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Abstract. The context of this work is the reconstruction of Petri net
models for biological systems from experimental data. Such methods
aim at generating all network alternatives �tting the given data. For
a successful reconstruction, the data need to satisfy two properties: re-
producibility and monotonicity. In this paper, we focus on a necessary
preprocessing step for a recent reconstruction approach. We test the data
for reproducibility, provide a feasibility test to detect cases where the re-
construction from the given data may fail, and provide a strategy to
cope with the infeasible cases. After having performed the preprocessing
step, it is guaranteed that the (given or modi�ed) data are appropriate
as input for the main reconstruction algorithm.

1 Introduction

The aim of systems biology is to analyze and understand di�erent phenomena as,
e.g., responses of cells to environmental changes, host-pathogen interactions, or
e�ects of gene defects. To gain the required insight into the underlying biological
systems, experiments are performed and the resulting experimental data have to
be interpreted in terms of models that re�ect the observed phenomena. Depend-
ing on the biological aim and the type and quality of the available data, di�erent
types of mathematical models are used and corresponding methods for their re-
construction have been developed. We focus on Petri nets, a framework which
turned out to coherently model both static interactions in terms of networks and
dynamic processes in terms of state changes [1,7,9,10].

In fact, a (standard) network P = (P, T,A, w) re�ects the involved system
components by places p ∈ P and their interactions by transitions t ∈ T , the
arcs in A ⊂ (P × T ) ∪ (T × P ) link places and transitions, and the arc weights
w : A → N re�ect stoichiometric coe�cients of the corresponding reactions.
Moreover, each place p ∈ P can be marked with an integral number xp of tokens

de�ning a system state x ∈ Z|P |+ . If a capacity cap(p) is given for the places,
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then xp ≤ cap(p) follows and we obtain X := {x ∈ N|P | : xp ≤ cap(p)} as set of
potential states. A transition t ∈ T is enabled in a state x if xp ≥ w(p, t) for all
p with (p, t) ∈ A (and xp +w(t, p) ≤ cap(p) for all (t, p) ∈ A), switching or �ring
t yields a successor state succ(x) = x′ with x′p = xp − w(p, t) for all (p, t) ∈ A
and x′p = xp + w(t, p) for all (t, p) ∈ A. Dynamic processes are represented by
sequences of such state changes.

Petri nets can be reconstructed from experimental data by exact, exclusively
data-driven approaches [2,3,5,6,8,13]. These approaches take as input a set P of
places and discrete time-series data X ′ given by sequences (x0;x1, . . . ,xm) of
experimentally observed system states. The goal is to determine all Petri nets
(P, T,A, w) that are able to reproduce the data in a simulation.

In general, there can be more than one transition enabled at a state. The
decision which transition switches is typically taken randomly (and the dynamic
behavior is analyzed in terms of reachability, starting from a certain initial state).
To properly predict the dynamic behavior, (standard) Petri nets have to be
equipped with additional activation rules to force the switching or �ring of special
transitions, and to prevent all others from switching.

This can be done by using priority relations and control-arcs and leads to the
notion of X ′-deterministic Petri nets [14,15], which show a prescribed behavior
on the experimentally observed subset X ′ of states: the reconstructed Petri nets
do not only contain enough transitions to reach the experimentally observed
successors xj+1 from xj , but exactly this transition will be selected among all
enabled ones in xj which is necessary to reach xj+1 (see Section 2.2 for details).

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility (for each xj ∈ X ′ there is a unique observed successor state
succX ′(xj) = xj+1 ∈ X ′) and monotonicity (meaning that all essential responses
are indeed reported in the experiments), see Section 2.1. Having reproducible
data is clearly evident for a successful reconstruction; the necessity of monotone
data is shown in [4].

In this paper, we focus on a necessary preprocessing step for the reconstruc-
tion approach described in [6]. We test the data for reproducibility, provide a
feasibility test (based on previous works in [5]) to detect cases where the recon-
struction from the given data may fail (see Section 3.1), and provide a strategy
(based on previous works in [5,8]) to cope with infeasible cases (see Section 3.2).
We close with some concluding remarks.

Note that the here presented results appeared without proofs in [16].

2 Reconstructing Petri Nets from Experimental Data

In this section we describe the input and the desired output of the reconstruction
method from [6]. Moreover, we brie�y sketch the reconstruction procedure; for
a detailed description, we refer the reader to [6].
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2.1 Input: Experimental Time-Series Data

First, a set of components P (later represented by the set of places) is chosen
which is expected to be crucial for the studied phenomenon and which can be
treated in terms of measurements1.

To perform an experiment, the system is stimulated in a state x0 (by external
stimuli like the change of nutrient concentrations or the exposition to some
pathogens) to generate an initial state x1 ∈ X . Then the system's response
to the stimulation is observed and the resulting state changes are measured
at certain time points. This yields a sequence X ′(x1,xk) = (x0;x1, . . . ,xk)
of states xi ∈ X re�ecting the time-dependent response of the system to the
stimulation. Note that we also provide the state x0 as the starting point for the
stimulation, which will be needed later (see Section 3.2).

