. Here, it is necessary to consider all possible
switching sequences for a decomposition λ ∈ Λ(dj), to
detect priority conflicts between different sequences, and
to only compose selections of non-conflicting sequences
to networks.

For that, the following approach is proposed in [17]
(see [21, 22] for further details). We again extract dif-
ference vectors and decompose them as in the case of
standard network reconstruction to determine the sets
R(dj , λ) for all obtained difference vectors dj . Then,
we proceed as follows:

Switching sequences and their conflicts. Every
permutation π = (rt1 , . . . , rtm) of the elements of a set
R(dj , λ) gives rise to a sequence of intermediate states
xj = y1, y2, ..., ym, ym+1 = xj+1 with

σ = σπ,λ(xj, dj) =
(

(y1, rt1), (y2, rt2), . . . , (ym, rtm)
)

which induces a priority relation Oσ since transition ti
resulting from rti is supposed to have highest priority
in yi for 1 ≤ i ≤ m. Two sequences σ and σ′ are in
priority conflict if there are update vectors rt 6= rt′ and
intermediate states y, y′ such that t, t′ are enabled in
y, y′ and (y, rt) ∈ σ but (y′, rt′) ∈ σ′ (since this im-
plies t > t′ in Oσ but t′ > t in Oσ′). Note that all
sequences for the same d

j ∈ D are mutually in conflict.

Selecting non-conflicting sequences. Construct a
priority conflict graph G whose nodes correspond to all
possible sequences σπ,λ(xj , dj) and whose edges reflect
their priority conflicts. In G, all node subsets S are gen-
erated that select exactly one sequence σπ,λ(xj , dj) per
difference vector dj ∈ D such that no priority conflicts
occur between the selected sequences.

Remark. Each selected subset S corresponds to a so-
called stable set in G, all nodes corresponding to se-
quences for the same dj ∈ D to a so-called clique in G.
Note that we need to select one node from each such
clique for a stable set S.

Composition of networks. Each subset S gives rise
to a standard network P = (P, T, A, w), obtained by
taking the union of the corresponding sets R(dj , λ) for
each σ = σπ,λ(xj , dj) ∈ S, which can be made X ′-
deterministic by adding the priority relations Oσ for all
σ ∈ S, see [17, 22].
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2.3 Reconstructing extended networks

To generate extended Petri nets without priorities, the
decomposition of difference vectors has to be further
adapted. As before, no transition of a returned network
must be enabled at any of the observed terminal states
xk of a time-series (x0, x1, . . . , xk). However, this can-
not be done by excluding potential update vectors, but
instead by inserting control-arcs to disable the resulting
transitions at the terminal states. This task can be done
by using the procedure proposed in [4, 5].

Decomposition of difference vectors. Due to
monotonicity, it suffices again to decompose any dj ∈ D
using vectors from Box(dj) only such that Λ(dj) con-
sists of all integral solutions λ of the equation system

d
j =

∑

rt∈ Box(dj)

λtr
t, λt ∈ Z+

and for each λ ∈ Λ(dj), R(dj , λ) is constructed.

Composition of standard networks. We consider
again permutations π of the elements of R(dj , λ) and
the resulting switching sequences σπ,λ(xj , dj). Due to
[5], such a sequence is catalytic conformal if and only if
none of its intermediate states (including xj = y1) is an
observed terminal state.

Selecting exactly one catalytic conformal sequence
σπ,λ(xj , dj) for each d

j ∈ D and taking the union of the
corresponding sets R(dj , λ) yields the columns C·t = rt

of an incidence matrix C of a network. We obtain all
such networks by taking all possible combinations.

Inserting control-arcs. It is assumed that control-
arcs depend only on the presence or absence of a com-
ponent, such that vectors x ∈ X ′ are mapped to binary
vectors in {0, 1}|P | considering only the support of x

and thus can be tested in terms of propositional logic.

