
HAL Id: hal-02047310
https://hal.science/hal-02047310v1

Submitted on 24 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The glaciogenic origin of the Pleistocene calcareous dust
in Argentina on the basis of field, mineralogical,

textural, and geochemical analyses
Thea Vogt, Norbert Clauer, Isabelle Techer

To cite this version:
Thea Vogt, Norbert Clauer, Isabelle Techer. The glaciogenic origin of the Pleistocene calcareous dust
in Argentina on the basis of field, mineralogical, textural, and geochemical analyses. Quaternary
Research, 2019, 91 (1), pp.218-233. �10.1017/qua.2018.74�. �hal-02047310�

https://hal.science/hal-02047310v1
https://hal.archives-ouvertes.fr


Quaternary Research (2018), 1–16.
Copyright © University of Washington. Published by Cambridge University Press, 2018.
doi:10.1017/qua.2018.74

The glaciogenic origin of the Pleistocene calcareous dust
in Argentina on the basis of field, mineralogical, textural,
and geochemical analyses

Thea Vogta*, Norbert Clauerb, Isabelle Techerc
aFriedrichstrasse 3, D-77694 Kehl, Germany
bInstitut de Physique du Globe de Strasbourg, Université de Strasbourg, F-67084 Strasbourg, France
cEquipe Associée 7352 CHROME, Université de Nimes, F 30021 Nimes, France

(RECEIVED January 10, 2018; ACCEPTED June 12, 2018)

Abstract

Calcareous dust occurs in Argentina as layers and pockets closely associated with Pleistocene deposits and periglacial
features from southernmost Patagonia to at least the Mendoza Precordillera and has been traditionally interpreted as a soil
horizon resulting from postdepositional pedogenesis during interglacials. Detailed field and microscopic observations and
sedimentological and geochemical analyses of more than 100 samples collected from lower to upper Pleistocene deposits
between 51°S and 33°S and from near sea level to 2800m asl allow us to interpret the dust as synchronous with the host
sediment. All observations and analyses lead us to conclude that: (1) the cryogenic morphology and the chemical
signatures of the calcite component show that the dust is glaciogenic, (2) the dust was carried by southeasterly Antarctic
winds, and (3) it was deposited over most of southern and central Argentina. Field observations, geomorphic evidence,
and radiocarbon dates suggest that the dust was deposited during several Pleistocene glacial episodes.
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INTRODUCTION

Calcareous dust in close association with Pleistocene deposits
occurs in Argentina from southern Patagonia to the Mendoza
Precordillera, either mixed with the matrix or as fine layers,
pockets, and infillings of thermal contraction wedges. Corte
(1968), Corte and Beltramone (1984), Galloway (1985), and
Grosso and Corte (1989) described periglacial features and the
calcium carbonate (CaCO3) associated with them but did not
question its origin. Abraham de Vasquez and Garleff (1985),
del Valle and Beltramone (1987), Buschiazzo et al. (1987),
Bouza et al. (2007), Bockheim et al. (2009), and Ribolini et al.
(2014) considered these calcareous accumulations as soil hor-
izons linked to warm interglacial periods. The relationship
between the periglacial features in the host material and the
occurrence of CaCO3 was never addressed.
New information about the origin of these calcareous

materials results from detailed observation of many outcrops
ascribed to the lower to upper Pleistocene in Patagonia, the
western Pampa, and the Paramillo de Uspallata in the

Mendoza Pre-Cordillera at elevations from near sea level up
to 2800m asl, and from the samples of both the host material
and the calcareous silt collected there. Microscopic and
sedimentologic observations were carried out on more than
100 samples, and geochemical analyses were made for 24 of
them (Techer et al., 2014). The strontium isotopic data and
the distribution patterns of the rare-earth elements (REEs)
clearly indicate a similar glaciogenic origin for the dust col-
lected all over Argentina. Some of the most demonstrative
exposures studied and the results of the laboratory analyses of
samples collected there are detailed here.
As a preliminary statement, we note that leaching does not

result in a loose micrite, and a loose calcareous material
mixed with the fine matrix or in thin layers and pockets is not
typical of pedogenic horizons. For instance, the CaCO3 at all
sites examined is independent from the surface soil and
appears at various depths between carbonate-free layers,
which excludes deposition from local percolating solutions.
Also, the dust is intimately associated with the cryogenic
deformations as cryoturbations or thermal contraction
wedges, which makes postsedimentary penetration and
crystallisation difficult to justify in a material strongly com-
pressed and having undergone cryosuction. A supplementary
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fact is that, whatever the depth of the calcareous layers,
colonies of calcified saprophyte fungal hyphae and sporae
forming felts occur within. This means that calcitisation took
place while the fungus was alive or immediately after its
death before decay, as shown by Klappa (1979). While fungi
are found in soils at various depths, they only sporulate in the
uppermost millimetres, indicating a subaerial environment.
Therefore, the calcareous dust in which they lived must have
fallen at the ground surface. This evidence supports the
hypothesis that this calcareous silt is not pedogenic, but
related to a dust fall over the region. Two questions arise from
these observations: Where did the dust come from? How and
when was it deposited? Recollection, comparison, and
discussion of all available arguments about the alternative
pedogenic or glaciogenic nature of the calcareous dust spread
over most Argentina therefore appear justified and timely.

FIELD OBSERVATIONS

Four sites from those already described in Vogt (1992), Vogt
and del Valle (1994), Vogt and Corte (1996), Vogt and Lar-
qué (1998), Vogt et al. (2010), and Techer et al. (2014) were
chosen: Pampa del Castillo and Puerto Madryn in eastern
Patagonia, Carapacha Chica in the western Pampa, and
Paramillo de Uspallata in the Mendoza Precordillera (Fig. 1).
They show that, despite the differences in latitude, elevation,
age, and geologic and geomorphic context, the

calcareous dust and its deposition mode appear to be the same
everywhere.

