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Near-Optimality of Linear Recovery from Indirect Observations

Anatoli Juditsky ∗ Arkadi Nemirovski †

Abstract

We consider the problem of recovering linear image Bx of a signal x known to belong to a given
convex compact set X from indirect observation ω = Ax+ ξ of x corrupted by random noise ξ with
finite covariance matrix. It is shown that under some assumptions on X (satisfied, e.g., when X is
the intersection of K concentric ellipsoids/elliptic cylinders, or the unit ball of the spectral norm
in the space of matrices) and on the norm ‖ · ‖ used to measure the recovery error (satisfied, e.g.,
by ‖ · ‖p-norms, 1 ≤ p ≤ 2, on Rm and by the nuclear norm on the space of matrices), one can
build, in a computationally efficient manner, a “seemingly good” linear in observations estimate.
Further, in the case of zero mean Gaussian observation noise and general mappings A and B, this
estimate is near-optimal among all (linear and nonlinear) estimates in terms of the maximal over
x ∈ X expected ‖ · ‖-loss. These results form an essential extension of classical results [24, 7] and
of the recent work [13], where the assumptions on X were more restrictive, and the norm ‖ · ‖ was
assumed to be the Euclidean one.

This arXiv paper slightly strengthens the journal publication Juditsky, A., Nemirovski, A. Near-
Optimality of Linear Recovery from Indirect Observations, Mathematical Statistics and Learning
1:2 (2018), 171-225.

1 Introduction

Broadly speaking, what follows contributes to a long line of research (see, e.g., [4, 7, 9, 8, 12, 30, 31] and
references therein) started by the pioneering works [15, 16] and [24] and aimed at building efficiently
and analysing performance of linear estimates of signals from noisy observations. Specifically, we
consider the classical estimation problem as follows: given a “sensing matrix” A ∈ Rm×n and an
indirect noisy observation

ω = Ax+ ξ (1)

of unknown deterministic “signal” x known to belong to a given “signal set” X ⊂ Rn, we are inter-
ested to recover the linear image Bx of the signal, where B ∈ Rν×n is a given matrix. We assume
that the observation noise ξ is random with unknown (and perhaps depending on x) distribution be-
longing to some family P of Borel probability distributions on Rm associated with a given nonempty
convex compact subset Q of the set of positive definite m×m matrices. In this context, “associated”
means that the non-centered covariance matrix1 Cov[P ] := Eξ∼P {ξξT } of a distribution P ∈ P is
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1For the sake of brevity and with some terminology abuse, in the sequel, we refer to Eξ∼P {ξξT } as to covariance
matrix of ξ ∼ P . Note that within the proposed approach we do not need the observation noise to be centered, except
for the case of repeated observations, where we explicitly request for the expectation of the noise to vanish (cf. Section
3.4 and Remark 3.2).
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�-dominated by some matrix from Q:

P ∈ P ⇒ ∃Q ∈ Q : Cov[P ] � Q.2 (2)

We quantify the risk of a candidate estimate – a Borel function x̂(·) : Rm → Rν – by its worst-case,
under the circumstances, expected ‖ · ‖-error defined as

RiskQ,‖·‖[x̂|X ] = sup
x∈X ,P∈P

Eξ∼P {‖Bx− x̂(Ax+ ξ)‖};

here ‖ · ‖ is a given norm on Rν .
We assume that signal set X is a special type symmetric w.r.t. the origin convex compact set (a

spectratope to be defined in Section 2.1), and require from the norm ‖ · ‖∗ conjugate to ‖ · ‖ to have a
spectratope as the unit ball.3 This allows, e.g., for X to be the (bounded) intersection of finitely many
centered at the origin ellipsoids/elliptic cylinders/‖ · ‖p-balls (p ∈ [2,∞]), or the (bounded) solution
set of a system of two-sided Linear Matrix Inequalities

{x ∈ Rn : −Lk � Rk[x] � Lk, k ≤ K} [Rk[x] : linear in x symmetric matrices]

As for the norm ‖ · ‖, it can be ‖ · ‖p-norm on Rν , 1 ≤ p ≤ 2, or the nuclear norm on the space
Rν = Ru×v of matrices.

An important property of spectratopes is that they allow for precise concentration inequalities for
random (Rademacher and Gaussian) vectors, see [17, 25, 3, 18, 29] and references therein. It plays a
crucial role in what follows due to several important implications.

• It allows for a tight computationally efficient upper bounding of the maximum of a quadratic form
over a spectratope (Proposition 2.1). The latter allow to efficiently upper-bound the maximal
over a spectratope risk of linear estimation (i.e., estimate of the form x̂H(ω) = HTω), and thus
leads to a computationally efficient scheme for building “presumably good” linear estimates with
guaranteed risk (Proposition 3.1).

• It is also decisive in demonstration of near-optimality of the resulting estimates (cf. [24]): when
the family P of distributions contains all normal distributions {N (0, Q) : Q ∈ Q}, it allows to
tightly lower-bound the minimax risk of estimation over spectratopes via the Bayesian risk of
estimating a random Gaussian signal, and to show that the presumably good linear estimates
are “near-optimal” (optimal up to logarithmic factors) among all estimates, linear and nonlinear
alike.

An “executive summary” of our main result – Proposition 3.3 – is as follows:

Given a spectratope X and assuming that the unit ball B∗ of the norm conjugate to ‖ · ‖
is a spectratope as well, the efficiently computable optimal solution H∗ to an explicitly
posed convex optimization problem yields a near-optimal linear estimate x̂H∗(ω) = HT

∗ ω,
specifically,

RiskQ,‖·‖[x̂H∗ |X ] ≤ C ln
(
L
)

RiskOptQ,‖·‖[X ], (∗)
2Here and below, U � V (U � V ) means that U, V are symmetric matrices of the same size and U − V is positive

semidefinite (resp., positive definite); V � U (V ≺ U) means exactly the same as U � V , (resp., U � V ).
3Obviously, any result of this type should impose some restrictions on X – it is well known that linear estimates are

“heavily sub-optimal” on some simple signal domains [23, 5, 6] (e.g., ‖ · ‖1-ball).
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where C is an absolute constant, L is polynomial in the (naturally defined) sizes of the
spectratopes X , B∗, and RiskOptQ,‖·‖ is the “true” minimax optimal risk associated with
zero mean Gaussian observation noises with covariance matrices from Q:

RiskOptQ,‖·‖[X ] = sup
Q∈Q

inf
x̂

max
x∈X

Eξ∼N (0,Q){‖Bx− x̂(Ax+ ξ)‖},

the infimum being taken over all estimates, linear and nonlinear alike.

It should be stressed that the “nonoptimality factor” in (∗) is logarithmic and is completely indepen-
dent of B and of the sensing matrix A – the entities “primarily responsible” for the minimax optimal
risk.

The above result constitutes an important extension to the approach developed in [13], the progress
as compared to [13] being as follows:

• [13] dealt with the case of P = {N (0, Q)}, i.e., the observation noise was assumed to be zero
mean Gaussian with known covariance matrix, while now we allow for P to be a general family of
probability distributions with covariance matrices �-dominated by matrices from a given convex
compact set Q ⊂ int Sm+ ; 4

• present results apply to an essentially wider family of signal sets: spectratopes as compared to
ellitopes considered in [13]; ellitopes are also spectratopes, see Section 2.1, but not vice versa.
For instance, the intersection of centered at the origin ellipsoids/elliptic cylinders/‖ · ‖p-balls,
p ∈ [2,∞], is an ellitope (and thus a spectratope), whereas the (bounded) solution set of a finite
system of two-sided LMI’s is a spectratope, but not an ellitope;

• The analysis in [13] was limited to the case of ‖ · ‖2-losses, while now we allow for a much wider
family of norms quantifying the recovery error.

Note that, in addition to observations with random noise, in what follows we also address
observations with “uncertain-but-bounded” and “mixed” (combined) noise. In the latter case ξ,
instead of being random, is selected, perhaps in adversarial manner, from a given spectratope –
the situation which was not considered in [13] at all.

These results can also be considered as a new contribution to the line of research initiated by [7], where
it is proved (Proposition 4 – Theorem 7) that if X is convex, orthosymmetric and quadratically convex
(that is, X = {x ∈ Rn : ∃t ∈ T : x2

i ≤ ti, i ≤ n} with convex compact T ⊂ Rn
+), observations are

direct: ω = x+ ξ, ξ ∼ N (0, In), Bx = x, and ‖ · ‖ = ‖ · ‖2, the risk of an efficiently computable linear
estimate is within factor 1.25 of the minimax optimal risk. The suboptimality guarantees provided by
the latter result are essentially better than those of Proposition 3.3 in the current paper. However, it
is also essentially more restrictive in its scope – an orthosymmetric convex and quadratically convex
set is a very special case of an ellitope, the observations should be direct, and ‖ · ‖ should be ‖ · ‖2.

Note that linear estimators can be efficiently built and optimized for some signal domains which
are not spectratopes, e.g., when X is given as a convex hull of a finite set, e.g., X is ‖ · ‖1-ball (in
this case, the smallest risk linear estimate can be “heavily nonoptimal” among all estimates). In
general, however, optimizing risk over just linear estimates in a computationally efficient fashion can
be problematic. Beyond the scope of spectratopes in the role of signal sets and unit balls of the norms
conjugate to those in which the recovery error is measured, the only known to us general situation where
“presumably good” linear estimation is computationally tractable and results in (nearly) minimax

4From now on, Sk stands for the space of symmetric k × k matrices, and Sk+ is the cone of positive semidefinite
matrices from Sk.
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optimal estimates is that where the recovery error is measured in ‖ · ‖∞. In the latter case, the
breakthrough papers [11, 4] (see also [14]) imply that whenever X is a computationally tractable
convex compact set and the observation noise is Gaussian, an efficiently computable linear estimate
is ‖ · ‖∞-minimax optimal within the factor O(1)

√
ln(ν).

The main body of the paper is organized as follows. We start with describing the family of sets
we work with – the spectratopes (Section 2.1), and derive the crucial for the rest of the paper result
on tight upper-bounding the maximum of a quadratic form over a spectratope (Section 2.2). Next
we explain how to build in a computationally efficient fashion “presumably good” linear estimates
in the case of stochastic (Section 3) and uncertain-but-bounded (Section 4) observation noise and
establish near-optimality of these estimates. All technical proofs are relegated to Section 5. Appendix
A lists principal rules of calculus of spectratopes. Appendix B contains implementation details for
the illustrative example (covariance matrix estimation) presented in Section 3.4. Finally, Appendix C
contains an “executive summary” of conic duality, our principal working horse.

2 Preliminaries

We start with describing the main geometric object we intend to work with – a spectratope.

2.1 Spectratopes

A basic spectratope is a set X ⊂ Rn given by basic spectratopic representation – representation
of the form

X =
{
x ∈ Rn : ∃t ∈ T : R2

k[x] � tkIdk , 1 ≤ k ≤ K
}

(3)

where

(S1) Rk[x] =
∑n

i=1 xiR
ki are symmetric dk × dk matrices linearly depending on x ∈ Rn (i.e., “matrix

coefficients” Rki belong to Sdk)

(S2) T ∈ RK
+ is a monotonic set, meaning that T is a convex compact subset of RK

+ which contains
a positive vector and is monotone:

0 ≤ t′ ≤ t ∈ T ⇒ t′ ∈ T . 5

(S3) Whenever x 6= 0, it holds Rk[x] 6= 0 for at least one k ≤ K.

Remark 2.1 By Schur Complement Lemma, the set (3) given by the data satisfying (S1), (S2) can
be represented as

X =

{
x ∈ Rn : ∃t ∈ T :

[
tkIdk Rk[x]

Rk[x] Idk

]
� 0, k ≤ K

}
By the latter representation, X is nonempty, closed, convex, symmetric w.r.t. the origin, and contains
a neighbourhood of the origin (the latter is due to the fact that T contains a strictly positive vector).
This set is bounded if and only if the data, in addition to (S1), (S2), satisfies (S3).

5The inequalities between vectors are understood componentwise.
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A spectratope X ⊂ Rp is a set represented as a linear image of a basic spectratope:

X = {x ∈ Rp : ∃(y ∈ Rn, t ∈ T ) : x = Py, R2
k[y] � tkIdk , 1 ≤ k ≤ K}, (4)

where P is a p× n matrix, and Rk[·], T are as in (S1)–(S3). We call the quantity

D =

K∑
k=1

dk

the size of spectratope X .

Example 1: Ellitopes. An ellitope was defined in [13] as a set X ⊂ Rn representable as

X = {x ∈ Rn : ∃(y ∈ RN , t ∈ T ) : x = Py, yTSky ≤ tk, k ≤ K}, (5)

where Sk � 0,
∑

K Sk � 0, and T satisfies (S2). Basic examples of ellitopes are:

• bounded intersections of centered at the origin ellipsoids/elliptic cylinders: whenever Sk � 0
and

∑
k Sk � 0,

K⋂
k=1

{x ∈ Rn : xTSkx ≤ 1} = {x ∈ Rn : ∃t ∈ T = [0, 1]K : xTSkx ≤ tk, 1 ≤ k ≤ K}.

• ‖ · ‖p-balls, 2 ≤ p ≤ ∞:

{x ∈ Rn : ‖x‖p ≤ 1} = {x ∈ Rn : ∃t ∈ T := {t ≥ 0, ‖t‖p/2 ≤ 1} : xTSkx := x2
k ≤ tk, k ≤ n}.

It is immediately seen that an ellitope (5) is a spectratope as well. Indeed, let Sk =
∑rk

j=1 skjs
T
kj ,

rk = Rank(Sk), be a dyadic representation of the positive semidefinite matrix Sk, so that

yTSky =
∑
j

(sTkjy)2 ∀y,

and let

T̂ =

{tkj ≥ 0, 1 ≤ j ≤ rk, 1 ≤ k ≤ K} : ∃t ∈ T :
∑
j

tkj ≤ tk, k ≤ K

 , Rkj [y] = sTkjy ∈ S1 = R.

We clearly have

X = {x ∈ Rn : ∃({tkj} ∈ T̂ , y) : x = Py, R2
kj [y] � tkjI1 ∀k, j}

and the right hand side is a valid spectratopic representation of X . Note that the spectratopic size of
X is D =

∑K
k=1 rk.

5



Example 2: “Matrix box.” Let L be a positive definite d× d matrix. Then the “matrix box”

X = {X ∈ Sd : −L � X � L} = {X ∈ Sd : −Id � L−1/2XL−1/2 � Id}
= {X ∈ Sd : R2[X] := [L−1/2XL−1/2]2 � Id}

is a basic spectratope (augment R1[·] := R[·] with K = 1, T = [0, 1]). As a result, a bounded set
X ⊂ Rn given by a system of “two-sided” Linear Matrix Inequalities, specifically,

X = {x ∈ Rn : ∃t ∈ T : −
√
tkLk � Sk[x] �

√
tkLk, 1 ≤ k ≤ K}

where Sk[x] are symmetric dk × dk matrices linearly depending on x, Lk � 0 and T satisfies (S2), is a
basic spectratope:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K} [Rk[x] = L

−1/2
k Sk[x]L

−1/2
k ].

