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Microeconomics of a taxi service
In a ring-shaped city

Fabien Leurent, )
Université Paris Est, Laboratoire Ville Mobilité dnsport, Ecole des Ponts ParisTech

Abstract

To a client, taxi quality of service involves natlpthe riding time and comfort, but also the
access time between the instants of booking (atyirg oneself) and pick-up. In turn, the
access time depends on fleet size and the maciospatierns of service usage: demand
volume and its spread in space, average ride thaigsaction times.

In this article, we investigate the formation oktlccess time and derive its economic
consequences for a taxi service in an idealizedvaith ring shape and spatial homogeneity,
hence circular symmetry.

At the operational level, under given supply andgnded conditions the access time stems
from the number of busy vehicles, which obeys teeaond-degree characteristic equation.
This enables us to model fleet size as a functiommmget demand volume and access time.
Taking then a broader perspective, demand is el&stsupply conditions including access
time, ride time, transaction time and tariff fav#e model short-term traffic equilibrium and
demonstrate the existence and uniqueness of alibeigun state.

Next, at the tactical level the service supplids s the fleet size and the tariff fare in order
to satisfy an economic objective. We model mediermtsupply-demand equilibrium under

three regulation patterns of, respectively, (ivs® monopoly and the maximization of

production profit, (ii) system optimum and the nmakation of social surplus, (iii) second

best system optimum subject to a budgetary constiai each pattern, both the tariff fare and
the access time are linked by analytical formutaexogenous conditions about the territory,
the demand and the cost function of service promisi

Theoretical properties are obtained to compareptteerns under specific demand function
with constant elasticity of volume to generalizemstc under constant elasticity of -2, the
monopoly tariff and generalized cost are more ttveine as large as their system optimum
counterparts, and exact doubles of their secontdpsnum counterparts in the absence of
fixed production costs.

At the strategic level, the model can be appliechgsess decisions on vehicle technology
(motor type, driving technology) and on servicealban by the service supplier, as well as the
regulation policies by public authorities.

Keywords: Traffic Model; Stochastic Equilibrium; Availabili Function; Supply-Demand
Equilibrium; Monopoly Operation; Collective Optimyi@econd-Best Optimum.
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1. Introduction

1.1 Background

Over two decades, a bunch of technological devetmpsnhave considerably enhanced the
attractiveness and efficiency of taxi services: GgEdlocation combined to geographic
databases have made shortest paths readily aeaitablaxis; platform technology has
empowered the matching of vehicles and customeresag; the individual equipment both in
smartphones and service mobile applications hasdefiansaction operations considerably,
from trip planning and rendezvous arrangement tongat, passing by vehicle booking and
on-screen tracking for reassurance; furthermoréhaard Wifi enables the client to re-use the
ride time for another activity (Andreasson et a0l1@). The early adoption of these
empowerments has enabled pioneering companiesasudber and Lyft from the USA, Didi
from China, Ola from India etc to grow strong aadtfand take the market lead in many big
cities (Boutueil et al. 2018).

In the academic literature, there are four maieassh streams targeted to taxi analysis. The
first stream focuses on algorithms to enhance serefficiency, e.g. in customer-vehicle
matching and the assignment of duties to vehideag QOial (1995), Malucelli et al. (1999),
Lioris (2010)).

The second stream is interested in spatial deiadsthe network modeling of taxi services, so
as to establish their quality performance at tliye level and derive the demand volume,
possibly by comparison to alternative modes onlthgis of their respective utilities. Most
notable in this stream of Travel Demand Modelinghis lineage of contributions by Yang,
Wong and co-workers at Hong-Kong Technical Uniwgrsiver the years. Yang and Wong
(1998) devised a network model of taxi operatiomsluding occupied time to serve
customers as well as vacant time employed to firedrtext customers: their model of taxi
movements and demand trips is a combined modehfsict distribution and assignment, for
which an efficient mathematical formulation andui@n algorithm were provided by Wong
et al. (2001), who also addressed road congestidrdamand elasticity. Yang et al. (2005a)
put forward a multi-period dynamic analysis witldegenous intensity of taxi services. Wong
et al. (2008) extended the network model to mudtipser classes and multiple travel modes.
Yang et al. (2010) introduced a meeting functioat trelates the meeting rate of waiting
customers and vacant taxis in a given sub-aredd tespective local densities: using a
Cobb-Douglas specification, they succeeded to emibeoh the network model. The
equilibrium properties were further studied by Yamgl Yang (2011).

The third stream belongs to microeconomic theoeyvise supply and demand are modeled
in a simplified way by means of fleet size and dedh&unction, respectively, so as to focus
on their relationship and investigate issues owiser quality, modal share, fare policy,
supplier competition and market regulation. DoudBE&72) established the basic theory by
combining (i) a demand function with respect tacerand wait time, (ii) a pricing rule linking
the tariff fare to trip time, (iii) a production sbfunction proportional to taxi time occupied
and vacant, (iv) a “delay distribution” i.e. a ftion relating the taxi unoccupied time from
customer drop-off to next customer pick-up, to tlemsity of vacant taxis and also the car
speed. He emphasized the crucial role of wait timehe analysis of supply-demand
equilibrium first under fixed fare then as a secdmes$t system optimum, before coming to
scale effects and quality differentiation. De Vai75) compared a regulated monopoly
targeted to social optimum and a competitive market showed that an increase in the
regulated price has more effect on competitive Bugn on a monopolistic firm. Manski
and Wright (1976) provided a systems analysis eftéxi market and studied the allocation of
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taxi licenses: they showed that, under a wide rasfgeariations, increasing their number
would both reduce customer wait time and increase occupancy rate. Arnott (1996)
considered a homogeneous two-dimensional spaaelén to analyze Douglas model in a less
aggregative perspective and provide guidance tdlitygblanners: in turn, he emphasized the
crucial role of wait time in taxi economics. Yanga¢ (2002) linked the network model to the
economic analysis of market equilibrium under défg regulation patterns: monopoly,
competitive, T best and ¥ best social optimum. Yang et al. (2005b) studiedgestion
externalities due to the movements of both occupretlvacant taxi movements together with
normal vehicular tiffic. Flores-Guri (2003) applied the Douglas modehNew-York case:
having defined a production function linking therdend volume to the service fare and the
density of vacant vehicles, he observed a certa@hasticity of demand to the number of
vacant vehicles. Indeed, the matching function k&y component to refine the modeling of
wait time and better understand the linkage of detria supply.

The fourth stream of taxi literature is devotedéhavioral studies of taxi customers and taxi
drivers, on the basis of social surveys or taxi ttatabases. Recent instances include a study
of customer search strategies by taxi drivers bywg\et al. (2015), a Stated preference survey
of electric vehicle adoption by taxi owner and drsv(Yang et al., 2018), among other works.

1.2 Objective

This paper has a twofold objective of, first, pdiag a physical function to theorize the mean
access time between customer and taxi service saubnd, deriving a series of economic
properties concerning supply-demand equilibriunppdyimanagement and its regulation.

The physical function for access time is based setaf postulates: prominent among them
is an idealized city shaped as a regular ring,@lehich spatial uniformity induces a property
of circular symmetry. The idealization is clearbstrictive: however, it enables to model the
positions of customers and vehicles and the diswametween them. Upon it we build a
stochastic model of taxi occupancy state (i.e. Busywacant), in which the average number
of busy vehicles satisfies a simple characterigtjoation, from which stems the average
access time.

Then, by availing ourselves of the analytical ascésie function, we investigate classical
issues of economic theory in a specific way. Waldsth the increasingness and convexity of
the access time function with respect to demandime| as well as the existence and
uniqueness of supply-demand equilibrium in the tsham i.e. given fleet size\ and tariff
fare 1. Coming to supply management, we specify a sirfpletion of production cost and
model the supplier behavior either as a monopaly megulated service purported to system
optimum either first-best or second-best. In théseelopments, we lay the emphasis on the
access time in order to reveal its influences aisdrelations to supply and demand
characteristics.

1.3 Methodology and research contributions

As our supply-demand model involves a crude butotiffe description of space, together
with abstract location of taxis as well as cust@n#rconstitutes a bridge between the second
and third research streams devoted to Travel demadkling and Microeconomic theory,
respectively. More precisely, the access time foncts much analogous to a travel time
function according to usage volume: it constiti#gsece of traffic science. The mathematical
study of short-term supply-demand equilibrium igi¢gal of the theory of traffic assignment to
a transportation network (e.g. Beckmann et al. 1956
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The idealized shape of a ring city has been conteg by some urbanists and urban
planners: Maupu (2006) claimed that the “Hollowtivould be ideally suited to mass transit
transportation as a single line could provide agdesall places. Our stochastic model of a
taxi service in such a spatial context is an apgbhe of queuing theory: the characteristic
equation of the average number of busy vehicleanisapproximation of Little’'s law (cf.
Kleinrock, 2975). We have also modeled an undeglyitarkov chain which is a bi-sided
waiting queue: such queue has already been applici services in order to model one taxi
rank (Conolly et al. (2002), based on Kashyap ()P66

As for economic analysis, our contribution is torgaut the access time function throughout
the well-known steps of economic theory: supply-dethinteraction, supply cost function,

supply behavior, monopoly, market regulation. Whileevious research emphasized the
(N,Q) factors and thgN,T) management levers, we shift to t{teQ) and (t,t) pairs of

factors and management levers, respectively.

1.4 Paper structure

The rest of the article consists of eight sectid¥e.begin by representing the territory as a set
of places in which mobility demand is located (gett2). Then we model the transport
supply, in terms of traffic infrastructure, transpservice and operational processes (section
3). We can then establish traffic for the serviseagprocess of interaction between the taxi
operator and all customers, and characterize tlan rsi@te of the system in stationary regime
(section 4).

We then study the traffic equilibrium between syphd demand, by combining the demand
function with the characteristic supply functiorfeom this, we deduce the characteristic
conditions of how the demand makes use of the gujspltion 5). Next, we turn to supplier

behavior and its regulation: starting from the muolg problem (section 6), we then deal

with system optimum either first best (section 7$@&cond best (section 8).

In addition, we make a short application caseltstitate system state variations depending on
technological options and regulation patterns {gecB). Finally, we conclude with a
summary combined with a discussion (section 10).
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Notation
R city ring radius
O city center

Q number of individual trips requested during pertddon a given day
A =Q/H time intensity of trip demand

¢ in-vehicle level of comfort

v average car speed along the ring

Lr trip length

trR =LRr /v trip run time

tr transaction time on taxi sidé; on customer side

ta =t =tY access time from taxi to customer

ta =ty +t)V availability time to a customer includes accesetand allocation wait time

N fleet size

h a particular moment within period

b=nR/v time parameter typical of urban territory

k* =0 number of vacant vehicles

k= =0 number of customers waiting for vehicle assignment
k =k* -k~ state variable of taxi service Markov chain

TY (Q,N) Access time function with respect@ and N

N(Q,t) fleet sizing function depending dp andt

T tariff fare per ride

D demand function with respecttq t, tr, tr.

€, &, & Demand volume elasticity with respectdo t andt, respectively
a, B Value of time to service user, respectively fodé&kand Access

g trip generalized cost to service user
Cp Production cost function with respectib and Q (ép with respect ta andQ)
Xo Fixed part of production cost angd= 0Cp/0dN derivative of cost with respect to fleet size

cu variable supply cost per unit of vehicle time

Derived parameters:

Ci =cutX/H,

n=x/(B+ci),
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YRT =CitrT +OtRT

2. Representation of the territory

We represent the territory as a space that has lmbamized to form a certain shape (8 2.1)
and that contains a population of individuals (8)2vhose mobility demand we model in a
simplified way (8 2.3).

