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1. Introduction

Nowadays efficient energy consumption of buildings is one of the most challenging tasks.
In case of the historical buildings, this problem has to deal not only with the energy
performance but also with the building protection itself [8, 32]. The study of moisture’s
amount in the building walls takes the largest part for energy reduction since it can raise
the heat loss through the walls. The increase of moisture quantity may occur due to
different reasons as wind–driven rain, rising damp or simply vapour diffusion [4].

Among all the potential sources of moisture, rising damp is a major issue since it is
an important source of liquid water. It may strongly impact the building structure by
modifying the mechanical behaviour of the wall. Moreover, the water from the ground
brings dissolved salts. During the evaporation process, these salts precipitate and crystals
appear that deteriorate the material [27, 28]. Some examples of such deterioration can be
found in [22] or [26].

Thus, one understands the importance of studying the physical phenomena occurring in
rising damp. As mentioned by Franzoni in [10], the main challenges related to the rising
damp problem is to find accurate, fast and cheap methods to characterize the moisture
content during the water uptake of a material or a wall. Several methods to characterize
the amount of moisture already exist and can be divided in two main groups: (i) inva-
sive (traditional like weighting–drying, chromatography) and (ii) non-invasive (dielectric,
microwave) [17]. But usually, these approaches are very complex procedures requiring ex-
tensive technical support. Moreover, the obtained results do not describe an exact situation
of the whole building. Thus, as underlined in [8], it is worth investigating other approaches
by proposing numerical models to perform simulations and obtain quantitative results.

Several models were proposed in the literature for the simulation of liquid water uptake
in a porous material. A first approach is to propose analytical solutions of the problem
as for instance in [13, 18]. However, the main drawback is that these solutions work only
for idealized conditions. As an example, in [18] a step–function is used for the diffusivity
coefficient, neglecting its nonlinear variation with the fields. This assumption is not valid
for the practical case study. Other approaches are based on standard numerical methods in
[14, 16, 24, 31]. However, these approaches also have an important drawback. When using
explicit Euler approach, the standard stability conditions must be respected implying
very small values of discretization time grids due to the high nonlinearity of the problem.
Thus these numerical models have a high computational cost. These works promote the
use of implicit schemes for their unconditional stability properties. However, they require
a large number of sub–iterations during the computation to treat nonlinearities, which
also lead to an increase in the computational cost of the numerical models. It is of major
importance to propose efficient numerical models to represent the physical phenomena of
capillary adsorption in a porous material.

When proposing efficient numerical models, one important point is its reliability to rep-
resent the physical phenomena. For this, the numerical predictions need to be confronted
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to experimental observations. In the case of rising damp, there are several material prop-
erties involved in the definition of the physical model. To have an accurate numerical
prediction, the moisture diffusivity and the hydraulic conductivity must be known pre-
cisely. As mentioned in [14], there is a lack of data in the literature for these material
properties. Thus, when comparing the numerical predictions to experimental observation,
the material properties may be estimated to calibrate the numerical model. This procedure
requires solving the parameter estimation problem. The solution of such type of the in-
verse problem requires the computation of the so-called direct problem several times. Thus,
since current numerical models have high computational cost, the estimation of material
properties becomes an obstacle.

Therefore, the objective of this article is twofold. First, an innovative numerical model
is proposed for capillary adsorption phenomena in a porous material. It is based on the
Scharfetter–Gummel numerical scheme. This approach is particularly efficient for so-
called advection–diffusion equations as highlighted from a mathematical point of view in
[12] and illustrated in [2, 3] for the case of heat and moisture transfer in building porous
materials. In our work, the proposed numerical model is compared to the standard meth-
ods in the context of capillary adsorption phenomena. The issue is to prove its reliability,
accuracy and smaller computational cost. Then, the numerical model is compared to exper-
imental data to evaluate its accuracy to represent the physical phenomena. To calibrate the
model, a parameter estimation problem is solved in a good time to determine the material
properties of a brick using observed data of water uptake.

The paper is organized in the following way. In Section 2, the physical model is de-
scribed. Following Section 3 presents the Scharfetter–Gummel scheme. Its accuracy
and advantages are compared to classical methods on numerical case studies. Section 4
describes the experimental facility used to generate observation of water uptake. Section 5
aims at comparing the numerical predictions and the experimental observations, as well as
estimating the material properties of the brick to calibrate the model.

2. Physical model

2.1. Liquid transfer

Let us present the physical model of liquid water uptake process in a porous material.
The physical model is inspired by the one proposed by Philipp and De Vries in 1957
[25]. Since the problem deals with high moisture content, the exchange between vapor
and liquid water is supposed negligible. Moreover, it is assumed that no chemical reaction
occurs. Thus, the liquid water conservation equation is given by:

∂θ

∂t
= −∇ · j ,
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where θ
[

m 3/m 3
]

is the volume basis of liquid water content in the material and
∣

∣

∣

∣

∣

∣

−→
j

∣

∣

∣

∣

∣

∣

[

kg/(m 2.s)
]

is the liquid flow through the capillaries.

The liquid flow is driven by diffusion, advection due to air pressure difference and gravity
forces [15]:

j = j d + j a + j g .

The diffusion liquid transfer flux is expressed as:

j d = D θ ∇θ + DT ∇T ,

where D θ

[

m 2/s
]

is the liquid transport coefficient under a water content gradient and

DT

[

m 2/(s.K)
]

is the liquid transport coefficient associated to a temperature gradient.
Both depend on water content θ . Since the experiments are conducted under isothermal
conditions, the liquid diffusion under temperature gradient is assumed negligible. Thus,
we have:

j d = D θ ∇θ .

The transfer is also driven by gravity forces described by the following expression:

j g = K i ,

where K
[

m/s
]

is the hydraulic conductivity depending on θ , and i is taken as pointing
upward as illustrated in Figure 1. To take into account the motion due to the gradient
pressure, an advection flux is introduced. It represents liquid water transfer induced by
the filtration of dry air:

j a = Π θ v ,

where v

[

m/s
]

is the mass average velocity and Π the porosity of the material. Since the
filtration of dry air only influences the water front at x = H , the mass average velocity
is expressed as:

v =

(

1 −
H

L

)

v 0 ,

where H is the water height in the brick, calculated as the total moisture content at the
current instant t :

H ( t ) =

ˆ L

0

θ ( x, t )

θ sat
dx ,

where θ sat – saturation moisture content.
Let us define coefficient a 0 and approximate it using Darcy’s law as:

a 0 = Π v 0 ≈ Π
k a

µ

∆P

L
,

where k a

[

m 2
]

is the intrinsic permeability of the material, and µ
[

Pa · s
]

is the dynamic
viscosity of the fluid.
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Figure 1. Illustration of the problem of water uptake in the brick.

Finally, the 1−dimensional liquid transfer equation is expressed as:

∂θ

∂t
=

∂

∂x

(

D θ

∂θ

∂x
− a 0 ( 1 − H ) θ i − K i

)

. (2.1)

In the physical model, Dirichlet boundary conditions are set since the surface convec-
tive transfer coefficients are unknown. At the boundary where liquid uptakes, the water
content is set to saturation. At the top of the brick, the water content remains equal to
the initial condition where no liquid is present in the brick. Thus, the boundary and initial
conditions are defined as:

θ ( x = 0 , t ) =







0 , t = 0

θ sat , t > 0
, θ ( x = L , t ) = 0 , θ ( x , t = 0) = 0 .