Eastern Patagonia

This nearly 300-km-wide coastal belt forms a landscape of
terraced Pleistocene gravel that incises a basement of Tertiary
continental and marine sediments. At least five terraces descend
gently in steps oriented southwest to northeast from 750 to
590m asl at the Pampa del Castillo to 125 to 90m at Puerto
Madryn (42°45′S) 400km away. All are covered by a 10- to
105-m-thick alluvial mantle called “Rodados patagónicos,”
“Tehuelche,” or “Patagonian shingle” (Windhausen, 1924;
Sylwan, 2001; Martínez and Kutschker, 2011) consisting of
well-worn gravel of acid volcanic pebbles. Decimetre-sized
cobbles with typical glacial parallel-piped shapes are visible in
the well-layered and channeled, seldom cross-bedded, deposits
with no fine-grained lenses and settling channels, the finematrix
being entrapped in the gravel. The sedimentary features suggest
strong and regular flows, like those of a glacial discharge, car-
rying a voluminous load of coarse material over long distances
(Urien et al., 1993; Ponce et al., 2011). The alluvial gravel is
capped until about 400 km inland by calcretes 20 to 60 cm thick.
They consist of calcite with the same mineralogical and geo-
chemical characteristics as those of the underlying calcareous
dust. They are soft, except for their hard upper portion (20–25
cm), and appear centimetrically bedded, each layer showing its
own network of desiccation cracks, thus intraformational.
Decimetric cryoturbation folds involving several layers at once
are visible, which evidently formed when the material was still
plastic. The general features suggest an active layer above per-
mafrost (Vogt and del Valle, 1994).

Pampa del Castillo

The entire surface of the Pampa del Castillo has been exten-
sively disrupted in the last decades by oil exploration and
extraction, so that the exposure here described has been
destroyed. Therefore, we rely in this presentation on observa-
tions we made before the oil companies moved in. A gravel pit
revealed at least 3m of “Rodados” undisturbed at the bottom,
but affected in the upper 2m by thermal contraction wedges
filled with gravel and fine matrix mixed with 30% to 60% loose
calcite and silica concretions. The gravel appeared strongly
compressed between the wedges, and some cobbles were
coated by opal. The deposit was capped by a 30- to 50-cm-thick
calcrete consisting of 40% to 80% CaCO3. Del Valle and
Beltramone (1987) described three profiles in this area but did
not mention the wedges. (Figs 1, site 1, and 2)

Puerto Madryn

The lowest alluvial level of Puerto Madryn slopes by 0.16 %,
heading to a base level of −150m that corresponds to the
lowest sea stand during the last glacial maximum (LGM).
The bedrock consists of Miocene sandstone. A loose sandy
layer is spread across the whole terrace. An outcrop by the
roadside exposes a 2-m-deep and 0.5- to 0.6-m-wide thermal

Figure 1. Map of Argentina with the location of Mendoza (M),
Buenos Aires (BA), Bahia Blanca (BB), Puerto Madryn (PM),
Comodoro Rivadavia (CR), and Rio Gallegos (RG). The white
arrows and numbers indicate the sites studied: Pampa del Castillo
(1), Puerto Madryn (2), Carapacha Chica (3), Paramillo de
Uspallata (4). The dotted line delimits the emerged continental
shelf during the glaciations.
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contraction wedge (Corte and Beltramone, 1984). Filled with
vertically arranged pebbles, sand and calcareous dust, it dis-
rupts the bedrock (Figs. 1, site 2, and 3a).
Nearby, a gravel pit studied by del Valle and Beltramone

(1987), Vogt (1992), Vogt and del Valle (1994), and Vogt
and Larqué (1998) shows “Rodados” more than 3m thick.
The deposit is clearly stratified and contains thin white lenses
of clay and silica concretions. Cryogenic folds and com-
pression figures disturb the layering. Several generations of
thermal contraction wedges, 2 − 3m apart and each buried by
gravel beds, occur, all filled with gravel, sand, silica concre-
tions, and calcareous dust that is strictly associated with the
cryogenic deformations, whereas it is absent in the undisturbed
layers at the bottom of the section. The CaCO3 content increases
downwards from 28% to 48% in the wedges, associated with
the <2 µm clay-size fraction that increases from 18% to 40%,
which is typical of permafrost conditions (Corte, 1962, 1963).
A continuous calcareous duricrust with 57% to 73% CaCO3

tops the sequence (Figs. 1, site 2, and 3b).

Carapacha Chica exposure in the western Pampa

The western part of the Pampa extends between 40°S and
35°S and from 63°W to 65°W in the eastern foreland of the
Andes chain. It represents the southernmost extension of
the Brazilian craton and is composed of metamorphic and
intrusive rocks (granites, diorites) together with Paleozoic and
Permo-Triassic sediments. Following the uplift of the Andes
chain, this region was shaped in a pediment that is gently
inclined eastwards. During the late Miocene, from 11 to 5.3 Ma
BP, the pediment was blanketed by siltites, a sandy silt slightly
cemented by silica, free of carbonate, with a loess-like structure
and containing globular or elongated siliceous concretions.
Pleistocene basalts flowed across the upstream portion of the
pediment; hence it is called the Basaltic Meseta. Terraced sandy
alluvium capped by siliceous duricrusts covers the whole pla-
teau (Vogt et al., 2010). Calcareous dust is present in the fluvial
deposits and over the basalt flows.
The Sierra Carapacha Chica is a basement outcrop of hard

Permian arkosic sandstones located at the southwestern margin

of the plateau (37°31.683′S, 66°24.550′W). At the bottom of
the north-facing slope, a 3- to 3.5-m-high outcrop exposes a
gelifluction accumulation of shattered rock. The basal portion is
free of CaCO3 and is overlain by layers slightly indurated by a
fine matrix containing 20% to 25% CaCO3 between carbonate-
free layers. A siliceous duricrust tops the sequence (Figs. 1, site
3, and 4).

Paramillo de Uspallata

The Paramillo de Uspallata (32°00′S, 69°00′W) is a high
plateau between 3200 and 2700 m asl in the Mendoza Pre-
cordillera that possibly represents the eastern portion of the
early Miocene planation surface uplifted to 6000m in the
Frontal Cordillera (Ramos and Cortes, 1993). The bedrock
consists of upper Keuper sediments, mostly schists inter-
bedded with rhyolites and sandstones, and upstanding dacite
dykes. No evidence of glaciers older than the middle
Pleistocene has been reported on the eastern side of the Andes
further north of Patagonia. Between 33°S and 36°S, where
the chain is the highest, the oldest glaciation (“Uspallata
glaciation”) is ascribed to the early middle Pleistocene
(Espizua and Bigazzi, 1998; Espizua, 2004), which means

Figure 2. An exposure in the Pampa del Castillo terrace (45°07′S,
68°04′W), but no longer exists due to human modification. The
calcareous dust is mixed with the gravels. A series of contraction
wedges are visible. The spade indicates the scale.