More examples of spectratopes can be built using their “calculus.” It turns out that nearly all basic
operations with sets preserving convexity, symmetry w.r.t. the origin, and boundedness (these are
“built-in” properties of spectratopes), such as taking finite intersections, direct products, arithmetic
sums, linear images, and inverse linear images under linear embeddings, as applied to spectratopes,
yield spectratopes as well. Furthermore, a spectratopic representation of the result of such an operation
is readily given by spectratopic representations of the operands; see Appendix A for principal calculus
rules.

2.2 Upper-bounding quadratic form on a spectratope

We are about to establish the first crucial in our context fact about spectratopes – the possibility
to tightly upper-bound an (indefinite) quadratic form over a spectratope. To proceed, we need some
definitions.

Linear maps associated with a spectratope. We associate with a basic spectratope (3), (S1)–
(S3) the following entities:

1. Linear mappings

Q 7→ Rk[Q] =
∑
i,j

QijR
kiRkj : Sn → Sdk

As is immediately seen, we have
Rk[yyT ] ≡ R2

k[y], (6)

implying that Rk[Q] � 0 whenever Q � 0, whence Rk[·] is �-monotone:

Q′ � Q⇒ Rk[Q′] � Rk[Q]. (7)

Besides this, if ξ is a random vector taking values in Rn with covariance matrix Q, we have

Eξ{R2
k[ξ]} = Eξ{Rk[ξξT ]} = Rk[Eξ{ξξT }] = Rk[Q], (8)

where the first equality is given by (6).

2. Linear mappings Λk 7→ R∗k[Λk] : Sdk → Sn given by

[R∗k[Λk]]ij = 1
2Tr(Λk[R

kiRkj +RkjRki]), 1 ≤ i, j ≤ n. (9)

6



It is immediately seen that R∗k[·] is the adjoint of Rk[·]:

∀(Λk ∈ Sdk , Q ∈ Sn) : 〈Λk,Rk[Q]〉 = Tr(ΛkRk[Q]) = Tr(R∗k[Λk]Q) = 〈R∗k[Λk], Q〉, (10)

where 〈A,B〉 = Tr(AB) is the Frobenius inner product of symmetric matrices. Besides this, we have6

Λk � 0⇒ R∗k[Λk] � 0; (11)

3. The linear space ΛK = Sd1 × ...× SdK of all ordered collections Λ = {Λk ∈ Sdk}k≤K along with
the linear mapping

Λ 7→ λ[Λ] := [Tr(Λ1); ...; Tr(ΛK)] : ΛK → RK .

Besides this, for a monotonic set T ⊂ RK we define

• the support function of T
φT (g) = max

t∈T
gT t,

which clearly is a convex positively homogeneous, of degree 1, nonnegative real-valued function
on RK . Since T contains positive vectors, φT is coercive on RK

+ , meaning that φT (λs) → +∞
along every sequence {λs ≥ 0} such that ‖λs‖ → ∞;

• the conic hull of T
K[T ] = cl{[t; s] ∈ RK+1 : s > 0, s−1t ∈ T }

which clearly is a regular cone in RK+1 (i.e., it is closed, convex, and pointed with a nonempty
interior) such that

T = {t : [t; 1] ∈ K[T ]}.

It is immediately seen that the cone (K[T ])∗ dual to K[T ] can be described as follows:

(K[T ])∗ := {[g; r] ∈ RK+1 : [g; r]T [t; s] ≥ 0 ∀[t; s] ∈ K[T ]} = {[g; r] ∈ RK+1 : r ≥ φT (−g)}.

Proposition 2.1 Let C be a symmetric p× p matrix, let X ⊂ Rp be given by spectratopic represen-
tation (4),

Opt = max
x∈X

xTCx

and let
Opt∗ = min

Λ={Λk}k≤K

{
φT (λ[Λ]) : Λk � 0, k ≤ K,P TCP �

∑
kR∗k[Λk]

}
[λ[Λ] = [Tr(Λ1); ...; Tr(ΛK)]]

(12)

Then (12) is solvable, and
Opt ≤ Opt∗ ≤ 2 max[ln(2D), 1]Opt, (13)

where D =
∑

k dk is the size of the spectratope X .

To explain where the result of the proposition comes from, let us prove right now its easy part – the
first inequality in (13); the remaining, essentially less trivial, part of the proof is provided in Section

6note that when Λk � 0 and Q = yyT , the first quantity in (10) is nonnegative by (6), and therefore (10) states that
yTR∗k[Λk]y ≥ 0 for every y, implying that R∗k[Λk] � 0.

7



5.2. Let Λ be a feasible solution to the optimization problem in (12), and let x ∈ X , so that x = Py
for some y such that R2

k[y] � tkIdk , k ≤ K, for properly selected t ∈ T . We have

xTCx = yT [P TCP ]y ≤︸︷︷︸
(a)

∑
k

yTR∗k[Λk]y =
∑
k

Tr(R∗k[Λk]yyT ) =︸︷︷︸
(b)

∑
k

Tr(ΛkRk[yyT ])

=︸︷︷︸
(c)

∑
k

Tr(ΛkR
2
k[y]) ≤︸︷︷︸

(d)

∑
k

Tr(ΛktkIdk) =
∑
k

tkTr(Λk) = λT [Λ]t ≤︸︷︷︸
(e)

φT (λ[Λ]),

where (a) is due to the fact that Λ is feasible for the optimization problem in (12), (b) is by (10), (c)
is by (6), (d) is due to ΛK � 0 and R2

k[y]�tkIdk , and (e) is by the definition of φT . The bottom line
is that the value of the objective of the optimization problem in (12) at every feasible solution to this
problem upper-bounds Opt, implying the first inequality in (13). Note that the derivation we have
carried out is nothing but a minor modification of the standard semidefinite relaxation scheme.

Remark 2.2 Proposition 2.1 has some history. When X is an intersection of centered at the origin
ellipsoids/elliptic cylinders, it was established in [22]; matrix analogy of the latter result can be traced
back to [21], see also [26]. The case when X is a general-type ellitope (5) was considered in [13], with
tightness guarantee slightly better than in (13), namely,

Opt ≤ Opt∗ ≤ 4 ln(5K)Opt.

Note that in the case where X is an ellitope (5), Proposition 2.1 results in a worse than O(1) ln(K)
“nonoptimality factor” O(1) ln(

∑K
k=1 Rank(Sk)). We remark that passing from ellitopes to spec-

tratopes requires replacing elementary bounds on deviation probabilities used in [22, 13] by a more
powerful tool – matrix concentration inequalities, see [18, 29] and references therein.

3 Near-optimal linear estimation under random noise

3.1 Situation and goal

Given ν × n matrix B, consider the problem of estimating linear image Bx of unknown deterministic
signal x known to belong to a given set X ⊂ Rn via noisy observation

ω = Ax+ ξ (14)

where A is a given m × n matrix A and ξ is random observation noise. In some signal processing
applications, the distribution of noise is fixed and is part of the data of the estimation problem. In order
to cover some interesting applications (cf. Section 3.4), we allow for “ambiguous” noise distributions;
all we know in advance is that this distribution belongs to a family P of Borel probability distributions
on Rm associated, in the sense of (2), with a given convex compact subset Q of the interior of the cone
Sm+ of positive semidefinite m×m matrices. Actual distribution of noise in (14) is somehow selected
from P by nature (and may, e.g., depend on x).

In the sequel, for a Borel probability distribution P on Rm we write P4Q to express the fact that
Cov[P ] is �-dominated by a matrix from Q:

{P4Q} ⇔ {∃Q ∈ Q : Cov[P ] � Q}.

From now on we assume that all matrices from Q are positive definite.

8



Given Q and a norm ‖ · ‖ on Rν , we quantify the risk of a candidate estimate – a Borel function
x̂(·) : Rm → Rν – by its (Q, ‖ · ‖)-risk on X defined as

RiskQ,‖·‖[x̂|X ] = sup
x∈X ,P4Q

Eξ∼P {‖x̂(Ax+ ξ)−Bx‖} , (15)

where ‖ · ‖ is some norm on Rν . Our focus is on linear estimates – estimates of the form

x̂H(ω) = HTω

given by m × ν matrices H, and our current goal is to demonstrate that under some restrictions
on the signal domain X , a “good” linear estimate yielded by an optimal solution to an efficiently
solvable convex optimization problem is near-optimal in terms of its risk among all estimates, linear
and nonlinear alike.

We assume here that set X is a spectratope (cf. (4)). Ideally, to compute a “good” linear estimate
one would look for H which minimizes the risk RiskQ,‖·‖[x̂H |X ] in H. This risk is generally difficult
to compute even when X is a spectratope, and with our approach, we minimize in H an efficiently
computable upper bound on the risk rather than the risk itself. In order this bound to be tight –
good enough to allow to build a near-optimal linear estimate, we have to impose further restrictions,
specifically, we make from now on the following

Assumption A: The unit ball B∗ of the norm ‖ · ‖∗ conjugate to the norm ‖ · ‖ in the
definition (15) of the estimation risk is a spectratope:

B∗ = {z ∈ Rν : ∃y ∈ Y : z = My},
Y := {y ∈ Rq : ∃r ∈ R : S2

` [y] � r`If` , 1 ≤ ` ≤ L}, (16)

where the right hand side data are as required in a spectratopic representation.

Examples of norms ‖ · ‖ satisfying Assumption A include ‖ · ‖q-norms on Rν , 1 ≤ q ≤ 2 (conjugates of
the norms ‖ · ‖p with 1/p+ 1/q = 1, see Example 1 in Section 2.1). Another example is nuclear norm
‖ · ‖Sh,1 on the space Rν = Rp×q of p× q matrices, ‖V ‖Sh,1 =

∑
σi(V ) – the sum of singular values of

a matrix V . The conjugate of the nuclear norm is the spectral norm ‖ · ‖Sh,∞ on Rν = Rp×q, and the
unit ball of the latter norm is a basic spectratope (cf. Example 2 in Section 2.1):

{Z ∈ Rp×q : ‖Z‖Sh,∞ ≤ 1} = {Z : ∃r ∈ R = [0, 1] : S2[Z] � tIp+q}, S[Z] =

[
ZT

Z

]
.

It is immediately seen that the case when X is a spectratope (4) can be reduced to the one where X is
a basic spectratope – to this end it suffices to replace matrices A and B with AP and BP , respectively,
and to treat y rather than x = Py as the signal underlying observation (14), see (4). We assume that
this reduction has been carried out in advance, so that from now on our signal set will be

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K}.

3.2 Building linear estimate

Observe that the (Q, ‖·‖)-risk of the linear estimate x̂H(ω) = HTω, H ∈ Rm×ν , can be upper-bounded
as follows:

RiskQ,‖·‖[x̂H(·)|X ] = sup
x∈X ,P4Q

Eξ∼P {‖HT (Ax+ ξ)−Bx‖}

≤ sup
x∈X
‖HTAx−Bx‖+ sup

P4Q
Eξ∼P {‖HT ξ‖}

≤ ΦX (H) + ΨQ(H), (17)

9



where

ΦX (H) = max
x

{
‖(B −HTA)x‖ : x ∈ X

}
, ΨQ(H) = sup

P4Q
Eξ∼P

{
‖HT ξ‖

}
.

While ΦX (H) and ΨQ(H) are convex functions of H, these functions can be difficult to compute.7

In such a case, matrix H of a “good” linear estimate x̂H which is also efficiently computable can be
chosen as a minimizer of the sum of efficiently computable convex upper bounds on ΦX and ΨQ.

3.2.1 Upper-bounding ΦX (·)

With Assumption A in force, let us consider the direct product spectratope

Z := X × Y = {[x; y] ∈ Rn ×Rq : ∃s = [t; r] ∈ T ×R :
R2
k[x] � tkIdk , 1 ≤ k ≤ K,S2

` [y] � r`If` , 1 ≤ ` ≤ L}
= {w = [x; y] ∈ Rn ×Rq : ∃s = [t; r] ∈ S = T ×R : U2

i [w] � siIgi ,
1 ≤ i ≤ I = K + L}

with Ui[·] readily given by Rk[·] and S`[·]. Given a ν × n matrix V and setting

W [V ] =
1

2

[
V TM

MTV

]
it clearly holds

max
x∈X
‖V x‖ = max

x∈X ,z∈B∗
zTV x = max

x∈X ,y∈Y
yTMTV x = max

w∈Z
wTW [V ]w.

Applying Proposition 2.1, we arrive at the following result (cf. Proposition 4.1):

Corollary 3.1 In the just defined situation, the efficiently computable convex function

ΦX (H) = min
Λ,Υ

{
φT (λ[Λ]) + φR(λ[Υ]) : Λ = {Λk ∈ Sdk+ }k≤K ,Υ = {Υ` ∈ Sf`+}`≤L,[ ∑

kR∗k[Λk]
1
2(B −HTA)

T
M

1
2M

T (B −HTA)
∑

` S∗` [Υ`]

]
� 0

} (18)

is a tight upper bound on ΦX (·), namely,

∀H ∈ Rm×ν : ΦX (H) ≤ ΦX (H) ≤ 2 max[ln(2D), 1] ΦX (H), D =
∑

k dk +
∑

` f`.

Recall, that here

[R∗k[Λk]]ij = 1
2Tr(Λk[R

ki
k R

kj
k +Rkjk R

ki
k ]), where Rk[x] =

∑
i xiR

ki,

[S∗` [Υ`]]ij = 1
2Tr(Υ`[S

`i
` S

`j
` + S`j` S

`i
` ]), where S`[y] =

∑
i yiS

`i,
(19)

are the mappings (9) associated with Rk and S`,

φT (λ) = max
t∈T

λT t, φR(λ) = max
r∈R

λT r, and λ[{Ξ1, ...,ΞN}] = [Tr(Ξ1); ...; Tr(ΞN )].

7For instance, computing ΨX (H) reduces to maximizing the convex function ‖(B − HTA)x‖ over x ∈ X , which is
computationally intractable even when X is as simple as the unit box, and ‖ · ‖ is the Euclidean norm.

10



3.2.2 Upper-bounding ΨQ(·)

Our next observation is as follows (for proof, see Section 5.4):

Lemma 3.1 Let Y be a m × ν matrix, Q ∈ Sm+ , and P be a probability distribution on Rm with
Cov[P ] � Q. Let, further, ‖ · ‖ be a norm on Rν with the unit ball B∗ of the conjugate norm ‖ · ‖∗
given by (16). Finally, let Υ = {Υ` ∈ Sf`+}`≤L and a matrix Θ ∈ Sm satisfy the constraint[

Θ 1
2YM

1
2M

TY T
∑

` S∗` [Υ`]

]
� 0 (20)

(for notation, see (16) and (19)). Then

Eξ∼P {‖Y T ξ‖} ≤ Tr(QΘ) + φR(λ[Υ]). (21)

We have the following immediate consequence of Lemma 3.1.