2.1 Spatial configuration: a ring around a circle
About the spatial configuration, let us make théfeing postulates:

[C-1] that the city of Orbicity extends in spacetle shape of a ring: we call the radius of the
circle R and its geographical centér.

[C-2] Human activities (homes, jobs, amenities..€ lacated on a narrow strip all around the
circle, hence over a circumference2ifR .

Selecting one poinMg on the circle as reference, we identify a paréicpositionM by the
angle8] —n,n] between the vector®Mg andOM .

2.2 Location of individuals and spatial homogeneity

We denote the size of the population establishethenterritory by P, i.e. the number of
individuals there. To establish circular symmeweg, also postulate:

[L-1] a homogeneous settlement pattern: each segofethe circle situated on the angular
interval [6,0+ 0] carries a populationp.d8, ratio ¢ =P/(2nR) being a linear density of
population along the circle.

[L-2] More broadly, that activities are homogendguscated on the circle: homes, jobs,
urban amenities (services, shops, leisure). At \@ergimoment, therefore, the dynamic
distribution of individuals between the places remainiform.

2.3 Mobility demand

We study the mobility of the individuals in theritary by time period of duratiomd (e.g. an
hour or a day or the period for which the transgerwice is open). During this period, we call
Q the number of individual trips requested and catgal by individuals. The postulates on

mobility demand are:

[M-1] that the usage volume is distributed stocicadly with a uniform structure in time: let
us denote the time intensity of the overall demlayd =Q/H ;

[M-2] spatial uniformity with regard to the geneoat of trips by places;

[M-3] that individuals are homogenous as for trgmgration: at any time, each individual has
a certain probability of generating a trip from thasition at which they are currently active.
The time intensity of this probability 5 /P;

[M-4] each trip generated from a poiM is characterized by the angé betweenM and
the destination point. We postulate thatfollows a statistical distribution ofpm, 1] that is

independent of the point of origin, with a cumulatdistribution function denoted Hfy.
The postulate [M-3] of uniform distribution of stiwg points, combined with the postulate

[M-4] on the spatial distribution of trips from dastarting point, imply that the destination
places have equal probabilities for all trips udimg service.
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3. The transport service

We consider here only one mode of transport: a &etvice running on the roadway

infrastructure. The assumptions used to repredentservice therefore concern firstly the
infrastructure (8 3.1), secondly the service apjpears to a customer (8 3.2) and thirdly its
operational procedures (8§ 3.3).

3.1 Transport infrastructure and speed of travel

We postulate that a two-way road serves all thegslan the territory, and therefore runs
through all the points on the circle. The city'glmvay infrastructure consists exclusively of
this road, which espouses in its shape the laybattivities. In this respect, Orbicity is very
similar to the utopian “Hollow City” model proposég Jean-Louis Maupu (2006).

For the problem tackled here, we make the follovaegumptions:
[I-1] in each direction of travel, vehicles moveaatnean speed denoted by

[I-2] a taxi can stop anywhere to park, or to puig or drop off a passenger, without
disturbing the flow;

[I-3] a taxi can change direction, i.e. turn rouatlany point;

[I-4] delays associated with manoeuvres (leavingmdering the traffic flow, stops, U-turns)
are negligible, both for the vehicle concerned dod other vehicles (travelling in one
direction or the other).

3.2 The taxi service and its quality of service

We assume that rides are provided by a singleojaeiiator, under the following conditions:
[S-1] one taxi ride per individual customer trip;

[S-2] a uniform vehicle type: the level of comfistdenoted by ;

[S-3] a trip time, denoted big , proportional to the distance coverkd so thattr =Lr /v;

[S-4] the “customer path” in terms of the sequeRtan-Book-Ticket is managed by a web
app: for each ride, the transaction time for thst@mer istr, and for the taxi concernet .
Each of these durations includes the time takepdssenger entry and exit, door opening and
closing, luggage handling, and, if necessary,Hertaxi to change its direction of travel,

[S-5] an access timé (A for “Availability”) between the moment the cosher books and
the time the taxi arrives to pick them up. Thisdimncompasses the time the taxi takes to
reach the customer, denoted by without tilde ortY (V for “Vehicle”), with the possible

addition of the time for the customer to be alledat vehicle, denoted bt} (W for
“Waiting”).

To summarize, for the customer, quality of servgceharacterized in terms of comfort level
¢ and timestr, tt and ta. The trip timetr is the same for the vehicle and the customer,

while the access timeg, and ta , as well as the transaction timgsand tr, have a common
base but also a part that is specific to the custamto the vehicle respectively.

3.3 Operational management of the service

Let N be the size of the taxi operator’s fleet, i.e. thember of vehicles. We ignore the
proportion of vehicles inoperative for maintenanceepair.
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We postulate that, at any momemnt

[O-1] busy vehicles are vehicles that are allocated customer, whether the latter is already
on board (cf.tr), in the entry or exit process (cfr), or in reserved access (df{): the
number of such vehicles is denotedibythe number of vacant vehicles is thereftte-n;

[O-2] when booking a vehicle, a new customer isadted the vacant vehicle closest to him
or her on the circle, in order to minimizg ;. When there are no vacant vehicles, the next taxi
to become vacant will be assigned to the waitingt@mer with longest wait time, i.e. on a
First-Come First-Serve basis.

[O-3] each customer’s request is handled by the tmege possible, i.e. the shortest in time
according to the angl8]] —n, 1] specific to the journey. So B>0, the trip takes place in
the direct trigonometric direction, or in the oppesdirection if 8<0. The trip time is
thereforetr =R |0 /v.

On average,

fix :%f where f = [*[0]dF ). (3.1)

This technical process is managed by a centralzmurol system that coordinates the
vehicles in order to provide a unified service. sTldontrol system also manages the
commercial relationship with customers.

The availability time, ta, includes a run time) that depends on the angle between the
customer’s starting point and the starting pointhef allocated vehicle. If there are no empty
vehicles at the time of the request, then a custova#ing time is added, denoted by .

4. Service operation with traffic in stochastic equilbrium

In this section, we model the dynamic operationhef service: vehicle occupancy, access to
customers, and idle phases for each taxi betweerpawing rides. This dynamic operation is
fundamentally random: individual requests are maa@out coordination and relate to a
variety of trips. A first issue pertains to thetdisution of the time taken for a taxi to reach a
customer: assigning the nearest vacant vehiclesgige to a simple model based on the
number of vacant vehicles (8 4.1). At any time, bwer, this number is itself a random
variable: we model it with a Markov model, whichdsscribed in detail in Appendix B. In
particular, we establish the statistical distribatiof the dynamic state of the system in a
stationary regime. In practice, the mean value lmampproximated by a simple formula — a
second-degree equation (8 4.2). From this, we dethe mean access time per taxi, which is
roughly equivalent to the mean access time peromet if the fleet is sufficiently large (8
4.3).

4.1 Vehicle access time as a random variable

At a given moment, the number of vacant vehicldés is the difference between the fleet
size N and a number of busy vehicles

kt=N-n. (4.1)

For a customer requiring the service at that momérk™ =0 then the customer must wait
for a vehicle to become available; otherwise f.&* >0 the service assigns them the nearest
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vacant vehicle. We identify the positions of theaat vehicles relative to the starting position
of the new customer by the andgdé]] —n, ] . When the system is in a stationary regime, all

places are equivalent both for the customer’s mwsend for the location of vacant vehicles,
which is in principle at their last customer’'s destion point, given that this point is
uniformly distributed from the point of origin, wdh is itself uniformly distributed. So

0i0{1,2..,k*}, 6i is uniformly distributed orj —n, 1] .

The distanceli between the vacant vehicleand the customer i = R.|6)| where|6;| is

uniformly distributed on|0, T . Its cumulative distribution function is therefore

min{x, TR}
TR

The vacant vehicle closest to the customer is éatat distance.min = min{Li i 0 {],2,...k+}}.

(4.2)

FO(X) =Pr{Li £ X} = Far(X), WhereFar(X) = Lixe0y -

According to the hypotheses regarding points ofjiorand trips, the destination points are
equiprobable, so the vacant vehicles have posittbas are independent and identically
distributed according toFar(x). The minimum distance therefore has a cumulative

distribution functionFX")(x) with the property that

min
1-F&)(x) = P{min L; > %}
=Ningz. .k PreL >%
= Mioz..x+ @=Far (X))

; + 4.
So F& () =1~ [1- Far (Y] . (4.3)
The mean is easily calculated:
ElLmin [ K] = [ xRSy 00 = [XFRD (I = [ RS ()
= MR- TR [J11- (1~ U)¥* Jdu = TR [J(1-W)* cu
_ TR
k*+1
K+ (4.4)
S0 L) = R/(K* +1) .
N 4.5
And N O \whereb=""%. (4.5)
k* +1 V

4.2 The characteristic equation of the mean number of sy vehicles

When the system is in dynamic operation, the nurobeacant vehicles varies according to
the number of requests: the stochasticity of thgirorand destination points spreads to the
number of vacant vehicles. In Appendix B, we maiiel state of the system as a relatively
simple Markov chain, with a discrete state variablech, in the positive range, is the number
of vacant taxis and, in the negative range, thebmrnof customers waiting for a taxi to be
assigned to them (differing only in the sign).

In stationary regime, the mean number of busy texisqual to the time frequency of rides
multiplied by the mean time per ride (Little’s lawqueuing theory):
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n=A(tr +tr +tY). (4.6)

We postulate that the mean access time can belykgproximated by the functiofﬁ/ (k")
applied to the value for the mean number of vauehtcles,k = N - : in other words,

_ 4.7
=2 47
N+1-n

Let us combine (4.6) and (4.7) in order to charamten : denotingtrt =tr +t1, we have

_ b (4.8)
A =A(trr +———).
R+ e

This condition is in fact a second-degree equation n. It can be restated as
Ab—(n—-AtrT)(N +1-1n) =0, or equivalently

N2 -A(N +1+AtrT) +A(b+ (N +1)tr7) =0. (4.9)

The existence of a solution requires that
(N +1+AtrT)2 24N (b + (N +trT)

= (N+1-AtrT)224Ab (4.10)
o N+1I=ArT+ 2% ofr N+1-AtpT < —2%. (4.11a,b)

For the service fleet to meet customers’ requéstsust hold thatN +1> Atrt so that only
(4.11a) makes sense. Thus, coming back to (4 ®xdhution must verify that

n=2(N+1+Atrr)+eVX2-Ab where X =1(N +1-Atrr) and e[){-1,+1}.

Only the root withe =-1 makes sense, since that wigh=+1 induces a too larg@ : by

setting A - O* i.e. almost no requests, (4.11b) would yigidc N +1 - indeed an absurd
outcome. To sum up, the average number of busyheshverifies

A =1(N+1+A\trT)-VX2-Ab. (4.12)

The following proposition is demonstrated in Apperél.

Proposition 1: Properties of the mean number of busy vehicles:

(i) Function n is positive and continuous with respect to fléet & and demand flowh .
(i) With respect toN , it is a decreasing function.

(i) With respect toA, n is an increasing and convex function.

4.3 The technical availability function

From this, we can easily deduce the mean access fier taxi: according to (4.6),
ty =4N—trr. Then, from (4.12) we get

_ (4.13)
& :§_ /(§)2_§ where X =1(N +1-Atrr).

10
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As tY =b/(N +1-n), Proposition 1 implies the following propertiesf.(8ppendix A).
Proposition 2: Properties of the mean vehicle accesstime:

(i) The mean access tinig is a positive function that is continuous withpest toN , A,
trT andb.

(i) It decreases with respect td and increases with respect kn

(iii) With respect toA , the mean access time is an increasing and cofovetion.