For this purpose, it is useful to encode the test by
conjunctions of literals. Hereby, a literal can be any
component xp of a vector x or its logical negation ¬xp.
A conjunction

∧

xp,¬xq∈P ′ of literals is true if and only

if all positive variables xp ∈ P ′ have value greater than
zero and all negated variables ¬xq ∈ P ′ have value zero.
That way, each conjunction represents a pattern of com-
ponents which need to be present or absent for the con-
junction to be true. For details on how to find such a
logical formula and the possible values to satisfy it, we
refer to [5].

A conjunction can be modeled as a Petri net by con-
necting a transition to the places with read-arcs for ev-
ery positive literal, and with inhibitor-arcs for every neg-
ative literal; the transition is enabled if and only if the
conjunction is true.

2.4 Reconstructing extended networks

with priorities

To generate extended Petri nets with priorities, the fol-
lowing approach is proposed in [10] and detailed in [11],
based on previous works in [4, 5, 7, 8, 17].

Decomposition of difference vectors. Due to
monotonicity, it suffices again to decompose any dj ∈ D
using vectors from Box(dj) only, to determine Λ(dj) ac-
cordingly and to construct R(dj , λ) for each λ ∈ Λ(dj).

Due to [10], Box(dj) and Λ(dj) are always non-
empty since dj itself is always a solution due to the
required reproducibility of the input data X ′ (which par-
ticularly ensures dj 6= 0 for all dj ∈ D, see also [25]).

Switching sequences and their conflicts. We con-
sider again permutations π of the elements of R(dj , λ),
the resulting switching sequences

σ = σπ,λ(xj, dj) =
(

(y1, rt1), (y2, rt2), . . . , (ym, rtm)
)

and the induced priority relations Oσ. Recall that two
sequences σ and σ′ are in priority conflict if there are
update vectors rt 6= rt′ and intermediate states y, y′

such that t, t′ are enabled in y, y′ and (y, rt) ∈ σ but
(y′, rt′) ∈ σ′. We have a weak (resp. strong) prior-
ity conflict if y 6= y′ (resp. y = y′) which can (resp.
cannot) be resolved by adding appropriate control-arcs.
Note that all sequences for the same dj ∈ D are in strong
conflict.

Composition of standard networks. Construct a
priority conflict graph G whose nodes correspond to all
catalytic conformal sequences σπ,λ(xj , dj) and whose
edges reflect weak and strong priority conflicts. In G,
all node subsets S are generated that select exactly one
sequence σπ,λ(xj , dj) per difference vector dj ∈ D such
that no strong priority conflicts occur between the se-
lected sequences. Each such subset S gives rise to a
standard network P = (P, T, A, w) which is conformal
with X ′ and can be made X ′-deterministic.

Inserting control-arcs and adding priorities. To
resolve a weak priority conflict between σ, σ′ ∈ S in-
volving update vectors rt 6= rt′ and intermediate states
y 6= y′, include

• either a read-arc (p, t) ∈ AR with weight w(p, t) >

y′
p for some p with yp > y′

p or

• an inhibitor-arc (p, t) ∈ AI with weight w(p, t) <

yp for some p with yp < y′
p

to disable transition t resulting from rt at y′.
For each σ ∈ S, define Oσ based on the so-

constructed transition sequences to obtain the studied
partial order to make the generated extended networks
X ′-deterministic, see [10, 11] for details.
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3 Discussion

Systems biology aims at the integrated experimental
and theoretical analysis of cellular networks to ob-
tain a holistic understanding of biological systems and
processes. The large diversity of organisms and cell
types and the huge variety of the involved biochemi-
cal processes requires advanced modeling and analysis
approaches.

While metabolic networks are characterized by a flow
of substance through biochemical intermediates that
are interconverted into each other, regulatory or signal
transduction networks function by a flow of information
mediated by the reversible modification of functionally
interacting components.

Since the information flow may occur through differ-
ent molecular reaction mechanisms, it is not always triv-
ial to unequivocally assign known biochemical reactions
to a causal sequence of signaling events and vice versa.
This is one reason why important control mechanisms
like those for growth, differentiation, motility or apop-
tosis in eukaryotic cells are incompletely understood at
the molecular systems level.