Figure 3. Two exposures in the Puerto Madryn level (42°44.750′
S, 65°15.950′W). (a) A 2-m-deep thermal contraction wedge
breaks up and folds the Miocene sandstone (studied by Corte and
Beltramone [1984]). It is filled with alluvial gravel from above and
calcareous dust. (b) View of a >3-m-high gravel pit that exposes a
series of thermal contraction wedges that disturb the alluvial
deposit. Near the bottom, a gypsum crust (“g”) is related to a
postglacial water table; “c” is the calcrete.

Pleistocene calcareous dust in Argentina 3
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that no glacier existed at the Paramillo de Uspallata during
the early Pleistocene.
Periglacial processes reshaped the surface during the

Pleistocene glaciations to a cryopediment 3 by 12 km wide
covered by a thick gelifluction deposit spread on a smooth
surface and incised by sporadic gullies. The upper portion of
the deposit is visible over several hundred metres in banks
about 2m high on the road from Villavicencio to Uspallata
(“ruta de los Caracoles”). Beside some poorly sorted boulders
up to 50 cm in length, dacite clasts 1–20 cm across are mixed
with a matrix of finely disaggregated dacitic brown-ochre
sand. Devoid of CaCO3, the bottom is overlain by the same
materials, made whitish by the presence of calcareous dust.
A layer of small cryoclasts in an ochre-coloured, carbonate-
free sandy matrix mixed with reddish clay forms an
intermediate layer. Coarse gravel and boulders with a
carbonate-rich matrix in an upper layer suggest some runoff.
Fine gravel in a greyish-brown matrix and a sandy, silty, and

humic surface soil cap the sequence. The whole profile dis-
plays cryoturbation features such as folds and extrusions and
particle sorting with the finest fraction increasing down-
wards. The CaCO3 content can be as much as 55%, and cal-
citic pendants at the lower face of gravels showing
congelation features are frequent (Vogt and Corte, 1996).
The cryopediment contains the largest amounts of calcareous
dust, but calcareous silt and calcitic pendants also occur in a
nearby rock glacier by the road at 1800–1100m asl, and the
same kind of gravels are sparse all along the slope following
the deep incision that leads to the valley bottom several
hundred metres further down (Figs. 1, site 4, and 5).

CALCAREOUS DUST

Wherever collected, the calcareous dust consists of a loose
material that crumbles easily even when consolidated. Its
proportion in the host sediment is variable but never less than
10% by volume and can amount to 70% in some pockets. It
consists of fine-grained calcite (2 to 5 µm, micrite).

Microscopic characteristics

Owing to the size of its particles, this fine material is best
observed by scanning electron microscopy (SEM). The cal-
cite appears as very well preserved, loose rhombohedral and
scalenohedral idiomorphic crystals. Traces of dissolution
only appear in the vicinity of fungal colonies. Recrystallisa-
tions with typical congelation features (Vogt, 1990; Vogt and
Corte, 1996) occur in the gelifluction deposits. Round frosted
and nail-scratched quartz grains typical of wind activity are
mixed with the dust. Grains of sodium chloride and gypsum,
clearly of allochtonous origin relative to the local bedrock,
are also present. Littoral glossy ovoid quartz grains and ooids
occur in the samples from eastern Patagonia. The quantity
and homogeneity of the material all over Argentina is
remarkable, whatever the nature of the bedrock, host sedi-
ment, and surrounding slopes (Figs. 6–9).

Figure 4. The Carapacha Chica exposure (37°31.683′S, 66°24.550′W).
The gelifluction deposit consists of shattered siliceous sandstone
mixed with scarce matrix. The clasts are angular and heterometric.
The white material (“c”) is CaCO3. The deposit is capped by a
duricrust (“d”). The hollows are bird nests in the soft calcareous
accumulation below the duricrust. The spade at the bottom gives
the scale.

Figure 5. An exposure by the Ruta de los Caracoles, at the
Paramillo de Uspallata: two carbonate-rich layers in the
gelifluction deposit affected by folds, underlined by the black and
the white dashes. The hammer in the middle gives the scale.
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Origin of the calcite

Limestone outcrops occur all along the Andean chain, and the
waters of rivers and lakes contain some CaCO3 but massive
precipitation of calcite is currently not observed, and if it
occurs it is never powdery. The solubility of CaCO3 increases
when the temperature decreases, and therefore the colder the
water, the higher the concentration of CO2; close to 0°C the
content of CaCO3 can reach 299 mg/L (Ek and Pissart, 1965).
Calcium concentration in glacial water is also high relative to
other cations (Anderson et al., 1997). Calcite represents up to
20% of the glacial rock flour, even if the parent rocks contain
very little CaCO3 (Bukowska-Jania, 2007). When glacial
rivers once discharged from subglacial environments meet
subzero air temperatures, calcite precipitates by freezing as
loose micrite with crystalline rhombohedral or scalenohedral
shapes (Fairchild et al., 1996; Clark and Lauriol, 1992; Zák
et al., 2004). A glacial origin in a cold environment may
therefore be assumed for this powdery calcite.
To verify this hypothesis, strontium, carbon, and oxygen

isotopic analyses, as well as REE distribution patterns were
determined on 24 samples collected from Rio Gallegos (51°30′
S) to Paramillo de Uspallata (≈32°S). The ∂13C values obtained
range from −1.9 to −7.2‰ (VPDB) and match with previously
published values of Argentinean calcareous dust (Mercer, 1983;
del Valle and Beltramone, 1987; Zech et al., 2011), which

