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CROSSED S -MATRICES AND FOURIER MATRICES FOR COXETER
GROUPS WITH AUTOMORPHISM

by

ABEL LACABANNE

Abstract. — We study crossed S -matrices for braided G -crossed categories and reduce their
computation to a submatrix of the de-equivariantization. We study the more general case of
a category containing the symmetric category Rep(A, z ) with A a finite cyclic group and z ∈ A
such that z 2 = 1. We give two example of such categories, which enable us to recover the
Fourier matrix associated with the big family of unipotent characters of the dihedral groups
with automorphism as well as the Fourier matrix of the big family of unipotent characters of
the Ree group of type 2F4.

In his classification of unipotent characters of a finite group of Lie type G (q ), two tools
used by Lusztig are a partition of these characters into families and the notion of a non-
abelian Fourier transform. One remarkable property of this classification is that it only
depends on the Weyl group of G and not on the number q . It then has been suggested by
Lusztig [Lus93] and by Broué-Malle-Michel [BMM99, BMM14], that a notion of “unipo-
tent characters”, a partition into families and a Fourier transform should be associated
not only with a Weyl group, but more generally with a complex reflection group.

In the case of a Weyl group, the Fourier matrix can be understood in terms of modular
invariants of a modular category, namely the category of modules over the (possibly
twisted) Drinfeld double of a finite group. We hope that every Fourier matrix constructed
in the more general case of complex reflection groups has a categorical explanation as in
[BR17, Lac18b, Lac18a]. Lusztig [Lus94, 3.8] explains the Fourier matrix of the big family
of unipotent characters for a dihedral group with a category constructed from quantum
sl2 at an even root of unity. We will detail this construction in Section 3.3 and 3.4. In
type H4, there exists a Fourier matrix associated with a family of size 74 for which no
categorical interpretation is known.

This article focuses on Fourier matrices associated with families of unipotent char-
acters of groups with automorphism, such as Suzuki and Ree groups [GM03]. In this
setting, the Fourier matrices are not anymore symmetric and a categorical explanation
with a modular category is not possible. Following Deshpande [Des17], we associate
to a braided G -crossed fusion category a crossed S -matrix, which is not symmetric and
should play the role of the Fourier matrix in this twisted case.

It is possible to understand this crossed S -matrix, via equivariantization, in terms of a
non-degenerate braided pivotal category C containing the symmetric category Rep(A, z )
of representations of a cyclic group A, together with an involution z ∈ A: the crossed
S -matrix is obtained as a submatrix of the S -matrix of the category C . We construct
examples in which this category C encompasses both the Fourier matrix of the family
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of unipotent characters for the twisted group and the corresponding family for the non-
twisted group.

Such categories were studied by Beliakova-Blanchet-Contreras [BBC17] in order to ob-
tain refinements of the Witten-Reshetikhin-Turaev 3-manifold invariants. Nevertheless,
we will not use their terminology of refinable and spin modular categories since we work
with categories which are not necessarily ribbon.

This paper is organized as follows. In Section 1, we start by fixing some notations and
then we recall the definition of Deshpande of a crossed S -matrix in the case of braided G -
crossed categories. Since we work in a not necessarily spherical framework, we show in
Section 2 that this crossed S -matrix, under a non-degeneracy hypothesis, is invertible and
satisfies some relation with respect to the twist of the category. In Section 3, we construct
a category containing Rep(Z/2Z)which enables us to recover the Fourier matrix of the big
family of unipotent characters for dihedral groups, the eigenvalues of the Frobenius, and
similar date for dihedral groups with automorphism. Finally in Section 4, we show that
the category of finite dimensional modules of the Drinfeld double of a central extension
G̃ of a finite group G fits into the framework of Section 2. We relate the modularization of
the component of trivial degree with the category of finite dimensional representations
of the Drinfeld double of G . We conclude this Section with the example of the symmetric
group S4 and the binary octahedral group, which enables us to recover the Fourier matrix
associated with the Ree group of type 2F4.

Acknowledgements. — I warmly thank my advisor C. Bonnafé for many fruitful dis-
cussions and his constant support.

1. Braided G -crossed categories and twisted S -matrices

We start by some notation and we recall the definition of a braided G -crossed category,
notion due to Turaev [Tur10] and explain how to define a crossed S -matrix associated to
any g ∈G , following [Des17]. We fix G a finite group with identity 1.

1.1. Notations. — In this paper, we will work over an algebraicailly closed field | of
characteristic 0. We recall some classical extra structure for a monoidal category (C ,⊗, 1).
A left dual of an object X is the datum of (X ∗, evX , coevX ) where X ∗ is an object of C ,
evX : X ∗⊗X → 1 and coevX : 1→ X ⊗X ∗ such that the following compositions are identities

X X ⊗X ∗⊗X X ,
coevX ⊗ idX idX ⊗evX

X ∗ X ∗⊗X ⊗X ∗ X ∗.
idX ∗ ⊗coevX evX ⊗ idX ∗

Similarly, there exists a notion of a right dual. If a left dual exists, it is then unique up
to isomorphism. A monoidal category is said to be rigid if it admits both left and right
duals. In a rigid category, the choice of a left dual for any object define a contravatiant
duality functor ∗:C →C .