2.2. Dimensionless formulation

For numerical analysis, it is very useful to work with the unitless formulation of the model.
The first reason is the computational accuracy. Scaling the problem to the appropriate
order, many terms will have the same order, so the effects of numerical errors are minimized
when computing the residual. The second reason is that many useful relationships exist
between dimensionless numbers, which show how specific things influence the whole system.

The following dimensionless variables for the moisture content, the time and space do-
mains are defined:

u =
θ

θ sat

, x ⋆ =
x

L
, t ⋆ =

t

t ref
,

where θ sat – saturation moisture content, L – length of the brick, t ref – set to one hour.
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Then all the material properties are modified considering a reference value:

d ⋆ ( u ) =
D θ( θ )

D ref
, a ⋆

0 =
a 0

a ref
, k ⋆ ( u ) =

K( θ )

k ref
.

The Fourier number measures the relative importance of the heat and mass transfers
through the material:

Fo =
t ref D ref

L 2
.

The Péclet number demonstrates the relative importance of the advection against the
diffusion transfer:

Pe =
a ref L

D ref
.

The importance of the gravity forces with the respect to the diffusion is quantified by the
Bond number:

Bo =
k ref L

θ sat D ref
.

Finally, the following dimensionless equation of liquid transfer is obtained:

∂u

∂t ⋆
= Fo

∂

∂x ⋆

(

d ⋆ ( u )
∂u

∂x ⋆
− Pe a ⋆

0

(

1 − H ⋆
)

u − Bo k ⋆ ( u )

)

, (2.2)

where the dimensionless water front height is given by:

H ⋆ =

ˆ 1

0

u ( x ⋆ , t ⋆ ) d x ⋆ . (2.3)

Further in article, for the sake of clarity the upper script ⋆ is omitted, and Eq. (2.2)
transforms into:

∂u

∂t
= Fo ·

∂

∂x

(

d ( u ) ·
∂u

∂x
− Pe · a ( u ) · u − Bo · k ( u )

)

, (2.4)

with the following boundary and initial conditions:

u( x = 0 , t) =







0 , t = 0

1 , t > 0
, u( x = 1 , t) = 0 , u( x , t = 0) = 0 .

Next section will introduce how to solve the retrieved equation effectively.

3. Numerical method

The issue is now to propose an efficient numerical model to compute an accurate solu-
tion with a reduced computational cost. For this, the Scharfetter–Gummel numerical
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scheme for an advection–diffusion equation with gravity flux is introduced. Its mathemat-
ical properties are discussed. For the sake of simplicity, the following differential equation
is considered:

∂u

∂t
=

∂

∂x

(

d ·
∂u

∂x
− a · u − k (u)

)

, t > 0 , x ∈
[

0 , 1
]

, (3.1)

where a , d are constants and coefficient k (u) depends on u . Dirichlet boundary
conditions are taken as

u ( 0, t ) = uL( t ) , u ( 1, t ) = uR( t ) .

A brief demonstration of the uniqueness of the solution of Eq. (3.1) is provided for the
linearized equation in Appendix A. It can be remarked that the uniqueness of advection–
diffusion equation has been demonstrated in [5] considering a nonlinear advective term and
a linear diffusive one with Dirichlet–type boundary conditions. Some demonstrations
have been made for multi-dimensional systems of advection–diffusion equations also with
Dirichlet–type boundary conditions. In [7], the problem considered is linear. In [21], it is
quasi–linear since the diffusion coefficients depend on space and time whereas the advective
and source terms are nonlinear. Some proofs have been also produced for a system of
diffusion equations with diffusion coefficients depending on the fields and Neumann–type
boundary conditions in [1].

Let us discretize uniformly the space and time intervals, with the parameters ∆x and
∆t , respectively. The discrete values of function u (x, t) are defined as un

j ≡ u ( xj, tn ) ,
where j ∈ { 1, . . . , N } and n ∈ { 1, . . . , Nt } .

3.1. The Scharfetter–Gummel numerical scheme

The flux J is denoted by the following expression:

J = d ·
∂u

∂x
− a · u − k (u) .

For the cell C = x ∈
[

x
j−

1
2
, x

j+
1
2

]

illustrated in Figure 2, the semi–discretization of

the equation (3.1) results as:

d u j

d t
=

1

∆x

(

J n
j+ 1

2

− J n
j− 1

2

)

. (3.2)

Within the Scharfetter–Gummel approach, the assumption is that the flux J is con-

stant on the dual cell C ⋆ =
[

x j , x j+1

]

. The following boundary value problem can be

written:

J n
j+ 1

2

= d ·
∂u

∂x
− a · u − kn

j+ 1
2

, ∀x ∈ [ x j , x j+1 ] , (3.3a)

u = un
j , x = x j , (3.3b)

u = un
j+1 , x = x j+1 . (3.3c)
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where k n
j+ 1

2

is approximated by:

k n

j+ 1

2

= k

(

1

2

(

un
j + un

j+1

)

)

.

It is important to note that problem (3.3) has two unknowns u ( x , t ) and J n

j+ 1

2

with two

constrains at x = x j and x = x j+1 . Therefore, one can obtain the exact solution of
Eq. (3.3) as:

J n

j+ 1

2

= − a ·

(

un
j+1 − un

j e
a∆x
d

)

1 − e
a∆x
d

− kn

j+ 1

2

. (3.4)

Applying expression (3.4) to Eq. (3.2), and using an Euler explicit approach, we obtain
the expression to compute un+1

j :

un+1
j = un

j +
∆t

∆x
·

[

− a ·

(

un
j+1 + un

j−1 e
a∆x
d

)

1 − e
a∆x
d

+

a ·

(

1 + e
a∆x
d

)

1 − e
a∆x
d

· un
j − kn

j+ 1
2

+ kn
j− 1

2

]

.

In this work, several approaches are used for the temporal discretization. As presented
above Euler explicit approach can be applied. Additionaly, the solution is computed
with adaptive time step the Adams–Bashforth–Moulton algorithm, using Matlab™

function ODE113 [29].

3.2. Properties of Scharfetter–Gummel scheme

The main advantage of the Scharfetter–Gummel numerical scheme is its explicit for-
mulation of the solution. Thus, the nonlinearities are handled without costly sub–iterations
at each time steps as it is the case with implicit approaches. Another significant point,
the scheme is well–balanced as well as asymptotically preserving [12]. The Scharfet-

ter–Gummel scheme has first order accuracy over the time and space O (∆x + ∆t) [11].
Moreover, the flux is also approximated to the first order O (∆x ) .

For Eq. (3.1), the Courant–Friedrichs–Lewy (CFL) stability condition for the
Scharfetter–Gummel numerical scheme combined with an Euler explicit approach,
is calculated with the expressions from [12]:

∆t · max
j

[

(

a +
dk

du

(

u
(

x
j+

1
2

)

)

)

· tanh

(

(

a +
dk

du

(

u
(

x
j+

1
2

)

)

)

·
∆x

2 d

)

−1 ]

6 ∆x .
(3.5)
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Figure 2. Stencil of the Scharfetter-Gummel numerical scheme

Through this condition, a nonlinear relation stands between ∆t and ∆x . But if large
space discretization ∆x is taken, time and space grid become proportional to each other
∆t ≃ ∆x . Thus, the stability condition is relaxed compared to the classical central
finite–difference scheme combined with Euler explicit approach ∆t ≃ ∆x 2 .