confirms a continental, but not necessarily a pedogenic origin.
Del Valle and Beltramone (1987), for instance, reported ∂13C
between −3.7‰ and −8.7‰, clearly outside those of pedogenic
carbonates, which usually range between −8‰ and −12‰
(e.g., Salomons and Mook, 1976). Margaritz et al. (1981) also
published ∂13C values of pedogenic calcite of paleosols from
about 22 to 1.7 ka BP in Israel, showing that except for the ∂13C
of the oldest calcite at −2.6‰ (±1.9), the other 11 published
values range from −7.7‰ (±0.4) to −11.7‰ (±1.3), which is,
again, clearly outside the range reported by Techer et al. (2014).
Later, Cerling and Quade (1993) showed that the ∂13C of
pedogenic calcite correlates with the contents of C3 and C4 in
each soil ecosystem. In fact, the ∂13C values from a compilation
of C3 and C4 plants ranged from about −20‰ to −33‰ for the
former and from about −9‰ to −17‰ for the latter, sig-
nificantly off the values from −1.9‰ to −7.2‰ obtained for the
calcareous dust studied here. In turn, the carbon isotopic com-
position of pedogenic carbonates does not simply result from
that of theminerals fromwhich they precipitated (Salomons and
Mook, 1976), as crystallisation temperature and isotopic com-
position of the interacting solution also impact the carbonate
∂13C. This latter relationship between pore water moving

Figure 6. Scanning electron microscopy photographs showing the
calcite within the calcareous dust: Calcite crystals with
scalenohedral shape from (a) the Paramillo de Uspallata and (b)
the Carapacha Chica exposure, with incipient cryogenic
crystallization in the centre. The shape of the calcite is the same in
all studied sites.

Figure 7. Cryogenic lamellar crystals: (a) dendritic assemblage of
needles growing from calcitic dust; (b) the lamellar crystals
assemble together to form needles; (c) detail of the lamellar
crystals.

Pleistocene calcareous dust in Argentina 5
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through a soil and crystallising calcite was confirmed by the
identical 87Sr/86Sr ratios for both (Thellier and Clauer, 1989). In
fact, each pedogenic calcite yields the specific isotopic signature
of soil solutions that integrate all soluble elements before pre-
cipitating the authigenic calcite. This can in no way be the case
for the calcareous dust studied here, as most Argentine deposits
hosting carbonate dust do not reflect homogeneous conditions.
Also, there is a clear gap between the ∂13C data obtained for the
calcareous dust and the values that characterize pedogenic
calcite.
An alternative interpretation has to be provided, which has

never been done in all earlier publications referred to previously.
For instance, C3 and C4 plants almost contemporaneous with the
LGM, such as those found in Australia, did not necessarily
release ∂13C that was taken up by soil carbonate resulting in a
pedogenic signature (Quade et al., 1995). In fact, it has not yet

been proved that such C3 and C4 plants were contemporaneous
with the calcite dust of Argentina. Furthermore, no solid argu-
ment has been given until now about the transfer of invariable
∂13C from plants to authigenic calcite. In summary, there is no
reason to doubt that the ∂13C values from −1.9‰ to −7.2‰
(VPDB) refer to a glacial origin for the carbonates analyzed
(Techer et al., 2014), unless sustainable contradictory arguments
that are still missing are provided.
The narrow range of the 87Sr/86Sr ratio from

0.706463± 0.000008 to 0.707477± 0.000006 (2σ) reported
for the carbonate dust (Techer et al., 2014) represents
another essential argument against a pedogenic origin.
Indeed, it has been known for a long time that there is no
way to correlate a constant 87Sr/86Sr ratio with a pedogenic
process. The deposits described earlier are derived from
varied bedrock sources, from basic volcanic rocks and acidic
plutons to marine sediments of ages from the Paleozoic to the
Triassic, that have a wide spectrum of mineral composition
over the area of interest. The constitutive minerals of such

Figure 8. Scanning electron microscopy photographs showing the
colonization of the calcareous dust by fungi: (a) and (b) calcitized
fungal hyphae; (c) a cluster of calcitized sporae.

Figure 9. Scanning electron microscopy photographs showing (a)
a cluster of ooids cemented by calcite; (b) neoformed opal; (c)
gypsum platelets, a cryogenic structure also observed in Antarctica
(Vogt and Corte, 1996).
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sediments are variably affected by weathering, and they
release strontium with variable 87Sr/86Sr ratios that definitely
cannot fit within the homogeneous overall 87Sr/86Sr ratio
obtained for the observed calcite. Of all the arguments against
a glaciogenic origin of the calcareous dust, this is probably
the most difficult one to deny, ignore, or discard. Ultimately,
no valid argument could explain homogeneous 87Sr/86Sr
generated from sediments derived from such varied bedrock
over such a wide area as is considered here.
Last but not least, the REEs of the carbonate dust yield

constant patterns with, importantly, a specific negative cerium
anomaly (Techer et al., 2014). Again, the homogeneity of a
geochemical signal for the carbonate dust all across Argentina,
together with its negative cerium anomaly, is a supplementary
determining argument. Indeed, continental calcite from any
kind of soil does not yield the negative cerium anomaly that is
rather representative of minerals crystallising in contact with
seawater. In turn, both the 87Sr/86Sr ratio and the negative cer-
ium anomaly require crystallisation in a large, homogeneous
reservoir with seawater supply during periodically similar epi-
sodes and not in continental soils affected by pedogenic
weathering that are necessarily heterogeneous.
There should always be more data than those available to

consolidate a demonstration, but here the combination of the
14C ages that will be discussed later, the combined ∂13C
values, the 87Sr/86Sr ratios, and the REE distribution patterns
point consistently to the same origin for the calcareous dust.