Every sequence has an observed terminal state xk ∈ X , without further
changes of the system. The set of all terminal states in X ′ is denoted by X ′

term.
For technical reasons, we interpret a terminal state xk ∈ X ′

term as a state which
has itself as observed successor state, i.e., xk = succX ′(xk).

Typically, several experiments starting from di�erent initial states in a set
X ′

ini ⊆ X are necessary to describe the whole phenomenon, and we obtain ex-
perimental time-series data of the form

X ′ = {X ′(x1,xk) : x1 ∈ X ′
ini,x

k ∈ X ′
term}.

We write x ∈ X ′ to indicate that x is an element of a sequence X ′(x1,xk) ∈ X ′.

Example 1. As running example, we consider the light-induced sporulation of
Physarum polycephalum. The developmental decision of P. polycephalum plas-
modia to enter the sporulation pathway is controlled by environmental factors
like visible light [11]. A phytochrome-like photoreversible photoreceptor protein
is involved in the control of sporulation Spo which occurs in two stages PFR

and PR. If the dark-adapted form PFR absorbs far-red light FR, the receptor
is converted into its red-absorbing form PR, which causes sporulation. If PR is
exposed to red light R, it is photo-converted back to the initial stage PFR, which
can prevent sporulation in an early stage, but does not prevent sporulation in a
later stage. Figure 1 gives an example of experimental time-series data re�ect-
ing this behavior, containing three time-series: X (x1,x4) = (x0;x1,x2,x3,x4),
X (x5,x0) = (x2;x5,x0) and X (x6,x8) = (x3;x6,x7,x8).

In the best case, two consecutively measured states xj ,xj+1 ∈ X ′ are also
consecutive system states, i.e., xj+1 can be obtained from xj by switching a
single transition. This is, however, in general not the case (and depends on the
chosen time points to measure the states in X ′), but xj+1 is obtained from xj

by a switching sequence of some length, where the intermediate states are not
reported in X ′.

1 Possibly, it is known that a certain component plays a crucial role, but it is not
possible to measure the values of that component experimentally.
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x0
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0
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0
0


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1
0
1
0
0


x2
0
0
0
1
0


x3
0
0
0
1
0


x4
0
0
0
1
1
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x5
0
1
0
1
0


x6
0
1
0
1
0


x7
0
0
1
0
0


x8
0
0
1
0
1



FR

R R

d1 d2 d3

d4 d5 d6

Fig. 1. This �gure shows experimental time-series data X ′ for the light-induced
sporulation of Physarum polycephalum. The experimental setting uses the set P =
{FR, R, Pfr, Pr, Sp} of studied components, observed states are represented by vec-
tors of the form x = (xFR, xR, xPfr , xPr , xSp)T having 0/1-entries only. Dashed arrows
represent stimulations to the system and solid arrows represent the observed responses.

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility and monotonicity. The data X ′ are reproducible if for each xj ∈
X ′ there is a unique observed successor state succX ′(xj) = xj+1 ∈ X ′. Moreover,
the data X ′ are monotone if for each such pair (xj ,xj+1) ∈ X ′, the possible
intermediate states xj = y1,y2, ...,ym+1 = xj+1 satisfy

y1
p ≤ y2

p ≤ . . . ≤ ym
p ≤ ym+1

p for all p ∈ P with xj
p ≤ xj+1

p and

y1
p ≥ y2

p ≥ . . . ≥ ym
p ≥ ym+1

p for all p ∈ P with xj
p ≥ xj+1

p .

Whereas reproducibility is obviously necessary, it was shown in [4] that mono-
tonicity has to be required or, equivalently, that all essential responses are indeed
reported in the experiments 2.

2.2 Output: X ′-Deterministic Extended Petri Nets

A standard Petri net P = (P, T,A, w) �ts the given data X ′ when it is able to
perform every observed state change from xj ∈ X ′ to succX ′(xj) = xj+1 ∈ X ′.
This can be interpreted as follows. With P, an incidence matrix M ∈ Z|P |×|T |
is associated, where each row corresponds to a place p ∈ P of the network, and
each column M·t to the update vector rt of a transition t ∈ T :

rt
p = Mpt :=


−w(p, t) if (p, t) ∈ A,

+w(t, p) if (t, p) ∈ A,

0 otherwise.

Reaching xj+1 from xj by a switching sequence using the transitions from a
subset T ′ ⊆ T is equivalent to obtain the state vector xj+1 from xj by adding

2 When continuous data is discretized, all local minima and maxima of the measured
values have to be kept for each p ∈ P to ensure monotonicity.
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the corresponding columns M·t of M for all t ∈ T ′:

xj +
∑
t∈T ′

M·t = xj+1. (1)

Hence, T has to contain enough transitions to perform all experimentally ob-
served switching sequences. The network P = (P, T,A, w) is conformal with X ′

if, for any two consecutive states xj , succX ′(xj) = xj+1 ∈ X ′, the linear equa-
tion system xj+1 − xj = Mλ has an integral solution λ ∈ N|T | such that λ is
the incidence vector of a sequence (t1, ..., tm) of transition switches, i.e., there
are intermediate states xj = y1,y2, ...,ym+1 = xj+1 with yl + M·tl = yl+1

for 1 ≤ l ≤ m. Hereby, monotonicity avoids unnecessary solutions, since no
homogeneous solutions of equation (1) have to be considered, see [4,13].