Reconstructing the functional interactions of genes
and their products from experimental data by generat-
ing validated, composable, and predictive models of the
underlying regulatory networks is one of the challenges
of systems biology. To be useful for the reconstruction
of causal interactions within regulatory networks from
experimental data sets, it is suggested in [18] that a
modeling framework should have the following proper-
ties. It should be able to

• represent the properties of the real system based
on an unambiguous and strict syntax;

• reproduce qualitative and quantitative data in the
particular formats as detected by different exper-
imental techniques;

• connect functional elements or modules of arbi-
trary molecular complexity in the form of one sin-
gle, coherent model;

• consistently represent the various molecular mech-
anisms or genetic interactions that occur in a liv-
ing cell.

As exhibited in [13, 14, 18], all of these requirements
are fulfilled by place/transition Petri nets and/or their
various (stochastic or deterministic) extensions.

As mathematical structures, Petri nets allow the ap-
plication of graph theoretical approaches and the math-
ematical treatment of formalized problems related to the
molecular networks they are representing. This is par-
ticularly useful for the reconstruction and analysis of
the regulatory networks studied in molecular cell biol-
ogy and genetics.

So far, Petri nets as well as other modeling frame-
works have mostly been used for bottom-up modeling
approaches which are based on pre-defined molecular
models of a given network: Experimental results are
evaluated, and by heuristic reasoning, a network of bio-
chemical reactions is established in the form of a classi-
cal biochemical pathway or in the form of an informal
graphically displayed molecular interaction model. This
molecular model is then translated into a Petri net to
study the functional properties of the net, to run simu-
lations, and to predict the behavior of the real network
in response to perturbation.

Petri nets can also be obtained directly by algorith-
mically evaluating experimental data; such an approach
is called network reconstruction, network inference, or
reverse engineering. In this survey, we addressed the
challenging problem of Automatic Network Reconstruc-

tion: reconstructing Petri net models from experimen-
tal time-series data by means of an exact, exclusively
data-driven method. In the previous section, we gave
an overview on approaches to reconstruct

• standard networks [7, 8, 17],

• standard networks with priorities [17, 22],

• extended Petri nets [4, 5], and

• extended Petri nets with priorities [10, 11].

In all cases, a preprocessing is in order to ensure the
required properties of the input data.

On the one hand, we discussed the influence of the
quality of the given experimental data in [7] showing
that monotone data X ′ are necessary (or, equivalently,
that all essential responses are indeed reported in the
experiments).

On the other hand, feasibility tests to test the given
experimental data X ′ for reproducibility have been de-
veloped (in [8] for standard networks and in [25] for
extended Petri nets with priorities) to ensure that each
observed state x ∈ X ′ has a unique successor in X ′. If
this test fails, the existence of previously undetected el-
ements of regulatory function is proved since the given
data do not suffice to explain the causal mechanisms
behind the observed phenomenon [8, 25]. To handle in-
feasible cases, additional elements are added to P and
the given experimental data X ′ are extended by deter-
mining all possible values for the new elements in P such
that any state x ∈ X ′ with previously two different suc-
cessors is split into different states each having a unique
successor [8, 25]. Then, the regular reconstruction pro-
cedure is applied to every extended setting of P and X ′

meeting these properties.
All here presented reconstruction approaches aim at

generating all models of the studied type that fit with
the given experimental data, to provide all possible al-
ternatives of mechanisms behind the observed biological
phenomena.
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In the latter three cases, the generated networks
are also able to exhibit the experimentally observed dy-
namic behavior in a simulation, since priorities and/or
control-arcs are used as additional activation rules to
force the switching of special transitions. In particular,
the reconstruction of extended Petri nets with priorities
[10] is an integrative method which generates models
fully fitting the experimentally observed phenomena.

This typically causes a large number of solution al-
ternatives, see e.g. [5, 10].