The last property implies thaity /0A is positive and increasing with, making oty /0Q
positive and increasing: in other words, the acdese is subject to congestion. The taxi
service is a congestible economic good due torgtadtween its consumers.

4.4 On fleet sizing to meet production objectives

We can invert the dependencies, in order to dedu@nd N from the mean vehicle access
time tY. Owing to the characteristic equation, the meamlyer of busy vehicles depends

simply on this: denotindart =ta +ir +t7:
N =AtarT. (4.14)
Moreover, according to the approximation of meaceas time in (4.7),
N+1-n=Db/ta.

By rearranging and ignoring the -1 here, we obta@fleet size as the following function of
demand volume&) and vehicle access timg denoted simply as:

N(Q,t) =%(tRT +1) +$_ (4.15)

Formulas (4.14-15) link the service conditionsgflsize and occupancy to demand and to
quality of service represented by mean access taimevell as to the technical conditions of
transaction timer and mean running timi .

Proposition 3: Properties of the Fleet sizing function:
() Target fleet sizeN is a decreasing, convex function of mean accesstti

(i) It is an increasing function of demand volui@eand of the times$z, tt andb.

The Proof is provided in Appendix A. FrodN/dt < 0, it follows that:
Q<bHt?2, (4.16)

Proposition 4: Upper bound on service volume. The demand volume is bounded from above
by bHt=2.

In other words, the access time exerts a quadrdhience to reduce the usage volume.

[llustration. Figure 1 depicts both the mean access time fam¢part a) and the fleet sizing
function (part b) with respect to usage volu@e The parameter values are set upRe

5km, H= 14h,v= 20km/h hencéo =.79h,tg =.25h, tt =t = 03h.

11
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Fig. 1a. Access time according to usage volumesig. 1b. Fleet size according to usage volume,
under given fleet size. under given access time.

5. Demand function and traffic equilibrium

In a real-world service, the volume of demand isexagenous, but is sensitive to the supply.
We model demand on the basis of the price andtyualithe service (8 5.1), before studying
the traffic equilibrium between supply and demaindother words the relationship between
volume of demand and access time, when the othmelittans are exogenous (8§ 5.2).

5.1 The demand function

We now postulate that demand for the service dep@mdthe conditions available to the
potential customers, expressed here mainly in terimariff T and access timg/ =t. Here,
we omit to express the run tine and the transaction timig , in order to focus on andt.

As a first approach, we consider an aggregate dérfiarction which links the volume of
trips with the price and mean access time:

Q=D(1,t). (5.1)

In principle, the volume decreases with price arithva reduction in quality of service,
therefore with an increase in We can therefore invert the D function in relatio each of
its arguments:

1=D{Y(Q)1). (5.2)

t=D{M Q). (5.3)

These two are also decreasing functions. In theeggge demand function, we ignore the
variability of t around its mean, even if in each particular sitwathe potential customer will
avoid using taxis if the value df is too high. Similarly, the influence of tariff isandled
approximately: here, we use a mean price per vifbereas in practice typical fares include a
fixed pick-up component, combined with a varialdenponent proportional to the distance or
run time.

5.2 Traffic equilibrium: short-term interaction between supply and
demand

In the theory of traffic assignment on a transpetivork, the supply and demand system is at
traffic equilibrium when the interactions betweempgly and demand are jointly met:

12



F. Leurent, ENPC, LVMT On taxi services in Orbicity

t=TY (N,tr,tr,Q) according to (4.10)
Q =D(t,t) according to (5.1)

The conjunction of these two conditions is a fixgaint problem for the pairft,Q). By

replacing the second condition with (5.3), we abthie following equation depending solely
on the variableQ:

DY (1,Q) =TY (N.trt=, Q) - (5.4)
Let us assume that service supply is fixed in thertsrun, i.e.1 and N are taken as

exogenous. The following proposition is demonstrateAppendix A.

Proposition 5: Existence and uniqueness of (short term) supply-demand equilibrium. Given
T and N it holds that:

() There is at most one supply-demand equilibrium;

(i) If the demand function is continuous and vesfthatD(1,b) < NH /b, then there exists a
supply-demand equilibrium.

We then express the solution as a function
Q=Da(T,N,t1,tr, 1), (5.5)
from which the mean access time is deduced by
t=TY (N,tr,tr,Da (T, N, t7,tr, Tr)) = Tap (N, t1, R, T, ) - (5.6)

Proposition 6: Sensitivity analysis of (short term) supply-demand equilibrium. The functions
Da and Tap have monotonous variations in the same directiocoeding to each of the

factors N, T, tr, tr and tr: (i) the two functions are increasing with respeot N ;
(ii) they are decreasing with respectto tt, tr and tr.

The proof is given in Appendix A.

[llustration. Figure 2 depicts the interaction of supply andnded in the short run, under
given N and t. Parameter values on the supply side are thosadirused for Figure 1. As
for demand, the function has constant elastieity—2 to generalized cosy =1+ atgrr +ft,
wherea =15€/h andp3 =10€/h. A reference point i§Qo,go) with go= €10 per trip and) =
50,000 trips per day.

0,100

——1A(Q),N=50 \
0,090

=== tA(Q),N=100 \
0,080 :

Inverse demand functlon\

0,070
0,060 \\
0,050
0,040 \ /
0,030 //K
0,020 —
0010 + cocccccasss== A(_ ) I
0,000 . 560 10'00 15‘00 20-00

Fig. 2. Supply-demand interaction of taxi servic&irbicity, and the short-run traffic equilibrium.
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6. Production cost and monopoly strategy

In traffic assignment on a transport network, diesthie terminology usually employed, traffic
equilibrium — even with elastic demand — is not wp@y-demand equilibrium in the
traditional sense of economic theory, since it does say anything about the producer’'s
strategic behavior as an economic agent (e.g. @rtazd Willumsen, 2011). In this section,
we model production cost (8 6.1), in order to sttiuly strategic behavior of a producer in a
monopoly (8§ 6.2). The associated mathematical probik easy to solve (8§ 6.3), in particular
for a volume of demand with constant elasticity6(8) or that depends only on generalized
cost (8 6.5). Under constant elasticity of demangdeneralized cost, the optimality conditions
yield explicit formulas fort andt as action levers, hence farand N as supply factors:
taking constant elasticity of -2 yields straightf@ard formulas (8 6.6).

6.1 The supply cost function
We model the cost of production over a day as ation

Cp(N,Q) =X(N)+Qcu(trT +ta), (6.1)

in which the functiony is the daily cost of providing vehicles and opieraal staff (including

vehicle rental or purchase amortization, mainteeaaed insurance, staff salaries and the
associated charges, depots and headquarters leakesdasc, is the cost of use per trip time
unit (including energy consumption, marginal wear.The function increases withN
more or less proportionally, above base gast As a first approach, the derivative expressed
as x =dx/dN will be deemed constant. However, economies destan be expected, both
in the purchase and maintenance of the vehiclekiratne allocation of people to drive them.

Using the relation between fleet size and a qualitgervice targety =t, we model the cost
of production in relation to access time and voluwhdemand:

Cr (t,Q) = Cr(N(@Q,1),Q) = X(N(Q,1)) + QCu(trT +1). (6.2)

This formula shows that (resp. Q) has a twofold influence on the cost of production
affecting both fixed and variable costs. Denotijg=s cy+x/H and considering the formula
(4.15) for N Q 1), the coefficient of sensitivity ofp tot is

A : 6.3)
%Cp—x— Qey = x(———) Qce =Qci- f—f

This is an increasing function: it takes negatiatues up tot* =./xb/(Qcf) , then positive
values.

Then, the sensitivity coefficient ap to Q is

9 - 6.4
—Cp——(tRT+t)+Cu(tRT+t) Ci(t+trT). ©4

0Q
The coefficient is always positive. It does not elegh directly onQ. It increases with.

Moreover, the mean cost of service provision pie s

14
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(6.5)
&—qu(tm +1) —X—QO+ Xk: +Cli(trT +1).

Q

This is therefore always higher than the margimatdép/OQ :

6.2 The monopolist’'s problem

If the provider is free to choose its fleet sizel @nice, it will seek to maximize its profits by
working on these two factors. Its strategic behaigdhat of an unregulated monopdly.

The producer’s profit function is the differenceveeen its revenues from sales and the costs
of production:

R (N,1,Q) =1Q-Cr(N,Q). (6.6)
The monopoly supplier’s behavior is expressed kyfollowing optimization program:
maxn: P (N,T1,Q) subjecttoQ=D(t,t)andt=TY (N ,tr,tr,Q) . (6.7)

It is simpler to study profit maximization in terraéthe pricet and access timeinterpreted
as a quality of service target. With the demandction “internalized”, the profit function
then becomes:

P (1,t) =1.D(1,t) = Cp (t, D(T,1)) . (6.8)
This varies depending on its arguments with thiedahg sensitivity coefficients:
oD aCp aD (6.9a)
— t D i
PP(T )= "0 ot
9D _9Cp _0Cp 0D (6.9b)

— Bt -=rZ=
P”(T) Y% ot 00 ot

Maximum profit is achieved at a poinfr,t), which satisfies the first-order optimality
conditions:

i|A:’P(T.t) =0 and ilsp('[,t) -0 . (6.10a, b)
ot ot
The system is equivalent to
(0-9C D _ o (6.11a)
0Q " ot
(-3¢ 9D _0Ce (6.11b)
0Q ot ot

By dividing each side in (6.11b) by the correspogdside in (6.11a), we get that at the
monopoly optimum,

DIt _oa o (6.12)
d D/t

2 Without intervention by a regulator or competitiiat would restrict the market price.
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On the left side, we recognize demand voluhenultiplied by the monetary value of access
time for a userp=42/22. Then (6.12) is equivalent to:

_ X (6.13)
t2 =b.n, wheren= :
Q n n o +B
6Cp D
Coming back to equation (6.11a), it is equivalent t ——
0Q aD/at’
Denoting byer the elasticity of volume of demand to price, t% _s_ and we get
T
& aCP (6.14)

- T l+g, 0Q

At this stage, we can already determine whetherptiodit can be positive, which is the
necessary condition for the supplier to provideeavise (unless linked with additional
resources). On average per ride, the conditiorrafftpbility is thatt > Cs/Q. For a tariff that

optimizes profit, this condition is equivalent to
e 0Cr _Cr (6.15)
1+e; 0Q Q

Note also that the producer’s profit cannot be tpasif €r > —-1. Assuming then that, < -1
and using the formulas from 86.1, (6.15) means that

Chi tarT Xb L Xo
1 Qt

, and also that

Xo+Xb/t (6.16)
> L A f g -1,
Q=(-¢ )Cu(tRT+t) if &<

Instance. Suppose thag = €400 per day for a taxi operating 10 hours @, @ days a week
(i.e. 70 hours a week, therefore 2 employees perptus a & to cover vacations, absences,
cleaning...) andc, = €5/h to cover 20 km with a diesel engine. Thaet; = €45/h. Then
let us suppose thd&® = 3 km, hencéb= 14 min. If the access time is 1.5 minutes, i.62B.
hours, the customer requirement must be in exce24ad rides a day to enable for service
profitability. Under these conditions, far = 2 min, the marginal cost is approximately
€11.8, hence a price of almost €12. At this pribe, service is likely to capture only a small
proportion of trips around the city, let us say S5%would need a city providing at least
50,000 trips a day, i.e. a population of at le&0Q0 (assuming 3.5 trips per person per day).
If the modal share of the taxi is only 1%, thewduld require an urban population of at least
75,000, even with our ideal geometry.