To also force that the networks exhibit the experimentally observed dynamic
behavior in a simulation, we equip standard networks with additional activation
rules to further control the switching of enabled transitions, see [2,3,6,14,15].

On the one hand, control-arcs can be used to represent catalytic or inhibitory
dependencies. An extended Petri net P = (P, T, (A∪AR ∪AI), w) is a Petri net
which has, besides the (standard) arcs in A, two additional sets of so-called
control-arcs: the set of read-arcs AR ⊂ P × T and the set of inhibitor-arcs
AI ⊂ P ×T . We denote the set of all arcs by A = A∪AR∪AI . Here, an enabled
transition t ∈ T coupled with a read-arc (resp. an inhibitor-arc) to a place p ∈ P
can switch in a state x only if a token (resp. no token) is present in p; we denote
by TA(x) the set of all such transitions.

On the other hand, in [8,12,13] the concept of priority relations among the
transitions of a network was introduced in order to allow the modeling of de-
terministic systems. In [8] it is proposed to model priorities by partial orders O
on the transitions to re�ect the rates of the corresponding reactions where the
fastest reaction has highest priority and, thus, is taken. For each state x, only
a transition is allowed to switch if it is enabled and there is no other enabled
transition with higher priority according to O; we denote by TA,O(x) the set of
all such transitions. We call (P,O) a Petri net with priorities if P = (P, T,A, w)
is a (standard or extended) Petri net and O a priority relation on T .

The extended Petri net with priorities (P,O) is X ′-deterministic if {tl} =
TA,O(yl) holds for all yl. The desired output of the reconstruction approach
consists of the set of all X ′-deterministic extended Petri nets (P, cap,O) (all
having the same set P of places and the same capacities cap deduced from X ′

by cap(p) = max{xp : x ∈ X ′}).
Figure 2 shows an X ′-deterministic extended Petri net �tting the experimen-

tal data from Example 1.

2.3 Steps of the Reconstruction Approach

To reconstruct X ′-deterministic extended Petri nets from experimental time-
series data X ′, the following approach is proposed by [6], based on previous
works in [2,3,4,5,8].
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Fig. 2. This �gure shows an X ′-deterministic extended Petri net �tting the experimen-
tal data from Example 1. The set P of components has been extended by a component
committed which cannot be measured directly, but only indirectly deduced by the
behavior of Physarum polycephalum observed in the experiment. The here shown net-
work corresponds to solution (a) from Figure 4. It has a read-arc from Pr to t2 and one
from committed to t3. Furthermore, we have the set of priorities O = {t2 < t4, t3 < t4}.
The control-arcs and priorities ensure |TA,O(x)| = 1 for every state x ∈ X ′.

As initial step, extract the observed changes of states from the experimental
data. For that, de�ne the setD :=

{
dj = xj+1 − xj : xj+1 = succX ′(xj) ∈ X ′}.

Generating the complete list of all X ′-deterministic extended Petri nets P =
(P, T,A, w) includes �nding the corresponding standard networks and their in-
cidence matrices M ∈ Z|P |×|T |. The �rst step is to describe the potential update
vectors which might constitute the columns of M . Due to monotonicity, it su�ces
to represent any dj ∈ D using update vectors from the following set only:

Box(dj) =

r ∈ Z|P | :
0 ≤ rp≤ dp if dj

p > 0
dp ≤ rp≤ 0 if dj

p < 0
rp =0 if dj

p = 0

 \ {0}.

Next, we determine for any dj ∈ D, the set Λ(dj) of all integral solutions of

dj =
∑

rt∈ Box(dj)

λtr
t, λt ∈ Z+,

and for each λ ∈ Λ(dj), the (multi-)set R(dj , λ) = {rt ∈ Box(dj) : λt 6= 0} of
update vectors used for this solution λ. Every permutation π = (rt1 , . . . , rtm)
of the elements of a set R(dj , λ) gives rise to a sequence of intermediate states
xj = y1,y2, ...,ym,ym+1 = xj+1 with

σ = σπ,λ(xj ,dj) =
(
(y1, rt1), (y2, rt2), . . . , (ym, rtm)

)
which induces a priority relation Oσ since transition ti resulting from rti is
supposed to have highest priority in yi for 1 ≤ i ≤ m. Two sequences σ and
σ′ are in priority con�ict if there are update vectors rt 6= rt′ and intermediate
states y,y′ such that t, t′ ∈ T (y) ∩ T (y′) and (y, rt) ∈ σ but (y′, rt′) ∈ σ′