Age of the calcareous dust

The calcareous dust was observed in all deposits ascribed
to the Pleistocene by geologic and geomorphological
evidences. Paramillo de Uspallata is the oldest Pleistocene
formation in the Mendoza Precordillera, according to
Harrington (1941). As it is at a higher elevation than the
middle and late Pleistocene features at about 2000–1500m

asl, and as the bottom of the nearest valley is at about 2000m
asl, this formation could be of lower Pleistocene age. Sylwan
(2001) ascribed the alluvial cover of the Pampa del Castillo,
the oldest and highest terrace in littoral Patagonia, to the
Great Patagonian glaciation (GPG; 1.17 to 1.02 Ma). The
alluvium covering the plateau and its surroundings in the
western Pampa contains basalt debris and is therefore of
Pleistocene age. Geomorphological considerations place it
between the lower and the middle Pleistocene (Vogt et al.,
2010).
Using 14C dating, Corte and Beltramone (1984) estimated

the age of the CaCO3 collected at about 1m below the surface
in the Puerto Madryn level to be 27.2± 0.3 ka BP in the outer
parts of the wedge and 22.7± 0.5 ka BP in the central part.
These ages correspond to the LGM. Additional 14C ages
reported by del Valle and Beltramone (1987) in the nearby
exposure are within the same time range: 36.5± 2.5 ka BP at
about 2m below the surface and 24.3± 0.95 ka BP at about
1m below the surface. These ages agree with the estimates of
Mercer (1983) and Zech et al. (2011). Farther southwest in
Patagonia, Bockheim and Douglass (2006) obtained
239U–230Th ages of 224, 209, and 24 ka for carbonate rinds
that they did not describe, which correspond to glacial
periods.
Corte (1968) described succinctly an exposure about

12 km to the south of Rio Gallegos (≈51°30′S), along the
road to Punta Arenas at 20m asl. Gravel appears well layered
at the bottom, whereas it is strongly disturbed between 120
and 60 cm below the surface by thermal contraction wedges
filled with sand, 50 to 60 cm deep and about 1.5m apart. The
gravel between the wedges is strongly compressed, forming
involutions. A line of ventifacts, perhaps a lag pavement,
occurs between the contraction wedges and the sandy surface
layer. Whereas the gravel at the bottom and the sand in the
wedges are devoid of CaCO3, two layers containing calcar-
eous dust are visible in the cryoturbated gravel between the

Figure 10. Wind circulation over Argentina. (a) The present-day circulation in a surestada situation: the black arrows indicate the polar
wind, the white arrows represent the tropical wind. (b) The proposed wind circulation during the glacial times, according to the situation
of polar ice and polar front as described by several authors.
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wedges. Corte provided us with two samples from those two
layers for chemical analyses. CaCO3 content amounts to
20%, the calcite is the same loose micrite as described else-
where, and many round aeolian-shaped grains are present in
the coarse (>600 μm) sand fraction. The wedges and sand
infilling are evidently younger than the underlying gravel and
calcareous dust, but no 14C ages are available. Despite a
closer proximity to Antarctica, the periglacial features are far
less conspicuous than those in Puerto Madryn. A cold epi-
sode (Antarctic cold reversal) occurred between 14.8 and
12.6 ka BP at 50°S (Moreno et al., 2009; Murray et al., 2012),
with freezing temperatures all year round to the south of this
latitude (Marsh and Ditlevsen, 1997). Heusser (1989) and
Rabassa et al. (2005) also dated a last glacial occurrence at
about 11 ka BP in the Beagle Channel near Ushuaia. The sand
wedges and fillings at Rio Gallegos could then belong to this
late cold episode.
Once more, it appears that the dust originated under glacial

conditions. The next question is: Does it correspond to the
climatic and edaphic environment of the glacial times in
Argentina?

CENTRAL AND SOUTHERN ARGENTINA
DURING THE GLACIAL EPISODES

The Andes Mountain chain and Antarctica are the two major
features controlling the climate of southern and central
Argentina. When the upper Miocene (≈11 to 5.3 Ma) gla-
ciations of Antarctica caused an expansion of the ice sheet
with a resulting global fall of the sea level (Flower and
Kennett, 1994), the climate of southern Argentina became
colder and drier. A major glaciation affected southern South
America at some time between 7 and 4.6 Ma (Mercer and
Sutter, 1982). Clapperton (1993b) and Rabassa et al. (2005)
reported at least eight glacial episodes during the middle and
upper Pliocene, and the GPG between 1.17 and 1.02 Ma was
followed by 14 to 16 cold events until the LGM, which
occurred from about 26.5 to 19 ka BP. The LGM began ear-
lier in the southern Andes, about 39 ka according to Zech
et al. (2011), which is consistent with the earlier estimation of
Mercer and Laugénie (1973).
The Antarctic ice growth covered the southern portion of

the Atlantic Ocean and resulted in a 100–50m drop in sea
level below the present-day level. During the LGM, the
Antarctic grounded ice reached the shelf edge (Anderson
et al., 2002; Graham et al., 2010; Ingólfsson, 2004; Cofaigh
et al., 2014), while the Antarctic sea ice expanded to 60–48°S
(present position 70–60°S), doubling its surface area and
reducing the surface area of the southern Atlantic Ocean
(Crosta et al., 1998; Crosta, 2009; Guilderson et al., 2000;
Violante et al., 2014). Currently at 50–53°S, the Austral polar
front shifted about 5–6° northwards (Paskoff, 1967; Caviedes
and Paskoff, 1975; Clapperton, 1994), towards 51°S (Garcia
et al., 2012), even to 45°S (MARGO, 2009), with a correlated
4–6°C cooling of the ocean surface (Gersonde et al., 2005;
Kaiser et al., 2005) and a 5–8°C drop near Argentina (Hulton
et al., 2002; Kull et al., 2003). In fact, little is known about the

temperatures on the South American continent. For instance,
Pérez-Alberti et al. (2005) estimated the thermal depression
at 11°C and even 13°C during the LGM in Tierra del Fuego.
Alternatively, Kohfeld and Harrison (2001) considered that
atmospheric models have underestimated the magnitude of
cooling and drying of much of the land surface during
the LGM.
Cold temperatures, extension of glaciated areas, and a

decreased ocean surface all restricted evaporation with a
concomitant estimated decrease in precipitation of 50% in
Antarctica (Jouzel et al., 1989). The fall in sea level exposed
the continental shelf and widened the continental surface
area. The Argentinean shoreline shifted several hundred
kilometres eastwards (640 km to the south of Santa Cruz
according to Ponce et al. [2011]), increasing in turn the
continentality of the climate. In any case, the fall in sea level
caused the water tables to drop, which intensified the ambient
aridity. Central and southern Argentina were cold deserts
(Iriondo and Kröhling, 1995), much drier than the present-
day cold deserts, as evaporation was lower and the air
was drier.
The presently submerged eastern continental shelf was a