As mentioned before, Eq (3.3) has two unknowns u ( x , t ) and J n
j+ 1

2

. The solution J n
j+ 1

2

is given by Eq. (3.3). The exact expression of solution u can be computed for x ∈ C
⋆ :

un( x ) =
un
j e

a∆x
d − un

j+1

e
a∆x
d − 1

+
un
j+1 − un

j

e
a∆x
d − 1

· e

(

a · (x − xj)

d

)

,

x ∈
[

x j , x j+1

]

.

3.3. Extension for the nonlinear case

In case where the coefficients a, d and k of Eq. (3.1) all depend on u , we approximate

them by using the frozen coefficients assumption on the dual cell
[

x j , x j+1

]

.

Thus, the solution of the boundary-value problem (3.3) is written as:

J n
j+ 1

2

= − an
j+ 1

2

·

(

un
j+1 − un

j e
θ n

j+1
2

)

1 − e
θ n

j+1
2

− k n
j+ 1

2

,
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where

θ n

j+ 1

2

=
an

j+ 1

2

· ∆x

dn
j+ 1

2

,

and

an

j+ 1

2

= a

(

1

2

(

un
j + un

j+1

)

)

, dn

j+ 1

2

= d

(

1

2

(

un
j + un

j+1

)

)

, k n

j+ 1

2

= k

(

1

2

(

un
j + un

j+1

)

)

.

(3.6)

For the nonlinear case the CFL stability condition for the Scharfetter–Gummel nu-
merical scheme is is calculated with the expressions from [12]:

∆t · max
j

d j max
j

[

p j+ 1
2

d j+ 1
2

tanh

(

p j+ 1
2
· ∆x

2 d j+ 1
2

)

−1 ]

6 ∆x ,

where

p j+ 1
2

= a j+ 1
2

+ u j+ 1
2
·
da

du

(

u
(

x
j+

1
2

)

)

+
dk

du

(

u
(

x
j+

1
2

)

)

.

3.4. Comparing numerical models

In order to validate the numerical model, the error between the solution u num (x, t) and
a reference one uref (x, t) is evaluated as a function of x according to the formula:

ε 2 (x) ≡

√

√

√

√

1

Nt

Nt
∑

j=1

(

u num
(

x , t j
)

− u ref
(

x, t j
)

)2

,

where N t is the number of temporal steps.
The local uniform error is defined as the maximum value of ε 2 (x) :

ε∞ ≡ max
x∈ [ 0, L x ]

ε 2 (x) .

The significant correct digits (scd) of the solution is calculated according to [30]:

scd(u) ≡ − log10

∥

∥

∥

∥

u( x, t end ) − u ref( x, t end )

u ref( x, t end )

∥

∥

∥

∥

∞

.

The reference function uref
(

x, t
)

is given by a numerical solution of the differential equa-
tion based on the Chebyshev polynomial and adaptive spectral methods and obtained
using the function pde23t from the Matlab™ open source package Chebfun [6].

3.5. Numerical validation

In this Section, the purpose is to perform numerical computations to validate the pro-
posed model. Thus, only dimensionless quantities are considered with no necessary physical
meanings.
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Figure 3. Variation of the field u as a function of (a) space and (b) and time t .

3.5.1 Linear case

First, we study a case with constant functions d ( u ), a ( u ) and a linear function of
k ( u ):

d ( u ) = d 0 = 0.05 , a ( u ) = a 0 = 0.02 , k ( u ) = k 1 u ,

with k 1 = 0.5 . It should be noted that the dimensionless numbers are set to unity in
Eq. (2.4). The following boundary and initial conditions are set:

u ( 0 , t ) = 0.2
(

1 − cos ( π t ) 2
)

, u ( 1 , t ) = 0.3 sin( π t ) 2 , u ( x , 0 ) = 0 .

The time domain is defined as t ∈
[

0 , 3
]

. According to Equation (3.5), the Scharfet-

ter–Gummel scheme CFL condition is given in this case by:

∆t 6

tanh

(

(

a 0 + k 1

)

· ∆x

2 d 0

)

a 0 + k 1
· ∆x .

First, the problem is solved by implementing an adaptive in time approach, using Matlab™

function ODE113 with absolute and relative tolerances set to 10− 4 . The space discretization
parameter is set ∆x = 10− 2 . Given the numerical value of the parameter, the CFL
condition is ∆t 6 10− 3 .

Figure 3 shows the variations of the solution u ( x , t ) as a function of space and time.
It demonstrates a satisfactory agreement between the Scharfetter–Gummel numerical
solution and the reference one. Figure 4 highlights the L 2 error value ε 2 ( x ) at the order
of 10− 4 , which validates the numerical model for this case. This result is consistent with
the value of the discretization parameter and the tolerances set in the ODE solver.
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Figure 4. Error ε 2 as a function of space.

An analysis of the numerical error is performed by varying one of the discretization
parameters ∆x and ∆t values, while the other parameter remains constant. Different
numerical schemes are compared for the computation of the solution of problem (3.1). The
Scharfetter–Gummel scheme is implemented with (i) the adaptive time step approach
using ODE113 solver and a tolerance set to 10− 4 and (ii) the Euler explicit approach. For
comparison, a central finite–difference scheme using the Euler explicit method is also
used.

Figure 5(a) shows the variation of the error ε 2 as a function of ∆x with a fixed time dis-
cretization parameter ∆t = 10−4. The CFL condition ∆t 6 2.5 · 10−4 is respected until
∆x = 5 ·10−3 . Beyond this limit, the numerical model cannot provide a bounded solution.
These results also confirm a higher accuracy of the numerical model using the Scharfet-

ter–Gummel scheme. Moreover, the Scharfetter–Gummel numerical scheme seems
to have a second-order accuracy in space O(∆x 2 ) which is better than the theoretical re-
sults mentioned in Section 3.2. The variations of the computational time with the requested
level of accuracy is shown in Figure 5(b). For the accuracy ε∞ = O ( 10−3 ) , the finite–
difference is ten-time slower than the Scharfetter–Gummel approach combined with
the Euler explicit method. It can be noted that the Scharfetter–Gummel scheme
with the adaptive time step is the fastest one thanks to the nonlinearity of the stability
condition and adaptive time step. The computational time can be reduced by a hundred
times. Figure 5(c) displays the variation of the significant correct digits with the compu-
tational time. In order to reach scd = O( 1.5 ) the finite–difference scheme requires ten
times larger CPU time than the Scharfetter–Gummel scheme with Euler explicit
approach. The latter is ten times slower than the one with an adaptive approach.
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Figure 5. (a) Variation of the error ε∞ as a function of ∆x . (b) Variation of
the error ε∞ as a function of the CPU time of the numerical model. (c)

Variation of the accuracy digits value scd as a function of the CPU time of the
numerical model.
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Figure 6. Variation of the error ε∞ as a function of ∆t .

Figure 6 presents another error study conducted by varying ∆t while the space dis-
cretization is fixed to ∆x = 10−2 . For the given parameters, the CFL condition is
∆t 6 10−3 . As noticed in Figure 6, a bounded solution can be computed until this
condition is respected. It can also be noted that the Scharfetter–Gummel scheme
with Euler explicit approach has a greater degree of accuracy. Moreover, the scheme is
first–order accurate in time O ( t ) as mentioned by the theoretical results.