(since this implies t > t′ in Oσ but t′ > t in Oσ′). We have a weak (resp.
strong) priority con�ict if y 6= y′ (resp. y = y′) which can (resp. cannot) be
resolved by adding appropriate control-arcs. In [6], it is proposed to construct
a priority con�ict graph G whose nodes correspond to all possible sequences
σπ,λ(xj ,dj) and whose edges re�ect weak and strong priority con�icts. In G, all
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node subsets S are generated that select exactly one sequence σπ,λ(xj ,dj) per
di�erence vector dj ∈ D such that no strong priority con�icts occur between the
selected sequences. Each such subset S gives rise to a standard network PS =
(P, TS , AS , w) which is conformal with X ′ and can be made X ′-deterministic by
inserting control-arcs and combining the priority relations Oσ for all σ ∈ S:

• we obtain the columns of the incidence matrix MS of the network by taking
the union of all setsR(dj , λ) corresponding to the sequences σ = σπ,λ(xj ,dj)
selected by σ ∈ S;

• for each weak priority con�ict between σ, σ′ ∈ S involving update vectors
rt 6= rt′ and intermediate states y 6= y′, include either a read-arc (p, t) ∈ AR

with weight w(p, t) > y′p for some p with yp > y′p or an inhibitor-arc (p, t) ∈
AI with weight w(p, t) < yp for some p with yp < y′p to disable transition t
resulting from rt at y′,

• for each σ ∈ S, de�ne Oσ by Oσ = {ti > t : t ∈ TAS∪AR∪AI
(yi) \ {ti}, 1 ≤

i ≤ m} and let OS =
⋃

σ∈S Oσ be the studied partial order.

This implies �nally that every extended network PS = (P, TS , AS ∪AR ∪AI , w)
together with the partial order OS is X ′-deterministic, see [6] for details.

3 Feasibility Test and Handling Infeasibility

Before the reconstruction is started, a preprocessing step is necessary in order
to verify or falsify whether the experimental time-series data X ′ is suitable for
reconstructing X ′-deterministic extended Petri nets (see Section 3.1). If the test
is successful, the reconstruction algorithm can be applied. For the case that
the given data are not suitable for the reconstruction, we provide a method to
handle the infeasible cases (see Section 3.2). For that, we interpret (as in [5])
the experimental time-series data X ′ as a directed graph, the experiment graph
D(X ′) = (VX ′ , AD ∪AS) of X ′, having the measured states x ∈ X ′ as nodes and
two kinds of arcs:

• AD := {(xj ,xj+1) : xj+1 = succX ′(xj)} for the observed responses,
• AS := {(x0,x1) : X ′(x1,xk) = (x0;x1, . . . ,xk)} for the stimulations.

D(X ′) can be interpreted as a minor of the reachability graph, where observed
responses may correspond to directed paths with intermediate states.

Our main objective is to test the given experimental time-series data X ′ for
reproducibility, i.e., whether each state x ∈ X ′ has a unique successor state
succX ′(x) ∈ X ′. We provide a feasibility test to ensure this property (based
on previous tests for standard Petri nets [5] and extended Petri nets [3], see
Section 3.1). If this test fails, we have a state x ∈ X ′ with at least two successors
in X ′, and it is not possible to reconstruct an X ′-deterministic extended Petri
net from X ′ in its current form. As proposed in [5,8,13], this situation can be
resolved by adding further components3 to P with the goal to split any state

3 Since P is only a projection from the real world, it is possible that some components
of the system, crucial for the studied phenomenon, were not taken into account or
could not be experimentally measured.
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x ∈ X ′ with two successors into di�erent states each having a unique successor.
We present in Section 3.2 an approach for this step (based on previous works for
standard Petri nets [5,8]).

3.1 X ′-Determinism Con�icts and Feasibility Test

De�nition 1. Let X ′ be experimental time-series data. We say that two time-
series Xi = X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m) are in X ′-determinism con�ict,
when there exists a state x ∈ X ′ with succXi(x) 6= succX`

(x) and call x the
corresponding X ′-determinism con�ict state. We have

• a strong X ′-determinism con�ict if xik 6= x`m or Xi = X`;
• a weak X ′-determinism con�ict if xik = x`m and Xi 6= X`.

The de�nition of strong X ′-determinism con�icts includes the case discussed
in [3,5] that there must not exist a terminal state xj ∈ X ′

term that occurs as
intermediate state in an experiment and the case that a state xj ∈ X ′ \ X ′

term

has itself as successor, which would result in dj = 0 (see Example 2).

Example 2. In the experimental time-series data X ′ shown in Figure 1 we have
no weak but two strong X ′-determinism con�icts:

• in the sequence X ′(x1,x4) the states x2 and x3 are equal but have di�erent
successor states,

• the sequences X ′(x5,x0) and X ′(x6,x8) have equal initial state x5 = x6,
but di�erent terminal states. Besides the initial states, the states x0 and x7

are X ′-determinism con�ict states.

Obviously, every X ′-determinism con�ict violates the condition of the data
being reproducible. Conversely, if no X ′-determinism con�ict occurs, the data
are reproducible and we have:

Lemma 1. Let X ′ be experimental time-series data. If every state x ∈ X ′ has
a unique successor state succX ′(x) ∈ X ′ then there exists an X ′-deterministic
extended Petri net.