We will work with fusion categories as defined in [EGNO15, Definition 4.1.1]. A fusion
category is equipped with a pivotal structure if there is an isomorphism of monoidal
functors aX : X → X ∗∗. We also recall the definition of quantum traces in a pivotal fusion
category with unit object simple. For X an object and f an endomorphism of X , we define
the right quantum trace trR

X ( f ) of f as the following endomorphism of 1:

1 X ⊗X ∗ X ∗∗⊗X ∗ 1.
coevX (ax ◦ f )⊗idX ∗ evX ∗
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Since in a fusion category the unit object is simple, we identify this endomorphism with
the unique scalar λ ∈ | such that this endomorphism is equal to λ id1. Similarly, we may
define the left quantum trace as the composition

1 X ∗⊗X ∗∗ X ∗⊗X 1.
coevX ∗ idX ∗ ⊗( f ◦a−1

x ) evX

The pivotal structure is said to be spherical if these two quantum traces coincide. We
then define the right and left quantum dimension of an object X by taking the trace of the
identity map:

dimR (X ) := trR
X (idX ) and dimL (X ) := trL

X (idX ).

It is known that in a fusion category, the simple objects are of non-zero right and left
quantum dimensions. We moreover define the dimension of the category C as

dim(C ) :=
∑

X ∈Irr(C )
dimL (X )dimR (X ),

where Irr(C ) denotes the set of isomorphism classes of simple objects in C .
For a rigid braided tensor category, there exists a natural isomorphism uX : X → X ∗∗,

called the Drinfeld morphism, defined as the composition

X X ⊗X ∗⊗X ∗∗ X ∗⊗X ⊗X ∗∗ X ∗∗.
coevX ∗ cX ,X ∗ evX

It satisfies for all X , Y ∈C ,

uX ⊗uY = uX⊗Y ◦ cY ,X ◦ cX ,Y .

To give a pivotal structure a on C is therefore equivalent to give a twist on C , which is a
natural isomorphism θX : X → X satisfying for all X , Y ∈C

θX⊗Y = (θX ⊗θY ) ◦ cY ,X ◦ cX ,Y .

The pivotal structure and the twist are related by a = uθ . We will often endow the
braided pivotal category C with the twist given by the pivotal structure.

1.2. Braided G -crossed fusion categories. —

Definition 1.1. — Let C be a fusion category over |. We say that C is a braided G -crossed
fusion category if it is equipped with the following structures:

1. a grading C =
⊕

g∈G Cg ,
2. an action g 7→ Tg of G such that Th (Cg )⊂Chg h−1 ,
3. natural isomorphisms for all g ∈G , X ∈Cg and Y ∈C

cX ,Y : X ⊗Y → Tg (Y )⊗X ,

such that axioms similar to the usual hexagons are satisfied [EGNO15, (8.106),(8.107)],
and that the braiding is compatible with the action of G [EGNO15, (8.105)].

A theorem of Kirillov [Kir01] and of Müger [Müg04] affirms that any braided G -
crossed category can be obtained as the de-equivariantization of a braided fusion cat-
egory containing Rep(G ).

From now on, we fix a braided G -crossed fusion categoryC and we denote the grading
of an homogeneous object X by d (X ) ∈ G . The left dual of X is denoted by X ∗ and
the evaluation and coevaluation maps are respectively denoted by evX : X ∗ ⊗ X → 1 and
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coevX : 1→ X ⊗X ∗. There exists an analogue of the Drinfeld morphism for such categories.
For any X ∈Cg , it is defined as the composition

X X ⊗Td (X )−1 (X ∗)⊗Td (X )−1 (X )∗∗ X ∗⊗X ⊗Td (X )−1 (X )∗∗

Td (X )−1 (X )∗∗,

coevTd (X )−1 (X ∗) cX ,Td (X )−1 (X ∗)

evX

and it satisfies
uX ⊗uY = uTd (X )d (Y )d (X )−1 (X )⊗Td (X )(Y ) ◦ cTd (X )(Y ),X ◦ cX ,Y .

Since we want to associate to C and g ∈ G a crossed S -matrix, we need a pivotal
structure on C , which is moreover compatible with the action of G :

aX : X → X ∗∗ such that Tg (aX ) = aTg (X ),

for any X ∈Cg . To such a pivotal structure, one can associate a twist [Tur10, Section V.2.3]
by

aX = uTd (X )(X ) ◦θX .

If the group G is the trivial group, we recover the usual notions of braiding, of pivotal
structure and of twist.

1.3. Crossed S -matrix. — We recall the definition of [Des17] of the crossed S -matrix.
Here, we fix g ∈G and consider Cg as a C1-module category. For any X and Y of respec-
tive degree 1 and g , the double braiding is a morphism

X ⊗Y Y ⊗X Tg (X )⊗Y .
cX ,Y cY ,X

Since we want to compute the trace of this morphism, we will restrict ourselves to objects
X such that Tg (X ) is isomorphic to X , and we choose such an isomorphism γ. By doing
so, we can rephrase it by saying that X and γ define an object of the equivariantization
C 〈g 〉 of C by the cyclic group generated by g . Therefore, we have an isomorphism

X ⊗Y Y ⊗X Tg (X )⊗Y X ⊗Y ,
cX ,Y cY ,X γ⊗idY

and it is possible to compute the trace using the pivotal structure.