3.5.2 Nonlinear case

The previous validation is performed for a linear case in order to verify the theoreti-
cal results and advantages of the Scharfetter–Gummel numerical scheme. Since, the
parameter estimation problem to be solved in Section 5 considers nonlinear coefficients,
this Section aims at validating the numerical model for such cases. We consider the prob-
lem (2.4) with the following nonlinear coefficients:

a ( u ) = 0.02 + 0.01 u 2 , d ( u ) = 0.05 + 0.03 u 2 , k ( u ) = 0.05 u 2 .
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Table 1. Computational time required to compute the solution of the nonlinear
case with the different numerical models.

Numerical model CPU time [ s ] CPU time [ % ] ε∞

SG with adaptive time step 105 42 1.9 · 10−4

SG with Euler explicit 249 100 5.8 · 10−5

Central FD with adaptive time step 101 40 1.1 · 10−3

Central FD with Euler explicit 230 92 2.1 · 10−2

The dimensionless numbers are set to unity. The initial and boundary conditions are:

u ( x , 0 ) = 0 ,

u ( 0 , t ) = 0.8 sin
(

π t / 3
)

+ 0.2 sin
(

π t / 5
)

,

u ( 1 , t ) = 0.5 sin
(

π t / 4
)

+ 0.3 sin
(

π t / 7
)

.

The solution of this problem is computed for the time horizon t ∈
[

0 , 15
]

. The Schar-

fetter–Gummel numerical scheme is used with a space discretization step ∆ x = 0.01
and an adaptive time step with error tolerances set to 10− 4 .

As shown in Figure 7, the profiles of the solution shows a very satisfactory agreement
between the Scharfetter–Gummel solution and the reference one. It validates the
proposed numerical model. The computational time of the numerical model is compared
to three other ones: (i) the Scharfetter–Gummel scheme with Euler explicit ap-
proach, (ii) the central finite–differences approach with Euler explicit and (iii) the cen-
tral finite–differences with adapting time step. As noticed in Table 1, the Scharfet-

ter–Gummel with the adaptive time step scheme is the faster than Scharfetter–
Gummel with Euler explicit approach. The computational time is of the same order
between the two adaptive in time approaches (Scharfetter–Gummel and central finite–
differences). However, the Scharfetter–Gummel with adaptive time step approach is
ten times more accurate than central finite–difference with adaptive time step.

As mentioned in Section 3.3, the numerical model requires the computation of the coef-
ficients d

j+
1
2

, a
j+

1
2

and k
j+

1
2

at the interface of the dual cell
[

x j , x j+1

]

. According to

Eq. (3.6), these coefficients are interpolated using the mean values of u j and u j+1 . The
accuracy of this interpolation is tested by using different expressions in the computation of
the solution u . The coefficients d

j+
1
2
, a

j+
1
2

and k
j+

1
2

are calculated by one the following
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Table 2. Variation of the error of the solution and of the CPU time of the
numerical models according to the interpolation formulas Eq. (3.7) of the
coefficients d (u ) , a (u ) and k (u ) .

Formula (a) (b) (c) (d) (f) (e) (g)

ε∞ 2 · 10−3 1.9 · 10−3 2 · 10−3 1.9 · 10−3 2 · 10−3 1.9 · 10−3 1.7 · 10−3

CPU time [ s ] 21.29 25.47 33.77 25.44 34.52 27.48 25.79

Percentage [ % ] 61 74 98 74 100 80 75

expressions:

k
j+

1
2

= k

(

u j + u j+1

2

)

, (3.7a)

k
j+

1
2

=
1

2

(

k
(

u j

)

+ k
(

u j+1

)

)

, (3.7b)

k
j+

1
2

=
2 k
(

u j

)

· k
(

u j+1

)

k
(

u j

)

+ k
(

u j+1

) , (3.7c)

k
j+

1
2

=
1

3

(

k
(

u j

)

+
√

k
(

u j

)

· k
(

u j+1

)

+ k
(

u j+1

)

)

, (3.7d)

k
j+

1
2

=
√

k
(

u j

)

· k
(

u j+1

)

, (3.7e)

k
j+

1
2

=

(

1

2

(

k
(

u j

) 3
+ k

(

u j+1

) 3
)

)
1
3

, (3.7f)

k
j+

1
2

=

√

1

2

(

k
(

u j

) 2
+ k

(

u j+1

) 2
)

. (3.7g)

For each interpolation expression, the CPU time to compute the solution and the er-
ror with the reference solution are analyzed. The results are synthesized in Table 2 and
Figure 8. All interpolation expressions have a similar order of accuracy. Nevertheless, it
highlights that the approach using the arithmetic mean between u j and u j+1 to compute
the coefficients d

j+
1
2

, a
j+

1
2

and k
j+

1
2

is slightly faster for this particular case.

This section examined and analyzed the Scharfetter–Gummel scheme applying to
the diffusion–advection equation with linear and nonlinear coefficients. These results
demonstrate a significant reduction of the computational cost without losing the accu-
racy while using the Scharfetter–Gummel scheme with an adaptive time step ap-
proach. Therefore, in further sections, the solutions are computed with the Scharfet-

ter–Gummel combined with an adaptive time step approach. Since the numerical model
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Figure 7. Variation of the field u as a function of x (a) and t (b) with nonlinear
coefficients
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Figure 8. Variation of the error ε 2 with space according to the interpolation
formulas Eq. (3.7) of the coefficients d (u ) , a (u ) and k (u ).

is validated, the next section introduces the experimental facility employed to obtain the
observations used in the parameter estimation problem.
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4. Experimental facility

This section presents the facility to produce the experimental observations that will be
compared to the numerical predictions of the model to compare its reliability to represent
the physical phenomena.

4.1. Experimental observations

To perform the liquid water uptake tests, a refractory brick measuring 11 × 22 × 5 cm

is used. The brick is initially sanded allowing a better visualization of the rise of the water.
The vertical faces are then taped to be airtight and watertight. As illustrated in Figure 9,
a tray is filled with distilled water and maintained at a constant level thanks to a bottle
returned with a pierced cap. The brick is placed vertically on a support at the surface of
the water. The experiment begins at the moment when the underside of the brick is in
contact with the water and lasts at least 7 h . The rising damp is observed on one of the
faces 11 × 22 cm. For this, a camera is placed at 1 m to take a picture of the brick every
3 min . The experiment occurs in a box opaque to the light to control the luminosity as
well as to minimize the convective and radiative exchanges. Some LED lamps provide a
constant lighting in the box.

At the top of the brick, two different boundary conditions are imposed. For the first set
of experiments, the top of the brick is in contact with the open air at atmospheric pressure.
For the second set, a relative pressure of − 50 Pa is applied thanks to a chamber with a fan.
An illustration of the design is shown in Figure 10(a). With this device, the air velocity in
the brick is assumed as constant in time. The experiment is taken at the constant room
temperature T = 293K.

The height of the water front is taken in the middle of the brick from the pictures of
each experiment every 30 min . As shown in Figure 10(b), graph paper is attached to the
brick in order to measure the height front. With this setting, the uncertainty measurement
of the height scales with σh = 0.5 cm .