Proof. The pre-condition that every state x ∈ X ′ has a unique successor in
X ′ includes the cases that no state xj ∈ X ′ \ X ′

term has itself as successor (and,
thus, dj 6= 0 follows for all dj ∈ D) and that no terminal state xk ∈ X ′

term is an
intermediate state of any experiment.

Having dj 6= 0 for all dj ∈ D guarantees the existence of a standard network
being conformal with X ′: By construction, Box(dj) is non-empty due to dj 6= 0
for all dj ∈ D. Hence, dj is a trivial representation λ0 for itself with R(dj , λ0) =
{dj}, and the standard network P whose incidence matrix has all vectors dj ∈ D
as columns is conformal with X ′.

P can be made X ′-deterministic by adding appropriate control-arcs: Suppose
that there are xj ,xl ∈ X ′ such that dj and dl with dj 6= dl are enabled at both
states xj and xl. By pre-condition, one of them is not a terminal state, say
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xj /∈ X ′
term. Then dj has to be turned into a transition tj disabled at xl. For

that, include either a read-arc (p, tj) ∈ AR with weight w(p, tj) > xl
p for some p

with xj
p > xl

p, or an inhibitor-arc (p, tj) ∈ AR with weight w(p, tj) < xl
p for some

p with xj
p < xl

p. This can be done since xj 6= xl by pre-condition (otherwise,

xj = xl would be a state having two di�erent successors xj + dj and xl + dj).
Therefore, the existence of an extended Petri net (where on each xj ∈ X ′ the

transition tj resulting from dj has highest priority, including priority tl < tj ∈ O
for each of the above described con�icts) being X ′-deterministic is ensured. ut

Two time-series X ′(xi0 ,xik) and X ′(x`0 ,x`m) with xik = x`m may be in
weak X ′-determinism con�ict, due to di�erently chosen time points of the mea-
surements. We test the data for such a situation and try to resolve the con�ict
by linearizing these sequences, respecting monotonicity.

A linear order L (or total order) on a set S is a partial order where addi-
tionally (a ≤ b) ∈ L or (b ≤ a) ∈ L holds for all a, b ∈ S. In this case, we say
that the set S is totally ordered (w.r.t. L). A totally ordered subset U ⊆ S of a
partially ordered set S is called a chain of S.

On a time-series X ′(x1,xk) = (x0;x1, . . . ,xk), a linear order is induced by
the successor relation: xj ≤ xj+1 i� xj+1 = succX ′(x1,xk)(xj), hence X ′ can be
considered as a partially ordered set (ordered by the successor relation), where
each time-series X ′(x1,xk) is a chain of X ′. Let succX ′(xj) = xj+1 and

Box(xj ,xj+1) :=

{
y ∈ X :

xj
p ≤ yp ≤ xj+1

p if xj
p ≤ xj+1

p

xj
p ≥ yp ≥ xj+1

p if xj
p ≥ xj+1

p

}
.

Note that due to monotonicity, all intermediate states y of any re�ned sequence
from xj to xj+1 lie in Box(xj ,xj+1). Consequently, if two time-series Xi =
X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m) with xik = x`m are in weak X ′-determinism
con�ict, and x is a determinism con�ict state then we have to test whether
succXi

(x) ∈ Box(x, succX`
(x)) or succX`

(x) ∈ Box(x, succXi
(x)), see Figure 3.

If the test fails, we cannot �nd a X ′-deterministic linear order. Otherwise, x′ =
succXi(x) or x′ = succX`

(x) is a new X ′-determinism con�ict state, and the
test has to be repeated for x′ (see Algorithm 1). This works since at least the
terminal states xik and x`m are equal.

Whenever this test is successful for x and all subsequent X ′-determinism
con�ict states x′, we say that it is resolvable, otherwise we say it is an unresolvable
weak X ′-determinism con�ict.

We next prove the correctness of Algorithm 1.

Lemma 2. Let X ′ be experimental time-series data and let X ′
i = X ′(xi0 ,xik)

and X ′
` = X ′(x`0 ,x`m) be two time-series in a weak X ′-determinism con�ict.

Algorithm 1 returns linearized times-series for X ′
i and X ′

` if and only if the weak
X ′-determinism con�ict is resolvable.

Proof. Let x ∈ X ′ be a con�ict state for X ′
i and X ′

` . We show that �false� is
returned if and only if the con�ict in x is not resolvable.
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xi0

x`0

x

succXi
(x)

succX`
(x)

xik = x`m? ?

Fig. 3. This �gure shows a weak X ′-determinism con�ict. To resolve this con�ict we
can test if the two di�erent successor states (resulting from two di�erent experiments)
of the X ′-determinism con�ict state x can be ordered respecting monotonicity. In other
words, we test if one of these successor states is an unmeasured intermediate state of
x and the other successor state.