Corollary 3.2 Let
Γ(Θ) = max

Q∈Q
Tr(QΘ) (22)

and

ΨQ(H) = min
{Υ`}`≤L,Θ∈Sm

{
Γ(Θ) + φR(λ[Υ]) : Υ` � 0 ∀`,

[
Θ 1

2HM
1
2M

THT
∑

` S∗` [Υ`]

]
� 0

}
(23)

Then ΨQ(·) : Rm×ν → R is efficiently computable convex upper bound on ΨQ(·).

Indeed, given Lemma 3.1, the only non-evident part of the corollary is that ΨQ(·) is a well-defined
real-valued function, which is readily given by Lemma 5.1, see Section 5.1.

Remark 3.1 When Υ = {Υ`}`≤L, Θ is a feasible solution to the right hand side problem in (23)
and s > 0, the pair Υ′ = {sΥ`}`≤L, Θ′ = s−1Θ also is a feasible solution; since φR(·) and Γ(·) are
positively homogeneous of degree 1, we conclude that ΨQ is in fact the infimum of the function

2
√

Γ(Θ)φR(λ[Υ]) = inf
s>0

[
s−1Γ(Θ) + sφR(λ[Υ])

]
over Υ,Θ satisfying the constraints of the problem (23).

In addition, for every feasible solution Υ = {Υ`}`≤L, Θ to the problem (23) with M[Υ] :=∑
` S∗` [Υ`] � 0, the pair Υ, Θ̂ = 1

4HMM−1[Υ]MTHT is feasible for the problem as well and

0 � Θ̂ � Θ (Schur Complement Lemma), so that Γ(Θ̂) ≤ Γ(Θ). As a result,

ΨQ(H) = inf
Υ

{
1
4Γ(HMM−1[Υ]MTHT ) + φR(λ[Υ]) :

Υ = {Υ` ∈ Sf`+}`≤L,M[Υ] � 0

}
. (24)

Illustration. Consider the case when ‖u‖ = ‖u‖p with p ∈ [1, 2], and let us apply the just described
scheme for upper-bounding ΨQ(·), assuming Q = {V ∈ Sm+ : V � Q} for some given Q � 0, so
that Γ(Θ) = Tr(QΘ), Θ � 0. The unit ball of the norm conjugate to ‖ · ‖, that is, the norm ‖ · ‖q,
q = p

p−1 ∈ [2,∞], is the basic spectratope (in fact, ellitope)

B∗ = {y ∈ Rµ : ∃r ∈ R := {Rν
+ : ‖r‖q/2 ≤ 1} : S2

` [y] ≤ r`, 1 ≤ ` ≤ L = ν}, S`[y] = y`.

As a result, Υ’s from Remark 3.1 are collections of ν positive semidefinite 1× 1 matrices, and we can
identify them with ν-dimensional nonnegative vectors υ, resulting in λ[Υ] = υ and M[Υ] = Diag{υ}.

11



Besides this, for nonnegative υ we clearly have φR(υ) = ‖υ‖p/(2−p). The optimization problem in (24)
now reads

ΨQ(H) = inf
υ∈Rν

{
1
4Tr(Q1/2HDiag−1{υ}HTQ1/2) + ‖υ‖p/(2−p) : υ > 0

}
.

After setting a` = ‖Col`[Q
1/2H]‖2, (24) becomes

ΨQ(H) = inf
υ>0

{
1

4

∑
i

a2
i

υi
+ ‖υ‖p/(2−p)

}
,

resulting in ΨQ(H) = ‖[a1; ...; aν ]‖p. Recalling what are ai’s, we end up with

ΨQ(H) ≤ ΨQ(H) :=
∥∥∥[‖Col1[Q1/2H]‖2; . . . ; ‖Colν [Q1/2H]‖2

]∥∥∥
p
. (25)

Note that the bound (25) can be easily improved when ξ ∼ N (0, Q). Indeed, in this case η = HT ξ is
normal with components ηi ∼ N (0, a2

i ), ai = ‖Col`[Q
1/2H]‖2, and therefore

ΨQ(H) = E{‖η‖p} ≤ [Eη{‖η‖pp}]1/p =

√
2 Γ
(
p+1

2

)
π

1
2p

[
∑

i a
p
i ]

1/p

=

√
2 Γ
(
p+1

2

)
π

1
2p

‖[a1; ...; aν ]‖p =: Ψ̃Q(H)
[
≤ ‖[a1; ...; aν ]‖p

]
.

For instance, when p = 1 the bound Ψ̃Q(H) becomes exact and equals
√

2
π

∑
i ai =

√
2
πΨQ(H).

3.2.3 Putting things together: building presumably good linear estimate

Corollaries 3.1 and 3.2 imply the following recipe for building a “presumably good” linear estimate:

Proposition 3.1 In the situation of Section 3.1 and under Assumption A, consider the convex opti-
mization problem (for notation, see (19) and (22))

Opt = min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Γ(Θ) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR∗k[Λk] 1

2 [BT −ATH]M
1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0,[

Θ 1
2HM

1
2M

THT
∑

` S∗` [Υ′`]

]
� 0

 (26)

The problem is solvable, and the H-component H∗ of its optimal solution yields linear estimate
x̂H∗(ω) = HT

∗ ω such that
RiskQ,‖·‖[x̂(·)|X ] ≤ Opt. (27)

The only claim in Proposition 3.1 which is not an immediate consequence of Corollaries 3.1, 3.2 is that
problem (26) is solvable; this claim is readily given by the fact that the objective clearly is coercive
on the feasible set (recall that Γ(Θ) is coercive on Sm+ due to Q ⊂ int Sm+ and that y 7→My is an onto
mapping, since B∗ is full-dimensional).

Remark 3.2 In some applications, observations (1) have additional structure, namely, ω is a T -
element sample: ω = [ω̄1; ...; ω̄T ] with components

ω̄t = Āx+ ξt, t = 1, ..., T,

12



and ξt are i.i.d. observation noises with zero mean distribution P̄ satisfying P̄4Q̄ for some convex
compact set Q̄ ⊂ int Sm̄+ . In other words, we deal with repeated observations, where for m = Tm̄,

A = [Ā; ...; Ā︸ ︷︷ ︸
T

] ∈ Rm×n for some Ā ∈ Rm̄×n, Q = {Q = Diag{Q̄, ..., Q̄︸ ︷︷ ︸
T

}, Q̄ ∈ Q̄}. (28)

It can be easily verified (see Section 5.5) that in the case of repeated observations the optimization
problem (26) responsible for the presumably good linear estimate reduces to similar problem with size
independent of T :

Proposition 3.2 In the case of repeated observations and under Assumption A, the linear estimate
of Bx yielded by an optimal solution to problem (26) can be computed as follows. Consider the convex
optimization problem

Opt = min
H̄,Λ,Υ,Υ′,Θ̄

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + 1

T Γ(Θ̄) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR∗k[Λk] 1

2 [BT − ĀT H̄]M
1
2M

T [B − H̄T Ā]
∑

` S∗` [Υ`]

]
� 0,[

Θ̄ 1
2H̄M

1
2M

T H̄T
∑

` S∗` [Υ′`]

]
� 0


where

Γ(Θ̄) = max
Q̄∈Q̄

Tr(Q̄Θ̄).

The problem is solvable, and the estimate in question is yielded by the H̄-component H̄∗ of the optimal
solution according to

x̂([ω̄1; ...; ω̄T ]) =
1

T
H̄T
∗

T∑
t=1

ω̄t,

and the upper bound, provided by Proposition 3.1, on the risk RiskQ,‖·‖[x̂(·)|X ] of this estimate is Opt.

3.3 Near-optimality in Gaussian case

The bound (27) for the risk of the linear estimate x̂H∗(·) constructed in (26) can be compared to the
minimax optimal risk of recovering Bx, x ∈ X , from observations corrupted by zero mean Gaussian
noise with covariance matrix from Q; formally, this minimax optimal risk is defined as

RiskOptQ,‖·‖[X ] = sup
Q∈Q

inf
x̂(·)

[
sup
x∈X

Eξ∼N (0,Q){‖Bx− x̂(Ax+ ξ)‖}
]

(29)

where the infimum is taken over all estimates.

Proposition 3.3 Under the premise and in the notation of Proposition 3.1, we have

RiskQ,‖·‖[x̂H∗ |X ] ≤ Opt ≤ 64
√

(2 lnF + 10 ln 2)(2 lnD + 10 ln 2)RiskOptQ,‖·‖[X ] (30)

where
D =

∑
k

dk, F =
∑
`

f`. (31)

Thus, the upper bound Opt on the risk RiskQ,‖·‖[x̂H∗ |X ] of the presumably good linear estimate x̂H∗
yielded by an optimal solution to optimization problem (26) is within logarithmic in the sizes of
spectratopes X and B∗ factor from the Gaussian minimax risk RiskOptQ,‖·‖[X ].
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For the proof, see Section 5.7. The key component of the proof is the following important by its own
right fact (for proof, see Section 5.6):

Lemma 3.2 Let Y be an N × ν matrix, let ‖ · ‖ be a norm on Rν such that the unit ball B∗ of the
conjugate norm is the spectratope (16), and let ζ ∼ N (0, Q) for some positive semidefinite N × N
matrix Q. Then the best upper bound on ψQ(Y ) := E{‖Y T ζ‖} yielded by Lemma 3.1, that is, the
optimal value Opt[Q] in the convex optimization problem (cf. (23))

Opt[Q] = min
Θ,Υ

{
φR(λ[Υ]) + Tr(QΘ) : Υ = {Υ` � 0, 1 ≤ ` ≤ L}, Θ ∈ SN ,[

Θ 1
2YM

1
2M

TY T
∑

` S∗` [Υ`]

]
� 0

} (32)

(for notation, see Lemma 3.1 and (19) satisfies the identity

∀(Q � 0) :

Opt[Q] = Opt[Q] := min
G,Υ={Υ`,`≤L}

{
φR(λ[Υ]) + Tr(G) : Υ` � 0,[

G 1
2Q

1/2YM
1
2M

TY TQ1/2
∑

` S∗` [Υ`]

]
� 0

}
,

(33)

and is a tight bound on ψQ(Y ), namely,

ψQ(Y ) ≤ Opt[Q] ≤ 22
√

2 lnF + 10 ln 2ψQ(Y ), (34)

where F =
∑

` f` is the size of the spectratope (16). Besides this, for all κ ≥ 1 one has

Probζ

{
‖Y T ζ‖ ≥ Opt[Q]

4κ

}
≥ βκ := 1− e3/8

2
− 2F e−κ

2/2. (35)

In particular, when selecting κ =
√

2 lnF + 10 ln 2, we obtain

Probζ

{
‖Y T ζ‖ ≥ Opt[Q]

4
√

2 lnF + 10 ln 2

}
≥ βκ = 0.2100 > 3

16 . (36)

3.4 Illustration: covariance matrix estimation via indirect observations

Suppose that we observe a sample
{ηt = Aξt}t≤T (37)

where A is a given m × n matrix, and ξ1, ..., ξT are sampled, independently of each other, from zero
mean Gaussian distribution with unknown covariance matrix ϑ known to satisfy

γϑ∗ � ϑ � ϑ∗, (38)

where γ ≥ 0 and ϑ∗ � 0 are given. Our goal is to recover the linear image B(θ) of θ, and the norm in
which recovery error is measured satisfies Assumption A.

For the covariance estimation problem to fit the framework presented in the previous section we
reformulate it as follows.

1. We represent the set {ϑ ∈ Sn+ : γϑ∗ � ϑ � ϑ∗} as the image of the basic spectratope (matrix box)

V = {v ∈ Sn : ‖v‖Sh,∞ ≤ 1} [‖ · ‖Sh,∞: the spectral norm]

under affine mapping: we set ϑ0 = 1+γ
2 ϑ∗, σ = 1−γ

2 , and treat the matrix

v = σ−1ϑ
−1/2
∗ (ϑ− ϑ0)ϑ

−1/2
∗

[
⇔ ϑ = ϑ0 + σϑ

1/2
∗ vϑ

1/2
∗

]
as the signal underlying our observations. Note that a priori information (38) on ϑ reduces to v ∈ V.
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2. We pass from observations ηt to “lifted” observations ηtη
T
t ∈ Sm, so that

E{ηtηTt } = E{AξtξTt AT } = AϑAT = A (ϑ0 + σAϑ
1/2
∗ vϑ

1/2
∗ )︸ ︷︷ ︸

ϑ[v]

AT ,

and treat as “actual” observations the matrices

ωt = ηtη
T
t −Aϑ0A

T , 1 ≤ t ≤ T.

We have8

ωt = Av + ζt with Av = σAϑ
1/2
∗ vϑ

1/2
∗ AT and ζt = ηtη

T
t −Aϑ[v]AT . (39)

Observe that random matrices ζ1, ..., ζT are i.i.d. with zero mean and covariance mapping C[v] (that
of the random matrix-valued variable ζ = ηηT − E{ηηT }, η ∼ N (0, Aϑ[v]AT )) which satisfies (see
Section 5.3 for the derivation)

∀v ∈ V : C[v] � Q, 〈e,Qh〉 = 2Tr(ϑ∗A
ThAϑ∗A

T eA), e, h ∈ Sm. (40)

We have represented the problem of interest in the form described in Section 3.1 and have specified
all required data.

Numerical illustration. Here we report on preliminary numerical experiments with the estimation
problem stated above. They are restricted to the diagonal case where A ∈ Rn×n is nonsingular,
B(θ) = BθBT with B ∈ Rn×n, ϑ∗ = In, and γ = 0; our goal is to recover B(θ) ∈ Sn in the Frobenius
(“Frobenius norm case”), or in the nuclear norm (“nuclear norm case”). Our first observation is that
the case of square nonsingular A reduces immediately to the case of direct observations A = In; to this
end it suffices to treat, as observations, vectors ξt = A−1ηt, see (37). It is easily seen that the estimate
given by Proposition 3.2 is “intelligent enough” to recognize this possibility. Furthermore, the case of
B ∈ Rn×n reduces to the case of diagonal B: if B = UDV T is the singular value decomposition of B,
with our ϑ∗ and choice of the norm, we lose nothing when replacing B with D, and our design again
recognizes this possibility. Therefore, from the start, in our experiment we assume that A = In and
B(ϑ) = BϑBT with diagonal B, and

ϑ0 = 1
2In, σ = 1

2 , ϑ[v] = 1
2In + 1

2v, Av = 1
2v.