For the case when the brick is exposed to ambient air pressure, the experiment takes
tmax = 15 h . For the other experiment, with a pressure difference, it lasts tmax = 7 h .
Figure 11 shows the obtained experimental data for both cases.

To verify that the liquid front is homogeneous inside the brick and not occurring only
at the interfaces where the pictures are taken, a complementary experiment is performed.
The brick is preliminary cut in the middle and then fulfilled with silicone to avoid the
liquid uptake in this area. The liquid uptake experiment is performed. At the end of the
experiments, the cut enables to rapidly break the brick without perturbing the liquid front.
As illustrated in Figure 12, it is confirmed that the liquid front is homogeneous inside the
brick. The white silicone that fulfills the cut in the middle of the brick can be noticed.
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(a) (b)

Figure 9. Illustrations of the experimental facility. It should be noted that the
opaque box has been removed to take the pictures and that the light brick is not
the one considered for the present studies.

(a) (b)

Figure 10. (a) Illustrations of the brick submitted to a relative pressure of
− 50 Pa linking the top of the brick to a fan. (b) Measurement of the water front

height using the graph paper.
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Figure 11. Obtained experimental values of water height for cases without and
under pressure. Values are dimensionless, using reference parameters (length of
the brick L and tref)

Figure 12. Verification of the uniformity of liquid front inside the brick.
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4.2. Defining the material properties

The physical model representing the liquid water uptake test is described in Section 2.
Now, it is important to define the material properties involved in the definition of the diffu-
sion, gravity and advection fluxes for the brick used in the experiments. These properties
are uncertain [14] and will be determined in the next Section using the experimental data
obtained with the facility.

Data from the literature are used to define the dependency of these properties on the
moisture content. The data is projected on the polynomial functions, using the cftool

from the Matlab™ environment, and polynomials with the highest root mean square error
R− square (the square of the correlation between the response values and the predicted
response values) are selected. These measurements provide a priori values of the coeffi-
cients of the polynomials, which act as initial guess when solving the parameter estimation
problem. The polynomial functions have been chosen for the material properties to fit the
data from the literature. Another set of functions can be applied, and the same steps of
parameter estimation are utilized. It should be noticed that data fitting is performed only
for the liquid water content.

The reference parameters used for computations are L = 0.22 m , tref = 1 h , D ref =
10−6 m 2/s , k ref = 10−10 m/s and a ref = 10−9 m/s . The saturated volumetric moisture
content θ sat , introduced in [20], equals θsat = 0.3065 m 3/m 3. It induces the following
dimensionless numbers:

Fo = 0.074 , Pe = 2.2 · 10−4 , Bo = 0.7 .

With given reference values, dimensionless representation d ( u ) of the liquid transport
coefficient is:

d ( u ) = d 4 u
4 + d 1 u + d 0 ,

where d 4 = 0.6 , d 1 = −0.04 and d 0 = 0.0067 . The dimensionless function a ( u ) of
the advection part:

a ( u ) = a 0

(

1 − H
)

,

where a 0 = 0.7 , and H =
´ 1

0
u ( x , t ) dx . Last, the dimensionless function k ( u ) of the

liquid conductivity part:

k ( u ) = k 3 u
3 ,

where k 3 = 0.8 .
Let us discuss which coefficient of d 0 , d 1 or d 4 contributes the most in the context

of liquid uptake or specifically u = O ( 1 ) . For this purpose, the normalized derivative

d i ·
∂d ( u )

∂d i

relative to each coefficient is taken and compared with each other.

d i ·
∂d ( u )

∂d i

= { d 4 u
4 ; d 1 u ; d 0 } .
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Figure 13. The normalized derivative of d (u ) relative to each coefficient d 0 ,

d 1 and d 4

The results are presented in Figure 13. One may conclude that coefficient d 4 has more
influence on the value of function d ( u ), when liquid uptake occurs u = O( 1 ) . Therefore,
in this article only coefficient d 4 is estimated.

5. Comparison of the numerical predictions with experi-

mental data

The efficiency of the proposed numerical model is demonstrated in Section 3.5 by com-
parison to reference solution. Now, the purpose is to assess the reliability of the numerical
model to predict the physical phenomena. For this, the experimental observations de-
scribed in previous section are used for comparison with the numerical predictions. With
the given parametrization in Section 4.2, Eq.(2.4) writes as:

∂u

∂t
= Fo ·

∂

∂x

(

d ( u ) ·
∂u

∂x
− Pe · a ( u ) · u − Bo · k ( u )

)

, (5.1)

where

d ( u ) = d 4 u
4 + d 1 u + d 0 , a ( u ) = a 0

(

1 −

ˆ 1

0

u ( x , t ) dx
)

, k ( u ) = k 3 u
3 .
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Since literature lacks of consistent data [14], the material properties, represented by func-
tions k ( u ) , d ( u ) and a ( u ) , are uncertain. Thus, parameter estimation problem are
solved to determine the uncertain parameters and calibrate the numerical model with the
experimental data. Within the procedure of parameter estimation, first we demonstrate
the structural and practical identifiability of the three unknown parameters

(

a 0 , k 3 , d 4

)

.
Then, the parameter estimation problem is solved and the reliability of the numerical model
is discussed.

5.1. Structural Identifiability

The aim of this section is to demonstrate the formal identifiability of the unknown
parameters. The set of unknown parameters is defined as:

P ≡ {P i } = { a 0 , k 3 , d 4 } .

We assume here, u ( x , t ) is the only observable field.
A parameter P i ∈ P is Structurally Globally Identifiable (SGI), if the following condition

is satisfied [34]:

∀t , u ( P ) = u ( P ⋆ ) ⇒ P i = P ⋆
i .

In the case of our model, if u ( x , t ) ≡ u ⋆ ( x , t ), then
∂u

∂t
≡

∂u ⋆

∂t
and

∂u

∂x
≡

∂u ⋆

∂x
,

therefore,

Fo ·
∂

∂x

(

d( u ) ·
∂u

∂x
− Pe · a( u ) · u − Bo · k( u )

)

≡ (5.2)

Fo ·
∂

∂x

(

d ⋆( u ) ·
∂u

∂x
− Pe · a ⋆( u ) · u ⋆ − Bo · k ⋆( u )

)

.

In addition, straightforward replacements in the Eq. (5.1) shows us the following:

∂u

∂t
= Fo ·

(

(

4 d 4 u
3 + d 1

)

·
∂u

∂x
+
(

d 4 u
4 + d 1 u + d 0

)

·
∂ 2u

∂x 2

− Pe · a 0 ·
(

1 −

ˆ 1

0

u dx
)

·
∂u

∂x
− 3Bo · k 3 · u 2 ·

∂u

∂x

)

,
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which shows that Equality (5.2) becomes:

Fo ·

(

(

4 d 4 u
3 + d 1

)

·
∂u

∂x
+
(

d 4 u
4 + d 1 u + d 0

)

·
∂ 2u

∂x 2

− Pe · a 0 ·
(

1 −

ˆ 1

0

u dx
)

·
∂u

∂x
− 3Bo · k 3 · u 2 ·

∂u

∂x

)

≡

Fo ·

(

(

4 d,⋆

4 u
3 + d 1

)

·
∂u

∂x
+
(

d ⋆
4 u

4 + d 1 u + d 0

)

·
∂ 2u

∂x 2

− Pe · a⋆0

(

1 −

ˆ 1

0

u dx
)

·
∂u

∂x
− 3Bo · k ⋆

3 · u 2 ·
∂u

∂x

)

,

and the final expression is
(

(

d 4 − d,⋆

4

)

·
(

4 u 3 + u 4 ∂
2u

∂x 2

)

− Pe ·
(

a 0 − a,⋆

0

)

·
(

1 −

ˆ 1

0

u dx
)

·
∂u

∂x

− 3Bo ·
(

k 3 − k,⋆

3

)

· u 2 ·
∂u

∂x

)

≡ 0

Since that

{(

4 u 3 + u 4 ∂
2u

∂x 2

)

,

(

1 −

ˆ 1

0

u dx

)

·
∂u

∂x
, u 2 ·

∂u

∂x

}

are independent,

then d 4 , k 3 and a 0 are SGI [23].