Algorithm 1 Resolving weak X ′-determinism con�icts by linearization

Input: time-series X ′(xi0 , xik ), X ′(x`0 , x`m) in weak X ′-determinism con�ict
Output: adjusted time-series if resolvable weak X ′-determinism con�ict or false oth-

erwise
1: for all con�ict states x do

2: xi ← succX ′(xi0 ,xik )(x), x` ← succX ′(x`0 ,x`m )(x)
3: L ← ∅ . stores the linear order
4: while xi 6= x` do

5: if xi ∈ Box(x, x`) then
6: L ← L ∪ {xi < x`}
7: x← xi

8: xi ← succX ′(xi0 ,xik )(x
i)

9: else if xl ∈ Box(x, xi) then
10: L ← L ∪ {x` < xi}
11: x← x`

12: x` ← succX ′(x`0 ,x`m )(x
`)

13: else

14: return false

15: return adjusted time-series according to L

In line 2 the variables xi and x` are initialized as successor state of x in the
corresponding time-series. The set L, which stores the linear order, is initialized
with the empty set in line 3.

If we have xi = x` then one of the following is true:

(i) xi = x` = xik = x`m , i.e., both states are the terminal states of the time-
series,

(ii) all successor states after x are equal in both time-series, and thus further
linearization is not necessary,

(iii) both time-series have equal successor states after x, but there is another
weak con�ict state in the time-series.

While in the �rst two cases the algorithm stops, in (iii) the algorithm continues
due to the for loop in line 1.

10



In line 5 (resp. 9) it is tested if xi ∈ Box(x,x`) (resp. x` ∈ Box(x,xi))
(see Figure 3 for an illustration). Note that this is possibly true for several
successor states of x. However, the intermediate states of a decomposition must
be monotone and therefore, the tested states must respect the monotonicity
constraint as well. This is ensured by lines 7 and 8 (resp. 11 and 12). If some
states are not monotone intermediate states of the other time-series, then it
follows that there exist a state xi+1 = succX ′

i
(xi) so that xi+1 /∈ Box(xi,x`)

but xi+1 ∈ Box(xi−1,x`), with xi = succX ′
i
(xi).

Depending on which state comes next in the linear order, the set L is up-
dated accordingly in line 6 (resp. 10). Since the case x` ∈ Box(x,xi) is tested
analogously, we ensure that the successor states of x in one times-series is within
the box of x and the successor state of the other time-series; and, in the case
of several successor states within that box, that they are monotone. If neither
is true, then it follows that the con�ict is not resolvable. Hereby, line 14 returns
�false�. When the algorithm stops in line 15, two time-series are returned based
on the computed linear order.

The algorithm always stops after a �nite number of steps since we have xik =
x`m , ensuring that line 4 is called �nitely often (time-series are by de�nition
�nite) before being �true� or line 14 is called before. ut

This enables us to formulate the following feasibility test:

Theorem 1. Let X ′ be experimental time-series data. There exists an X ′-deter-
ministic extended Petri net if and only if there are neither strong X ′-determinism
con�icts nor unresolvable weak X ′-determinism con�icts.

Proof. �⇐� If every state x ∈ X ′ has a unique successor in X ′, the assertion
follows from Lemma 1.

Let there be two time-series X ′(xi0 ,xik) and X ′(x`0 ,x`m) in a resolvable
weak X ′-determinism con�ict in state x ∈ X ′. Due to monotonicity of the data
and by de�nition of a resolvable weak X ′-determinism con�ict state, there exists
a linear order on the subsequences of the time-series starting with x, so that

every successor after x is unique, i.e., we have a re�ned sequence (x, x̃1, . . . , x̃k̃),
with x̃k̃ = xik = x`m , and for all 1 ≤ j ≤ k̃ we have x̃j ∈ X ′(xi0 ,xik) or
x̃j ∈ X ′(x`0 ,x`m). Now we consider the following time-series X̃ ′(xi0 ,xik) =
(xi1 ,xi2 , . . . ,x, x̃1, . . . , x̃k̃) and X̃ ′(x`0 ,x`m) = (x`1 ,x`2 , . . . ,x, x̃1, . . . , x̃k̃).

Let X̃ ′ be now the experimental time-series data containing all (if necessary
linearized) time-series from X ′. Then every state in X̃ ′ has a unique successor
state, and thus, Lemma 1 can be applied to X̃ ′, proving the statement.

�⇒� We show, if there exists a strong X ′-determinism con�ict or an unresolv-
able weak X ′-determinism con�icts then there does not exist an X ′-deterministic
extended Petri net.

Firstly, let xj ∈ X ′ be a strong X ′-determinism con�ict state so that xj has
itself as successor state. Then dj = 0 follows and, thus, Box(dj) = ∅. There-
fore, there does not exist a standard Petri net conformal with X ′ and, thus, no
X ′-deterministic extended Petri net.
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Secondly, let xj ∈ X ′ be a strong X ′-determinism con�ict state for two time-
series Xi = X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m). Then, by de�nition, succXi(x

j) 6=
succX`

(xj). We show that this X ′-determinism con�ict can neither be resolved
by priorities nor by control-arcs.