Thus, the estimation problem in question is reduced to that of recovering the matrix

Bϑ[v]BT = 1
2B

2 + 1
2BvB

from observations (39) stemming from a signal v known to satisfy v ∈ V = {v ∈ Sn : v2 � In}. The
outlined setup, as compared to the general one, simplifies dramatically optimization problem (29) (for
details, see Appendix B) and allows to run experiments with n in the range of hundreds.

In our simulations, we use T ∈ {32, 128, 512} and diagonal matrix B with diagonal entries Bii =
i−β, with β running through {0, 1, 2, 3}. For every combination of T and β from the just outlined
ranges, we compute, in the Frobenius and the nuclear norm cases, the linear estimate and (the upper
bound on) its risk as given by Proposition 3.2. Next, we run K = 100 simulations and record the
actual recovery errors as yielded by the linear estimate and the Maximum Likelihood estimate (MLE)
in the role of the reference point.9 In our experiments, the covariance matrices underlying observations
were generated as random rotations of diagonal matrices with diagonal entries drawn, independently
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Figure 1: Ratios of empirical errors of the linear estimation to the upper risk bounds. Boxplots for 100
realisations of randomized experiments. (a): Frobenius norm case, (b): nuclear norm case.

of each other, from the uniform distribution on [0, 1]. The results of experiments with covariance
matrix of size n = 128 are presented in Figures 1 and 2. The first figure displays the boxplots of the
ratios of actual errors of the linear estimators to the theoretical upper risk bounds for the Frobenius
norm case (plot (a)) and nuclear norm case (plot (b)). Each of four boxplot groups corresponds, from
left to right, to β = 0, 1, 2 and 3; three boxplots inside each group correspond to the observation
sample lengths T = 32, 64 and 128. Boxplots for ratios of errors of linear estimation to those of MLE
for each simulation are displayed in Figure 2. The “ordering” of boxplots is the same as in Figure
1; for better readability of the plots the data is “clipped” at the level 3. We see that no estimate
“uniformly dominates” the other one, and that the linear estimate outperforms the MLE when the
number T of observations is relatively low.10.

4 Linear estimation under “uncertain-but-bounded” noise

We present here another application of the result of Proposition 2.1 – construction of a linear estimate
of a signal in the case of uncertain but bounded perturbation ξ in the observation (1).

4.1 Problem statement

Consider an estimation problem where, given an observation

ω = Ax+ ξ

8In our current considerations, we need to operate with linear mappings acting from Sp to Sq. We treat Sk as
Euclidean space equipped with the Frobenius inner product 〈u, v〉 = Tr(uv) and denote linear mappings from Sp into Sq

by capital calligraphic letters, like A, Q, etc. Thus, A in (39) denotes the linear mapping which, on a close inspection,
maps matrix v ∈ Sn into the matrix Av = A[ϑ[v]− ϑ[0]]AT .

9It is immediately seen that with our setup the ML estimate is as follows: given observations ηt, 1 ≤ t ≤ T (see (37)
and recall that in our case A = In), we compute the empirical covariance matrix Ĉ = 1

T

∑T
t=1 ηtη

T
t . The MLE ϑ̂ of the

covariance matrix ϑ of ηt’s is obtained by keeping the eigenvectors of Ĉ intact and projecting the eigenvalues of Ĉ onto
[0, 1]. The resulting MLE of B(ϑ) = BϑB is Bϑ̂B.

10The fact that the relative to linear estimation performance of MLE improves as T grows is completely natural – the
latter estimate is asymptotically optimal as T →∞.
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Figure 2: Boxplots for ratios of empirical errors of the linear estimation to the error of the MLE; 100 realisations
of randomized experiments. (a): Frobenius norm case, (b): nuclear norm case.

of unknown signal x, known to belong to a given signal set X , one wants to recover linear image Bx
of x. Here A and B are given m × n and ν × n matrices. Suppose that all we know about ξ is that
it belongs to a given compact set H (“uncertain-but-bounded observation noise”). In the situation in
question, given a norm ‖ · ‖ on Rν , we quantify the accuracy of a candidate estimate ω 7→ x̂(ω) by its
maximal on X risk

RiskH[x̂|X ] = sup
x∈X, ξ∈H

‖Bx− x̂(Ax+ ξ)‖

(“H-risk”).
This is a standard problem of optimal recovery (see, e.g., [20, 19]). It is well known that when H

and X are convex compact sets, when specifying x̂(ω) as (any) point from {x ∈ X : ω −Ax ∈ H}, we
get a minimax optimal, within factor 2, estimate, see also [27, 28]. We are about to show that when X
and H are spectratopes, and the unit ball of the norm ‖ ·‖∗ conjugate to ‖ ·‖ is a basic spectratope, an
efficiently computable linear in observation estimate x̂H = Hω is near-optimal in terms of its H-risk.11

Our initial observation is that the situation in question reduces straightforwardly to that where
there is no observation noise at all. Indeed, let Y = X × H; then Y is a spectratope, and we lose
nothing when assuming that the signal underlying observation ω is y = [x; ξ] ∈ Y:

ω = Ax+ ξ = Āy, Ā = [A, Im],

while the entity to be recovered is

Bx = B̄y, B̄ = [B, 0ν×m].

With these conventions, the observation noise vanishes, while the H-risk of a candidate estimate
x̂(·) : Rm → Rν becomes the quantity

Risk‖·‖[x̂|X ×H] = sup
y=[x;ξ]∈X×H

‖B̄y − x̂(Āy)‖.

11In the case where an “efficient description” of the sets H, X and the norm ‖ · ‖ is available, a minimax optimal,
within factor 2, nonlinear estimate can be computed efficiently. On the other hand, its risk is generally hard to compute.
Note that the linear estimate we discuss here, which comes with a “reasonably tight” upper bound on its risk, can be of
“numerical” interest in the situation where estimates are to be computed repeatedly for different observations sharing
common problem data – sets H, X and the norm ‖ · ‖.
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To streamline the notation, let us assume that the outlined reduction has already been carried out,
so the problem of interest reads: given an observation

ω = Ax ∈ Rm,

estimate the linear image Bx ∈ Rν of an unknown signal x known to belong to a given spectratope
X . The risk of a candidate estimate x̂ is defined as

Risk‖·‖[x̂|X ] = sup
x∈X
‖Bx− x̂(Ax)‖,

and the norm ‖·‖ is such that the unit ball B∗ of the norm ‖·‖∗ conjugate to ‖·‖ is a basic spectratope:

B∗ := {u ∈ Rν : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃r ∈ R : S2
` [u] � r`If` , 1 ≤ ` ≤ L},

where the right hand side data are as required in a spectratopic representation. By the same reasoning
as in Section 3.1, we lose nothing when assuming from now on that the signal set is a basic spectratope:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K}.

4.2 Near-optimality of linear estimation

Let x̂H(ω) = HTω be a linear estimate. We have

Risk‖·‖[x̂H |X ] = max
x∈X
‖(B −HTA)x‖

= max
[u;x]∈B∗×X

[u;x]T
[

1
2(B −HTA)

1
2(B −HTA)T

]
[u;x].

Applying Proposition 2.1, we arrive at item (i) of the following proposition (cf. Corollary 3.1):

Proposition 4.1 In the situation of this section, consider the convex optimization problem

Opt = min
H,Υ={Υ`},Λ={Λk}

{
φR(λ[Υ]) + φT (λ[Λ]) : Υ` � 0, Λk � 0, ∀(`, k)[ ∑

` S∗` [Υ`]
1
2(B −HTA)

1
2(B −HTA)T

∑
kR∗k[Λk]

]
� 0

}
, (41)

where R∗k[·] and S∗` [·] are induced by Rk[·], resp., Sk[·], as explained in Section 2.1.

(i) The problem is solvable, and the risk of the linear estimate x̂H∗(·) yielded by the H-component of
an optimal solution to (41) does not exceed Opt.

(ii) The linear estimate x̂H∗ is near-optimal in terms of its H-risk:

Risk‖·‖[x̂H∗ |X ] ≤ Opt ≤ 2 ln(2D)Riskopt[X ], D =
∑
k

dk +
∑
`

f`, (42)

where Riskopt[X ] is the minimax optimal risk:

Riskopt[X ] = inf
x̂

Risk‖·‖[x̂|X ],

where inf is taken w.r.t. all possible estimates.

For proof, see Section 5.8.
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4.3 Numerical illustration

The construction12 from the proof of Proposition 4.1.ii can be used to lower bound numerically the
minimax risk Risk‖·‖[x̂H∗ |X ], and we can compare the resulting lower bound on the “true” minimax
risk with the upper bound (41) on the risk of the linear estimate yielded by our approach, thus
quantifying numerically its conservatism.

We have conducted two experiments of the outlined type. In both experiments the signal set X is
the box

X = {x ∈ Rn : j|xj | ≤ 1, 1 ≤ j ≤ n} [K = n, Rk = k2eke
T
k , k = 1, ...,K, T = [0, 1]K ],

B is the n×n identity matrix, and n
2 ×n sensing matrix A is a randomly rotated matrix with singular

values λj , 1 ≤ j ≤ n, forming a geometric progression, with λ1 = 1 and λn/2 = 0.01. In the first
experiment the “dual-norm spectratope” B∗ is a random parallelotope

B(P )
∗ = {u ∈ Rn : |ηTi x| ≤ 1, 1 ≤ i ≤ n}. [L = n, R = [0, 1]L]

In the second experiment B∗ is a random “matrix box”

B(M)
∗ =

{
u ∈ Rn :

∥∥∥∑n

i=1
Sixi

∥∥∥
Sh,∞

≤ 1

}
, [L = 1, R = [0, 1]]

where Si ∈ Rd×d are random symmetric matrices (n = d2/2 in the reported experiments). With a
natural implementations of the outlined bounding scheme we arrive at simulation results presented
in Figure 3. Observe that in all experiments (100 random problems for each problem dimension) the
suboptimality factor does not exceed 1.9, while its theoretical estimation as in (42) varies in the
interval [9.7, 22.2].

Remark 4.1 Note that Propositions 3.1 and 3.3 also apply in the following “mixed” observation
scheme:

ω = Ax+ ξ + η,

where, as above, A is a given m × n matrix, x us unknown deterministic signal known to belong to
a given signal set X , ξ is a random noise with distribution known to belong to a family P of Borel
probability distributions on Rm satisfying (2) for a given convex compact set Q ⊂ int Sm+ , and η is
“uncertain-but-bounded” perturbation known to belong to a given set H. As before, our goal is to
recover Bx ∈ Rν via observation ω. Given a norm ‖ · ‖ on Rν , we can quantify the performance of a
candidate estimate ω 7→ x̂(ω) : Rm → Rν by its risk

RiskQ,H,‖·‖[x̂|X ] = sup
x∈X ,P4Q,η∈H

Eξ∼P {‖Bx− x̂(Ax+ ξ + η)‖}.

Observe that the estimation problem associated with this “mixed” observation scheme straightfor-
wardly reduces to similar problem for random observation scheme, by the same trick we have used in
Section 4.1 to eliminate the observation noise. Indeed, let us treat x+ := [x; η] ∈ X+ := X ×H and X+

12In short, the idea of the construction is as follows. We first note that the maximal norm ‖Bx‖ for x in the intersection
of X and of the kernel of A, i.e., the optimal value of the problem

max
x
{‖Bx‖ : x ∈ X , Ax = 0} = max

x,u

{
uTBx, u ∈ B∗, x ∈ X , Ax = 0

}
, (∗)

lower bounds the minimax risk. Then we use semidefinite relaxation to compute a feasible solution [ū; x̄] to (∗) and use
the value ūTBx̄ to lower bound Riskopt[X ]. The reader is referred to the proofs of Propositions 2.1 and 4.1 for details.
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Figure 3: Suboptimality factors as functions of the problem dimension. Boxplots for 100 realisations of

randomized experiments. (a): random parallelotope B(P )
∗ , (b): random “matrix box” B(M)

∗ .

as the new signal/signal set underlying our observation, and denote Āx+ = Ax+η, B̄x+ = Bx, where
Ā = [A, Im] and B̄ = [B, 0ν×m]. With these conventions, the “mixed” observation scheme becomes

ω = Āx+ + ξ,

and for every candidate estimate x̂(·) it clearly holds

RiskQ,H,‖·‖[x̂|X ] = RiskQ,‖·‖[x̂|X+].

In other words, we are now in the situation of Section 3.1; assuming that X and H are spectratopes, so
is X+, meaning that all results of Section 3 on constructing linear estimates and their near-optimality
are applicable in our present setup.

5 Proofs

5.1 Technical lemma

In the sequel, we repeatedly use the following technical fact:

Lemma 5.1 Given basic spectratope (3), a positive definite n× n matrix Q and setting Λk = Rk[Q],
we get a collection of positive semidefinite matrices such that

∑
kR∗k[Λk] is positive definite. As a

corollary, whenever Mk, k ≤ K, are positive definite matrices, the matrix
∑

kR∗k[Mk] is positive
definite. In addition, the set

W = {Q ∈ Sn : Q � 0, ∃t ∈ T : Rk[Q] � tkIdk , k ≤ K}

is nonempty convex compact set containing a neighbourhood of the origin.

Proof. Let us prove the first claim, Assuming the opposite, we can find a nonzero vector y such that∑
k y

TR∗k[Λk]y ≤ 0, whence

0 ≥
∑
k

yTR∗k[Λk]y =
∑
k

Tr(R∗k[Λk][yyT ]) =
∑
k

Tr(ΛkRk[yyT ])
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(we have used (10) and (6)). Since Λk = Rk[Q] � 0 due to Q � 0, see (7), it follows that
Tr(ΛkRk[yyT ]) = 0 for all k. Now, the linear mapping Rk[·] is �-monotone, and Q is positive definite,
implying that Q � rkyy

T for some rk > 0, whence Λk � rkRk[yyT ]. Therefore, Tr(ΛkRk[yyT ]) = 0
implies that Tr(R2

k[yy
T ]) = 0, that is, Rk[yyT ] = R2

k[y] = 0. Since Rk[·] takes values in Sdk , we get
Rk[y] = 0 for all k, which is impossible due to y 6= 0 and property (S3), see Section 2.1.

The second claim is an immediate consequence of the first one. Indeed, when Mk are positive
definite, we can find γ > 0 such that Λk � γMk for all k ≤ K; invoking (11), we conclude that
R∗k[Λk] � γR∗k[Mk], whence

∑
kR∗k[Mk] is positive definite along with

∑
kR∗k[Λk].