5.2. Practical Identifiability

As demonstrated in previous Section, the three unknown parameters d 4 , k 3 and a 0

are globally identifiable. This result remains theoretical. Before solving the parameter
estimation problem, it is of major importance to study the sensitivity coefficients of the
parameters to demonstrate the practical identifiability. If the sensitivity coefficients are
either small or correlated, the estimation problem is difficult and very sensitive to measure-
ment errors. The sensitivity coefficient is defined as the first derivative of the (numerical)
observations with respect to an unknown parameter [9, 35]:

YP i
( t ) =

σ p

σH

∂H

∂P i

=
σ p

σH

ˆ 1

0

XP i
dx , XP i

=
∂u

∂P i

,

where σH and σ p are scaling factors. In this case, σH corresponds to the uncertainty on the
experimental observations. The quantity σ p is set to unity since all unknown parameter
have the same uncertainty on the a priori values.

To compute the sensitivity coefficients, Equation (5.1) is differentiated with respect to
each unknown parameter. Three differential equations are obtained enabling to compute
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the sensitivity coefficients. For the parameter k 3 , we define X k 3

def
:=

∂u

∂k 3
obtained by

solving the following equation:

∂X k 3

∂t
= Fo ·

∂

∂x

(

d ( u ) ·
∂X k 3

∂x
+
(

d̃ ( u ) ·
∂u

∂x
− Pe · a ( u ) − Bo · k̃ ( u )

)

· X k 3

− Bou 3 + Pe a 0

ˆ 1

0

X k 3
dx

)

,

where

d̃ ( u ) = 4 d4 u
3 + d1 , k̃ ( u ) = 3 k3 u

2 .

For the parameter d 4 , we define X d 4

def
:=

∂u

∂d 4
obtained by solving the following equation:

∂X d 4

∂t
= Fo ·

∂

∂x

(

d ( u ) ·
∂X d 4

∂x
+
(

d̃ ( u ) ·
∂u

∂x
− Pe · a ( u ) − Bo · k̃ ( u )

)

· X d 4

+ u 4 ∂u

∂x
+ Pe a 0

ˆ 1

0

X d 4
dx

)

.

And last, for the parameter a 0 , we define X a 0

def
:=

∂u

∂a 0
obtained by solving the following

equation:

∂X a 0

∂t
= Fo ·

∂

∂x

(

d ( u ) ·
∂X a 0

∂x
+
(

d̃ ( u ) ·
∂u

∂x
− Pe · a ( u ) − Bo · k̃ ( u )

)

· X a 0

− Pe ·

(

1 −

ˆ 1

0

u( x , t ) dx − a 0

ˆ 1

0

X a 0
dx

)

· u

)

.

The boundary and initial conditions are the same for each coefficient XP i
:

XP i
( x = 0 , t ) = 0 , XP i

( x = 1 , t ) = 0 , XP i
( x , t = 0 ) = 0 .

The three differential equations are solved with Scharfetter–Gummel numerical scheme.
For the investigation of the practical identifiability, the a priori parameters values are used.

The time values of Y k 3

def
:=

∂h

∂k 3

and Y d 4

def
:=

∂h

∂d 4

are shown in Figure 14(a). One may con-

clude that the estimation of the parameters k 3 and d 4 will likely have a good result since
their sensitivity coefficients have large magnitudes and they are not correlated with each
other. On the other hand, the time variation of the third coefficient Y a 0

is given in Fig-
ure 14(b). It is not correlated with other coefficients, demonstrating that it is possible to
estimate it. However, its magnitudes are very small showing that its estimation with satis-
factory accuracy is a difficult task. One can argue that these observations are due to the a
priori values for the coefficient a 0. However, as noticed in Figure 14(b), even multiplying
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Figure 14. Time variation of the sensitivity coefficients (a) Y k 3
, Y d 4

and (b) Y a 0
.

by 15 or 100 times the a priori value of a 0 , the magnitude of the sensitivity coefficient
almost doesn’t change.

5.3. Estimation and comparison with the experimental observations

Since the formal and practical identifiability of the three unknown parameters d 4 , a 0

and k 3 have been demonstrated, the aim is now to estimate them using the experimental
observations obtained with the facility. First, the methodology to solve the inverse problem
is briefly described. Then, the results are presented and the reliability of the numerical
model predictions are discussed.

5.3.1 Methodology to solve the parameter estimation problem

The parameter estimation problem is solved by minimizing the following cost function
by the least squares method:

J
(

d 4 , k 3 , a 0

)

: =
∣

∣

∣

∣

∣

∣
H
(

d 4 , k 3 , a 0

)

− H exp

∣

∣

∣

∣

∣

∣

2
.

The value of H results from the solution of the direct problem (5.1) for a given set of
parameters

(

d 4 , k 3 , a 0

)

. The value of H exp is given by the measurements from the
experimental facility and interpolated on the time grid of the numerical scheme.

The cost function J is minimized using function fmincon from the Matlab™ environment.
This method uses the interior-point algorithm with constraints on the unknown parameters.
Here, the upper and lower boundary constraints for the parameters are defined based on
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the preliminary calculations:

d 4 ∈
[

0, 2
]

, k 3 ∈
[

0, 2
]

, a 0 ∈
[

0, 2
]

.

To estimate the quality of the solution of parameter estimation problem, the normalized
Fisher matrix is defined according to [19, 33]:

F =
[

F ij

]

, ∀
(

i, j
)

∈ { 1, ..., Np } , F ij =
1

σ 2
H

ˆ tmax

0

YP i
YP j

dt ,

where YP i
is the sensitivity coefficient of the solution related to the parameter P i, σH

the measurement uncertainty and N p the number of parameters. The matrix F measures
the total sensitivity of the system for the measurements to variations of the entire set of
parameters P. Under some assumptions detailed in [35], the inverse of the Fisher matrix
is the matrix of variance of the parameters considered as random variables of the given
observable fields. In other words, it summarizes the quality of the information obtained in
the parameter identification process. Thus, the inverse matrix of F is used to assess the
estimation uncertainty by computing an error estimator for the parameter P i :

η i =

√

(

F−1
)

i i
.

High values of η i indicate a possible high error during the parameter identification process.