vast plain on which rivers much larger than those of today
were fed by more extensive glaciers (Cavallotto et al., 2011)
and deposited gravel extensively. It is known from sub-
marine exploration that the continental shelf contains fluvial
valleys, braided river networks, blowouts, lagoons, and
deltas, in addition to loess and glaciofluvial materials
interlayered with and capped by calcretes (Clapperton,
1993a; Urien et al., 1993; Violante et al., 2007, 2014). The
emerged marine platforms were described as marginal
deserts (Ochsenius, 1985). The ice-free regions suffered a
harsh cold climate, and permafrost formed near sea level in
southernmost South America (Benn and Clapperton, 2000).
Therefore, it is almost certain that rivers fed by glacial out-
wash at the outlet from the Andes deposited calcite-rich
sediment on the alluvial plains and wide barren surfaces that
emerged as sea level fell. The submarine landscape of the
Argentinean shelf was similar to current periglacial deltaic
plains such those of the Yukon or Lena Rivers, where river
and marine waters mix.

PEDOGENIC INTERPRETATION OF THE
CALCAREOUS DUST: A DISCUSSION

The authors who suggested that the calcareous deposits
resulted from leaching and concentration of the CaCO3 in soil
horizons that they called BCa, K, or petrocalcic also assumed
that this process took place during the warm and wet inter-
glacial periods. This interpretation calls for several remarks.
First, the homogeneous characteristics, especially the

constant 87Sr/86Sr of the calcite studied, could not be gener-
ated by pedogenesis, as pedogenic evolution depends
strongly on the bedrock. The studied samples were collected
on a wide area extending from 51°S (Rio Gallegos) to 32°S
(Paramillo de Uspallata) and from near sea level up to 2800m
asl, with a variety of bedrocks comprising Palaeozoic granite
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and marine sediments, Tertiary volcanics and littoral sand-
stone, and Pleistocene deposits. From rocks consisting of
alkali-rich minerals, fluids will be enriched in 87Sr, whereas
from rocks consisting of alkali-poor minerals, fluids will be
depleted in 87Sr. No strontium isotopic homogeneity can
therefore be expected as a result of pedogenesis on these
highly varied bedrocks.
Furthermore, idiomorphic calcite crystals cannot result from

pedogenic leaching, which by definition is favoured by organic
acids, as organic matter affects the crystallisation of calcite
(Berner, 1968; Inskeep and Bloom, 1986; Lebron and Suarez,
1996). Microscopic observations also reveal that pedogenic
calcite is intimately mixed with the host materials and is
often impure, containing iron oxides, for instance. Pedogenic
leaching and associated recrystallisation do not produce loose
crystals, but often produce heterogeneous concretions or
nodules of various sizes. And finally, it is difficult to consider
that solutions could percolate easily through sediments strongly
compressed by thermal contraction.
Second, the authors seem to have disregarded not only the

fact that the calcareous dust is closely linked with cryogenic
features, but also that the features they consider as indicative
of pedogenesis, such as coatings, pendants, and concretions,
can be produced by freezing as well.
For instance, Cailleux (1965, 1967, 1968) described

cryogenic deposits of calcium carbonate, silica, and iron
oxides within Würmian formations from Europe and the
permafrost of Alaska, Yakutia, and Antarctica. Adolphe
(1966, 1972) obtained calcitic pendants on a limestone
gravel by experimental congelation; interestingly, the calcite
crystals were rooted in the cortex, which was decarbonated.
In natural conditions, Vogt (1977) reported identical features
on the gravels of a Würmian terrace in southern France.
Further SEM examination revealed the peculiar micro-
morphology of the cryogenic calcite crystals, far different
from pedogenic (vadose) pendants (Vogt, 1989). Later, Vogt
and Corte (1996) described calcitic pendants and fringes in
the permafrost of Antarctica, the Mendoza Pre-Cordillera,
and southern Siberia.
As for silica, in addition to the cryogenic siliceous crusts

reported by Cailleux (1965) in Antarctica and Siberia, Hallet
(1975) described subglacial calcium carbonate and silica
deposits coating the bedrock. In the terrace near Puerto
Madryn studied here, opal coatings occur on volcanic grav-
els. SEM and energy-dispersive spectrometer analyses
showed that silica derived from the inner gravel, which was
hollowed; the same was observed for magnesium, iron oxide,
and aluminium (Vogt, 1990). The explanation for both
cryogenic calcitic pendants and opal coatings and con-
comitant impoverishment of the gravel are explained by the
strength of the cryogenic suction: 1.2 MPa (≈10 atm)/ − 1°C
at −10°C= 10.2 MPa (≈100 atm).
Concerning the silica concretions, which are ubiquitous in

glacial age deposits in Patagonia, they result from a different
process. Smectite, the dominant clay mineral in these
deposits, loses its aluminium, the fate of which in permafrost
conditions remains to be investigated. The impoverished

smectite transforms into opal, which still contains up to 27%
magnesium. This transformation was showed by SEM and
transmission electron microscopy observation (Vogt and
Larqué, 1998).
Third, the same authors quoted previously assumed that

the interglacial episodes were warm and wet in central and
southern Argentina. Since the LGM, central and southern
Argentina belong to the arid diagonal caused by the rain
shadow effect of the Andean mountain chain (Mancini et al.,
2008). All studies dealing with the late glaciation and Holo-
cene climates in southern Argentina record two major cold
reversals (between 13.1 and 11.1 ka BP) and a series of neo-
glaciations until the present (e.g., Mercer, 1968; Iriondo and
Garcia, 1993; Andres et al., 2003; Glasser et al., 2004; Bor-
romei et al., 2007; Haberzettl et al., 2007; Aniya, 2013). In
summary, the climate was dominantly dry with polar winds
reaching Amazonia (Kronberg and Benchimol, 1992; Ser-
vant et al., 1993; Carneiro Filho et al., 2002). A mantle of
sand was spread over Argentina during the late glaciation and
early Holocene (Carignano and Cioccale, 2005), which is
confirmed by luminescence dating of dune fields in San Luis
Province (≈33°S) (Tripaldi and Forman, 2007, 2016). The
lower portion of this aeolian formation has been dated at 11–
8 ka BP in Buenos Aires Province (Tonni et al., 1999). This
sand cover is 50–100 cm thick and occasionally thicker,
forming sheets and dunes in Patagonia and the western
Pampa, but no radiometric or luminescence dating is avail-
able for those areas. According to Tonni et al. (1999), the
climate was dry and cool during the early Holocene (11–8 ka
BP). Paez et al. (1999) considered the environmental condi-
tions to be extremely arid, with precipitation lower than
200mm before ca. 11 ka BP and effective moisture increas-
ing between ca. 11 ka BP and ca. 10 ka BP, probably related
to an increase in precipitation to about 200mm under cold
conditions. The edaphic moisture was lower than today dur-
ing the late Pleistocene and the early and middle Holocene
(Pendall et al., 2001), and most of the Holocene (12 to 0.8 ka)
was characterised by drier than present conditions, according
to Tripaldi et al. (2016).
Dry climate means that there is little movement of water