Definition 1.2. — For g ∈ G , the crossed S -matrix S1,g is the matrix with rows indexed by
the isomorphism classes of objects X ∈ C1 such that Tg (X ) ' X and with columns indexed by
isomorphism classes of objects Y ∈Cg with value

(S1,g )X ,Y = trR
X⊗Y ((γ⊗ idY ) ◦ cY ,X ◦ cX ,Y ),

where γ is a chosen isomorphism between Tg (X ) and X : we have chosen a lifting in C 〈g 〉 for any
X ∈C1 such that Tg (X )' X .

Remark. — If there exists an isomorphism γ between Tg (X ) and X , then, for any root of
unity ξ ∈ | of order the order of g in G , the morphism ξγ is also an isomorphism between
Tg (X ) and X . Using the isomorphism ξγ instead of γmultiplies the row of X by ξ.
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Similarly to [Des17], we will work in the categoryC 〈g 〉 in order to state some properties
of this matrix. Since our pivotal structure is not necessarily spherical, we cannot use
directly the results of [Des17]. Since we are only interested in the objects of degree g
and in the equivariantization C 〈g 〉, we may and will suppose that the group G is cyclic,
generated by g .

Hypothesis. From now on, we suppose that G is a cyclic group generated by
g ∈G . We denote by Ĝ the group of characters of G .

The equivariantization C G is a braided category containing Rep(G ), and the braiding
between two homogeneous objects (X , (uh )h∈G ) and (Y , (vh )h∈G ) is given by (ug d (X ) ⊗ idX ) ◦
cX ,Y . Here uh is an isomorphism between Th (X ) and X satisfying some relations, see
[EGNO15, Section 2.7] for more details.

Lemma 1.3. — LetC be a braided G -crossed category with G cyclic generated by g and Y ∈Cg .
Then there exists an isomorphism between Tg (Y ) and Y .

Proof. — The braiding gives an isomorphism between Y ∗ ⊗Tg (Y ) and Y ⊗ Y ∗. The unit
object is therefore a direct summand of Y ∗⊗Tg (Y ), which is possible only if Tg (Y )' Y .

Proposition 1.4. — LetC be a braided G -crossed category, with G generated by g . If we choose
a lifting (X , (uh )h∈G ) ∈ C G for any X ∈ C1 such that Tg (X ) ' X and a lifting (Y , (vh )h∈G ) ∈ C G

for any Y ∈ Cg , the crossed S -matrix S1,g is a submatrix of the S -matrix of the braided fusion
category C G .

Remark. — If we use another lifting for Y , this has no effect on the crossed S -matrix,
since γY does not appear in the computation of trR

X⊗Y ((ug ⊗ idY ) ◦ cY ,X ◦ cX ,Y ).

The category C G satisfies Rep(G ) ⊂ C G and we denote by Xα the simple object cor-
responding to the simple representation α ∈ Ĝ of G . Tensoring by the invertible objects
Xα gives an action of Ĝ on the objects of C G , and this allows us to define a grading on
C G by the group Ĝ (see [Müg04, Remark 3.29]). For any h ∈G , denote by (C G )h the full
subcategory of objects X ∈C G such that

cX ,Xα ◦ cXα,X =α(h ) idXα⊗X ,

for any α ∈ Ĝ .

Proposition 1.5. — This defines a grading on the categoryC G such that any lifting (X , (uh )h∈G )
of X ∈C of degree h is of degree h in C G .

Proof. — Any simple object X ∈ C G is homogeneous. Indeed, since Xα is an invertible
object, the double braiding cX ,Xα ◦ cXα,X is the multiplication by a scalar λα. The hexagon
axioms for the braiding immediately show that α 7→ λα is a character of Ĝ , and therefore
there exists h ∈G such that λα =α(h ) for any α ∈ Ĝ .

Checking that this indeed a graduation is again an application of the hexagon axioms
for the braiding [EGNO15, Lemma 8.9.1].

Finally, let X be an object in C of degree h and (X , (uh )h∈G ) a lifting of X in C G . The
double braiding cX ,Xα ◦ cXα,X between Xα and (X , (uh )h∈G ) in C G is the morphism

1⊗X X ⊗1 Th (1)⊗X 1⊗X ,
c1,X cX ,1 α(h )ϕh⊗idX
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where ϕh : Th (1)→ 1 is the isomorphism coming from the tensor structure of the action of
G . The double braiding is then a multiple of the identity.

Since we have some choice on the lifting (X , (uh )h∈G ) of an object X , it is crucial to
understand this choice in terms of the category C G . In fact, choosing another lifting is
corresponds to the tensorization in C G by an invertible object of the form Xα. The simple
objects X ∈ C1 such that there exists an isomorphism between Tg (X ) and X have exactly
#G non-isomorphic liftings in C G , and the group Ĝ consequently acts transitively and
freely on these liftings. The other simple objects in (C G )1 have a non simple image in C
by the forgetful functor C G →C .

Now, we choose a set of representatives [I1,n ] of the set of isomorphism classes of sim-
ple objects in (C G )1 with trivial stabilizer under tensorization by the Xα’s, under the ac-
tion of Ĝ . Similarly, we choose a set of representatives [Ig ] of the set of isomorphism
classes of simple objects in (C G )g under the action of Ĝ . With these choices, we make
explicit Proposition 1.4.

Proposition 1.6. — Let C be a braided G -crossed category, where G is a finite cyclic group
generated by g . The crossed S -matrix S1,g is the submatrix (SX ,Y )X ∈[I1,n ],Y ∈[Ig ] of the S -matrix of
C G .