6.3 The solution to the monopolist’s problem

In (6.12), let us replace the partial derivativesy their respective counterparts in terms of
elasticity, e; ande&t respectively:

T _t 19Ce (6.17)
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Using the formulas for the partial derivatives bé tproduction costs, conditions (6.14) and
(6.17) are equivalent to the twofold system asofed:

A1
T= CitART, (6.18a)
1+gq
-& _ Xb (6.18b)
cit =chit—-2—.
1+€q u LART u Qt

Consideringt to be linked tot by (6.18a) andQ to t both directly and viar, through the
demand functiori then (6.18b) constitutes a highly nonlinear equmasiolely int.

It can be reformulated as:

L+ (6.19)

)cit+
+&; 1+¢;

CitrT —é—t: =0, where Q=D(1;,t).

Owing to (6.13), it is easy to recover productiodicators as simple functions of the mean
access time only:

2
Fleet size: N(Q t) = —tRT +_ = Q(tRT +t %) , (6.20a)
Productivity per taxi: Q. (tRﬂ +£)—1, (6.20b)
N H n
_Xo  bX (6.20c)

Per ride production cost: — Ce " +ClitarT =CitrT +(B+ 2¢H)t + X0 br|
6.4 Demand function with constant elasticities

Let us postulate here that the demand functionahpsoduct form with constant elasticities
with respect to tariff and access time, respedtivehus,

T t 6.21
D(TY = Qo) (), (6:21)
To to
Qt _T &t
ThenQ; =&:Q/t and Q; =&:Q/t, so thatp = —_—.
O T te
Combining (6.19) and (6.21), we obtain
@+ Jcit+ Citrr = XD : (6.22)
1+ €1 1+ &t QOtO (L)Er (i)ﬁt +1
To to

= Qo (Erca)"

Using (6.18a), denoting: =& /(L+¢&;) and defining —
bxTEts

, we get

% Hence the local elasticitie& and &: depend ort
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el (trrec + (L+ec+et) _ 1 (6.23)

trr +1)E .
(ter+1) L+¢;) Z

The fixed-point problem can be restated as

&t +1+ &+ (624)

trRT

oo 1
t =—(tg +t)Ert& 1,
1+¢; 1+¢&; ( )

The left-side function is a linear affine functitimat increases with respect toif & <-1,

starting from origin ordlnate“—tstm >0. As —g; >1, the right-side function increases
T

quicker than an affine function and it starts frondinate value of zero at the origin. Thus
there exists a unique solution.

Instance. Assumingé&; =—2 and & =-1, the FPP (6.24) becomégr + 2t = Z 1(trt +1)?,
i.e. (trr +1)2 —2(trr +t)Z +trrZ =0. Here, Z = Qut3to /(4bxcy) . Its solution is:

t=Z—-trr +/Z2—-tr7Z.

Illustration. Figure 3 depicts the daily revenue, cost andifpfahctions with respect to
demand volume. All curves are parameterized acegrtti access time, from which t, Q

and N, 1.Q, Cp and P come out. Supply parameters are set uyde-1000€/day,x =
300€/day, cy =4€/h. Concerning demand, constant elasticittess-3 and & =-1 are

considered, with reference point@ = 4,000 trips per day foro =6€ andto = 6min.

20000
- Revenue
= Cost_c
15 000 .
\\ —Profit
10000 \

5000 -

0,00 0,05 0,10 0,15 0,20 0,25

-5 000

Fig. 3. Service revenues, costs and profits acogrtih mean access time.

6.5 Demand function with respect to generalised cost

To extend the analysis, let us consider a demamctifin that is sensitive to price and access
time through generalized cost. This is defined @kbws, wherea denotes the monetary
value of ride time for a user (recall tfatdenotes the money value of access time):

g=T+oa(tr +tr) +pt. (6.25)

18



F. Leurent, ENPC, LVMT On taxi services in Orbicity

If Q=D(g) then 0D/ot=dD/dg =€Q/g where € denotes the elasticity of demand to
generalized cost, wherea®/ot =3dD/dg =€BQ/g.

The optimality conditions for andt become respectively:

L 0C_ g (6.26a)
0Q e’
dCp _0Cpldt _dCp g (6.26b)

T— = .
0Q ~aD/at ot BeQ

As these two conditions imply (6.13), giv@nthere is a simple relationship linkingto Q:

_ [0 _; (6.27a)
-

Combining (6.25) and (6.26b), we recover

—eT+eC (trT +1) = g = T+atrT +Bt, So thatt comes out as the following function F:

£Cf trr — OtRT (6.27b)

Q) = +£9 Py,

1+¢ 1+¢

By substitution, we recoveg = atrT + € Gitry = Ry + (F'Cu —B +B) X—b .
1+¢ 1+€ (B+ci)Q

This makes the generalized cost a second, suplatiedefunction ofQ: letting € =¢/(1+¢)

and yrt =Cf trr +Qtrr ,
) (G (6.27¢)
8(Q) =€ (yar + /—Xb("Q+ ).

As g =D (Q) on the demand side, we finally obtain a problerhwéspect taQ:

o0 =¢ 3+, 029

The relation (6.28) is a fixed point problem onty@. The functionsD(D and § decrease
with Q. The existence and uniqueness of a solution deperie form of the functiol .

Let us hypothesize that [H-¥ is positive and non-decreasing with respec@to[H-2] that
DD (Q).\/a is decreasing from a valu@ such thatDD(Q;) >9(Q1).

Condition [H-1] requires that <—1. Condition [H-2] requires functiorﬁ)(‘l)(Q).\/a to have
negative elasticity, i.e; +5 <0 hencele|< 2.

Multiplying both sides in (6.28) by/@, an equivalent formulation of the fixed-point plerin
is:

DEY(Q)/Q =€.(yr/Q +/Xb(ci +P)) - (6.29)
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Proposition 6: existence and uniqueness of monopoly solution. Under conditions [H-1] and
[H-2], the FPP characterizing the monopoly stratagynits at least one solution, which is
unique on[Qy,+o9[ .

Proof. [H-1] ensures that the left-side function®29) is decreasing, with value @ above
that of the right-side function. The right-side €tion is increasing and has no upper limit.
Thus the two curves must cross [@,+o[ and this happens only once due to the respective
direction of variations.

If the elasticity is constant, we writ€ =Qo(g/go)¢ and DD (Q) = go(Q/Q)Ye. An

equivalent, dual formulation of the fixed-point plem involvest as the unknown variable in
place ofQ: based on (6.13) and (6.29), the characteristiagon is

go(b_n)llet—Z/S - g-[yRT + (CJ"'B) t] ) (630)
Qo
6.6 Special case with demand elasticity of -2 to gendized cost
In the special case with=-2, theng' =2 and the previous equation becomes linear:
(6.31)
Qo[ t=2[yrr +(Ci+ BT
bn
From this we deduce that:
tMO = YRT (6.326.)
1 9o+/Qo/(bn) - (ci+P)
ovo =29V -\/bX(CJ+B))2, (6.32b)
YRrT
v (ot 6.32¢C
gMe = 1y_RT , Where x=1 f—bX(C”+B) , ( )
77X Jo Qo

™0 4+ GE-RT — gMO _BtMO - YRT (1_ B X) . (632d)

I-x B+ch

Furthermore, from (6.26a) the tariff verifies T=%g+CJ(tRT+t), hence

T=yrt t(CH+P)t +CitarT. Subtracting from that the per trip production tcetated in
(6.20c), we obtain the per trip profit as follows:

éP Xo
T——=YRrRT ———.
Q Q
The monopoly can be profitable in the absence bsisly only if
Q= Xo/ Yrr, i-e. 290y/Qo 2 Xoyrr ++/bX(Ci+P) .

The threshold value fo€ involves the fixed supply costo in a proportional way, divided

by a per trip cost that monetizes the run and &etien times on both the supplier and
customer sides.
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[llustration. Figure 4 depicts the profit maximizing behavidrtloe service provider in the
Monopoly setting. With respect to demand voluQe the users’ demand function yields a

demand-side generalized coBt2(Q), whereas the profit maximizing behavior yields a
supply-side generalized cog{Q). The intersection point characterizes a stateupply-
demand equilibrium. Supply parameters are set umadasigure 2. On the demand side,
average user values of time are setote 12 €/h and3 =10 €/h. A reference point on the
demand function i€Qo, go) with go =10 € andQy =50,000 trips per day. Constant elasticity
is set toe=-2, yielding € =2 and curve labeled “gMQO”. The alternative supplyveu

labeled “gSO” will be shown in the next Sectionnmbodel the first-best System Optimum: it
obeys to the same formula as gMO except for seting =1.

60

—gMO0(Q)
-==-1850(Q)

40
L\ —— Inverse demand
30 LN
\
1
20 1
1

10

50

0 10000 20000 30000 40000 50000

Fig. 4. Generalized cost functions according to dedvolume: monopoly solution lies
at the intersection point of the supply and demeaundes.

7. System Optimum (SO, First-best)

In order to maximize its profit, a monopoly produtends to limit demand, and therefore the
market share of its service. Let us now changepgets/e in order to study the collective
optimum for the service. After modeling the colleetsurplus (8 7.1), we characterize an
optimum state for the system in terms of tariff @udess time (8§ 7.2). We then address the
specific demand function with constant elasticity generalized cost (8 7.3) and provide
closed-form results for two special values of télaisticity: value -2 (8§ 7.4) and value -1 (8
7.5).

7.1 Definition of the collective surplus

To society as a whole, the general interest asgatta an economic service involves not only
the producer’s profit but also and above all, thetgbution of the service to the well-being of
its customers. When demand depends solely on deeefaost, the customers’ well-being is
measured by the following function of net consusweplus (e.g. Varian, 1992):

Po(9) =[."D(g")dy’.

The collective surplus is then
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Ps =Pb(g) +Pe = [ "D(g')dg' +1.D(g) - Ce. (7.1)

Here the analysis is restricted to two categorfesgents, the consumers and the producer of
the service. Given that the issue is urban mobiline scope could be widened by also
considering residents affected by local impactssgiopollution), the environment at least in
terms of energy consumption and greenhouse gassiemss competing providers who
produce other mobility services, other road usdis wavel and park on the streets alongside
taxis, etc. We will broaden the scope in a subsetgarticle, which will deal specifically with
regulation, and will consider a wide range of instents.

Here, we consider the two variables of action: @@nd mean access time. The sensitivity
coefficient of the collective surplus to price is

. . 9Cp - Co . . (7.2a)
iP:;(T,t) =-D+ D+TD—6CP D=(t- aCFJ)D whereD = dD/dg .
ot 0Q 0Q
whereas the sensitivity coefficient of the colleetsurplus to access time is:
9 - . dCp . 0Cp (7.2b)
—PRs(1,t) =-BD+1BD- -BD :
5 Ps(t,t) =—-BD+1p P B 30

These two coefficients are less than those of tieelyzer’'s profit, because an increase in
either tariff or access time will decrease theaugtsumer surplus.