5.3.2 Results and discussion

The estimation process is performed with the following discretization parameters ∆ x ⋆ =
0.05 , ∆ t ⋆ = 10−2 , using the Scharfetter–Gummel numerical scheme and the
Adams–Bashforth–Moulton time adaptive algorithm. The solution of the optimiza-
tion problem requires the computation of the solution u of Eq. (2.4) for each set of the
parameters ( d 4, k 3, a 0 ). During the optimization process for the case without pressure,
the direct problem Eq. (2.4) is solved 114 times. Each iteration requires approximately
100 s to solve the direct problem. It results in a overall performance of 3 h . Consider-
ing the results from previous section and particularly Table 1, the same process using the
standard finite–difference scheme and Euler approach would last for about 7.5 h . For
the experimental data with pressure, the calculation of solution u of Eq. (2.4) is computed
almost 270 times. The estimation takes about 7.5 h . This value is comparatively small
to the 17.5 h required with the model based on standard approach. The results highlights
that the Scharfetter–Gummel numerical scheme, applying to parameter estimation
problem, save important computational efforts compared to the standard approach with
finite–difference scheme.

Figure 15 shows the time variation of the water height for both experiments with pressure
and without pressure. It compares the solution computed using the estimated values of the
parameters and the experimental data. The results demonstrate a good agreement with the
experimental observations, while the solution with the a priori values cannot approximate
the experimental data well. One may say that the calibrated numerical model has a
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Figure 15. Water uptake level in the brick respective to the time for case
without pressure (a) and (b) case with pressure. Figure displays experimental
data with uncertainty σh = 0.5 cm and its interpolation, a priori data and

results with the estimated parameters with residual ε 2 = 0.05 for (a) case and
ε 2 = 0.0087 for (b) case.

Table 3. A priori and estimated values of dimensionless coefficients

Parameters
A priori No pressure With pressure

values Estimated value Error ηi Estimated value Error ηi

a ⋆
0 0.7 0.0052 ± 14 0.55 ± 206

k ⋆
3 0.8 0.8257 ± 0.01 1.3 ± 0.21

d ⋆
4 0.6 1.0 ± 0.002 1.72 ± 0.02

Residual ε 2 1 0.05 0.0087

satisfactory reliability to represent the physical phenomena of liquid water uptake. Similar
conclusions can be noted for the experiments with pressure.

As a result of the optimization process, the estimated values, the residuals of the cost
function and the error estimators are reported in the Table 3. The error estimator is small
for parameters k 3 and d 4 , proving that the accuracy of estimation is decent. However,
the high values of the error estimator of parameter a 0 indicate an unsatisfactory estima-
tion with a very high uncertainty. These results are consistent with ones obtained when
analyzing the sensitivity coefficient with a priori values in Section 5.2. In addition, as
noticed in Table 3, there is no significant difference between the a priori and estimated
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Figure 16. Illustration of optimization procedure convergence.

values for parameters. It validated the investigations on practical identifiability carried in
Section 5.2, since it is eligible in the local area of a priori values.

In order to demonstrate the convergence of the optimization algorithm, the following
procedure is implemented. The parameter a 0 cannot be estimated accurately so its value
is fixed for this analysis. Then several values of initial guesses for parameters d 4 and k 3

are taken. The estimation procedure is performed for each case. Figure 16 shows the
path from each starting point until the estimated parameters values. As one may conclude
the final points are in a similar range for all the tested initial guesses. It validates the
convergence of the optimization method. It should be noted that the figure does not show
the intermediary computations of the algorithm procedure.

Figure 17 displays the volume of liquid water relative to space and time when the brick
is exposed to the open air or to a pressure difference of − 50 Pa . The propagation of
the water front through the brick seems faster in the case of the pressure difference. As
noted in Figure 15, the experimental data with pressure show that the velocity of water
uptake is faster since the same height of the water is achieved twice faster than with the
experiment without pressure. One may conclude that the pressure influences the velocity
of water uptake. However, as reported in Table 3, results from the optimization problem
gives different values for the set of parameters ( d 4 , k 3 , a 0 ) with and without pressure.
Particularly, values for parameters d 4 and k 3 vary from one case to another. It may
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Figure 17. Variation of the dimensionless amount of liquid water u in case with

and without pressure. Figures (a) and (b) displays case without pressure, relative
to the height with t ∈ { 2 , 4 , 6 , 8 , 10 , 12 } , and time with
x ∈ { 0.2 , 0.4 , 0.6 , 0.8 } respectively. Figures (c) and (d) displays case with

pressure, relative to the height with time t ∈ { 2 , 4 , 6 , 7 } , and time with
x ∈ { 0.2 , 0.4 , 0.6 , 0.8 } respectively.

indicate that material properties may be different between the two bricks used during the
experiments. Moreover, the error estimators of the advection coefficients are really poor
indicating that for the given value of pressure difference, it has a minor influence on the
water uptake. It should also be noted that the sensitivity coefficients of parameter a 0 has
really low magnitudes of variations as shown in Figure 14(b).

In Figure 15, it can be noticed that the full length of the brick is not reached, validating
the chosen physical model with Dirichlet boundary conditions presented in Section 2.
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One may argue that other types of boundary conditions could have been chosen at the top
of the brick x = 1 . The Robin-type boundary condition is avoided. Indeed the boundary
flow is proportional to the ambient and surface conditions:

(

d ( u ) ·
∂u

∂x
− Pe · a 0 ·

(

1 −

ˆ 1

0

u ( x , t ) dx
)

· u − Bo · k ( u )

)

= Bi ·
(

u − u∞

)

, x = 1 ,

where Bi is a dimensionless surface transfer coefficient and u∞ are the ambient conditions in
the facility. It implies to estimate this coefficient Bi which is rather difficult experimentally.
It can be estimated by adding the coefficient Bi in the inverse problem, at the price of
additional computational costs. In addition, the expected values of the surface coefficient
are slow and the boundary conditions can be modified into a homogeneous Neumann one:

(

d ( u ) ·
∂u

∂x
− Pe · a 0 ·

(

1 −

ˆ 1

0

u ( x , t ) dx
)

· u − Bo · k ( u )

)

= 0 ,

x = 1 , (5.3)

To investigate the importance of modifying the definition of the boundary conditions at
x = 1 , additional computation are performed considering the problem Eq. (5.1) with the
estimated parameters ( d 4 , k 3 , a 0 ) and the boundary condition Eq. (5.3). The boundary
condition at x = 0 and the initial condition are unchanged:

u( x = 0 , t) =







0 , t = 0

1 , t > 0
, u( x , t = 0) = 0 .

Figure 18 displays the difference between the solutions computed with Dirichlet and
Neumann boundary conditions. The error ε 2 is lower than 10−4 and one may conclude
that the boundary conditions do not change significantly the solution of the numerical
model. These results are consistent when analyzing Figures 17(c) and 17(a). It can be
observed that the flow at x = 1 remains null.

Another open question is the definition of the liquid height. Previously, the height is
defined by the integral of u over the space domain. An alternative definition is to the
height of the water front in the brick using a threshold:

H = max
{

x̂ : u ( x̂ , t ) ≥ û
}

, (5.4)

where û is a chosen value of the amount of liquid. Figure 19 compares the numerical
solution according to the definition of H with Eq. (2.3) or (5.4). The numerical predictions
are varying with the definition. On one hand, the integral definition is a more general
approach but it assumes that the water vapor is negligible in the material. On the other
hand, the definition (5.4) requires to determine the value of the threshold. For these reasons,
the definition of the liquid height in the brick according remains an open question.
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Figure 18. Error ε 2 between solutions with Dirichlet and homogeneous

Neumann boundary condition at x = 1 .