Similarly, the category C G is equipped with a twist, which does not depend on the
chosen lifting of X ∈ C1 and depends of the chosen lifting of Y ∈ Cg , choosing another
lifting multiplies the twist of Y by a root of unity of order #G .

2. Categories containing Rep(A, z )with A cyclic

As in [Des17], we have reduced the computation of the crossed S -matrix to a com-
putation in a pivotal braided fusion category containing the category of representations
of a finite cyclic group. We will state some properties of this matrix, and work in the
slightly extended setting where the braided fusion category contains the symmetric cate-
gory Rep(A, z ), for A finite, cyclic and z ∈ A is of square 1.

Hypothesis. We fix C a braided pivotal fusion category over | such that
Rep(A, z )⊂C as a braided pivotal subcategory.

Recall that we endow the category C with a grading by the group A, and we denote
the degree of a homogeneous object X by d (X ). We start with a useful immediate lemma.

Lemma 2.1. — Let C be a braided pivotal fusion category containing Rep(A, z ) with A cyclic
and z ∈ A of square 1. Denote by Xα the simple object in C corresponding to the representation
α ∈ Â.

1. For all simple objects X and Y in C and α ∈ Â, we have SXα⊗X ,Y =α(z )α(d (Y ))SX ,Y .
2. For any twist θ̃ on C , any simple object X and any α ∈ Â, we have θ̃Xα⊗X =α(d (X ))θ̃Xα θ̃X .

2.1. Non-degeneracy and square of the crossed S -matrix. — Similarly to the case of a
pre-modular category, the crossed S -matrix will have interesting proprieties if the cate-
gory C is non-degenerate.
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Remark. — If we start from a braided G -crossed category, its equivariantization is non-
degenerate if and only if the grading is faithful and the degree 1 component is non-
degenerate [EGNO15, Remark 8.24.4].

Hypothesis. We now suppose that the category C is non-degenerate.

Lemma 2.2. — Let C be a non-degenerate braided pivotal fusion category containing Rep(A, z )
with A cyclic. Then the grading by Â is faithful and the symmetric center of C1 is Rep(A, z ).

Proof. — We denote by ZC (C1) the centralizer of C1 in C and by Zsym(C1) the symmetric
center of C1. By [EGNO15, Theorem 8.21.1], we have

dim(C1)dim(ZC (C1)) = dim(C )dim(C1 ∩Zsym(C )).

Since C is non-degenerate, we have dim(C1 ∩Zsym(C )) = 1. But, by definition of C1,
Rep(G , z ) is in the centralizerZC (C1). All the categorical dimensions being totally positive
numbers, we choose an embedding |alg→C, and we have

#A ≤ dim(ZC (C1))≤
dim(C )
dim(C1)

.

Similar to [EGNO15], one can prove that for any g ∈G , dim(Cg ) = dim(C1) and hence

#A ≤ dim(ZC (C1))≤ #A.

Therefore the grading by A is faithful and ZC (C1) =Rep(A, z ).

The pivotal structure is not spherical, and there exists an involution ¯ on the set Irr(C ):
for any simple object X , there exists, up to isomorphism, a unique simple object X̄ such
that for every simple object Y ,

SX ,Y ∗

dimR (X )
=

SX̄ ,Y

dimR (X̄ )
.

See [Lac18b] for more details. It is proven that X̄ ' X ∗ ⊗ 1̄ and that SX̄ ,Y = SX ,Ȳ . We
denote by s R

X the character of the Grothendieck group of C satisfying dimR (X )s R
X (Y ) =

SX ,Y for all simple objects Y . The definition of ¯ translates into the equality s R
X̄
(Y ) = s R

X (Y
∗)

for any simple object Y .

Lemma 2.3. — The element 1̄ is in C1. Therefore the involution ¯ is a bijection between Ca and
Ca−1 for any a ∈ A.

Proof. — Since Xα is of dimension α(z ) = ±1, the dimension of Xα and its dual are equal
and we have:

SXα,1̄ = dimR (1̄)
SX ∗α,1

dimR (1)
= dimR (Xα)dimR (1̄).

Therefore c1̄,Xα ◦ cXα,1̄ = idXα,1̄ and 1̄ is of degree 1.

Lemma 2.4. — Let α ∈ Â and X be an object of degree a . If X ⊗Xα ' X then α(a ) = 1.

Proof. — This follows from Lemma 2.1 using the twist θ associated with the pivotal
structure and the braiding.
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Now, we fix a ∈ A such that a generates the cyclic group A. We denote by I1 the set of
isomorphism classes of simple objects of degree 1 and by I1,n the subset of elements of
I1 on which Â acts with trivial stabilizers. We choose a set of representatives [I1,n ] of I1,n

under the action of Â.
Similarly, denote by Ia±1 the set of isomorphism classes of simple objects of degree a±1.

By Lemma 2.2, the group Â acts by tensorization on Ia±1 with trivial stabilizers. We choose
a set of representatives [Ia ] of Ia under the action of Â. We set [Ia−1 ] = {X̄ | X ∈ [Ia ]}. This
is a set of representatives of Ia−1 under the action of Â.

Remark. — 1. The choice of [I1,n ] is not necessarily compatible with the involution
¯ , but for all X ∈ [I1,n ] there exist a unique Y ∈ [I1,n ] and a unique α ∈ Â such that
X̄ ' Xα⊗Y .