Finally, the only unevident component in the last claim of the lemma is that W is bounded. To
see that it is the case, let us fix a collection {Mk} of positive definite matrices Mk ∈ Sdk , and let us
set M =

∑
kR∗k[Mk], so that M � 0 by already proved part of the lemma. For Q ∈ W, we have

Rk[Q] � tkIdk , k ≤ K, for properly selected t ∈ T , so that

Tr(QM) =
∑
k

Tr(QR∗k[Mk]) =
∑
k

Tr(Rk[Q]Mk) ≤
∑
k

tkTr(Mk)

(we have used (10)), and the concluding quantity does not exceed properly selected C <∞ (since T
is compact). Thus, W ⊂ {Q : Q � 0,Tr(QM) ≤ C}, whence W is bounded due to M � 0. �

5.2 Proof of Proposition 2.1

5.2.1 Preliminaries: matrix concentration

We are about to use the following deep matrix concentration result, see [29, Theorem 4.6.1]:

Theorem 5.1 Let Qi ∈ Sn, 1 ≤ i ≤ I, and let ξi, i = 1, ..., I, be independent Rademacher (±1 with
probabilities 1/2) or N (0, 1) random variables. Then for all s ≥ 0 one has

Prob

{∥∥∥∥∑I

i=1
ξiQi

∥∥∥∥>s} ≤ 2n exp

{
− s2

2vQ

}
where ‖ · ‖ is the spectral norm, and vQ =

∥∥∥∑I
i=1Q

2
i

∥∥∥ .
We also need the following immediate consequence of the theorem:

Lemma 5.2 Given spectratope (3), let Q ∈ Sn+ be such that

Rk[Q] � ρtkIdk , 1 ≤ k ≤ K, (43)

for some t ∈ T and some ρ ∈ (0, 1]. Then

Probξ∼N (0,Q){ξ 6∈ X} ≤ min
[
2De

− 1
2ρ , 1

]
, D :=

K∑
k=1

dk.

Proof. When setting ξ = Q1/2η, η ∼ N (0, In), we have

Rk[ξ] = Rk[Q
1/2η] =:

n∑
i=1

ηiR̄
ki = R̄k[η]

with ∑
i

[R̄ki]2 = Eη∼N (0,In)

{
R̄2
k[η]
}

= Eξ∼N (0,Q)

{
R2
k[ξ]
}

= Rk[Q] � ρtkIdk
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due to (8). Hence, by Theorem 5.1 as applied with Qi = R̄ki, s =
√
tk, we get vQ ≤ ρtk and therefore

Probξ∼N (0,Q){‖Rk[ξ]‖2 ≥ tk} = Probη∼N (0,In){‖R̄k[η]‖2 ≥ tk} ≤ 2dke
− 1

2ρ .

We conclude that

Probξ∼N (0,Q){ξ 6∈ X} ≤ Probξ∼N (0,Q){∃k : ‖Rk[ξ]‖2 > tk} ≤ 2De
− 1

2ρ . �

5.2.2 Proving Proposition 2.1

1o. Under the premise of Proposition 2.1, let us set C̄ = P TCP , and consider the conic problem

Opt# = max
Q,t

{
Tr(C̄Q) : Q � 0,Rk[Q] � tkIdk ∀k ≤ K, [t; 1] ∈ K[T ]︸ ︷︷ ︸

⇔t∈T

}
. (44)

Since T contains positive vectors, this problem is strictly feasible. Besides this, the feasible set of the
problem is bounded by Lemma 5.1 and since T is compact. Thus, problem (44) is strictly feasible with
bounded feasible set and thus is solvable along with its conic dual, both problems sharing a common
optimal value (Conic Duality Theorem, see Appendix C):

Opt# = min
Λ={Λk}k≤K ,[g;s],L

{
s :

Tr([
∑

kR∗k[Λk]− L]Q)−
∑

k[Tr(Λk) + gk]tk = Tr(C̄Q) ∀(Q, t),
Λk � 0 ∀k, L � 0, s ≥ φT (−g)

}
[recall that the cone dual to K[T ] is {[g; s] : s ≥ φT (−g)}]

= min
Λ,[g;s],L

{
s :

∑
kR∗k[Λk]− L = C̄, g = −λ[Λ],

Λk � 0∀k, L � 0, s ≥ φT (−g)

}
= min

Λ

{
φT (λ[Λ]) :

∑
k

R∗k[Λk] � C̄, Λk � 0 ∀k

}
= Opt∗

We see that (12) is solvable along with conic dual to problem (44), and

Opt# = Opt∗.

2o. Problem (44), as we already know, is solvable; let Q∗, t
∗ be an optimal solution to the problem.

Next, let us set R∗ = Q
1/2
∗ , Ĉ = R∗C̄R∗, and let Ĉ = UDUT be the eigenvalue decomposition of

Ĉ, so that the matrix D = UTR∗C̄R∗U is diagonal, and the trace of this matrix is Tr(R∗C̄R∗) =
Tr(C̄Q∗) = Opt# = Opt∗. Now let V = R∗U , and let ξ = V η, where η ∼ R (i.e., η is n-dimensional
random (Rademacher) vector with independent entries taking values ±1 with probabilities 1/2). We
have

ξT C̄ξ = ηT [V T C̄V ]η = ηT [UTR∗C̄R∗U ]η = ηTDη ≡ Tr(D) = Opt∗, (45)

(recall that D is diagonal) and

Eξ{ξξT } = Eη{V ηηTV T } = V V T = R∗UU
TR∗ = R2

∗ = Q∗.

From the latter relation,

Eξ

{
R2
k[ξ]
}

= Eξ

{
Rk[ξξT ]

}
= Rk[Eξ{ξξT }] = Rk[Q∗] � t∗kIdk , 1 ≤ k ≤ K. (46)

On the other hand, with properly selected symmetric matrices R̄ki we have

R̄k[y] := Rk[V y] =
∑
i

R̄kiyi
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identically in y ∈ Rn, whence

Eξ

{
R2
k[ξ]
}

= Eη

{
R2
k[V η]

}
= Eη

{[∑
i
ηiR̄

ki
]2
}

=
∑
i,j

Eη{ηiηj}R̄kiR̄kj =
∑
i

[R̄ki]2.

This combines with (46) to imply that∑
i

[R̄ki]2 � t∗kIdk , 1 ≤ k ≤ K. (47)

3o. Let us fix k ≤ K. Applying Theorem 5.1 with Qi = R̄ki and s =
√
t∗k/ρ, we derive from (47)

that
Probη∼R{‖R̄k[η]‖2 > t∗k/ρ} ≤ 2dke

− 1
2ρ ,

and recalling the relation between ξ and η, we arrive at

Prob{ξ : ‖Rk[ξ]‖2 > t∗k/ρ} ≤ 2dke
− 1

2ρ ∀ρ ∈ (0, 1]. (48)

Now let us set ρ̄ = 1
2 max[ln(2D),1] , and let ρ ∈ (0, ρ̄). For this ρ, the sum over k ≤ K of the right hand

sides in inequalities (48) is < 1, implying that there exists a realization ξ̄ of ξ such that

‖Rk[ξ̄]‖2 ≤ t∗k/ρ, ∀k,

or, equivalently,
x̄ := ρ1/2P ξ̄ ∈ X ,

and
Opt ≥ x̄TCx̄ = ρξT C̄ξ = ρOpt∗

(the concluding equality is due to (45)). The resulting inequality holds true for every ρ ∈ (0, ρ̄), and
we arrive at the right inequality in (13). �

5.3 Derivation of relation (40) of Section 3.4

Let us �-upper-bound the covariance mapping C[v] of ζ = ηηT−E{ηηT }, η ∼ N (0, Aϑ[v]AT ). Observe
that C[v] is a symmetric linear mapping of Sm into itself given by

〈h, C[v]h〉 = E{〈h, ζ〉2} = E{〈h, ηηT 〉2} − 〈h,E{ηηT }〉2, h ∈ Sm.

Given v ∈ V, setting θ = ϑ[v], so that 0 � θ � ϑ∗, and denoting H(h) = θ1/2AThAθ1/2, we obtain

〈h, C[v]h〉 = Eξ∼N (0,θ){Tr2(hAξξTAT )} − Tr2(hEξ∼N (0,θ){AξξTAT })
= Eχ∼N (0,In){Tr2(hAθ1/2χχT θ1/2AT )} − Tr2(hAθAT )

= Eχ∼N (0,In){(χTH(h)χ)2} − Tr2(H(h)).

We have H(h) = UDiag{λ}UT with orthogonal U , so that for χ̄ = UTχ we get

Eχ∼N (0,In){(χTH(h)χ)2} − Tr2(H(h)) = Eχ̄∼N (0,In){(χ̄TDiag{λ}χ̄)2} − (
∑

i λi)
2

= Eχ̄∼N (0,In){(
∑

i λiχ̄
2
i )

2} − (
∑

i λi)
2 =

∑
i 6=j λiλj + 3

∑
i λ

2
i − (

∑
i λi)

2 = 2
∑

i λ
2
i = 2Tr([H(h)]2).

Thus,
〈h, C[v]h〉 = 2Tr([H(h)]2) = 2Tr(θ1/2AThAθAThAθ1/2)

≤ 2Tr(θ1/2AThAϑ∗A
ThAθ1/2) [since 0 � θ � ϑ∗]

= 2Tr(ϑ
1/2
∗ AThAθAThAϑ

1/2
∗ ) ≤ 2Tr(ϑ

1/2
∗ AThAϑ∗A

ThAϑ
1/2
∗ )

= 2Tr(ϑ∗A
ThAϑ∗A

ThA),

what implies (40). �
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5.4 Proof of Lemma 3.1

In the case of (20), we have

‖Y T ξ‖ = max
z∈B∗

zTY T ξ = max
y∈Y

yTMTY T ξ ≤︸︷︷︸
by (20)

max
y∈Y

[
ξTΘξ +

∑
` y

TS∗` [Υ`]y
]

= max
y∈Y

[
ξTΘξ +

∑
` Tr(S∗` [Υ`]yy

T )
]

=︸︷︷︸
by (6) and (10)

max
y∈Y

[
ξTΘξ +

∑
` Tr(Υ`S

2
` [y])

]
=︸︷︷︸

by (16)

ξTΘξ + max
y,r

{∑
` Tr(Υ`S

2
` [y]) : S2

` [y] � r`If` , ` ≤ L, r ∈ R
}

≤︸︷︷︸
by Υ` � 0

ξTΘξ + max
r∈R

∑
` Tr(Υ`)r` ≤ ξTΘξ + φR(λ[Υ]).

Taking expectation of both sides of the resulting inequality w.r.t. distribution P of ξ and taking into
account that Tr(Cov[P ]Θ) ≤ Tr(QΘ) due to Θ � 0 (by (20)) and Cov[P ] � Q, we get (21). �

5.5 Proof of Proposition 3.2

In the case of (28), problem (26) reads

Opt = min
H=[H̃1;...;H̃T ],Λ,Υ,Υ′,Θ=[θtτ ]1≤t,τ≤T

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) +

∑T
t=1 Γ̄(θtt) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR∗k[Λk] 1

2 [BT − ĀT
∑T

t=1 H̃t]M
1
2M

T [B − [
∑T

t=1 H̃
T
t ]Ā]

∑
` S∗` [Υ`]

]
� 0,

θ1,1 · · · θ1,T 1
2H̃1M

...
. . .

...
...

θT,1 · · · θT,T 1
2H̃TM

1
2M

T H̃T
1 · · · 1

2M
T H̃T

T

∑
` S∗` [Υ′`]

 � 0


,

Γ̄(θ) = maxQ̄∈Q̄Tr(Q̄θ),

(49)

where H̃t are m̄× ν matrices, and θtτ = [θτt]T , 1 ≤ t, τ ≤ T , form a partition of Θ ∈ Sm̄T into m̄× m̄
blocks. Problem (49) clearly admits a group of symmetries: a permutation σ of {1, ..., T} induces the
transformation on the space of decision variables which keeps Λ,Υ,Υ′ intact and maps H̃t into H̃σ(t),

and θtτ into θσ(t)σ(τ); this transformation preserves the feasible set and keeps intact the value of the
objective. Since the problem is convex and solvable, it admits a “symmetric” optimal solution – one
with H̃t = H̃, and θtt = θ, 1 ≤ t ≤ T . From the concluding semidefinite constraint in (49) it follows
that [

θ 1
2H̃M

1
2H̃

TMT
∑

` S∗` [Υ′`]

]
� 0
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where Υ′ stems from the symmetric solution in question. We conclude that Opt ≥ Opt, where

Opt = min
H̃∈Rm̄×ν ,Λ,Υ,Υ′,θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + T Γ̄(θ) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR∗k[Λk] 1

2 [BT − TĀT H̃]M
1
2M

T [B − TH̃T Ā]
∑

` S∗` [Υ`]

]
� 0,[

θ 1
2H̃M

1
2M

T H̃T
∑

` S∗` [Υ′`]

]
� 0


.

(50)

It is immediately seen that a feasible solution H̃ ∈ Rm̄×ν ,Λ,Υ,Υ′, θ to the optimization problem in
(50) gives rise to a feasible solution to (49) with the same value of the objective, specifically, the
solution H = [H̃; ...; H̃],Λ,Υ,Υ′,Θ = [θtτ = θ]t,τ≤T . We conclude that Opt = Opt, and an optimal

solution H̃ ∈ Rm̄×ν ,Λ,Υ,Υ′, θ to the optimization problem in (50) gives rise to a symmetric optimal
solution to (49). The associated linear estimate is

H̃T
T∑
t=1

ωt,

and its risk is upper-bounded by Opt = Opt. It remains to note that the optimization problem in
(29) is obtained from the optimization problem in (50) by substituting H̃ = T−1H̄ and θ = T−2Θ̄. �

5.6 Proof of Lemma 3.2

1o. Let us verify (33). When Q � 0, passing from variables (Θ,Υ) in problem (32) to the variables
(G = Q1/2ΘQ1/2,Υ), the problem becomes exactly the optimization problem in (33), implying that
Opt[Q] = Opt[Q] when Q � 0. As it is easily seen, both sides in this equality are continuous in Q � 0,
and (33) follows.