7.2 The collective optimum and the associated optimaiitconditions

To society as a whole, the optimum state of theiseras a supply-demand system is a state
at which the collective surplus is maximized widspect to price and mean access time. Such
a system optimum (SO) state can be stated as #osolio the following maximization
program:

max.: Ps(t,t) subjecttog=t+afkr +Bt and Q=D(g). (7.3)

The mathematical maximization program presents ftiowing first order optimality
conditions:
9 C (7.4a)

- 0Cp
—Ps(t,t) =0 and sot = ,
ot S 0Q

9Ce (7.4b)

0 Ps(1,t) =0 and SOT:—BD.

at

Condition (7.4a) gives that

1= CJ(tRT +t) . (75)
Condition (7.4b) is equivalent to relation (6.1®ained for the monopoly:
ot2 = Xo (7.6)
B+ci
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The collective optimization problem is handled e same way as the monopolist’s problem:
it is reduced to a fixed point problem dependingyam Q. From (7.5), we relaté to Q as

follows:
o~ _ br] (768.)
t=t = |—.
Q) JQ

Combining this to (7.4a), we obtain

7.6b
T=F(Q) = Ci (ter + b—Q”>. (70

So that the generalized cost now satisfies the itiondthat g(Q) = T(Q) +atrr +Bt(Q),
therefore

~ Jhx(B+ci) (7.60)
9=9(Q) =S yrr +—1=——.
JQ

Which gives the final condition dependent only@n

+ DX 4 7.7
DEY(Q) = yrr +—bX$36+ ¢i) : (7.7)

As in Proposition 6, ifD(—l)(Q).\/G iIs a decreasing function from a val@@ such that

DD (Q) > g(Q), then as the right-hand side function is incregsind has no upper limit,

the two curves necessarily cross only once, whiguees that there exists a unique solution
beyondQ;.

Since the left-hand member in (7.7) is lower thaa @ne in the monopolist’s problemx< §

thereforeQ>Q and hencel <f and T <1 : it is in the collective interest for the accéisse
and tariff to be reduced, and consequently forvbleicle fleet to be larger than it is for a
monopolist. Furthermore, based on (6.20), the reoluén t compared with the monopolist’s
problem implies a reduction in the unit cost of\pswon, ép/Q: Citrr + (2ci+B)t +X0/Q,
together with an increase in fleet size as weihaaxi productivity.

However, the most salient difference between the states, monopoly versus collective
optimum, lies in the tariff level. Comparing (7.60)(6.27b), the MO tariff is in excess of the
SO counterpart not only by the increase in acdess but also, and more significantly by far,
by a —eg term that is greater than the full generalized dos< -1.

As (6.13) holds true, so do the formulas (6.20§ihg the production indicators to the access
time. From (6.4), (6.5) and (7.4a), we have that

As the average production cost is greater thamasleciated tariff fare, the service structurally
runs at a loss. The producer’s net profit is negaliy the following amount, which needs be
paid to the producer as a balancing subsidy:
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- b : =
-B :xo+XtT = %o +4/Xb(B+c)Q.

The shorter the access time, the greater the peodudeficit.

7.3 Demand function with constant elasticity to generated cost

If the elasticity is constant, we writ€ =Qo(g/go)® and DD (Q) = go(Q/Q)Y¢. An

equivalent, dual formulation of the fixed-point plem involvest as the unknown variable in
place ofQ: based on (6.13) and (7.7), the characteristiaegui is

go(%)llst—Z/s = YrT + (CJ+B)t ) (7.8)

[llustration. Figure 5 depicts the influences of the access tim generalized cost functions
either demand-related or supply-related. Each set#ron point is a solution to a specific
fixed point problem. Two different demand-relatadwes are modeled, first fa@=-2 and
second fore =-1. Three supply-related curves are modeled: for Ndoho (MO) under
£=-2, System Optimum (SO) and“best System Optimum (S2), both of which do not
depend on demand elasticity. All parameter valuesat up as in Figures 3 and 4, savesfor

, Qo= 20,000 trips/day andjo= 20€. The instance suggests first that only shoecess times
are relevant, second that the different generaliredts associated to the different
management strategies do exhibit significantlyeddht values, even if the underlying access
time values are about close. In other words, theagament strategies differ mostly regarding
tariff fares. The gap between MO and SO is muclenidan that between SO and S2.

zz / / ——gDem(e=-2) ——gDem(e=-1)

40 / / ——gMO(t) -==gSO(t)

3 [ / —g52(t) —

30 / ,/

25 ey V4

20 /":'

15 _%ﬁ --------------------

10 /

s/

0 I ! ! T 1
0,00 0,02 0,04 0,06 0,08 0,10

Fig. 5. Generalized cost with respect to access:tlemand-side cost with -2 elasticity (resp. -1),
supply-side costs undef best System Optimum (SOY Best (S2), as compared to Monopoly (MO).

7.4 Special case with demand elasticity of -2 to gendized cost

In the special case with=-2, then the previous equation becomes linear:

7.9
901/@t=YRT+(Cﬁ+B)t, (79)
bn
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From which we deduce that:

£SO YRT

" G0y Qu/(bn) — (i +P)
os0 :(90@ —\/bX(CJ+B))2’
YRT

g% =YR"  \where x=_L [PX(Ci*B)
1-x , Jo Qo ,

150+ gy = g0 —ptso =T - P

1-x  B+ct

On taxi services in Orbicity

(7.10a)

(7.10b)

(7.11c)

(7.12d)

The values for access time, generalized cost awe,pare to be brought together with the

values for the monopoly’s optimum profit. Clearly,

gMO _tMO MO +otrT _1-x

1-x

1_x

2
follows thattMO > 2tS0, T™O > 2150 +atgrr and QMO <1QSO.

Now xLI]0,4[soi=1-x and

=1+1/(3-x)> 2. ThereforegMO > 2gS°, from which it

On these assumptions, the monopolist's optimunif tarimore than twice as high as the

optimum price for the community.

An instance of comparison between SO and MO umrder2 is provided in Figure 4 (cf. §

6.6).

7.5 Special case with demand elasticity of -1 to gendized cost

In the special case of elasticity= -1, the equation (7.8) is quadratictin

7.13
Mt2:ym+(<:a+[s)t. (7.13)
bn
Only the positive solution is valid. Putting theuatjon ast? — bX t— bn yrt -0, we get
goQo 00Qo

tSO: bX +\/( bX )2+br] YRT ' (714&)

290Qo 290Qo 00Qo
so__bn (7.14b)

(t50)2
gS° = go @tso, (7.14c)
bn

(7.14d)

SO + aE{T — gso _Btso — (go f% —|3)t50.
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8. Second-best optimum with a budgetary constraint

As the first-best system optimum state resultsnimaerating deficit for the producer, we will

also study the second-best optimum that takes dhditton of production profitability as a

constraint. We shall firstly state the constraimedximization program and its optimality
conditions (8 8.1), secondly consider a demandtfonavith constant elasticity with respect
to generalized cost (§ 8.2) and thirdly addresstwhe particular cases of value -2 (§ 8.3) or
value -1 (8§ 8.4).

8.1 Constrained optimization problem

When the public finances are tight, it is difficuti subsidize service production and to
achieve the first-best system optimum. An altexgapolicy is to search for the conditions
that maximize the collective surplus while ensursggvice profitability. Such “second-best”
system optimum is defined mathematically as theutgoi to the following program of
constrained maximization. The economic prograrhésnt

max; R (1,t,Q) subjecttoQ=D(t,t) and tQ=Cr(t,Q). (8.1)

To solve this problem, we associate the parametei0 with the budget constraint and form
the Lagrangian function for the system,

E(Tty) = ﬁ’s(r,t,Q) +y(t.Q- ép(t,Q)) , WhereQ =D(1,t) , hence

E(Lty) =J;"D+A+y)(Q-Cr(t,Q). (8.2)

From this, the partial derivatives can easily bewated:
0£/9T = yD+ (1+Vy)(1—9Cp/Q).D, (8.3a)
0£/0t = —a D+ (L+Yy)[a D.(t-9Cp/ Q) -9 Cp/t] , (8.3b)
9£/0y=1Q-Cr(t,Q). (8.3¢)

The constrained optimization problem is the eqertlof a saddle point problem for the
Lagrangian, with the following first-order optimigliconditions:

0£/0t1=0, (8.4a)
£/t =0, (8.4b)
0£/0y=0 and yod£/0y=0. (8.4c, d)

By (8.3a) and (8.4a), at the constrained optimum
(L+vy)(1-9Cp/8Q).D=-yD, (8.5a)
By combining this relation with (8.3b) and (8.4%k obtaino Cplot = —-BD, hence

RIS (8.5b)
Qt?

So the relationship (6.13) betweénhandt holds for the second-best optimum state (denoted

S2) as well as for the MO and SO states. So thauias (6.20) for production indicators still

apply.
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As the production runs at a loss under SO, the dtaalg constraint is active under S2. Thus

C (8.6a)
T—%—cutm +cut+Xb m—cJtRT+([3+ 2cJ)t+m.

(8.6b)
a Xb ﬁ_(B+C+)t+XO
aQ Qt Q Q
Using (8.5a), we obtain thdp +ci)t = —y D/D , where we defing/ = y/(1+y) . By replacing
D/D with g/e, we get
4 8.6
v:—s(B+gC )t (8.6)

Equations (8.5b) and (8.6a) determiheand 1 as functions ofQ when the constraint is

binding:
_[bn _~ (8.7a)
t=/—=1t .
| 9 Q)

(8.7b)
T=cftrr + (B + 2¢8) ” +X0
Q
Therefore the constrained generalized cost is
(8.7¢)
g = yrr +2(B+ i) [0 + X0
Q
The S2 state satisfies the following fixed-pointigem with respect t@:
bn + X0 (8.8)

DEY(Q) = yrr +2(B +cf) Q'

As the right-side function in (8.8) is greater ththat in (7.7), the intersection with the left-
side function takes place at a lower valu@®? <QS©, vyielding then gS2 > gS© via the
demand function andS? >tSO via relation (8.5b). From (8.7b) compared to (7i6)also
follows that 152 > 1S°.

Let us compare now the S2 state to the Monopoly. ¢hhan S2 state exists, then the
producer’s profit can take non-negative values. &ridO it is greater than under S2, so that
TMOQMO > TSZQSZ_

Yet Ps(Q%?2) = Rs(QMO), so that necessarillgy (Q52) = Pr (QMO), requiring thatQs? > QMO |

It also holds that:

e MO >1%2 from the comparison of revenues,
 gMO >g%? from the inverse demand function,

e tMO >tS2 from relations (6.13) and (8.5b).
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8.2 Demand function with constant elasticity to generated cost

If the demand function has constant elastigtyto generalized cost, again we have that
Q=Qu(9/9go)t and DED(Q) = go(Q/Qv)Ye. Owing to (8.5b), the S2 program admits a dual
formulation with respect to access tihas follows:

go(m)l’st‘z’s = yr7 + 2(Ci +B)t + X042 (8.9)
Qo bn

This implies that if—€ <1 then there is a unique solution to the S2 stamreMenerally, the
existence of an S2 state is equivalent to the lidagiof supply profitability, i.e. to the GO
condition for the Monopoly.

[llustration. Figure 6 depicts both the S2 and the SO fixedtgmioblems according to usage
volume. Two different demand curves are modeladt for € =-2 and second foe =-1.

All parameter values are set up as in Figure 5. Shesupply-related function is greater than
its SO counterpart, thereby reducing the demandmelwhile increasing the generalized cost
at the solution point: yet in this instance thefetdnce between the SO and S2 generalized
costs is small.

» \ \ —gS0(e=-2) =—gS0(e=-1)
50 gMO(Q)  ---gSO(Q)
\ \ —gS2(Q)

30 I\ \

0 10000 20000 30000 40000 50000 60000

Fig. 6. Generalized cost with respect to usage meludemand-side cost with -2 elasticity (resp. -1),
supply-side costs undef best System Optimum (SOY Best (S2), as compared to Monopoly (MO).