2. If #A = 2, then a = a−1 and we may and will choose [Ia ] such that the two sets [Ia ]
and [Ia−1 ] are equal. Indeed, for any X ∈ Ia and α ∈ Â, if X̄ ' Xα⊗X then α= 1. This
follows from the value of the twist: θX̄ = θX and θXα⊗X =α(a )θX .

If X ∈ I1 \ I1,n then for any Y ∈ Ia±1 we have SX ,Y = 0. Indeed, let α ∈ Â{1} such that
Xα⊗X ' X . Since dimR (Xα) =α(z ) and dimR (X ) 6= 0, we must have α(z ) = 1 and

SX ,Y = SXα⊗X ,Y =α(z )α(g
±1)SX ,Y =α(a

±1)SX ,Y .

As α 6= 1 and a generates A, we have α(a±1) 6= 1 and SX ,Y = 0.
We then consider the following submatrices of the S -matrix of C :

S1,a±1 = (SX ,Y )X ∈[I1,n ],Y ∈[Ia±1 ], Sa±1,1 =
tS1,a±1 and Sa±1,g = (SX ,Y )X ∈[Ia±1 ],Y ∈[Ig ].

We also define two square monomial matrices P = (PX ,Y )X ,Y ∈[I1,n ] and Q = (QW ,Z )W ∈[Ia−1 ],y ∈[Ia ]
by:

PX ,Y =
∑

α∈Â

α(z )α(g −1)δȲ 'Xα⊗X and QW ,Z =δW̄ 'Z ,

for any X , Y ∈ [I1,n ], W ∈ [Ia−1 ] and Z ∈ [Ia ].

Theorem 2.5. — LetC be a non-degenerate braided pivotal fusion category containing Rep(A, z ).
Then

S1,a Sa ,1 =
dim(C1)

#A
dimR (1̄)P and Sa−1,1S1,a = Sa−1,a Sa ,a =

dim(C1)
#A

dimR (1̄)Q .

In particular, the matrices S1,a±1 and Sa±1,1 are square matrices and #I1,n = #Ia .

Proof. — Let us start by the product Sa−1,1S1,a . Let X ∈ [Ia ] and Y ∈ [Ia−1 ]. As noticed
before, for any Z ∈ I1 \ I1,n , one have SY ,Z = 0= SZ ,X . Consequently

∑

Z∈I1

SY ,Z SZ ,X =
∑

Z∈I1,n

SY ,Z SZ ,X =
∑

Z∈[I1,n ]

∑

α∈Â

SY ,Xα⊗Z SXα⊗Z ,X .

But SY ,Xα⊗Z =α(z )α(a−1)SY ,Z and SXα⊗Z ,X =α(z )α(a )SZ ,Y . Therefore

(Sa−1,1S1,a )Y ,X =
1

#A

∑

Z∈I1

SY ,Z SZ ,X .

If X and Ȳ are not isomorphic, then
∑

Z∈I1

SY ,Z SZ ,X = dimR (X )dimR (Y )
∑

Z∈I1

s R
X (Z )s

R
Ȳ (Y

∗) = 0,

since the characters s R
X and s R

Ȳ
of Gr(C1) are different [EGNO15, Lemma 8.20.9].
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If X and Ȳ are isomorphic, then
∑

Z∈I1

SY ,Z SZ ,X =
∑

Z∈I1
W ∈I1

dimR (Z )N W
X ,Y SZ ,W =

∑

W ∈I1

N W
X ,Y dimR (W )

∑

Z∈I1

s R
1 (Z )s

R
W̄ (Z

∗).

The sum over Z is non-zero if and only if W̄ ' Xα for some α ∈ Â and
∑

Z∈I1

SY ,Z SZ ,X = dim(C1)
∑

α∈Â

dimR (Xα)N
Xα

X ,Y .

Finally, N Xα
X ,Y =N 1

X ,Y ⊗Xα
∗ and Y ⊗Xα

∗ ' X ∗⊗Xα so that N Xα
X ,Y is zero if α 6= 1 and is 1 if α= 1.

This concludes the computation of Sa−1,1S1,a .
Now, we look at the product S1,a Sa ,1. For X and Y two elements of [I1], we have

∑

Z∈Ia

SX ,Z SZ ,Y = #A
∑

Z∈[Ig ]

SX ,Z SZ ,Y .

Suppose first that for all α ∈ Â, the objects Ȳ and Xα⊗X are not isomorphic. Then the
characters s R

X and s R
Ȳ

are different and
∑

Z∈I1
s R

X (Z )s
R
Ȳ
(Z ∗) = 0. By computing in Gr(C ) the

product
 

∑

Z∈I1

s R
X (Z

∗)[Z ]

! 

∑

Z∈Ia

s R
Ȳ (Z

∗)[Z ]

!

,

we obtain that
 

∑

Z∈I1

sȲ (Z )sX (Z
∗)

! 

∑

Z∈Ia

s R
Ȳ (Z

∗)[Z ]

!

=

 

∑

Z∈Ia

sX (Z )sȲ (Z
∗)

! 

∑

Z∈Ia

sX (Z
∗)[Z ]

!

.

Since the first term is zero, we obtain that
∑

Z∈Ia
sX (Z )sȲ (Z ∗) = 0 and therefore

∑

Z∈Ia

SX ,Z SZ ,Y = 0.