2o. Let us set ζ = Q1/2η with η ∼ N (0, IN ) and Z = Q1/2Y . Let us show that when κ ≥ 1 one has

Probη{‖ZT η‖ ≥ δ̄} ≥ βκ := 1− e3/8

2
− 2F e−κ

2/2, δ̄ =
Opt[Q]

4κ
, (51)

where

[Opt[Q] =] Opt[Q] := min
Θ,Υ={Υ`,`≤L}

{
φR(λ[Υ]) + Tr(Θ) :

Υ` � 0,

[
Θ 1

2ZM
1
2M

TZT
∑

` S∗` [Υ`]

]
� 0

} (52)

3o. Let us represent Opt[Q] as the optimal value of a conic problem. Setting

K = cl{[r; s] : s > 0, r/s ∈ R},

we ensure that
R = {r : [r; 1] ∈ K}, K∗ = {[g; s] : s ≥ φR(−g)},
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where K∗ is the cone dual to K. Consequently, (52) reads

Opt[Q] = min
Θ,Υ,θ

θ + Tr(Θ) :

Υ` � 0, 1 ≤ ` ≤ L (a)[
Θ 1

2ZM
1
2M

TZT
∑

` S∗` [Υ`]

]
� 0 (b)

[−λ[Υ]; θ] ∈ K∗ (c)

 . (P )

4o. Now let us prove that there exists matrix W ∈ Sq+ and r ∈ R such that

S`[W ] � r`If` , ` ≤ L, (53)

and
Opt[Q]≤

∑
i

σi(ZMW 1/2), (54)

where σ1(·) ≥ σ2(·) ≥ ... are singular values.
To get the announced result, let us pass from problem (P ) to its conic dual. Applying Lemma 5.1

we conclude that (P ) is strictly feasible; in addition, (P ) clearly is bounded, so that the dual to (P )
problem (D) is solvable with optimal value Opt[Q]. Let us build (D). Denoting by Λ` � 0, ` ≤ L,[

G −R
−RT W

]
� 0, [r; τ ] ∈ K the Lagrange multipliers for the respective constraints in (P ), and

aggregating these constraints, the multipliers being the aggregation weights, we arrive at the following
aggregated constraint:

Tr(ΘG) + Tr(W
∑

` S∗` [Υ`]) +
∑

` Tr(Λ`Υ`)−
∑

` r`Tr(Υ`) + θτ ≥ Tr(ZMRT ).

To get the dual problem, we impose on the Lagrange multipliers, in addition to the initial conic
constraints like Λ` � 0, 1 ≤ ` ≤ L, the restriction that the left hand side in the aggregated constraint,
identically in Θ, Υ` and θ, is equal to the objective of (P ), that is,

G = I, S`[W ] + Λ` − r`If` = 0, 1 ≤ ` ≤ L, τ = 1,

and maximize, under the resulting restrictions, the right-hand side of the aggregated constraint. After
immediate simplifications, we arrive at

Opt[Q] = max
W,R,r

{
Tr(ZMRT ) : W � RTR, r ∈ R,S`[W ] � r`If` , 1 ≤ ` ≤ L

}
(note that r ∈ R is equivalent to [r; 1] ∈ K, and W � RTR is the same as

[
I −R
−RT W

]
� 0). Now,

to say that RTR �W is exactly the same as to say that R = SW 1/2 with the spectral norm ‖S‖Sh,∞
of S not exceeding 1, so that

Opt[Q] = max
W,S,r

{
Tr([ZM [SW 1/2]T )︸ ︷︷ ︸

=Tr([ZMW 1/2]ST )

: W � 0, ‖S‖Sh,∞ ≤ 1, r ∈ R,S`[W ] � r`If` , ` ≤ L
}

and we can immediately eliminate the S-variable, using the well-known fact that for every p×q matrix
J , it holds

max
S∈Rp×q ,‖S‖Sh,∞≤1

Tr(JST ) = ‖J‖Sh,1,
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where ‖J‖Sh,1 is the nuclear norm (the sum of singular values) of J . We arrive at

Opt[Q] = max
W,r

{
‖ZMW 1/2‖Sh,1 : r ∈ R,W � 0,S`[W ] � r`Id` , ` ≤ L

}
.

The resulting problem clearly is solvable, and its optimal solution W ensures the target relations (53)
and (54).

5o. Given W satisfying (53) and (54), let UJV = W 1/2MTZT be the singular value decomposition
of W 1/2MTZT , so that U and V are, respectively, q × q and N ×N orthogonal matrices, J is q ×N
matrix with diagonal σ = [σ1; ...;σp], p = min[q,N ], and zero off-diagonal entries; the diagonal entries
σi, 1 ≤ i ≤ p are the singular values of W 1/2MTZT , or, which is the same, of ZMW 1/2. Therefore,
we have ∑

i

σi ≥ Opt[Q]. (55)

Now consider the following construction. Let η ∼ N (0, IN ); we denote by υ the vector comprised of
the first p entries in V η; note that υ ∼ N (0, Ip), since V is orthogonal. We then augment, if necessary,
υ by q − p independent of each other and of η N (0, 1) random variables to obtain a q-dimensional
normal vector υ′ ∼ N (0, Iq), and set χ = Uυ′; because U is orthogonal we also have χ ∼ N (0, Iq).
Observe that

χTW 1/2MTZT η = χTUJV η = [υ′]TJυ =

p∑
i=1

σiυ
2
i . (56)

To continue we need two simple observations.

(i) One has

α := Prob

{
p∑
i=1

σiυ
2
i <

1
4

p∑
i=1

σi

}
≤ e3/8

2
[= 0.7275...]. (57)

The claim is evident when σ :=
∑

i σi = 0. Now let σ > 0, and let us apply the Cramer bounding
scheme. Namely, given γ > 0, consider the random variable

ω = exp

{
1
4γ
∑
i

σi − γ
∑
i

σiυ
2
i

}
.

Note that ω > 0 a.s., and is > 1 when
∑p

i=1 σiυ
2
i <

1
4

∑p
i=1 σi, so that α ≤ E{ω}, or, equivalently,

thanks to υ ∼ N (0, Ip),

ln(α) ≤ ln(E{ω}) = 1
4γ
∑
i

σi +
∑
i

ln
(
E{exp{−γσiυ2

i }}
)
≤ 1

4γσ −
1
2

∑
i

ln(1 + 2γσi).

Function −
∑

i ln(1 + 2γσi) is convex in [σ1; ...;σp] ≥ 0, therefore, its maximum over the simplex
{σi ≥ 0, i ≤ p,

∑
i σi = σ} is attained at a vertex, and we get

ln(α) ≤ 1
4γσ − 1

2 ln(1 + 2γσ).

Minimizing the right hand side in γ > 0, we arrive at (57).

(ii) Whenever κ ≥ 1, one has

Prob{‖MW 1/2χ‖∗ > κ} ≤ 2F exp{−κ2/2}, (58)
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with F given by (31).

Indeed, setting ρ = 1/κ2 ≤ 1 and ω =
√
ρW 1/2χ, we get ω ∼ N (0, ρW ). Let us apply Lemma

5.2 to Q = ρW , R in the role of T , L in the role of K, and S`[·] in the role of Rk[·]. Denoting

Y := {y : ∃r ∈ R : S2
` [y] � r`If` , ` ≤ L},

we have S`[Q] = ρS`[W ] � ρr`If` , ` ≤ L, with r ∈ R (see (53)), so we are under the premise
of Lemma 5.2 (with Y in the role of X and therefore with F in the role of D). Applying the
lemma, we conclude that

Prob
{
χ : κ−1W 1/2χ 6∈ Y

}
≤ 2F exp{−1/(2ρ)} = 2F exp{−κ2/2}.

Recalling that B∗ = MY, we see that Prob{χ : κ−1MW 1/2χ 6∈ B∗} is indeed upper-bounded by
the right hand side of (58), and (58) follows.

Now, for κ ≥ 1, let

Eκ =

{
(χ, η) : ‖MW 1/2χ‖∗ ≤ κ,

∑
i

σiυ
2
i ≥ 1

4

∑
i

σi

}
.

For (χ, η) ∈ Eκ we have

κ‖ZT η‖ ≥ ‖MW 1/2χ‖∗‖ZT η‖ ≥ χTW 1/2MTZT η =
∑
i

σiυ
2
i ≥ 1

4

∑
i

σi ≥ 1
4Opt[Q],

(we have used (56) and (55)). On the other hand, due to (57) and (58),

Prob{Eκ} ≥ βκ, (59)

and we arrive at (35). The latter relation clearly implies (36) which, in turn, implies the right
inequality in (34). �

5.7 Proof of Proposition 3.3

In what follows, we use the assumptions and the notation of Proposition 3.3.

10. Let

Φ(H,Λ,Υ,Υ′,Θ;Q) = φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Tr(QΘ) :M×Q→ R,

where

M =

{
(H,Λ,Υ,Υ′,Θ) :

Λ = {Λk � 0, k ≤ K},
Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L}[ ∑

kR∗k[Λk] 1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0[

Θ 1
2HM

1
2M

THT
∑

` S∗` [Υ′`]

]
� 0


Looking at (26), we conclude immediately that the optimal value Opt in (26) is nothing but

Opt = min
(H,Λ,Υ,Υ′,Θ)∈M

[
Φ(H,Λ,Υ,Υ′,Θ) := max

Q∈Q
Φ(H,Λ,Υ,Υ′,Θ;Q)

]
. (60)
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Note that the sets M and Q are closed and convex, Q is compact, and Φ is a continuous convex-
concave function on M×Q. In view of these observations, the fact that Q ⊂ int Sm+ combines with
the Sion-Kakutani Theorem to imply that Φ possesses saddle point (H∗,Λ∗,Υ∗,Υ

′
∗,Θ∗;Q∗) (min in

(H,Λ,Υ,Υ′,Θ), max in Q) onM×Q, whence Opt is the saddle point value of Φ by (60). We conclude
that for properly selected Q∗ ∈ Q it holds

Opt = min
(H,Λ,Υ,Υ′,Θ)∈M

Φ(H,Λ,Υ,Υ′,Θ;Q∗)

= min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Tr(Q∗Θ) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L}[ ∑
kR∗k[Λk] 1

2 [BT −ATH]M
1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0,[

Θ 1
2HM

1
2M

THT
∑

` S∗` [Υ′`]

]
� 0


= min

H,Λ,Υ,Υ′,G

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Tr(G) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L}[ ∑
kR∗k[Λk] 1

2 [BT −ATH]M
1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0,[

G 1
2Q

1/2
∗ HM

1
2M

THTQ
1/2
∗

∑
` S∗` [Υ′`]

]
� 0


= min

H,Λ,Υ

{
φT (λ[Λ]) + φR(λ[Υ]) + Ψ(H) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}[ ∑
kR∗k[Λk] 1

2 [BT −ATH]M
1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0

 ,

Ψ(H) := min
G,Υ′

{
φR(λ[Υ′]) + Tr(G) : Υ′ = {Υ′` � 0, ` ≤ L},[

G 1
2Q

1/2
∗ HM

1
2M

THTQ
1/2
∗

∑
` S∗` [Υ′`]

]
� 0

}

(61)

where Opt is given by (26), and the equalities are due to (32) and (33).
From now on we assume that the observation noise ξ in observation (1) is ξ ∼ N (0, Q∗). Besides

this, we assume that B 6= 0, since otherwise the conclusion of Proposition 3.3 is evident.

20. ε-risk. In Proposition 3.3, we are speaking about ‖ · ‖-risk of an estimate – the maximal, over
signals x ∈ X , expected norm ‖ · ‖ of the error in recovering Bx; what we need to prove that the
minimax optimal risk RiskOptQ,‖·‖[X ] as given by (29) can be lower-bounded by a quantity “of order
of” Opt. To this end, of course, it suffices to build such a lower bound for the quantity

RiskOpt‖·‖ := inf
x̂(·)

[
sup
x∈X

Eξ∼N (0,Q∗){‖Bx− x̂(Ax+ ξ)‖}
]
,

since this quantity is a lower bound on RiskOptQ,‖·‖. Technically, it is more convenient to work with
the ε-risk defined in terms of “‖ · ‖-confidence intervals” rather than in terms of the expected norm of
the error. Specifically, in the sequel we will heavily use the minimax ε-risk defined as

RiskOptε = inf
x̂,ρ

{
ρ : Probξ∼N (0,Q∗){‖Bx− x̂(Ax+ ξ)‖ ≤ ε ∀x ∈ X

}
(62)

When ε ∈ (0, 1) is once for ever fixed (in the sequel, we use ε = 1
8), ε-risk lower-bounds RiskOpt‖·‖,

since by evident reasons
RiskOpt‖·‖ ≥ εRiskOptε. (63)
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Consequently, all we need in order to prove Proposition 3.3 is to lower-bound RiskOpt 1
8

by a “not too

small” multiple of Opt, and this is what we are achieving below.

3o. Let W be a positive semidefinite n × n matrix, let η ∼ N (0,W ) be random signal, and let
ξ ∼ N (0, Q∗) be independent of η; vectors (η, ξ) induce random vector

ω = Aη + ξ ∼ N (0, AWAT +Q∗).

Consider the Bayesian version of the estimation problem where given ω we are interested to recover
Bη. Recall that, because [ω;Bη] is zero mean Gaussian, the conditional expectation E|ω{Bη} of Bη

given ω is linear in ω: E|ω{Bη} = H̄Tω for some H̄ depending on W only13. Therefore, denoting by
P|ω conditional, ω given, probability distribution, for any ρ > 0 and estimate x̂(·) one has

Probη,ξ{‖Bη − x̂(Aη + ξ)‖ ≥ ρ} = Eω

{
Prob|ω{‖Bη − x̂(ω)‖ ≥ ρ}

}
≥ Eω

{
Prob|ω{‖Bη −E|ω{Bη}‖ ≥ ρ}

}
= Probη,ξ{‖Bη − H̄T (Aη + ξ)‖ ≥ ρ},

(64)

with the inequality given by the Anderson Lemma [1] as applied to the shift of the Gaussian distribution
P|ω by its mean. Applying the Anderson Lemma again we get

Probη,ξ{‖Bη − H̄T (Aη + ξ)‖ ≥ ρ} = Eξ

{
Probη{‖(B − H̄TA)η − H̄T ξ‖ ≥ ρ}

}
≥ Probη{‖(B − H̄TA)η‖ ≥ ρ},

and, by “symmetric” reasoning,

Probη,ξ{‖Bη − H̄T (Aη + ξ)‖ ≥ ρ} ≥ Probξ{‖H̄T ξ‖ ≥ ρ}.

We conclude that for any x̂(·)

Probη,ξ{‖Bη − x̂(ω)‖ ≥ ρ}
≥ max

{
Probη{‖(B − H̄TA)η‖ ≥ ρ}, Probξ{‖H̄T ξ‖ ≥ ρ}

}
.

(65)

4o. Let H be m× ν matrix. Applying Lemma 3.2 to N = m, Y = H̄, Q = Q∗, we get from (35)

Probξ∼N (0,Q∗){‖H
T ξ‖ ≥ [4κ]−1Ψ(H̄)} ≥ βκ (66)

where Ψ(H) is defined by (61). Similarly, applying Lemma 3.2 to N = n, Y = (B− H̄TA)T , Q = W ,
we obtain

Probη∼N (0,W ){‖(B − H̄TA)η‖ ≥ [4κ]−1Φ(W, H̄)} ≥ βκ (67)

where

Φ(W,H) = min
Υ={Υ`,`≤L},Θ

{
Tr (WΘ) + φR(λ[Υ]) : Υ` � 0∀`,[

Θ 1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0

}
.