To keep this solution set as small as possible while
still guaranteeing its completeness, a postprocessing

should be applied to keep only ”minimal” solutions in
the sense that all other networks fitting the data contain
the returned ones. For standard networks, minimality
can be easily imposed by set inclusion of the transition
sets [8, 17], for extended Petri nets with(out) priorities,
an equivalence relation is defined on the underlying stan-
dard networks and minimal representatives are selected
by means of priorities and/or control-arcs [23, 24].

Moreover, it would be desirable to exclude solution
alternatives that contradict well-established biological
knowledge or insight gained during previous rounds of
the reconstruction process.

Although the here-surveyed reconstruction ap-
proaches are all exclusively data-driven methods, it
could be advantageous to integrate some a priori biologi-
cal knowledge already during the reconstruction process,
instead of afterwords applying a biological verification
of the reconstructed network alternatives as, e.g., done
in [5].

We next discuss several possibilities proposed in [12]
how certain biological knowledge could be integrated
during the reconstruction process.

• Indecomposability of difference vectors. So far, all
reconstruction approaches determine the set of po-
tential update vectors which might constitute the
networks by considering, for each dj ∈ D, all sign-
compatible vectors from the set Box(dj).

In some cases, however, an observed response
dj ∈ D might exactly correspond to a well-known
biochemical reaction (including the correct stoi-
chiometry) or to a well-known mechanism (that a
certain trigger is detected by a suitable receptor).

In such cases, one could exclude the corresponding
response dj ∈ D from decomposition and, instead,
just define Box(dj) := {dj} in accordance with the
already established knowledge.

• Benefiting from known P-invariants. For a net-
work P = (P, T,A, w) with incidence matrix C ∈
Z
|P |×|T |, a P-invariant is an integer solution of the

equation system

yT C = 0T , y ∈ N
|P |, y 6= 0.

P-invariants describe mass-preserving submoduls:
subsets P ′ ⊆ P of places where the total number
of tokens remains constant in each system state.

Typical examples of P-invariants are, e.g., differ-
ent conformational states of a molecule, a receptor
or a cell. If such P-invariants are known a priori
within the experimentally studied set P of com-
ponents, they can be provided as input in form of
a set IP . This allows to reduce, for any dj ∈ D,
the set Box(dj) of potential update vectors to de-
compose dj by including the restriction

∑

p∈P ′

rp = 0, ∀P ′ ∈ IP ,

see also [8, 22] for details.

• Treating equal difference vectors in the same way.

So far, all observed responses dj ∈ D are decom-
posed independently from each other. To generate
standard networks, exactly one solution λ ∈ Λ(dj)
for each dj ∈ D is selected, for networks with
priorities, permutations π of the elements of the
corresponding sets R(dj , λ) give rise to sequences
σπ,λ(xj , dj), and non-conflicting sequences are se-
lected.

If two difference vectors di, dj ∈ D are equal, we
have Box(di) = Box(dj) and it would be natural
to require that both di, dj are decomposed in the
same way (i.e., by the same λ ∈ Λ(di) = Λ(dj))
and that the involved reactions are applied in the
same order (i.e., by the same permutation π of
the elements of the corresponding sets R(di, λ) =
R(dj , λ)).

The latter could be achieved by adding (strong)
priority conflicts between all other sequences stem-
ming from a pair di, dj of equal difference vectors
while creating the priority conflict graph, since no
two sequences in (strong) priority conflict are se-
lected for the same network.

• Knowledge on reaction rates, catalysts or in-

hibitors. In the case of reconstructing extended
Petri nets with priorities, sequences σ, σ′ in weak
priority conflict might be selected for a network.

To resolve a weak priority conflict between σ, σ′

involving update vectors rt 6= rt′ and intermedi-
ate states y 6= y′, either transition t has to be
disabled at y′ or transition t′ at y, while the de-
cision between t and t′ on the other state can be
handled by a priority.