Suppose now that Ȳ and Xα ⊗ X are isomorphic for a certain α ∈ Â. Similarly to the
computation of Sa−1,1S1,a , we have:

∑

Z∈Ia

SX ,Z SZ ,Y =
∑

Z∈Ia
W ∈I1

N W
X ,Y dimR (Z )SZ ,W =

∑

W ∈I1

N W
X ,Y dim(W )

∑

Z∈Ia

s R
1 (Z )s

R
W̄ (Z

∗),

and the sum over Ia is non-zero if and only if W̄ ' Xβ for some β ∈ Â. Therefore
∑

Z∈Ia

SX ,Z SZ ,Y = dim(Ca )
∑

β∈Â

N
(Xβ )

X ,Y dimR (Xβ ).

Finally, N
(Xβ )

X ,Y = 1 if and only if α=β in Â and is zero otherwise. Hence
∑

Z∈Ia

SX ,Z SZ ,Y = dim(C1)dimR (1̄)α(a−1)α(z ),

as stated.
The computations for the last product are similar.

Remark. — When #A = 2, if we have made a choice of [Ia ]which is not stable with respect
to the involution ¯ , we have to add signs to the permutation matrix appearing in the
product Sa ,a Sa ,a .
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Corollary 2.6. — Under the same hypothesis, for any X , Y , Z ∈ [I1,n ], we have
∑

α∈Â

α(a )α(z )N Xα⊗Z
X ,Y =

#A

dim(C1)dimR (1̄)

∑

W ∈[Ia ]

SX ,W SY ,W SZ̄ ,W

dimR (W )
.

Proof. — Let α ∈ Â such that Xα⊗ Z̄ ∈ [I1,n ]. We then have:
∑

W ∈[Ia ]

SX ,W SY ,W SZ̄ ,W

dimR (W )
=

∑

W ∈[Ia ]
U ∈I1

N U
X ,Y SU ,W SW ,Z̄

=
∑

U ∈[I1,n ]

α(a−1)α(z )





∑

β∈Â

β (a )N X α⊗U
X ,Y



 (S1,a Sa ,1)U ,Xα⊗Z̄ .

But the Theorem 2.5 shows that (S1,a Sa ,1)U ,Xα⊗Z̄ =
dim(C1)

#A dimR (1̄)α(a )α(z )δU ,Z , which
leads to the expected formula.

Remark. — The ring |⊗Z Gr(C )/([Xα]− α(a )[1]) has a basis labelled by the elements of
[I1,n ]. The numbers

∑

α∈Â α(a )α(z )N
Xα⊗Z

X ,Y are precisely the structure constants of this ring
with respect to this basis, see [Des17]. These constants lie in a cyclotomic ring, which is
the integers if A is of order 2.

2.2. Now enters the twist. — The twist θ plays an important role in the representation
of S L2(Z) afforded by a modular category. In our graded setting, the twist of a simple
object X ∈ [I1,n ] does not depend on the choice of the representative, whereas the twist of
a simple object Y ∈ [Ia ] depends on the choice of the representative, by a root of unity of
order #A. We define the following diagonal matrices:

T1 = diag(θ−1
X )X ∈[I1,n ] and Ta±1 = diag(θ−1

Y )Y ∈[Ia±1 ].

Since for any simple object X we have θX̄ = θX , we have Tg −1Q = QTg , where Q is the
matrix defined before the Theorem 2.5. We aim to show some relations satisfied by the
matrices Sa−1,1,S1,a , T1, Ta and Ta−1 .

The Gauss sums of a fusion category C with twist θ̃ are

τ±(C , θ̃ ) :=
∑

X ∈Irr(C )
θ±1

X |X |
2.

If C is a braided pivotal fusion category, we denote by τ±(C ) the Gauss sums with twist
θ associated with the pivotal structure.

Lemma 2.7. — Let C be a non-degenerate braided pivotal fusion category containing Rep(A, z )
with A cyclic. Then

1

#A
τ+(C1)

1

#A
τ−(C1) =

1

#A
dim(C1).

Proof. — If z = 1, then this follows from the corresponding result for the modularization
D of C1 since 1

#Aτ
±(C1) = τ±(D) and 1

#A dim(C1) = dim(D) (see [Bru00, Proposition 4.4] for
these equalities).

If z 6= 1 then necessarily #A is even, equal to 2n . The symmetric center ofC1 is Rep(A, z )
and we consider the de-equivariantization D of C1 with respect to the action of A/〈z 〉.
Since A is commutative, we have 1

nτ
±(C1) = τ±(D) and 1

n dim(C1) = dim(D). The category
D is slightly degenerate and the result follows from [Lac18b].



CROSSED S -MATRICES AND FOURIER MATRICES FOR COXETER GROUPS WITH AUTOMORPHISM 11

We now give a formula which relates the matrices S1,a ,Sa−1,1,Sa−1,a , T1, Ta and Ta−1 .

Proposition 2.8. — LetC be a non-degenerate braided pivotal fusion category containing Rep(A, z )
with A cyclic. Then

(1) Sa−1,1T1S1,a =
τ−(C1)

#A
T −1

a−1Sa−1,a T −1
a .