through the soil and little leaching of solutes. Bouza et al.
(1993), for instance, described a centimetre-thick surficial
crust formed by raindrop impact with redeposition by rain-
wash on top of an upper zone of laminated sand containing
silt and clay with large empty vesicles, and a dense lower
zone with fewer and smaller air vesicles. Vesicular soil hor-
izons reduce infiltration (Turk and Graham, 2011) from 3- to
100-fold decline (Young et al., 2004), so this structure indi-
cates lateral rather than vertical transport. The 14C age of
5440± 160 yr BP for the calcareous dust in the early Holo-
cene sand cover (del Valle and Beltramone, 1987) confirms
that no recrystallisation occurred during the late millennia
(from 5440± 160 yr BP to the present). Wetter and milder
phases are only recorded in eastern and northern Pampa and
in northern Argentina, where the climate is driven by a
northeastern atmospheric circulation. The geographic situa-
tion was identical during the previous interglaciations, and it
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can be assumed that the climatic conditions were not so
different.
Finally, the great proportion of CaCO3 in the deposits

presumes a massive mobilisation and crystallisation of cal-
cite, and its good preservation, which is difficult to consider
in warm and wet environments. This good preservation of
calcite is better explained during glacial periods, when
atmospheric CO2 decreased drastically (Jouzel et al., 1989;
Kotlyakov et al., 1991; Caillon et al., 2003) with a lower
effect on carbonate recrystallisation. And finally, such a loose
material resisted all climatic changes during the whole of the
Pleistocene, confirming the persistence of an arid environ-
ment. The lack of dust deposits in the eastern and northern
Pampas and in northern Argentina, where the climate is
warmer and wetter, then becomes understandable. If calcar-
eous dust was also deposited in those regions, which is likely,
it could have been weathered and leached away under wetter
and warmer local conditions, as was the case during the
interglacial episodes elsewhere, and still is the case according
to the literature (Sayago, 1995; Sayago et al., 2001; Zinck and
Sayago, 1999, 2001).

GLACIOGENIC AND AEOLIAN
EXPLANATION

In summary, the calcareous dust is intimately associated with
the periglacial deformations of the host material. Locally,
calcite may be recrystallised as cryogenic fringes. Radio-
carbon dating of the younger deposits places them within the
LGM. Microscopic and chemical analyses show that the
calcite characteristics are homogeneous in all occurrences
and that it was deposited at the ground surface, as proved by
fungal colonisation.
All evidence points to the following succession: (1)

increased solubilisation of CaCO3 under cold conditions
leading to a carbonated glacial outwash; (2) CaCO3 crystal-
lisation under cold temperatures as idiomorphic micrite
crystals; and (3) remobilisation of calcite as dust across the
region.

How did the calcareous dust form?

The huge volume of calcareous dust could form only on a
wide continental area allowing crystallisation of large
amounts of homogeneous carbonates, an area necessarily
located near the ocean, as interactions with seawater are
assumed from REE distribution spectra. The Argentinean
shelf is one of the largest submarine platforms in the world,
stretching from 35°S to 55°S, over 170 to 850 km, and cov-
ering about 1 million square kilometres. Its depth is 110 to
165m with a smooth eastward slope (Violante, 2001), so the
shelf emerged as an immense littoral plain when the sea level
dropped by 100 to 150m during glacial maxima (Rabassa
et al., 2005; Ponce et al., 2011). Walter et al. (2000) showed
that the Argentinean shelf was an important source for
wind-transported silt during the glacial periods, while Basile
et al. (1997) reported 87Sr/86Sr ratios for sediments of this

Argentinean continental shelf to be within the values of the
glaciogenic calcareous dust of the same area (Techer et al.,
2014). The climate cooled slowly, more effectively on the
continent than on the wide ocean, allowing mountain glaciers
to extend more rapidly than sea level fell. The glaciofluvial
discharge containing calcium (and strontium) was deposited
over the alluvial plains on a flat, frozen, and muddy surface
and under shallow water in lagoons. During the glacial
episodes, the CaCO3 transported to these flat estuarine areas
by the rivers was dissolved due to water temperature and
pH changes. Calcium concentrated again afterwards and
crystallised into new authigenic, chemically homogeneous
calcite in an environment that had slightly varied strontium
isotopic ratios depending on the ratio of fresh/seawater
during crystallisation.