8.3 Special case with demand elasticity of -2 to gendized cost
When e =-2, the dual fixed-point problem is a second-degpeagon int:

go /t%lt = yrr + 2(Ch +B)t +i)(_:|t2 , Which is equivalent to

go+/Qobn t =bnyrt + 20Xt + Xot2. (8.10)
For a non-negative solution to exist, we must hatb®at go,/Qobn=2by, i.e.
oz 4DK(B D)
95
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If Xo >0, we also require that go./Qobn = bx +,/XobnyrT . Then the two roots of equation

(8.10) are positive and we keep to the smalleranieh induces larger demand volume hence
greater overall surplus: the solution is then

ts2 :%QOVQObr]—bX _\/(%go\/Qobr]—b)'()z_br] YRT 100 (8.11a)
Xo Xo Xo ’
otherwise 12 =— PIRT ¢ g (8.11a)
Jo+/Qobn — 2bx
Q% = bn (8.11b)
- (tS2)2’
g2 =go @tSZ' (8.11c)
\'bn

= (8.11d)

= === ==

We can bring the values for access time, generhtibst and price in relation to those in the
monopoly optimum profit case. Obviously,)b =0,

g2 t2 12 +qiry

gMo tMo _TMO +af|;2_|_

box 1
1-2x 2

Thus, the generalized cost and access time ingt@ng-best optimum are half those of their
equivalent for the monopolist. The tariffs? =1 (tM° —atrr) is even smaller. As for the

volumes, Q%2 =4QMO | which shows that the absence of service regmatouces demand
by a factor of 4.

8.4 Special case with demand elasticity of -1 to gendized cost
When e = -1, the dual fixed-point problem is also a secondréegquation irn:

QO%tz = yr + 2ci+ Bt +i)(—:]t2 , which is equivalent to

(90Qo —Xo)t? —2bxt ~bnyrr =0. (8.12)

For a positive solution to exist, we must have tlga@o > Xo. The existence of solutions also
requires thabx?=(goQo —Xo)nyrt, Which holds true ifgoQo > Xo. The solution is then

2= PX +\/( bx 2+ bnyrt (8.13a)
9oQo — Xo 9o -Xo 9o -Xo
sz —_ DN (8.13b)
(tSZ)Z !
gs2 = 90 soy0. (8.13c)
bn
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12 +atgr = gS2 - BtS2 :(%tsz_@tsz_ (8.13d)

We can relate these values to those for the feest-bystem optimum SO in (7.14): in fact, the
S2 access time follows the same formula as thetisnltio the SO equation except for the
denominator, 2goQo or goQo as opposed togoQo—Xo in (8.13a). ThustS?, being
constituted of larger terms than its SO counterp&?, is greater than it.

[llustration. In Figure 7, the sensitivity of the mean accas® tunder S2 policy is analyzed
with respect to the fixed production cogs. All parameter values are set up as in Figure 5.
Two different demand curves are modeled, first §or-2 and second foe =-1. In both
cases the resulting access times are fairly cBsth functions increase witlgo in a smooth

way that is quite slow. This suggests that the &R&ypis a robust one, which makes it all the
more valuable as a fair compromise between cussimetl-being and supply profitability.

_m(ew
0,015 /

0,010

0,020

0,005

0,000 T T T T T T T 1
0 20000 40000 60000 80000 100000 120000 140000 160000

Fig. 7. Sensitivity analysis of Access time witgpeet to fixed production coXb, under S2 policy.
Two special cases of demand function are considevitd elasticity of either -2 or -1.

9. Prospective Application

Let us apply the model in a prospective way, ilegsroom instance which is at best a sketch
study but absolutely not a consultant’s report.

9.1 Technological issues

Having laid the emphasis on regulation patternsthadissociated service management, let us
finally come to the technological issues. These¢gneto:

) the generalization of connectivity for all mobiletities, taxis as well as customers
(with their smartphone) around a service platforhatt centralizes system
management and eases the transactions: transaéfioots have drastically fallen
down, from say 10 min to 2 min fdf as well as fortr.

i) Elastic Vehicles (EVs) for taxi fleets: under tygi¢-rench conditions (e.g. Leurent
and Windisch, 2015) this enables to cut the peiclehime-based variable cost
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cu from say 5€/h for conventional cars down to 1€ncerning the fixed cost
per taxiX, while electric vehicles have higher selling psictheir technical life is

longer; the combined effect may well be a decraaséhe daily cost. In our
numerical application we allow for a 5% decrease.

iii) Autonomous Driving (AD) technologies are developings for taxis, full
automation at Level 5 is required in order to samedriving costs and reset the
business model drastically. We model the AD optignreducing the daily fixed
cost per taxix from say €400 to €100, including vehicle leasimgurance and

maintenance, cleaning services.

9.2 Scenario design

Technological developments take place in a cunudatiay. Nowadays, platform technology
is implemented almost everywhere. The disseminatioRVs in taxi fleets in under way —
still far from complete. AD at Level 5 is yet torme. So we identify four technological
generations, numbered from 0 to 3:

* Generation 0, Pre-platform, is now obsolete butioles a reference for comparison.
* Generation 1 involves Platform only.

» Generation 2 combines Platform and EVs.

* Generation 3 involves Platform plus EVs plus AD.

Then, each technological generation can be comidimedregulation pattern, MO versus SO
or S2, giving rise to 12 scenarios.

Table 1 provides the parameter values assignedcto technological generation.

Parameter 0/ Pre-platform 1/ Platform 2/ PF+EVs 3/ PF+EVs+AD
tr min 24 24 24 24
tT min 10 2 2 1
X €/day 400 400 380 100
Cu €/h 5 5 1 1

Tab.1l: Parameter set-up according to technologgateration.

9.3 Simulation outcomes

We applied the model to each scenario combininge@nological generation with a
regulation pattern. Demand function with constdasticity -2 is considered from reference
point at Qo = 50,000 trips/day foilgo = 20€ per trip. Average user’s values of times atdce

o =B =25€/h in order to reflect a population of taxi ss€Fhe fixed service cost is omitted
(i.e. Xo =0) since the outcomes have reduced sensitivity ofitFigure 7). The simulation

outcomes are given in Table 2 in terms of serviedgpmance (quantity of usage, access
time), production factors (fleet size, taxi dailpguctivity), price (tariff fare), level of service
indicator (generalized cost), along with economiti¢cators of fare revenues, supply cost and
profit, demand surplus and collective profit.

A couple of comments are in order here:
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From Pre-platform under Monopoly to PF+EV+AD und&® or S2, the demand
volume is multiplied by 25, access time divided&yleet size multiplied by 16, tariff
fares divided by 13: such ratios represent onevordrders of magnitude for service
development.

A ratio of about 25 is rooted in two changes: frbf® to S2 there is a factor of about
4 (a theoretical property for demand elasticity-8j, while from Pre-platform to
PF+EV+AD the factor is about 6.

Technology alone will not reduce the fare so deadliy: under the next technological
generation, a monopolistic service would still ger relatively high fare (€17 per
trip) whereas SO and S2 would reduce the trip @S or 4.

Technological development and regulation are mustefcial to the demand side,
and also to the supply side in terms of busineswigg fleet size, commercial

revenues. Production profit, however, is positivalyoin the Monopolistic

configuration.

TECHNOLOGY Pre-platform Platform PF+EV PF+EV+AD
REGULATION MO SO S2 MO SO S2 MO SO S2 MO SO S2
Trips per day 947 4327 3787 1571 7181 6283 1926 8712 7703 6200 26001 24801
Access time (h) 0,075 0,035 0,038 0,058 0,027 0,029 0,054 0,025 0,027 0,020 0,010 0,010
Gen trip cost 72,68 33,99 36,34 56,42 26,39 28,21 50,95 23,96 2548 28,40 13,87 14,20
Fare 56,81 19,13 21,41 44,31 15,05 16,83 3895 12,67 14,15 17,67 3,39 3,72
Fleet size 53,3 2061 1823 67,8 261,3 231,2 80,6  311,8 2783 230,1 8602 8228
trips/day.veh 17,7 21,0 20,8 23,2 27,5 27,2 23,9 27,9 27,7 26,9 30,2 30,1
Fare revenues 53779 82771 81085 69598 108096 105740 75016 110391 109016 109587 88259 92287
Supply Cost 23552 91690 81078 30661 119583 105728 31477 122138 109003 25567 96479 92260
Supply Profit 30226 -8919 7 38937  -11487 12 43539 -11747 13 84020 -8220 27
Demand surplus 68798 147095 137595 88623 189484 177247 98127 208712 196255 176071 360561 352142
System Profit 99024 138176 137603 127561 177997 177259 141666 196965 196268 260091 352341 352168

Tab.2: Simulation outcomes for technological angitation mixes.

10. Conclusion

The Orbicity model of Taxi supply, demand and ragjoh has a four-layer architecture that is
exhibited in Fig. 8. On the first layer, the averagcess timé is modeled as an “Availability
function” of fleet sizeN and demand volum®&, conditionally to running time parametbr

specific to the city. We inverted the availabilitfunction into a relation
N(t,Q) :ﬁQ(tRT +t) +b/t, which is a fleet sizing rule on the basis of &rgsage volume
and access time.

On the second layer, demand volu@es modeled as a functiod according to tariff farer
and timet of accesstr of riding andtr of transaction. Thus, bot andt are jointly
determined as implicit functions df andt in short-term demand-supply equilibrium.

On the third layer, given a regulation pattern eithonopoly or System optimum or Second
best optimum, the service supplier determifvesand T so as to meet a specific management
objective. Pattern-specific optimality condition®nstitute characteristic equations with
respect tot andt, from which stem the other state variables. Whatéve pattern, a relation
Qt? =xb/(ci +B) links Q andt to city run parameteb, the per vehicle fixed cost of
service provisiory , the variable supply cost per unit of trip timg and the user’'s monetary
value of access timB.
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On the fourth layer, the service supplier takeatsgic decisions on vehicle technology (in
terms of engine type and driving mode) and on tttal implantation (ring identification),
while the public authorities decide on the regolagpattern.

For a demand function with constant elasticity, ikodal theoretical properties were
obtained. In particular, when the volume of demhasd an elasticity to generalized cost of -2,
then monopoly operation results in an optimum pnage than twice that of the second-best
optimum, an access time that is also more thanldpabhd demand that is lower by a factor
of more than four. The ratios between monopoly furst-best collective optimum are even
higher. System optimization drives expansion inpdp@nd demand, making it possible to
reduce both tariffs and access times, to the gréateefit of users.

The ring postulate was instrumental to establish dkailability function on the basis of
specific territorial conditions: circle radius aralerage running speed. The composite
parameterb can be taken as a standalone exogenous parametepitt local conditions in
less specific urban territories. Under this enldrggerpretation, the availability function will
still hold as an approximation of Little’s law iueuing theory.

The theoretical model may be further developed imumber of research directions: more
complex pricing schemes including a distance-basedponent, demand segmentation with
respect to value of time, temporal variations alting day, service hybridization between
passenger taxi and freight delivery (cf. the UbatsEservice), spatial composition involving
several kinds of circles, less uniform spatial ogunfation involving local peaks of demand
along the service ring, more complex regulationesods involving price caps, fleet size
limitations etc., service competition and its regidn, deeper composition of the collective
welfare function to emphasize environmental andatstakes, etc.

Technologies Urban Conditions
Mobility Policy
/-Strategic Marketing

uProﬁtability
(Financial |\ or Social)

Supply Management

N

u Performance Indicators

Management
Strategy

Supply
Conditions
Supply-demand equilibrium Demand

Conditions

Service operations

Fig. 8. Architecture of the Orbicity Taxi Servicetél.
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Appendix A: On Service Operations and Traffic Equilbrium

A.1 On the mean number of busy vehicles
Proof of Proposition 1. Point (i) stems from thea®position ofn in simple, continuous
functions. Denoting/s =+ X2 —Ab, we get thadn/oN :%— X /¢ =(/* = X)/2 which is

less than zero, hence (ii). We also obtain ti@ﬁt/a)\:%tm +(b+ X.tRT)/\/T. Thus
on/oA = 0. Furthermore,

om _ _tar

N2 e
-3

IV " (b+ XtrT)2 ~ (X2 ~bN))

1

-3 oX
i (b+ X ter)(2X = ~b)

= Z\/'— _3(b7\tFZzT +b(b+2XtrT)) Whichis positive

This makesn a convex function ol , yielding (iii), therefore also of demand volur@e

A.2 On the mean vehicle access time

Proof of Proposition 2. Point (i) comes from redatity =b/(N +1-n) since b>0 and
N>n.