Let di,d` such that succXi
(xj) = xj + di and succX`

(xj) = xj + d`. For the

trivial decompositions σπ,λ(xj ,di) = ((xj , rti

)) and σπ,λ(xj ,d`) = ((xj , rt`

)),
the time-series Xi implies t` < ti ∈ O while X` implies ti < t` ∈ O. This con�ict
can only be resolved by adding control arcs. Let ti < t` ∈ O, then control-arcs
must be added to disable t` in xj . But then ti can never �re in xj . Analo-
gously, if ti < t` ∈ O then t` can never �re in xj . In the case that t` < ti /∈ O
and ti < t` /∈ O then again either Xi and/or X` are no longer valid using
the same arguments. Thus, there is no extended Petri net with priorities be-
ing X ′-deterministic. Now we consider non-trivial decompositions σπ,λ(xj ,di) =
((yi1, rti1

), . . . , (yimi , rtimi )) and σπ,λ(xj ,d`) = ((y`1, rt`1
), . . . , (y`m` , rt`m` )).

Since the successor of xj is not equal in both time-series, i.e., succXi(x
j) 6=

succX`
(xj) it follows that there exist yiji and y`j` with yiji = y`j` but yi(ji+1) 6=

y`(j`+1). Then the same argument as above can be applied to yiji (resp. y`j`).

Finally, let xj ∈ X ′ be an unresolvable weak X ′-determinism con�ict state for
two time-series Xi = X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m). We consider the two

decompositions σπ,λ(xj ,di) = ((yi1, rti1
), . . . , (yimi , rtimi )) and σπ,λ(xj ,d`) =

((y`1, rt`1
), . . . , (y`m` , rt`m` )) so that yi1 = y`1,yi2 = y`2, . . . ,yij = y`j but

yi(j+1) 6= y`(j+1). By de�nition of an unresolvable weak X ′-determinism con�ict,
such a decomposition always exists. Now again, the same arguments from above
can be applied to yij (resp. y`j). Thus, there does not exist an X ′-deterministic
extended Petri net, which proves this theorem. ut

3.2 Handling Infeasibility

Due to Theorem 1, it is impossible to reconstruct X ′-deterministic extended Petri
nets from experimental time-series data X ′ containing a strong X ′-determinism
con�ict or an unresolvable weak X ′-determinism con�ict. In this section we show
how these con�icts can be resolved by using additional components.

For that we extend, as proposed in [5,8], all the n-dimensional state vectors
x ∈ X ′ to suitable (n + a)-dimensional vectors

xj :=
(

xj

zj

)
∈ X ′ =

{
x =

(
x
z

)
∈ Zn+a : 0 ≤ z ≤ 1, x ∈ X ′

}
.

The studied extensions xj ∈ Nn+a of the states xj ∈ X ′ correspond to suitable
labelings of the experiment graph D(X ′): if a = 1, to (0, 1)-labelings, where label
i is assigned to node xj if xj

n+1 = zj = i is selected for i ∈ {0, 1}; if a = 2,
to (0, 1, 2, 3)-labelings, where the labels are assigned to the four di�erent states
(0, 0)T , (1, 0)T , (0, 1)T and (1, 1)T ; if a ≥ 3 we use similar encodings for all 2a

di�erent 0/1-vectors.
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By using appropriate additional components, states that appear equal in
experimental time-series data X ′ become di�erent in X ′ (see Figure 4). It is
already stressed in [5] that not every labeling for the experiment graph D(X ′)
is reasonable, as a state xk ∈ X ′ with xk ∈ X ′

term might have a successor state,
a state xj might have multiple successor states, or some stimulation changes
more than the target input component(s). To obtain suitable labelings for X ′-
deterministic extended Petri nets, we adjust De�nition 15 from [5]:

De�nition 2. A labeling L of X ′ is valid if it satis�es the following conditions:

(i) every state x has a unique successor state succ(x),
(ii) any stimulation preserves the values on the additional component(s),

(iii) for every d = succ(x)−x and d′ = succ(x′)−x′ with d = d′ follows d = d
′
.

>From Condition (i) we can conclude that we have x = succX ′(x) if and
only if x ∈ X ′

term. Condition (ii) ensures that a stimulation does not change
more than the target input component(s), and �nally, Condition (iii) ensures a
minimal number of label switches, while keeping the data as close as possible
to the original measurements. Furthermore, due to symmetry reasons, we can
choose a label for one state, e.g., a con�ict state.

Example 3. Besides symmetric solutions, there are two possible valid labelings
with a = 1 for the experimental time-series data from Figure 1. These two
solutions are shown in Figure 4. The solutions are obtained by applying the
conditions of De�nition 2 as follows. We start by selecting an X ′-determinism
con�ict state, here x2, and choose its label as x2

z = 0. Due to Condition (ii),
x5

z = 0 follows. Condition (i) implies that x3 (resp. x6) must be di�erent from
x2 (resp. x5). Therefore, x3

z = 1 and x6
z = 1 follows. Since we have d4 = d5,

Condition (iii) implies that the only valid labels for x0 and x7 are 0 and 1,
respectively. Condition (ii) shows x1

z = 0. Finally, we can choose a label for x4

and x8, respectively. However, since d3 = d6, if follows from (iii) that both labels
must be equal.