Role of wind

However, these facts do not explain the natural dispersion of
the calcareous dust across all geomorphic surfaces of
Argentina. For instance, glacial outwash could not flow
across the geomorphic levels of the western Pampa and
Paramillo de Uspallata, because there were no glaciers
upstream and obviously no glaciogenic calcite. How chemi-
cally homogeneous calcite could have been dispersed over
more than 20° in latitude even up to the mountain chains at
2800m asl has to be explained. Wind seems not only a
plausible carrier of the material, but also the only reasonable
explanation for such a wide horizontal and vertical spread.
Arguments to strengthen an aeolian hypothesis come from

microscopic analysis, which reveals that the material contains
wind-transported littoral grains and allochtonous minerals
associated with the calcareous silt. Yet deflation requires wide
surfaces made of fine-grained materials devoid of vegetation:
presently, most aeolian dust comes from desert regions. Several
authors invoked an aeolian supply for the calcareous silt in the
exposures they observed in Argentina, for example, Buschiazzo
et al. (1987) in the western Pampa and Bockheim et al. (2009)
and Ribolini et al. (2014) in the southernmost Patagonia, with-
out proposing a possible source area. Ribolini et al. (2014)
suggested southwesterly winds, yet the westerlies reaching
Patagonia come from the southern Pacific Ocean and, according
to Blisniuk et al. (2005), deposition in the eastern foreland of the
southern Patagonian Andes had essentially ceased by ≈14 Ma
as the result of a rain shadow caused by the Miocene surface
uplift. The only periods of extensive desert areas in Argentina
occurred during glaciations.
Currently, the belt of westerly winds extends over the

Southern Hemisphere from about 40°S almost to Antarctica.
Oriented orthogonally to these winds, the Andes create an
orographic barrier, with heavy precipitation on the western
Chilean side and a marked drought on the eastern side with
a föhn effect. Two powerful winds blow over southern
and central Argentina: the cold and dry pampero from the
southwest and the surestada from the southeast, carrying
cold and wet polar air. The surestada sometimes reaches the
Amazonian basin, but once on the continent it is stopped by
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the Andes, turns counterclockwise southwards along the
mountain chain, and continues with attenuated strength
toward the Antarctic (Weischet, 1996). The South Atlantic
high-pressure area is centred around 30°S, bringing summer
rain to central and northern Argentina.
With the Austral polar front at 40°S, the Antarctic antic-

yclone and its belt of polar easterly winds shifted northwards
during glacial times and, consequently, the southern wester-
lies moved farther north (Markgraf, 1993; Sayago, 1995;
Wenzens, 2002; Stuut and Lamy, 2004; Toggweiler et al.,
2006; Zech et al., 2008, 2009, 2011; Zolitschka et al., 2013;
Liu et al., 2015) to 18°S (Stuut and Hebeln, 2007), the highest
point of the mountain chain, and its already limited influence
on the eastern side vanished. The distance between polar and
tropical belts narrowed, thereby steepening the pole-to-
equator temperature gradient and, consequently, the wind
strength (Petit et al., 1999; Compagnucci, 2011; Crouvi et al.,
2010). Southeasterly winds were reinforced (Latrubesse and
Ramonell, 1994; Shi et al., 2000; Stuut et al., 2002; Kim
et al., 2003). The littoral quartz grains and ooïds found
together with the calcareous dust in the LGM terrace of
Puerto Madryn, when the shore was more than 200 km to the
east, suggest strong winds (Fig. 10). The deflation of the
calcareous dust and its transport over thousands of kilometres
on the continent by strong and dry winds sweeping over the
desertic plains covered by glaciofluvial deposits fits this
context well. Under long-lasting cryogenic conditions, rock
debris suffers comminution to the 50–10 µm silt grain size
(Konishchev, 1982). Quartz is the most fragile because its
microfissures are about 1–10 µm apart and can be reduced to
the limiting size of solid particles, about 1 µm (Schwamborn
et al., 2012). This grain size is well adapted for wind deflation
and explains the fineness of the glacial dust observed in
Argentina and also collected in the Antarctic ice. Petit et al.
(1999), Legrand et al. (1988), Jouzel et al. (1989), Kotlyakov
et al. (1991), Fischer et al. (2007), and Reader et al. (2012)
evaluated the amount of dust in the atmosphere during the
cold periods to be at least 15 times more than the amount seen
now, because the wind was so much stronger. Delmonte et al.
(2007) estimated that dust fluxes during the last five inter-
glacials were reduced 10- to 25-fold compared with dust
fluxes occurring during glacial periods.
The geographic source of the dust contained in the Antarctic

ice has been often assumed as derived from southern South
America (Basile et al., 1997; Delmonte, 2003; Delmonte et al.,
2004, 2011; Fischer et al., 2007; Li et al., 2008). According to
Ackert (2009), most of the dust in the Antarctic ice cores came
from the glacial outwash of Patagonia. Sugden et al. (2009),
Albani et al. (2010, 2011), and McCulloch et al. (2000) also
considered South America to be the main source for the dust
during the LGM, because of the extension of glaciogenic dust
sources on active outwash plains, as well as a likely more
efficient transport to West Antarctica. Delmas and Petit (1994),
Kaiser and Lamy (2010), andWeber et al. (2012) emphasised the
role of the emerged shelf. Li et al. (2010) considered that the
extension of the dust source caused by the lower sea level was
two to three times greater than that due to the reduction of

continental vegetation. Dust transported fromPatagonia and even
from La Pampa can be well explained by the counterclockwise
shift of the southeasterly winds once stopped by the Andes chain.
By analogy with satellite observation of current dust plumes,

Gaiero (2007), Gaiero et al. (2004), and Delmonte et al. (2010)
suggested that the Bolivian Altiplano could also represent a
potential geographic source. This option is debatable when
considering the environment during the glacial periods. The
Altiplano was wetter than today during the LGM (Baker et al.,
2001). Consequently, glaciers developed not only on the
mountain chains, but also on the northern Altiplano (Mark et al.,
2004), and wide palaeolakes formed (Clayton and Clapperton,
1995; Clapperton et al., 1997; Moon, 2008). These lakes were
frozen during winter and melted in summer. There were not
enough barren surfaces to supply dust towards Antarctica, and it
is difficult to identify the wind circulations that would have
been responsible for the transfer.

CONCLUSIONS

Field observations as well as laboratory analyses prove that
the calcareous dust associated with Pleistocene periglacial
features of central and southern Argentina is of glacial origin,
transported by and precipitated from river waters over the
alluvial plains to the emerged continental shelf, where it
recrystallised and was deflated and dispersed by winds during
the cold episodes. The observations detailed herein provide
also information about the environment during the glacial
periods. The role of reinforced Antarctic southeasterly winds,
for instance, was minimised in previous publications,
whereas it has been asserted in the southeastern Atlantic (Kim
et al., 2003). Alternatively, the calcareous concentrations in
soils of central and northern Argentina could have resulted
from secondary precipitation of CaCO3 after weathering
under warmer and wetter postglacial conditions.
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