(68)

13We have used the following standard fact: let ζ = [ω; η] ∼ N (0, S), the covariance matrix of the marginal distribution
of ω being nonsingular. Then the conditional, ω given, distribution of η is Gaussian with mean linearly depending on ω
and covariance matrix independent of ω.
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Let us put ρ(W, H̄) = [8κ]−1[Ψ(H̄) + Φ(W, H̄)]; when combining (67) with (66) we conclude that

max
{

Probη{‖(B − H̄TA)η‖ ≥ ρ(W, H̄)}, Probξ{‖H̄T ξ‖ ≥ ρ(W, H̄)}
}
≥ βκ,

and the same inequality holds if ρ(W, H̄) is replaced with the smaller quantity

ρ̄(W ) = [8κ]−1 inf
H

[Ψ(H) + Φ(W,H)].

Now, the latter bound combines with (65) to imply the following result:

Lemma 5.3 Let W be a positive semidefinite n × n matrix, and κ ≥ 1. Then for any estimate x̂(·)
of Bη given observation ω = Aη + ξ, one has

Probη,ξ{‖Bη − x̂(ω)‖ ≥ [8κ]−1 inf
H

[Ψ(H) + Φ(W,H)]} ≥ βκ = 1− e3/8

2
− 2F e−κ

2/2

where Ψ(H) and Φ(W,H) are defined, respectively, by (61) and (68).
In particular, for

κ = κ̄ :=
√

2 lnF + 10 ln 2 (69)

the latter probability is > 3/16.

5o. For 0 < κ ≤ 1, let us set

(a) Wκ = {W ∈ Sn+ : ∃t ∈ T : Rk[W ] � κtkIdk , 1 ≤ k ≤ K},

(b) Z =

(Υ = {Υ`, ` ≤ L},Θ, H) :

Υ` � 0 ∀`,[
Θ 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0

 .
(70)

Note that Wκ is a nonempty convex compact (by Lemma 5.1) set such that Wκ = κW1, and Z is a
nonempty closed convex set. Consider the parametric saddle point problem

Opt(κ) = max
W∈Wκ

min
(Υ,Θ,H)∈Z

[
E(W ; Υ,Θ, H) := Tr(WΘ) + φR(λ[Υ]) + Ψ(H)

]
. (71)

This problem is convex-concave; utilizing the fact that Wκ is compact and contains positive definite
matrices, it is immediately seen that the Sion-Kakutani theorem ensures the existence of a saddle
point whenever κ ∈ (0, 1]. We claim that

0 < κ ≤ 1⇒ Opt(κ) ≥
√
κOpt(1). (72)

Indeed, Z is invariant w.r.t. scalings

(Υ = {Υ`, ` ≤ L},Θ, H) 7→ (θΥ := {θΥ`, ` ≤ L}, θ−1Θ, H), [θ > 0].

When taking into account that φR(λ[θΥ]) = θφR(λ[Υ]), we get

E(W ) := min
(Υ,Θ,H)∈Z

E(W ; Υ,Θ, H) = min
(Υ,Θ,H)∈Z

inf
θ>0

E(W ; θΥ, θ−1Θ, H)

= min
(Υ,Θ,H)∈Z

[
2
√

Tr(WΘ)φR(λ[Υ]) + Ψ(H)
]
.

Because Ψ is nonnegative we conclude that whenever W � 0 and κ ∈ (0, 1], one has

E(κW ) ≥
√
κE(W ),
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which combines with Wκ = κW1 to imply that

Opt(κ) = max
W∈Wκ

E(W ) = max
W∈W1

E(κW ) ≥
√
κ max
W∈W1

E(W ) =
√
κOpt(1),

and (72) follows.

6o. We claim that
Opt(1) = Opt, (73)

where Opt is given by (26) (and, as we have seen, by (61) as well). Note that (73) combines with (72)
to imply that

0 < κ ≤ 1⇒ Opt(κ) ≥
√
κOpt. (74)

Verification of (73) is given by the following computation. By the Sion-Kakutani Theorem,

Opt(1) = max
W∈W1

min
(Υ,Θ,H)∈Z

{
Tr(WΘ) + φR(λ[Υ]) + Ψ(H)

}
= min

(Υ,Θ,H)∈Z
max
W∈W1

{
Tr(WΘ) + φR(λ[Υ]) + Ψ(H)

}
= min

(Υ,Θ,H)∈Z

{
Ψ(H) + φR(λ[Υ]) + max

W

{
Tr(ΘW ) :

W � 0,∃t ∈ T : Rk[W ] � tkIdk , k ≤ K
}}

= min
(Υ,Θ,H)∈Z

{
Ψ(H) + φR(λ[Υ]) + max

W,t

{
Tr(ΘW ) :

W � 0, [t; 1] ∈ T,Rk[W ] � tkIdk , k ≤ K
}}

,

where T is the closed conic hull of T . Now, using Conic Duality combined with the fact that T∗ =
{[g; s] : s ≥ φT (−g)} we obtain

max
W,t
{Tr(ΘW ) : W � 0, [t; 1] ∈ K[T ], Rk[W ] � tkIdk , k ≤ K}

= min
Z,[g;s],Λ={Λk}

s :


Z � 0, [g; s] ∈ (K[T ])∗, Λk � 0, k ≤ K
−Tr(ZW )− gT t+

∑
k Tr(R∗k[Λk]W )

−
∑

k tkTr(Λk) = Θ
∀(W ∈ Sn, t ∈ RK)


= min

Z,[g;s],Λ={Λk}

{
s :

{
Z � 0, s ≥ φT (−g), Λk � 0, k ≤ K
Θ =

∑
kR∗k[Λk]− Z, g = −λ[Λ]

}
= min

Λ

{
φT (λ[Λ]) : Λ = {Λk � 0, k ≤ K}, Θ �

∑
k

R∗k[Λk]

}
,
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and we arrive at

Opt(1) = min
Υ,Θ,H,Λ

{
Ψ(H) + φR(λ[Υ]) + φT (λ[Λ]) :

Υ = {Υ` � 0, ` ≤ L},Λ = {Λk � 0, k ≤ K},
Θ �

∑
kR∗k[Λk],[

Θ 1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0

}

= min
Υ,H,Λ

{
Ψ(H) + φR(λ[Υ]) + φT (λ[Λ]) :

Υ = {Υ` � 0, ` ≤ L},Λ = {Λk � 0, k ≤ K}[ ∑
kR∗k[Λk]

1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑

` S∗` [Υ`]

]
� 0

}
= Opt [see (61)].

7o. Now we can complete the proof. For κ ∈ (0, 1], let Wκ be the W -component of a saddle point
solution to the saddle point problem (71). Then, by (74),

√
κOpt ≤ Opt(κ) = min

(Υ,Θ,H)∈Z

{
Tr(WκΘ) + φR(λ[Υ]) + Ψ(H)

}
= min

H

{
Φ(Wκ, H) + Ψ(H)

} (75)

On the other hand, when applying Lemma 5.2 to Q = Wκ and ρ = κ, we obtain, in view of relations
0 < κ ≤ 1, Wκ ∈ Wκ,

δ(κ) := Probζ∼N (0,In){W 1/2
κ ζ 6∈ X} ≤ 2De−

1
2κ , (76)

with D given by (31). In particular, when setting

κ̄ =
1

2 lnD + 10 ln 2
(77)

we obtain δκ ≤ 1/16. Therefore,

Probη∼N (0,Wκ̄){η 6∈ X} ≤ 1
16 . (78)

Now let

%∗ :=
Opt

8
√

(2 lnF + 10 ln 2)(2 lnD + 10 ln 2)
. (79)

All we need in order to achieve our goal, that is, to justify (30), is to show that

RiskOpt 1
8
≥ %∗, (80)

since given the latter relation, (30) will be immediately given by (63) as applied with ε = 1
8 .

To prove (80), assume, on the contrary to what should be proved, that the 1
8 -risk is < %∗, and let

x̄(·) be an estimate with 1
8 -risk ≤ %∗. We can utilize x̄ to estimate Bη, in the Bayesian problem of

recovering Bη from observation ω = Aη+ ξ, (η, ξ) ∼ N (0,Σ) with Σ = Diag{Wκ̄, Q∗}. From (78) we
conclude that

Prob(η,ξ)∼N (0,Σ){‖Bη − x̄(Aη + ξ)‖ > %∗}
≤ Prob(η,ξ)∼N (0,Σ){‖Bη − x̄(Aη + ξ)‖ > %∗, η ∈ X}+ Probη∼N (0,Wκ̄){η 6∈ X}
≤ 1

8 + 1
16 = 3

16 .

(81)

33



On the other hand, by (75) we have

min
H

[Φ(Wκ̄, H) + Ψ(H)] = Opt(κ̄) ≥
√
κ̄Opt = [8κ̄]%∗

with κ̄ given by (69), so by Lemma 5.3, for any estimate x̂(·) of Bη via observation ω = Ax + ξ it
holds

Probη,ξ{‖Bη − x̂(Aη + ξ)‖ ≥ %∗} ≥ βκ̄ > 3/16;

in particular, this relation should hold true for x̂(·) ≡ x̄(·), but the latter is impossible: the 1
8 -risk of

x̄ is ≤ %∗, see (81). �

5.8 Proof of Proposition 4.1

1o. Item (i) is a direct consequence of Proposition 2.1, modulo the claim that problem (41) is solvable,
and we start with justifying this claim. Let F = ImA. Clearly, feasibility of a candidate solution
(H,Λ,Υ) to the problem depends solely on the restriction of the linear mapping z 7→ HT z onto F ,
so that adding to the constraints of the problem the requirement that the restriction of this linear
mapping on the orthogonal complement of F in Rm is identically zero, we get an equivalent problem.
It is immediately seen that in the resulting problem, the feasible solutions with the value of the
objective ≤ a for every a ∈ R form a compact set, so that the latter problem (and thus – the original
one) indeed is solvable.

Let us prove the near-optimality result of (ii).

2o. Observe that setting
% = max

x
{‖Bx‖ : x ∈ X , Ax = 0} , (82)

we ensure that
Riskopt[X ] ≥ %. (83)

Indeed, let x̄ be an optimal solution to the (clearly solvable) optimization problem in (82). Then
observation ω = 0 can be obtained from both the signals x = x̄ and x = −x̄, and therefore the risk of
any (deterministic) recovery routine is at least ‖Bx̄‖ = %, as claimed.

3o. It may happen that KerA = {0}. In this case the situation is trivial: specifying A† as a partial
inverse to A: A†A = In and setting HT = BA† (so that B − HTA = 0), Υ` = 0f`×f` , ` ≤ L,
Λk = 0dk×dk , k ≤ K, we get a feasible solution to the optimization problem in (41) with zero value
of the objective, implying that Opt# = 0; consequently, the linear estimate induced by an optimal
solution to the problem is with zero risk, and the conclusion of Proposition 4.1 is clearly true. With
this in mind, we assume from now on that KerA 6= {0}. Denoting κ = dim KerA, we can build an
n× κ matrix E of rank κ such that KerA is the image space of E.

4o. Setting

Z := {z ∈ Rκ : Ez ∈ X} =
{
z ∈ Rκ : ∃(t ∈ T ) : R̄2

k[z] � tkIdk , k ≤ K
}
, R̄k[z] = Rk[Ez],

C =

[
1
2BE

1
2E

TBT

]
,
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note that when z runs trough the spectratope Z, Ez runs exactly through the entire set {x ∈ X :
Ax = 0}. With this in mind, invoking Proposition 2.1, we arrive at

% = max
g:‖g‖∗≤1

max
z∈Z

gTBEz = max
[u;z]∈B∗×Z

[u; z]TC[u; z]

≤ Opt := min
Υ={Υ`: `≤L},
Λ={Λk, k≤K}

{
φR(λ[Υ]) + φT (λ[Λ]) : Υ`�0, Λk�0, ∀(`, k)

[ ∑
` S
∗
` [Υ`]

1
2BE

1
2E

TBT ET [
∑

kR∗k[ΛK ]]E

]
� 0

 (84)

(we have used the straightforward identity R̄∗k[Λk] = ETR∗k[Λk]E). By the same Proposition 2.1, the
optimization problem in (84) specifying Opt is solvable, and

% ≤ Opt ≤ 2 ln(2D)%, D =
∑
k

dk +
∑
`

f`. (85)

5o. Let Ῡ = {Ῡ`}, Λ̄ = {Λ̄k} be an optimal solution to the optimization problem specifying Opt, see
(84), and let

Υ =
∑
`

S∗` [Ῡ`], Λ =
∑
k

R∗k[Λ̄k],

so that

Opt = φR(λ[Ῡ]) + φT (λ[Λ̄]) &

[
Υ 1

2BE
1
2E

TBT ETΛE

]
� 0. (86)

We claim that for properly selected m× ν matrix H it holds[
Υ 1

2(B −HTA)
1
2(B −HTA)T Λ

]
� 0. (87)

This claim implies the conclusion of Proposition 4.1: by the claim, we have Opt ≤ Opt, which combines
with (85) and (83) to imply (42).

In order to justify the claim, assume that it fails to be true, and let us lead this assumption to a
contradiction. To this end, consider the semidefinite program

τ∗ = min
τ,H

{
τ :

[
Υ 1

2(B −HTA)
1
2(B −HTA)T Λ

]
+ τIν+n � 0

}
. (88)

The problem clearly is strictly feasible, and the value of the objective at every feasible solution is
positive. In addition, the problem is solvable (by exactly the same argument as in item 1o of the
proof).

40.b. As we have seen, (88) is a strictly feasible solvable problem with positive optimal value τ∗, so
that the problem dual to (88) is solvable with positive optimal value. Let us build the dual problem.

Denoting by

[
U V

V T W

]
� 0 the Lagrange multipliers for the semidefinite constraint in (88) and

taking inner product of the left hand side of the constraint with the multiplier, we get the aggregated
constraint

Tr(UΥ) + Tr(WΛ) + τ [Tr(U) + Tr(W )] + Tr((B −HTA)V T ) ≥ 0.
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The equality constraints of the dual problem should make the homogeneous in τ,H part of the left
hand side in the aggregated constraint identically equal to τ , which amounts to

Tr(U) + Tr(W ) = 1, V AT = 0, (89)

so the aggregated constraint reads

τ ≥ −
[
Tr(UΥ) + Tr(WΛ) + Tr(BV T )

]
.

The dual problem is to maximize the right hand side of the latter constraint over Lagrange multiplier[
U V

V T W

]
� 0 satisfying (89), and its optimal value is τ∗ > 0, that is, there exists

[
Ū V̄

V̄ T W̄

]
� 0

such that AV̄ T = 0 and
Tr(ŪΥ) + Tr(W̄Λ) + Tr(BV̄ T ) < 0. (90)

Adding to Ū a small positive multiple of the unit matrix, we can assume, in addition, that Ū � 0.
Now, the relation AV̄ T = 0 combines with the definition of E to imply that V̄ T = EF for properly
selected matrix F , so that [

Ū F TET

EF W̄

]
� 0.