In order to �nd all valid labelings of a general experiment graph D(X ′) =
(VX ′ , AD ∪ AS) we set up an optimization problem encoding the conditions
for valid labelings and having as objective the minimization of the number a of
additional components. For that we introduce decision variables yji to determine
whether label i is assigned to xj .

We are interested in �nding min{a ∈ N : P(a) 6= ∅}, where P(a) is given by

a∑
i=1

|yji − yli − (ypi − yqi)| ≥ 1
for all(xj ,xl), (xp,xq) ∈ AD,

with xj = xp,xl 6= xq
(2a)

yji − yli = 0 for all (xj ,xl) ∈ AS (2b)

yji − yli = ypi − yqi

for all (xj ,xl), (xp,xq) ∈ AD,

with xl − xj = xp − xq
(2c)

yj1, . . . , yj2a ∈ {0, 1} for all (xj ,xl) ∈ AD, i = 1, . . . , 2a, (2d)
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Fig. 4. This �gure shows values for additional components resolving the strong
X ′-determinism con�icts from Example 2 in Figure 1.

where equations (2a) ensure that every state has a unique successor state (Con-
dition (i) from De�nition 2), equations (2b) that no stimulation changes the state
of additional components (Condition (ii)), and equations (2c) preserve equal dif-
ference vectors (Condition (iii)). The conditions (2d) ensure that we have binary
decision variables yij . Each valid labeling corresponds to a vector in P(a).

Note, due to inequalities (2a) the optimization problem is non-linear and has
a non-convex set of feasible solutions. However, it is only necessary to �nd the
minimal a so that P(a) 6= ∅. We can consider the set P(a) as the union of 2a

convex sets (see Figure 5 for an illustration). Therefore, we can split the problem
into 2a linear subproblems, each having a convex (=polyhedral) feasible region.
For that, we de�ne two sets for each subproblem 1 ≤ k ≤ 2a, namely P+(k)
and P−(k), so that P+(k) ∪ P−(k) = {1, . . . , a} and P+(k) ∩ P−(k) = ∅ and
P+(p) 6= P+(q), P−(p) 6= P−(q) for all p 6= q. The sets induce the indices i
so that yji − yli − (ypi − yqi) ≥ 0 and yji − yli − (ypi − yqi) ≤ 0, respectively.
Hereby, we have all possible combinations. For the sake of readability let zjlpqi =
yji−yli−(ypi−yqi). Then we replace inequalities (2a) by the following constraints

∑
i+∈P+(k)

zjlpqi+ −
∑

i−∈P−(k)

zjlpqi− ≥ 1 for all (xj ,xl), (xp,xq) ∈ AD, (3a)

zjlpqi+ ≥ 0
for all i+ ∈ P+(k),

for all (xj ,xl), (xp,xq) ∈ AD,
(3b)

zjlpqi− ≤ 0
for all i+ ∈ P+(k),

for all (xj ,xl), (xp,xq) ∈ AD,
(3c)

where AD := {(xj ,xl), (xp,xq) ∈ AD with xj = xp,xl 6= xq}. These linear
subproblems can be solved by standard solvers, and the optimal solution a of
the original problem is obtained if one subproblem turns out to be feasible. All
(minimal) valid labelings are then in P(a).
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Fig. 5. In this �gure the division of (2a) into 2a subproblems is illustrated within the
2-dimensional space (i.e., a = 2). Each of the resulting 4 subproblems has a convex
feasible region (highlighted by the dotted regions) whose union corresponds to the
feasible region of the original problem.

4 Conclusion

In this work, we give a preprocessing step for a reconstruction algorithm from
[6] that reconstructs extended Petri nets with priorities from experimental time-
series data X ′, so-called X ′-deterministic extended Petri nets. For a successful
reconstruction the data must be reproducible and monotone. While reproducibil-
ity is clearly evident, the necessity of monotone data is shown in [4]. In this paper
we give a feasibility test for the data and a strategy for handling infeasible cases.

Firstly, the preprocessing step examines the given experimental time-series
data for reproducibility, i.e., it tests if all measured states x ∈ X ′ have a unique
successor state (see Section 3.1). If this test is successful we can reconstruct an
X ′-deterministic extended Petri net (Lemma 1).

Whenever two time-series Xi and X` have a common state x but di�erent
successor states in each of these sequences (i.e., succXi(x) 6= succX`

(x)) we have
an X ′-determinism con�ict. Depending on whether the terminal states of these
con�icts are equal or not, we have a weak or a strong X ′-determinism con�ict.

When we encounter a weak X ′-determinism con�ict we try to linearize the
two sequences by the induced order of the successor relation. This is done in the
second step of the preprocessing (see Section 3.1).

If linearizing the time-series is not possible or when there are strong X ′-de-
terminism con�icts, we cannot reproduce X ′-deterministic extended Petri nets
(Theorem 1). In this case we extend the data by adding additional components
to every state of X ′ (see Section 3.2). Finally, in order to compute valid vectors
of additional components, we solve an optimization problem.

After having performed the preprocessing step, the reproducibility of the
(given or modi�ed) data X ′ can be guaranteed such that X ′ can serve as appro-
priate input for the main reconstruction algorithm.
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