Here, pre-knowledge about the reaction rates of t

and t′ (e.g. gained from the time-scales during the
experiments) could help to decide whether t > t′

or t < t′ better reflects the reality.
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Furthermore, to resolve the conflict on the remain-
ing state, at least one control-arc of the following
form is included:

– a read-arc (p, t) with weight w(p, t) > y′
p for

some p with yp > y′
p or

– an inhibitor-arc (p, t) with weight w(p, t) <

yp for some p with yp < y′
p.

A priori knowledge on catalysts or inhibitors of the
studied reactions rt, rt′ can help to reduce the po-
tential alternatives of control-arcs and, thus, the
total number of generated network alternatives.

Note that a priori knowledge can also be obtained in
terms of structural insights of an interplay of compo-
nents gained in previous reconstruction steps. In fact,
it is possible to step-wise refine Petri net models since
places and transitions may summarize (lump) subnet-
works of biochemical reactions of known or unknown
molecular detail, see [18] for further details.

So, it is possible to run a reconstruction process on
a currently known input and, as soon as it turns out
that further components are crucial for the studied phe-
nomenon or new experimental data becomes available,
it is possible to re-run the reconstruction procedure on
an extended input setting (P,X ′), thereby preserving in-
sights and approved subnetworks gained in the previous
reconstruction round(s).

Impact of Automatic Network Reconstruction.

To summarize, we surveyed an exact combinatorial ap-
proach to generate a complete list of all Petri nets that
are conformal with the given data [8, 17] or even display
the experimentally observed behavior in a simulation
[4, 5, 10, 11].

For standard and extended networks, we verified the
correctness of the algorithm with the help of some small
biological instances [5, 6]. For standard networks, we
provided an implementation of the reconstruction ap-
proach using Answer Set Programming [3].

The further goal is to provide such an implementa-
tion also for extended Petri nets with and without pri-
orities, hereby including both options of integrating pre-
vious knowledge during the reconstruction as proposed
in [12] or of generating the whole set of all technically
possible solution alternatives.

Finally, we plan to apply the presented reconstruc-
tion approaches to different biological experimental
data, e.g., to

• cell differentiation processes depending on the cor-
related expression of developmentally regulated
genes in Physarum polycephalum (a model organ-
ism for cell differentiation) like in [9];

• sulfur metabolism in wheat and its implications to
the wheat grain protein composition like described
in [20].

We indeed expect an important impact of Automatic
Network Reconstruction in order to support the inte-
grated experimental and theoretical analysis of biologi-
cal systems and processes towards their holistic under-
standing.

Moreover, note that the here surveyed reconstruc-
tion procedures have a large potential as they can be
applied in various contexts:

• Reverse engineering: The main application con-
sists in determining all molecular or regulatory
networks or networks of causal dependencies fit-
ting given biological experimental data.

Note that this includes to detect causal interac-
tions between host and pathogen or between cells
of a tissue or tissues of an organ, with or without
drug application.

• Experimental design: Once the reverse engineer-
ing step is performed, it is possible to analyze the
obtained solution set in order to define further ex-
periments to rule out inappropriate solution alter-
natives.

This can be done by defining experiments that al-
low and are sufficient to unequivocally distinguish
between alternatives of a complete list of alterna-
tive networks, thereby avoiding to perform unnec-
essary or to miss necessary experiments.

• Step-wise refining models: In an iterative pro-
cess of experimentation and computation, it is
possible to obtain a hierarchically defined Petri
net where places and transitions are refined into
subnetworks, resolving individual biochemical re-
actions at any level of kinetic detail while other
nodes of the same net may still represent more
complex processes like the activation of a cluster
of differentially expressed genes or the assumption
of a physiological state of the entire cell.

This is possible since Petri nets provide a powerful
modeling tool: Even if many molecular details are
still unknown, models can be obtained and simula-
tions run to predict or verify experimental results.

• Systems design: In synthetic biology, the goal is to
design systems with predefined structural motives
or a prescribed dynamic behavior.

This can be achieved by creating the complete list
of all alternative networks, or changes in the struc-
ture of a given network, by applying reconstruc-
tion procedures to time-series data that describe
those predefined motives or exhibit the prescribed
dynamic behavior.
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