Hence, by Schur Complement Lemma,

W̄ � EFŪ−1F TET ,

and (90) combines with Λ � 0 to imply that

0 > Tr(ŪΥ) + Tr(W̄Λ) + Tr(BV̄ T ) = Tr(ŪΥ) + Tr(W̄Λ) + Tr(BEF )

≥ Tr(ŪΥ) + Tr(EFŪ−1F TETΛ) + Tr(BEF ) = Tr

([
Υ 1

2BE
1
2E

TBT ETΛE

] [
Ū F T

F FŪ−1F T

])
Both matrix factors in the concluding the chain Tr(·) are positive semidefinite (the first one due to
(86), and the second – by Schur Complement Lemma); consequently, the concluding quantity in the
chain is nonnegative, which is impossible. We have arrived at a desired contradiction. �
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A Calculus of spectratopes

The principal rules of the calculus of spectratopes are as follows:

• [finite intersections] If

X` = {x ∈ Rν : ∃(y` ∈ Rn` , t` ∈ T`) : x = P`y
`, R2

k`[y
`] � t`kIdk` , k ≤ K`}, 1 ≤ ` ≤ L,

are spectratopes, so is X =
⋂
`≤L
X`. Indeed, let

E = {[y = [y1; ...; yL] ∈ Rn1 × ...×RNL : P1y
1 = P2y

2 = ... = PLy
L}.

When E = {0}, we have X = {0}, so that X is a spectratope; when E 6= {0}, we have

X = {x ∈ Rν : ∃(y = [y1; ...; yL] ∈ E, t = [t1; ...; tL] ∈ T := T1 × ...× TL) :
x = Py := P1y

1, R2
k`[y

`] � t`kIdk` , 1 ≤ k ≤ K`, 1 ≤ ` ≤ L};

identifying E and appropriate Rn, we arrive at a valid spectratopic representation of X .

• [direct product] If

X` = {x` ∈ Rν` : ∃(y` ∈ Rn` , t` ∈ T`) : x` = P`y
`, R2

k`[y
`] � t`kIdk` , k ≤ K`}, 1 ≤ ` ≤ L,

are spectratopes, so is X = X1 × ...×XL:

X1 × ...×XL = {x = [x1; ...;xL] : ∃(y = [y1; ...; yL], t = [t1; ...; tL] ∈ T = T1 × ...× T`) :
x = Py := [P1y

1; ...;PLy
L], R2

k`[y
`] � t`kIdk` , 1 ≤ k ≤ K`, 1 ≤ ` ≤ L};
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• [linear image] If

X = {x ∈ Rν : ∃(y ∈ Rn, t ∈ T ) : x = Py,R2
k[y] � tkIdk , k ≤ K}

is a spectratope and S is a µ× ν matrix, the set SX = {z = Sx : x ∈ X} is a spectratope:

SX = {z ∈ Rµ : ∃(y ∈ Rn, t ∈ T ) : z = SPy,R2
k[y] � tkIdk , k ≤ K}.

• [inverse linear image under embedding] If

X = {x ∈ Rν : ∃(y ∈ Rm, t ∈ T ) : x = Py,R2
k[y] � tkIdk , k ≤ K}

is a spectratope, and S is a ν × µ matrix with trivial kernel, the set S−1X = {z : Sz ∈ X} is
a spectratope. Indeed, setting E = {y ∈ Rm : Py ∈ ImS}, we get a linear subspace of Rn; if
E = {0}, S−1X = {0} is a spectratope, otherwise we have

S−1X = {z ∈ Rµ : ∃(y ∈ E, t ∈ T ) : z = Qy,R2
k[y] � tkIdk , k ≤ K},

where linear mapping y 7→ Qy : E → Rµ is uniquely defined by the relation Py = SQy. When
identifying E with appropriate Rn, we get a valid spectratopic representation of S−1X .

• [arithmetic sum] If X`, ` ≤ L, are spectratopes in Rν , so is the arithmetic sum X = X1 + ...+XL
of X`. Indeed, X is the image of X1× ...×XL under the linear mapping [x1; ...;xL] 7→ x1 + ...+xL,
and taking direct products and linear images preserve spectratopes.

B Processing covariance estimation problem in the diagonal case

We start with setting some additional notation to be used when operating with Euclidean space Sn.

• We denote n̄ = n(n+1)
2 = dim Sn, I = {(i, j) : 1 ≤ i ≤ j ≤ n}, and for (i, j) ∈ I we set

eij =

{
eie

T
i , i = j,

1√
2
[eie

T
j + eje

T
i ], i < j,

where ei are the standard basic orths in Rn. Note that {eij : (i, j) ∈ I} is the standard
orthonormal basis in Sn. Given v ∈ Sn, we denote by x(v) the vector of coordinates of v in this
basis:

xij(v) = Tr(veij) =

{
vii, i = j,√

2vij , i < j,
(i, j) ∈ I.

Similarly, for x ∈ Rn̄, we index the entries in x by pairs ij, (i, j) ∈ I, and set v(x) =∑
(i,j)∈Ip xije

ij , so that v 7→ x(v) and x 7→ v(x) are inverse to each other linear isometries

identifying the Euclidean spaces Sn and Rn̄ (recall that the inner products on these spaces are,
respectively, the Frobenius and the standard one).

• Recall that V is the matrix box {v ∈ Sn : v2 � In} = {v ∈ Sn : ∃t ∈ T := [0, 1] : v2 � tIn}. We
denote by X the image of V under the mapping x:

X = {x ∈ Rn̄ : ∃t ∈ [0, 1] : v2[x] � tIn}.

Note that X is a basic spectratope.
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Now we can assume that the signal underlying our observations is x ∈ X , and the observations
themselves are

wt = x(ωt) = x( 1
2v(x))︸ ︷︷ ︸
= 1

2x

+zt, zt = x(ζt).

Note that zt ∈ Rn̄, 1 ≤ t ≤ T , are zero mean i.i.d. random vectors with covariance matrix D[x]
satisfying, in view of (40), the relation

x ∈ X ⇒ D[x] � 2In̄

(recall that we are in the case of A = In, ϑ∗ = In). Our goal is to estimate Bϑ[v]BT = 1
2BB

T+ 1
2BvB

T ,
or, what is the same, to recover

Bx :=
1

2
x(Bv(x)BT ).

Recall that we are in the situation where the norm in which the recovery error is measured is either
the Frobenius, or the nuclear norm on Sn; we “transfer” this norm from Sn to Rn̄. In the situation
in question, Proposition 3.2 supplies the linear estimate

x̂(w(T )) =
1

T
HT
∗

T∑
t=1

wt

of Bx with H∗ stemming from the optimal solution to the convex optimization problem presented in
Proposition 3.2. It is immediately seen that under the circumstances, this optimization problem reads
in the Frobenius norm case:

Opt = min
H̄,Λ
υ, υ′,Θ


Tr(Λ) + υ + υ′ + 2

T
Tr(Θ) :



H̄ ∈ Rn̄×n̄,Λ ∈ Sn+, υ ∈ R+, υ
′ ∈ R+,Θ ∈ Sn̄[

R∗[Λ] 1
2 [B

T − 1
2 H̄]

1
2 [B − 1

2 H̄
T ] υIn̄

]
� 0,[

Θ 1
2 H̄

1
2 H̄

T υ′In̄

]
� 0;


(91)

in the nuclear norm case:

Opt = min
H̄,Λ

Υ,Υ′,Θ


Tr(Λ) + Tr(Υ) + Tr(Υ′) + 2

T
Tr(Θ) :



H̄ ∈ Rn̄×n̄,Λ ∈ Sn+,Υ ∈ Sn+,Υ
′ ∈ Sn+,Θ ∈ Sn̄[

R∗[Λ] 1
2 [B

T − 1
2 H̄]

1
2 [B − 1

2 H̄
T ] R∗[Υ]

]
� 0,[

Θ 1
2 H̄

1
2 H̄

T R∗[Υ′]

]
� 0


(92)

where
R∗[S] =

[
Tr(eijSek`)

]
(i,j)∈I
(k,`)∈I

∈ Sn̄, S ∈ Sn.

So far, we did not use the fact that B is diagonal; this is what we intend to utilize now. Specifically,
it is immediately seen that with diagonal B,

1) The n̄× n̄ matrix B is diagonal, with diagonal entries Bij,ij = 1
2BiiBjj .

2) Let E be the multiplicative group comprised of n × n diagonal matrices with diagonal entries
±1. Every matrix E ∈ E induces diagonal n̄× n̄ matrix FE with diagonal entries ±1 such that

R∗[ESE] = FER∗[S]FE ∀(E ∈ E , S ∈ Sn).
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Indeed, when E ∈ E and S ∈ Sn, we have

[R∗[ESE]]ij,k` = Tr(eij [ESE]ek`) = Tr(S[Eek`E][EeijE]) = Tr(S[EiiEjjEkkE``e
k`eij ])

= [FE ]ij,ij [FE ]k`,k`Tr(eijSek`) = [FER∗[S]FE ]ij,k`,

where FE is the diagonal n̄× n̄ matrix with diagonal entries [FE ]pq,pq = EppEqq, (p, q) ∈ I.

3) When S ∈ Sn is diagonal, R∗[S] is diagonal as well.
Indeed, when S is diagonal and (i, j) ∈ I, (k, `) ∈ I with (i, j) 6= (k, `), the supports of matrices
eij and (Sek`)T (the sets of cells where the entries of the respective matrices are nonzero) do not
intersect, whence [R∗[S]]ij,k` = Tr(eijSek`) =

∑
p,q[e

ij ]pq[(Se
k`)T ]pq = 0.

Observe that by 1) – 3) problems (91) and (92) have optimal solutions with diagonal matrix compo-
nents. To see this, let us start with the nuclear norm case. Let H̄∗,Λ∗,Υ∗,Υ

′
∗,Θ∗ be an optimal solution

to the problem. We claim that when E ∈ E , the collection FEH̄∗FE , EΛ∗E,EΥ∗E,EΥ′∗E,FEΘ∗FE
is an optimal solution as well. Indeed, the values of the objective at the original and the transformed
solution clearly are the same, so that all we need in order to justify our claim is to check that the
transformed solution is feasible, which boils down to verifying that it satisfies the LMI constraints of
the problem. We have[

R∗[EΛ∗E] 1
2 [B

T − 1
2FEH̄∗FE ]

1
2 [B − 1

2 [FEH̄∗FE ]T ] R∗[EΥ∗E]

]
=

[
FER∗[Λ]FE

1
2FE [B

T − 1
2H̄∗]FE

1
2FE [B − 1

2H̄
T
∗ ]FE FER∗[Υ∗]FE

]

= Diag{FE , FE}

[
R∗[Λ] 1

2 [B
T − 1

2H̄∗]
1
2 [B − 1

2H̄
T
∗ ] R∗[Υ∗]

]
Diag{FE , FE} � 0,

where the first equality is due to 3) combined with diagonality of B stated in 1). Similarly,[
FEΘ∗FE

1
2FEH̄∗FE

1
2FEH̄

T
∗ FE R∗[EΥ′∗E]

]
=

[
FEΘ∗FE

1
2FEH̄∗FE

1
2FEH̄

T
∗ FE FER∗[Υ′∗]FE

]
= Diag{FE , FE}

[
Θ∗

1
2H̄∗

1
2H̄

T
∗ R∗[Υ′∗]

]
Diag{FE , FE} � 0.

Thus, the transformed solution indeed is feasible, as claimed. Since the problem is convex, the av-
erage, over E ∈ E , of the above transformations of an optimal solution again is an optimal solution,
let it be denoted H̄#,Λ#,Υ#,Υ

′
#,Θ#. By construction, Λ#,Υ#,Υ

′
# are diagonal, whence by 3)

R∗[Λ#],R∗[Υ#],R∗[Υ′#] are diagonal as well. This combines with diagonality of B to imply, sim-
ilarly to the above, that if L is a diagonal n̄ × n̄ matrix with diagonal entries ±1, the collection
LH̄#L,Λ#,Υ#,Υ

′
#, LΘ#L is an optimal solution to (92). Averaging these optimal solutions over

L’s, we conclude that the problem has an optimal solution comprised of diagonal matrices, as claimed.
The same reasoning, with evident simplifications, works in the case of Frobenius norm.

We see that when solving (91) and (92), we lose nothing when restricting ourselves to candidate
solutions with diagonal matrix components, which, by 1) and 3) automatically ensures the diagonality
of blocks in the LMI constraints of the problem. As a result, we, first, reduce dramatically the design
dimension of the problem, and, second, can now replace “large-scale” LMI constraints (which now
state that some 2× 2 block matrices with diagonal n̄× n̄ blocks should be � 0) with a bunch of small
– just 2× 2 – LMI’s, thus making the problems easily solvable by the existing software, e.g. CVX [10],
provided n is in the range of hundreds.

C Conic duality

A conic problem is an optimization problem of the form

Opt(P ) = max
x

{
cTx : Aix− bi ∈ Ki, i = 1, ...,m, Px = p

}
(P )
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where Ki are regular (i.e., closed, convex, pointed and with a nonempty interior) cones in Euclidean
spaces Ei. Conic dual of (P ) is “responsible” for upper-bounding the optimal value in (P ) and is built
as follows: selecting somehow Lagrange multipliers λi for the conic constraints Aix − bi ∈ Ki in the
cones dual to Ki:

λi ∈ K∗i := {λ : 〈λ, y〉 ≥ 0 ∀y ∈ Ki},

and a Lagrange multiplier µ ∈ Rdim p for the equality constraints, every feasible solution x to (P )
satisfies the linear inequalities 〈λi, Aix〉 ≥ 〈λi, bi〉, i ≤ m, same as the inequality µTPx ≥ µT p, and
thus satisfies the aggregated inequality∑

i

〈λi, Aix〉+ µTPx ≥
∑
i

〈λi, bi〉+ µT p.

If the left hand side of this inequality is, identically in x, equal to −cTx (or, which is the same,
−c =

∑
iA
∗
iλi + P Tµ, where A∗i is the conjugate of Ai), the inequality produces an upper bound

−〈λi, bi〉 − pTµ on Opt(P ). The dual problem

Opt(D) = min
λ1,...,λm,µ

{
−
∑
i

〈λi, bi〉 − pTµ : λi ∈ K∗i , i ≤ m,
∑
i

A∗iλi + P Tµ = −c

}
(D)

is the problem of minimizing this upper bound. Note that (D) is a conic problem along with (P ) –
it is a problem of optimizing a linear objective under a bunch of linear equality constraints and conic
inclusions of the form “affine function of the decision vector should belong to a given regular cone.”
Conic problem, like (P ), is called strictly feasible, if it admits a feasible solution x for which all conic
inclusions are satisfied strictly: Aix− bi ∈ intKi for all i. Conic Duality Theorem (see, e.g., [2]) states
that when one of the problems (P ), (D) is bounded14 and strictly feasible, then the other problem in
the pair is solvable, and Opt(P ) = Opt(D).

14for a maximization (minimization) problem, boundedness means that the objective is bounded from above (resp.,
from below) on the feasible set.
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