(i) As oty /oN =-b(N+1-n)2(@-0on/oN), it is negative, makingty a decreasing
function of N . With respect tdo, we have that
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ay 1 b on . . o oV . . .
= —+ ——— which is positive: thus,y is an increasing function df.
ob N+1-n (N+1-n)20b
e oty _ b on L " oy .
(iif) With respect toA, — which is positive. Indeedfy is a function

oA (N+1-1)2 oA
chaining two positive increasing functiods—>n andnt, so it increases with . As for
convexity, from Prop.1-(iii) functionA+—n is increasing and convex, whereas function
N>t is not only increasing but also convex sing&/on? =2b(N +1-n)==>0. Thus
function A — g—;\ :g—;g—; being the product of two positive increasing fmats, is positive
and increasing, which maké¥ a convex function oh .

A.3 On the fleet sizing function

Proof of Proposition 3. (i) A2 decreases withN , then the inverse functiol decreases
with t. As ON/ot =Q/H —b/t2, for ON/dt <0 to hold it is required tha® < Hbt 2.

(i) Given t, it is easy to compute

a—N :tAﬂ >0 henceN increases withQ.

0Q H

ON_ON_Q >0 henceN increases withr andtr.
Ot Ott H

oN

—:}20 henceN increases wittb.
ob t

A.4 Existence and uniqueness of traffic equilibrium

Proof of Proposition 5. (i) The left side of thexdd-point problem (5.4) decreases with
while the right side increases. There is there&dmmost one solution.

(i) Function TY increases continuously from/(N +1) to b when Q increases from 0 to
NH/trT. Then functionf(Q) = Dt(_l) (t,Q) - TY(N,t1,tr,Q), being the sum of two smooth
functions that decrease witf), is also smooth and decreasing. 8s D(t,b/(N +1)) and
Dt(_l) is decreasing, thet(_l) (t,0*)=b/(N+1 i.e. f(0O*) = 0. Furthermore, under condition
D(1,b) <NH /b, thenb>D{™ (1, NH /b) i.e. f(NH) 20. So on interva[0, £ NH] function

f is smooth and its sign changes from negative teitige; by the Bolzano-Weierstrass
theorem, there is a poirf®* in the interval at whichf(Q*) =0: this constitutes a supply-

demand equilibrium.
A.5 Sensitivities of traffic equilibrium

Proof of Proposition 6. (i) an increase Ik lowers the value offY, which increasesy as
well ast* .

(i) As for 1, betweent1 and 12 >11, the demand functiort— D(t2,t) is lower than
t+> D(11,t), and therefore in turn the reciprocal functi@s DV (12,t) is lower than
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Q> D{P(11,1). So, the fixed poinQy is lower thanQF. Thus the price has the effect of
lowering the equilibrium volumey, and also the access tintesince Ty increases withQ .
Then, an increase in the transaction time on tbduymtion sidetr, raisesTyY , which reduces

Q@ andt* . The transaction time on the customer siielowersD and therefore alsﬁ)t(_l),
which also lowersQ* and+. Therefore a combined reduction of the two transadimes
produces a twofold increase @ as well as int* .

Lastly, a variation in the riding timg has an effect similar to a joint variation, in theeme
direction, intt and tr : an increase iR leads to a reduction in bothr andt* .

Appendix B: a Markov model for traffic in a taxi service

Abstract. We consider a taxi service operating in an urbamironment that is spatially
homogeneous both in travel demand and in motoramglitions. The postulate of uniformity
allows us to model the service as a Markov chapedding on the number of vehicles vacant
at a given moment, if this is positive, or othemvian the number of customers waiting. We
combine the two cases into a single state variablihe set of integer differences, which
amounts to a double ended queue, which is convaltio the analysis of a taxi rank. We
model the rates of transition specific to our systnd to its spatial extension. From this, we
deduce the stationary regime law in stochastic lbguim, and from this we establish the
conditions of existence as a function of the patanseof the system.

In stationary regime, we obtain the distributioncatomer waiting time and the distribution
of the number of empty vehicles. We characterisentiode of the number of vacant vehicles
and we show that it is equivalent to the mean rgisiom a formulation similar to Little’s
law. Finally, we show that the number of vacantielels is very close to a random Poisson
variable.

Keywords: Taxi Service; Homogeneous City; Markov Chain;aBsral Queue; Stochastic
Equilibrium; Waiting Time; Empty Vehicles

Introduction. This appendix presents the stochastic model ofdffmamic operation of the
supply and demand system for a taxi service in doicy. We model this system by a
Markov model with states and transitions, in whilch state variable is reduced to an integer
difference: in the positive range, the variable gledhe number of empty taxis, whereas in
the negative range, the variable models the numibenstomers waiting to be allocated a taxi
(with only a difference in sign). We begin by delsitrg the states and transitions in this
Markov model (8 B.1). Then we established the pbdlg distribution for the system in
stationary regime (8 B.2). For the dynamic stattgnmagime, we can therefore calculate the
mean waiting time for a customer until a vehiclallscated (8§ B.3).

We then model the time of access to the serviogdudmg waiting time before a taxi is
allocated and the time required for the taxi toche#he customer (8 B.4). We can then
characterize the availability function that linkeet mean access time to the technical
characteristics of the supply and to the spatiotaalpcharacteristics of the demand (§ B.5).
To facilitate the calculations, we posit additiosahplifying hypotheses that constitute the
“approximate model” (8 B.6). We study the mode (§)Band dispersion (8 B.8) of the
stationary distribution, showing that it can be mmated numerically by a Normal
distribution. In addition, a Poisson distributioffens an excellent approximation (8 B.9). We
conclude by recapitulating the simplifying assurops in the model (8 B.10).
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B.1 A state-transition model for the dynamics of tle service

The customer’s access timg,, encompasses the time between the vehicle belincatéd to
and reaching the customer, denoted tfy and the time the customer waits before being

assigned the vehicle, devoted bY. These two terms depend on the number of vehicles
empty in real time, i.ek*.
If k* >0, then vehicle allocation is immediate, i.e.

k*>0= t{¥=0. (B.1)

If there are no vacant vehicles, the customer mwast for a currently occupied vehicle to be
allocated. This waiting time depends on the curoegupancies of the different taxis, but also
on the number of customers waiting, let us kay

Obviously, statek* >0 andk™ >0 are incompatible:
k*>0= k=0, (B.2a)

k->0= k*=0. (B.2b)

We can therefore model the current state of théesydy a main variable, denoted Hy
which links the number of taxis empty and the nurmddeustomers waiting as follows:

k=k*-k". (B.3)

On its own, this variable does not account forléheel of occupancy of the vehicles (i.e. the
additional time needed to service waiting custoipeosit only for their current state of
availability.

We model the occupancy level indirectly, via thesteyn’s transition rates between the
different states constituted by the valueskaf Provisionally, we denotgx as the rate of

transition from statek to statek +1 andAx+ as the rate of transition from state-1 to state
k. During the dynamic changes to the system, treer@ievent that results in a shift from a
current statek to any state other than its immediate neighbbord or k —-1.

Thus the states and transitions constitute a Mackaun illustrated in figure B1.

Fig. B1. State transition diagram.

The state of the system is bounded above by theeVdl, whereas for the negative values
there is no lower bound (i.e. there is no uppemidofor k~, which is an approximation since
k- is in fact limited by population size).

Let us look at the rates of transition betweenestatecalling that the transition rate between
statesm andn is defined by mn =limg, o+ OPI{Kn+sn = n| kn =m}/oh.
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For positive values ok, a transition fromk +1 to k>0 corresponds to the allocation of a
vacant vehicle to a customer: as this vehicle amtand there is no other customer waiting,
the assignment is immediate and the rate of triansilepends only on the arrivals of

customers in the system. Assuming that customeigeaindependently according to time

intensity A, then precisely

Ak+1 =&k+1k =A for k=0. (B.4a)

Dually, a transition fromk to k+1 corresponds to the end of a taxi ride. We now rhtde
service time for each taxi, including, tY and tr, as an exponential variable, with a

parameterpf}) calibrated as follows. As the parameter of an egptial distribution is the
inverse of its mean value, we know that

=ty +E[Y/*] +Eltal].
Mg

As there areN —k vehicles operating in state”, with enough independence between them,
the rate of transition to state+1 is the sum of their respective rates of servicmmetion,
hence

N -k (B.4b)

=8 1 = for k>0.
Mk =&k + E[t] + E[tn]

In fact pl((l) is obtained by two approximations: not only the rkéwvian assumption of

exponential distribution, but also that the acdis®s until pickup,tY’, correspond tok

vacant vehicles for all the busy vehicles, when@asertain cases their current occupancy
arises from a different state .

For negative values df, the transition fromk +1 to k also corresponds to the arrival of an
additional customer in the system. We add herehymothesis that the probability of a
customer agreeing to wait is onty such that

Ak+1 =Ar for k<O. (B.4c)

The transition fromk to k+1 also corresponds to the completion of a vehicte€'ssice, so
given that there ar&l busy vehicles

= N for k<O. (B.4d)
tr +E[ty"!] + E[tr]

Mk

The difference between (B.4d) and (B.4b) arisestlmm one hand from the number of
occupied vehicles, which does not dependkorbut only onk*, which is zero ifk<0, and
on the other hand from the time it takes for the ta reach its customer. Since this taxi is
provisionally the only one empty, the mean for tivise isty/*.

In this way, we were able to use transition ratesiodel vehicle occupancy and the arrival of
customers in the system.
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B.2 Stationary distribution of the system state

The system is in a stationary dynamic regime, lreotvords in stochastic equilibrium, if at a
momenth the statek, takes the valuek[JK for K={..—n,—n+1,...~1012,...,N} with

respective probabilitiepx independent of.

For a Markov chain with simple transitions, thetist@ary distribution[py:k € K] must
satisfy local balance conditions for the probaypifiux betweenk andk + 1:

Pi-Hk = Prer- Akt (B.5)

In other words, the probability flux from stake to statek +1 equals the reverse flux from
k+1 to k. From this, we deduce by recurrence that

B.
po|‘|,"_0l M for k>0, (B-6a)
+1
e B.6b
|O|<—|Oo|'|i:k0l — for k<0 ( )
-i-1
The normalization of the probability distributione( >, p« = 1) then gives uspo:
__1+ZI—|—|(—1 )\ -i +Z|—|I_—3. HI (B7)
pO —|—1 k=1 )\|+1

The negative part of the range is easy to calcldlatause the transition rates are uniform: as
A-i =\ andp-i-; is independent of (cf. (B.4d)), by denoting

A-i )\r(tT +E[t) ’1]+E[tR])

M-i-1 N

Y

the relation (B.6b) can be interpreted as a geoostguence:
p-x = pop¥ for k=0. (A.8)

Example. Take a circular city with a radiuR = 2km, populationP = 5,000 people with 3
trips per person over the peridtl = 10h. Therefore customers arrive with an ovenadinsity
of A = 1,500 people per hour. We also set 80%. We assume that= 20km/h thereforfl

= 6.37/h, and also that = 1 min thereforef = 260. The derived parametprequals 99%.
The probability distribution is illustrated in figel B2: we observe that the probability is

concentrated around the valke= 235, with a very high concentration. The discraiedom
variable is very close to a Gaussian continuoudaanvariable.
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Fig. B2. Stationary distribution of the systematstvariable.