Proof. — Let X ∈ [Ia ] and Y ∈ [Ia−1 ]. First we have

(Sa−1,1T1S1,a )Y ,X =
∑

Z∈[I1,n ]

SY ,Z θ
−1
Z SZ ,X =

1

#A

∑

Z∈I1

SY ,Z θ
−1
Z SZ ,X ,

since SY ,Z = 0= SX ,Z for all Z ∈ I1 \ I1,n and SY ,Xα⊗Z θ
−1
Xα⊗Z SXα⊗Z ,X = SY ,Z θ

−1
Z SZ ,X for all Z ∈ I1

and α ∈ Â. Then, using [Lac18b], we have
∑

Z∈I1

SY ,Z θ
−1
Z SZ ,X =

∑

W ∈I1

N W
Y ,X

∑

Z∈I1

θ−1
Z dimR (Z )SZ ,W

=τ−(C1)
∑

W ∈I1

N W
Y ,X dimR (W )θW

=τ−(C1)θX θY SX ,Y ,

which concludes the proof.

2.2.1. When A = Z/2Z. — When the order of A is 2, the fact that a = a−1 enables us to
show some extra relation between the matrices defines above.

Theorem 2.9. — LetC be a non-degenerate braided pivotal fusion category containing Rep(A, z ),
with A cyclic of order 2. We choose

p

dim(C1) a square root of dim(C1) in |, as well as
Æ

dimR (1̄)
a square root of dimR (1̄). We define:

S̃1,a =
S1,a

q

1
2 dim(C1)

Æ

dimR (1̄)
and S̃a ,1 =

Sa ,1
q

1
2 dim(C1)

Æ

dimR (1̄)
.

Then

(S̃a ,1S̃1,a )
2 = id, (S̃1,a S̃a ,1)

2 = id, (S̃a ,1T1S̃1,a T 2
a )

2 =
τ−(C1)

τ+(C1)dimR (1̄)
Q

and (S̃a ,1T −1
1 S̃1,a T −2

a )
2 =
τ+(C1)dimR (1̄)

τ−(C1)
Q ,

where Q is the permutation matrix of the involution ¯ restricted to [Ia ].

Proof. — Theorem 2.5 shows that both S̃1,a S̃a ,1 and S̃a ,1S̃1,a are signed permutation matri-
ces and are of order 2.

It follows from the proposition 2.8 that

(S̃a ,1T1S̃1,a T 2
a )

2 =

�

1
2τ
−(C1)

�2

1
2 dim(C1)dimR (1̄)

Q ,

since S 2
a ,a =

1
2 dim(C1)dimR (1̄)Q and QTa = TaQ .

Finally, for the last relation, we start by taking the inverse of (1):

S̃−1
1,a T −1

1 S̃−1
a ,1 =

1
2 dim(C1)dimR (1̄)

1
2τ−(C1)

Ta S−1
a ,a Ta .
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But, thanks to Theorem 2.5, we have S̃−1
1,a = S̃a ,1P, S̃−1

a ,1 = P S̃1,a and 1
2 dim(C1)dimR (1̄)S−1

a ,a =
Sa ,a . Since P T −1

1 P = T −1
1 , we find

(S̃a ,1T −1
1 S̃1,a T −2

a )
2 =

1
2 dim(C1)dimR (1̄)

�

1
2τ−(C1)

�2 Q .

We conclude using Lemma 2.7.

3. Twisted modular data associated to dihedral groups

In this section, we start by reviewing the category related to the exotic Fourier trans-
form associated to dihedral groups by Lusztig [Lus94]. We will work out in particular
the details of [Lus94, 3.8]. We then apply the construction of Section 2 and show that it
gives rise to the Fourier matrix of the big family of unipotent characters of twisted dihe-
dral groups, as described in [GM03]. We work over the complex field and we fix d > 2 an
integer, ζ= exp(πi/d ) a primitive 2d -th root of unity and ξ= ζ2.

3.1. A Fourier matrix for diedral group. — We recall the definition of the dihedral mod-
ular datum of Lusztig [Lus94, Section 3.1]. Denote by I the set of pairs (i , j ) such that

0< i < j < i + j < d or 0= i < j <
d

2
.

Let I ′ be the set consisting of (0, d /2)′ and (0, d /2)′′ if d is even, and let I ′ =∅ if d is odd. Let
X be the disjoint union of I and I ′. Following Lusztig, define the matrix S = ({x , x ′})x ,x ′∈X

by

{(i , j ), (k , l )}=
ξi l+ j k +ξ−i l− j k −ξi k+ j l −ξ−i k− j l

d
if (i , j ) and (k , l ) belong to I ,

{(i , j ), (0, d /2)′}= {(i , j ), (0, d /2)′′}= {(0, d /2)′, (i , j )}= {(0, d /2)′′, (i , j )}=
(−1)i − (−1) j

d
if (i , j ) belongs to I and d is even, and

{(0, d /2)′, (0, d /2)′}= {(0, d /2)′′, (0, d /2)′′}=
1− (−1)d /2+d

2d
,

{(0, d /2)′, (0, d /2)′′}= {(0, d /2)′′, (0, d /2)′}=
1− (−1)d /2−d

2d
.

Lusztig also defines a vector t = (tx )x∈X by ti , j = ξ−i j if (i , j ) ∈ I and tx = 1 if x ∈ I ′.