6. Conclusion

The moisture in the walls greatly affects the overall building performance. Such a process
as rising damp has a strong impact on the energy consumption of the building. In this work,
the physical model represents the water uptake process in a single brick, based on diffusion,
advection and gravity fluxes. To investigate these physical phenomena it is important to
have efficient numerical models in terms of computational cost and accuracy. These models
require also to have a good reliability to represent the physical phenomena. To answer this
issue, an innovative approach is proposed based on the Scharfetter–Gummel numerical
scheme. The first part of the paper studies the properties of the numerical model such as
accuracy, stability conditions and computational time with a reference solution for both
linear and nonlinear cases in Section 3.5. The investigations show that the Scharfetter–
Gummel numerical model is more accurate and faster than the standard approach based
on finite–differences and Euler explicit scheme. The Scharfetter–Gummel numerical
model has an explicit formulation avoiding costly sub-iterations at each time step. Since its
stability condition is nonlinear and scales with ∆t ≃ ∆x for large space discretization, the
Scharfetter–Gummel numerical scheme combined with an adaptive time step approach
is particularly efficient to save computational efforts.
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Figure 19. Influence of the definition of the water front height of the brick on
the numerical predictions.

Along with numerical methods, the reliability of the proposed numerical model is an-
alyzed by comparing the numerical predictions to experimental observations. The exper-
imental facility is presented in Section 4. Empirical data are gathered through a set of
two experiments. First, the height of the rising front is obtained for a brick under normal
conditions. Then, the height front is measured in another brick submitted to a pressure
of − 50 Pa . Then, the comparison between numerical simulations and the experimental
observations of the height of the rising front is carried out in Section 5. Since the lit-
erature lacks consistent data for the material properties [14], the uncertain parameters
are determined by solving a parameter estimation problems. Before solving the parame-
ter estimation problem, the structural and practical identifiability of the three unknown
parameters are demonstrated in Sections 5.1 and 5.2, respectively. The results of the pa-
rameter estimation problem show that the diffusivity and liquid conductivity are estimated
with satisfactory accuracy. The advection coefficient cannot be estimated with accuracy
even with a pressure difference of − 50 Pa at the top of the brick. The sensitivity of the nu-
merical solution with respect to this parameter is much smaller compared to the diffusivity
and liquid conductivity. With the estimated parameters, there is a satisfactory agreement
between the numerical predictions and the experimental observations, highlighting a good
reliability of the model. Important computational efforts are saved thanks to the efficiency
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of the numerical model. The Scharfetter–Gummel numerical scheme enables to save
by 50% the computational cost compared to the standard approach.

Even if this work enhances the efficiency of the Scharfetter–Gummel numerical
scheme for the solution of advection–diffusion equation with gravity flux, the rising damp
problem require simulation of the physical phenomena in 2−dimensions. Thus, further
research should be conducted to extend the numerical model in this way.
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A. Demonstration of uniqueness of the solution

This section proposes to demonstrate the uniqueness of the solution of liquid uptake in
porous media. Since u ( x , t ) > 0 at t > 0 , equation (3.1) can be transformed as

∂u

∂t
=

∂

∂x

(

d
∂u

∂x
− u

(

a +
k( u )

u

)

)

,

then regularized into a general advection–diffusion equation:

∂u

∂t
=

∂

∂x

(

d
∂u

∂x
− ã u

)

, x ∈ Ω =
[

0 , 1
]

, t > 0 , (A.1)

where ã ( u )
def
:=

(

a + k ( u )
u

)

. Further in the Section, we assume the linearized represen-

tation ã of ã ( u ) around u 0 :

ã = a +
k( u 0 )

u 0
,

where u 0 is a given function of ( x , t ) .
The following boundary and initial conditions are considered:

u ( 0 , t ) = uL
inf ( t ) , u ( 1 , t ) = uR

inf ( t ) , u ( x , 0 ) = 0 . (A.2)
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In order to study the uniqueness of the solution, we use the so-called energy method [7].
For that purpose, we assume that two solutions u 1 ( x , t ) and u 2 ( x , t ) satisfy Eqs. (A.1)
and (A.2). We define w( x , t ) as:

w ( x , t )
def
:= u 1 ( x , t ) − u 2 ( x , t ) ,

solution of the equation:

∂w

∂t
=

∂

∂x

(

d
∂w

∂x
− ã w

)

, (A.3)

with the boundary and initial conditions:

w ( 1 , t ) = 0 , w ( 0 , t ) = 0 , w ( x , 0 ) = 0 . (A.4)

If the energy E ( t )
def
:=

ˆ

Ω

w 2 ( x , t ) dx is decreasing and E ( 0 ) = 0 , then the solution

of Eqs (A.1) and (A.2) is unique :

dE

dt
6 0 .

To study the validity of this condition, both sides of Eq. (A.3) are multiplied by w and
integrated over Ω :

ˆ

Ω

w
∂w

∂t
dx =

ˆ

Ω

w
∂

∂x

(

d
∂w

∂x
− ã w

)

dx ,

which by differentiating under the integral becomes:

1

2

dE

dt
=

ˆ

Ω

w
∂

∂x

(

d
∂w

∂x
− ã w

)

dx ,

By performing an integration by parts, we obtain:

1

2

dE

dt
=

[

w

(

d
∂w

∂x
− ã w

)

] x = 1

x = 0

−

ˆ

Ω

(

d
∂w

∂x
− ã w

)

∂w

∂x
dx ,

which becomes using the boundary conditions (A.4):

1

2

dE

dt
= −

ˆ

Ω

d

(

∂w

∂x

) 2

+

ˆ

Ω

ã w
∂w

∂x
dx . (A.5)

The Cauchy–Schwartz inequality writes:

∣

∣

∣

∣

∣

ˆ

Ω

f g

∣

∣

∣

∣

∣

6

(

ˆ

Ω

f 2 dx

)

1
2
(

ˆ

Ω

g 2 dx

)

1
2

,

for f and g square–integrable realx–value functions. Thus, the inequality (A.5) yields to:

1

2

dE

dt
6 −

ˆ

Ω

d

(

∂w

∂x

) 2

+ ã

(

ˆ

Ω

w 2dx

)

1
2
(

ˆ

Ω

(

∂w

∂x

) 2

dx

)

1
2

. (A.6)
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For u ∈ W 1 , p
0 , the Poincaré inequality states:

∣

∣

∣

∣

∣

∣
u
∣

∣

∣

∣

∣

∣

L p (Ω )
6 C

Ω

∣

∣

∣

∣

∣

∣
∇u

∣

∣

∣

∣

∣

∣

L p ( Ω )
,

where C
Ω

is a constant depending on p and Ω only. Thus, for a one-dimensional problem
and for p = 2 , the inequality (A.6) becomes:

1

2

dE

dt
6 −

ˆ

Ω

d

(

∂w

∂x

) 2

+ ã C
Ω

ˆ

Ω

(

∂w

∂x

) 2

dx ,

which can be re-written as:

1

2

dE

dt
6 −

(

d − ã C
Ω

)

ˆ

Ω

(

∂w

∂x

) 2

.

Therefore, we have uniqueness of the solution of Eqs (A.1) and (A.2) if k − ã C
Ω
> 0 . In

other terms, the generalized advection coefficient has to be small compared to the diffusion
one to have unique solution.
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