B.3 Customer waiting time until allocation of a tax

In stationary regime, the probability that all ieés are occupied is

Pr{k <0} =P
-p

On taxi services in Orbicity

(B.9)

We can also obtain the mean customer waiting tinté allocation of a vehicle by applying
Little’s law only to this phase: the mean numbecua$tomers waiting in the system equals the

flow of arrivals (i.e.A(r.pk<o + px>0) ) multiplied by the mean waiting time.

The mean number of waiting customers is defined by
E[k 1= Sk
Thanks to the properties of the geometric distrdyut
PoXkokPX = Pop X (K =Dpk = popt 34 ZoP = Pop g 125 = Pop /(L= p)2.

E[k-]= P
So [k~] |Oo(1_p)2

Thus the mean value for waiting time per custonadoite allocation of a taxi is:

wy—  EIKT] _ p
Bl = A(r + ) k-1 u.
PreotPeo) @G+ Sy )
Additionally, in the positive range, the mean numiieempty vehicles is

Elk |k >0] =[ 2, pek]/ S0, .

(B.10a)

(B.10b)

(B.11)

(B.12)
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B.4 Vehicle access time

Between a taxi being assigned to a customer anchtimeent of pickup, the time speri\f(")
depends on the state of the system. We wrignR)/v. For the negative part of the range,
* =0 , therefore

B.1
E[tY0 |k<0] = 2. (B.133)
2
For the positive part of the range,
b B.13b
E[tY™ |k >0] {Zﬁ':l Dk } S P ( )
k+1
In all, by joining the negative and positive partghe range,
(B.13c)

bl po N Pk
E[tY]=—| = +2%, L —4—|.
[A] 2|:1_p Zk_lk+l:|

Example (continued). Let us revisit the previous example. The probabitit the negative
states is negligible. For a customer requestingéneice, allocation of a taxi is almost always
immediate.

B.5 The exact availability function

In our Markovian analytical framework, we modeladtbe one hand the mean waiting time
per customer until allocation of a tax}/ , and on the other hand the mean time taken ér th

taxi to reach the customey .

The sum of these two durations constitutes theooust's mean access time to the service:

E[ta] =E[tV]+E[tY]. (B.14a)
Specifically,
R R (B.14b)
Elf] = P RSt 25 UL v
Q-PAC+a-ONLMIS, ) 2 1+ oSS,

This is effectively a function of the supply chasdstics, (R,v,tt), and of the demand
characteristics(r,A) . Figure B3 shows the linked sequence of influemcedise model.
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Fig. B3. Diagram of influences in the detailed mode
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B.6 Approximate formulae

When the probability that all the vehicles are qued is negligible, then the actual rate of
arrival of customers is more or less equahtcsinceA (r.pk<o + pPk>o) = A .

This is also the rate at which customers are pickedyy taxis, and therefore also the rate at
which the taxis attain a busy state. The mean cernine per ride ids =tr +tr +tY. The

mean number of busy taxis satisfies Little’s latvisi the rate of arrivals multiplied by the
mean ride time, i.e.

n=A(tr +fr +1Y). (B.15)

We model the mean access time by the following @ppration, which applies the access
time functionty ®” to the mean number of vacant vehiclles; N -, in other words,

£V = b ' (B.16)
N+1-n
In the example considered previously, the high eatration ofk* aroundk fully justifies

approximation of the mean. By combining the two vpoas relations, we obtain a
characteristic equation for the mean number of basig, N : writing trr =tr +tr, we have

Ab (B.17a)

= Agy +—2
T N+1-1

This is a second degree equation, which is easpliee by equivalence between successive
conditions:

(N +1-R)([ = Mrr) =Ab
N2 —=(N+1+Atg7)A+ At (N +1) +Ab=0
(ﬁ— N+1-;)\tRT)2 - (N+1;)\tRT)2 _}\tRT(N +1) _2)\/[3 — (N+1;)\tRT)2 -\b

A — N+I+AtRT N+1-AtRT )2 _
A= Nesdter 3 [(NHMer)2 — \p

i.e.
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n=

N+L1+Ater  N+1-Mer [ &b (B.17Db)
2 - 2 (N +1-Atg7)?’

If the number N +1-Atrr is sufficiently large for (N +1-AtrT)?2>>4Ab, then we can
approximate the expression under the root in (B.byld—2Ab/(N +1- AtrT)?2, therefore

= N+1+)\tRT+(N +1-AMrr  2M/P ) (B.17¢c)
2 B 2 N +1-AtrT ’
So againi O{N +1-1 2, Atrr + 175} - The first solution is too large, so only the
second one is suitable, which prompts us to regetee associated formulae.
"= N+1+Atrr N +1-Atrr 1- 4\b (B.18a)
2 2 (N +1-Atp7)? "
= Atar + Ab . (B.18b)
N +1-AtrT

Example (continued). The parameter values require tk@tb= 235.62 anditrT = 260.6, as
well as a mean number of empty vehiclesdfn = 235.37 in the precise model. The

characterization gives = 262.58 andN —n = 237.42. The simplified approximation gives
n =262.60 andN —n = 237.40. The two approximations are thereforeav§ high quality,

to within 1% of each other.

B.7 The mode of the state distribution

The mode of the distribution is the state that gmés a maximum probability, which we
denote bylz. Since the probabilities of the positive statesigin accordance witlk up to the
mode, and then decrease, we can look for the medieavalue that equalizes the ratio
pk+1/ px at 1: the mode is therefore given by the equation

N -k =A(trr + b ).
k+1

This condition is reformulated in accordance witls N -k, which is a number of busy
vehicles sincek is a number of vacant vehicles. We then obtairstree equation as the one
that characterizes the mean number of busy vehitissproves that if this mean equation is
a good approximation, thehis the mean number of busy vehicles, in other wahé@ mode
and the mean coincide.

B.7 On the dispersion of the distribution of states

Our numerical experiment suggests a strong coivelatf the probability of the states around
the mean value. This phenomenon obviously arisesn fthe formula of the ratio
'« = px+1/ px @among the positive states: Idwwhave a high ratio, while as one approaches
that bounds the distribution, the ratio becomey \@~v. Moreover, between two distant states
ki and k2 > ki, the probability ratio is the product of the ratimetween consecutive states:

ko -1
k:
Pe =,
Pk k=k1
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This implies that the states that are close taribde of the distribution have a relatively high
probability, whereas moving away from the mode, th@bability quickly becomes
negligible.

In order to quantify the dispersion of the disttibn, we will characterize the statds
according to the value of the ratip, let us saya . The equation defining is

_ b
N —Kq —G)\(tRT+kG+1).

In order to solve it, we simply reuse the mean gqonareplacingA with a.A and therefore
Atrr with aAtrr. We then obtain the exact and the approximatdieak

Nk, = N*LroMer _ N+1-aMer [ 4ohb (B.19a)
2 2 (N +1-0Atry)?2
oAb (B.19b)
N — Ky = At + —— .
e RT N +1-0AtgT

The states below the mode hawe>1 and those above the modgr,<1. Through the
interplay of increases and decreases:

k<ke <Kk = < po /0% *=pe U/ a')kek,
k>ke >k = P < preava.

With our notationso’ >1>a . This principle already enables us to increasetbbability of
the tails of the distribution: by the propertiestkné geometric laws

Pr{k <k < , and
tk<ka} 1/

Pr{k > ky} < P
1-a

For the [Iquzq] part, we estimate the probabilities of the stégsn approximation from the
modeK: letting & = Atgr,

(K+D(k+2)kIN-K=i _ kkI(A-i)@+k+i)

(k+D(k+2) b &+ 20 ™ Ly g@+rk+i)+Ab
£

Pk = Pg in thecasewhere k >k

A.(L+ k) )Akk k-1

= p; [ ) denoting Ak = k - K
P ( N+ ELR) i|:!) @ ﬁ)(1+1+k)(1+ )\b+E(1+k)) enoting A

_ o Ak T i £
p()\b+E(1+k)) eXPLi=o I A 1+k n(1+>\b+a(1+|2))

As In(1-x) = —x for low values ofx, the sum in the exponential can be approximated by
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1 S E(Ak)(Ak_l)(ﬁ—l—Ak)()\tA)+E(1+k))—AEﬁ(1+k)
A 1+k CAb+EAFR) 2 AL+ K)(Ab+ & (L+K))
_ (AK)2 Ab(A-1-K) —E 1+ k)?
2 AL+K)(\b+E@L+K))
_%(Ak)zl—AtA)(ﬁ—l—IZ)/(E(lfIz)z)
n@+Ab/(§@1L+k))

i i) (-

We suppose that&(@+ 12)2 >)\b(ﬁ—1—l2), or else similarly, since&>21Ab, that
L+ IE)2 > 2(ﬁ—1—l2), i.e. more or less thdt > /2(A—1-K) . Under this condition,

A

= pe (1 )8kexpE-L(AK)2) bydenotingy= n (1+)\b/£5(1+ Q))A =f
T T Iy (A -1-R (EA+R)?)
by the definition of the mode— =1 approximately, hence
¢ +Ab/(1+Kk)
P = p; expt; (AK)2). (B.-20)

This relation is also true for the<k part, by a similar demonstration in which the rol¢he

product of the rates of transition between states ka and k, is reversed. From this we
deduce that:

Zk S P = pk+2pk2,>0exp( |2) pkj_ooexp( x2)dx Pg+/ 21y , therefore (B.21)

P =1/y2ny,

As well as:V[k] = 3, pe(k=K)2 = 2p; 3,012 expE412) = e[, X2 expi-4, 32 )dx = y.
Ultimately, V[k] =y=An. (B.22)

ThereforeSO k] = NCE

Example (continued). We directly calculate SOk]=16.28. Since JA=16.20, the
approximate formula provides an excellent estinmatio

A.9 An approximate Poisson model
We showed earlier that the probability distributisnvery close to a normal distribution of

meank and standard deviatiogii =+ N —k . So for the number of busy vehicles, the mean
and variance are the same, equalingThis suggests that the number could follow a $wis
distribution. And in fact, if we positp, = pn-n from the state =0} = { k=N}, i.e.

Po = pn , these probabilities verify the recurrence relatio

) = Pn-1A, i.e. pn =——A(trT + .
pntT+b(%+1/(N—n+1)) Pr-a e Y
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By approximatingA(trt +

recurrence:

b
————)=A(rT +=
N_n ) = A(trT

b
k+1

+1

pnzﬁzn.

n!

) denotedz, then p, =

On taxi services in Orbicity

Pt 2 and by
n

(B.23)

We recognize a Poisson distribution with parameter which incidentally gives an
approximationpo = exp(-z) . Sincez satisfies the characteristic equation (B.16}fA, thus

E[n] =V[n]=z=n.

(B.24)

0,030

0,025 -

0,020 -+

0,015 -+

0,010 -+

0,005

0,000

Poisson PDF

|

21
41
61
81
101
121

Ly

141
161
181
201
221
261
281
301
321
341
361
381
401
421
441
461
481

M Poisson PDF

501

Fig. B4: Probability density in the Poisson modsl Eig. B2)

B.10 Recapitulation of the simplifying assumptions

As for reminder, let us recapitulate the sequericgnoplifying assumptions that we adopted
about the technical operations of the system:

S1/ A Markov model, by equating customer handliimges with exponential random

variables.

S2/ The simplification of access times, and theragyieg of transit and access times, in the

formulas for transition rates.

S3/ Using the mean number of vacant vehicles ttutate the mean conditional access time.

S4/ To come close to a Markov model with a Poiseom, the approximation of transition
rates and the conversion of the negative range.
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