Remark. — Our formula for the definition of S is not exactly the one of Lusztig. To
recover the one of Lusztig, it suffices to apply the involution on X defined by (i , j )[ =
(i , d − j ) if (i , j ) ∈ I and i > 0 and x [x otherwise: Lusztig’s S -matrix is Sx ,x ′[ .

Proposition 3.1 ([Lus94, Proposition 3.2]). — The matrix S together with the diagonal ma-
trix T with entries tx for x ∈ X satisfy

S 2 = 1 and (ST )3 = 1.

Moreover, for any x , y , z ∈ X the complex number
∑

u∈X

Sx ,uSy ,uSz ,u

S(0,1),u
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is a non-negative integer.

The matrix S is called the Fourier matrix and the entries of the matrix T is the diagonal
matrix of eigenvalues of the Frobenius.

3.2. A Fourier matrix for dihedral groups with automorphism. — We recall the defini-
tion of the modular datum for dihedral groups with automorphism as defined in [Mal95,
6C] and [GM03, 6.1]. Let J be the set of pairs (k , l ) of odd integers satisfying

0< k < l < k + l < 2d .

The Fourier matrix takes the form S tw = (〈(i , j ), (k , l )〉)(i , j )∈I ,(k ,l )∈J with

〈(i , j ), (k , l )〉=
ζi l+ j k +ζ−i l− j k −ζi k+ j l −ζ−i k− j l

d
.

There is a notion of “unipotent character” indexed by J and the eigenvalue of the Frobe-
nius on the “unipotent character” associated to (k , l ) ∈ J is ζk l . We denote by F1 the
diagonal matrix with entries tx for x ∈ I and by F2 the diagonal matrix with entries ζk l

for (k , l ) ∈ J .

Proposition 3.2 ([GM03, Theorem 6.9]). — The matrices S tw, F1 and F2 satisfy

S twtS tw = 1= tS twS tw and (F2
t S twF −1

1 S tw)2 = 1.

Moreover, for any x , y , z ∈ I the complex number
∑

u∈J

Sx ,uSy ,uSz ,u

S(0,1),u

is an integer.

3.3. The Drinfeld center of tilting modules for quantum sl2. — Let Cd be the fusion
category of tilting modules forUζ(sl2) as defined in [BK01, Section 3.3]. This fusion cate-
gory can also be described in term of representations of level d −2 of an affine Lie algebra
of type A1 with a truncated tensor product. An equivalence between these categories has
been proved by Finkelberg [Fin96]. This category has d −1 simple objects V1, . . . , Vd−1, V1

being the unit object. The S -matrix of this category is given by

SVi ,Vj
=
ζi j −ζ−i j

ζ−ζ−1
.

This category is pivotal and the corresponding twist is given by

θVi
= ζ(i

2−1)/2.

In this category, every object is self-dual, and the pivotal structure is hence spherical.
To explain a categorification of its dihedral modular datum, Lusztig consider a degen-

erate subcategory of the tensor category C = Cd �C rev
d . Let us remark that C ' Z (Cd )

where Z denotes the Drinfeld center. Indeed, the category Cd is non-degenerate and
therefore is factorizable [EGNO15, Proposition 8.20.12]: its Drinfeld center is equivalent
to Cd �C rev

d . This category has its S -matrix given by

SVi�Vj ,Vk�Vl
=
ζi k −ζ−i k

ζ−ζ−1

ζ j l −ζ− j l

ζ−ζ−1

and the twist is given by
θVi�Vj

= ζ(i
2− j 2)/2.
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Let ε be the simple object Vd−1�Vd−1, which is of quantum dimension 1. As Vd−1 is of
square 1 in Cd , the object ε is of square 1 in C . The category C is non-degenerate and
the object ε generates a subcategory isomorphic to Rep(Z/2Z). We now apply the results
of Section 2. The simple object X =Vi �Vj is in degree 0 if and only if Sε,X = dim(X ) and is
in degree 1 if and only if Sε,X =−dim(X ). As

Sε,Vi�Vj
= (−1)i+ j dim(Vi �Vj ),

the simple objects of C0 are of the form Vi �Vj with i ≡ j mod 2 and the simple objects of
C1 are of the form Vi �Vj with i 6≡ j mod 2.

Remark. — The component of degree 0 is not exactly the degenerated subcategory C ′
considered by Lusztig in [Lus94, Section 3.8]. Indeed, he starts with the Deligne tensor
product C �C instead of C �C rev. He then only obtains the Fourier matrix but not the
eigenvalues of the Frobenius.

As Vd−1⊗Vi 'Vd−i inCd , we have ε⊗(Vi�Vj ) =Vd−i�Vd− j inC . Therefore tensorization
by ε on the set I0 of simple objects of C0 has a fixed point if and only if d is even, namely
Vd /2�Vd /2.

3.4. Modularization of the component of degree 0. — The only non-trivial object in
the symmetric center of C0 is ε, which is of quantum dimension 1 and of twist 1. By a
result of [Bru00], there exists a unique minimal modularization Cmod

0 of the category C0

together with a braided tensor functor F :C0→Cmod
0 . It can be obtained by first adding

an isomorphism between ε and 1 and then by taking the idempotent completion. If d
is odd, the set of simple objects of Cmod

0 are given by Vi �Vj where i and j are of same
parity and 0< i < j < d or 0< i = j < d /2. If d is even, there are two more simple objects
(Vd /2�Vd /2)+ and (Vd /2�Vd /2)−. We denote by Ĩ the set of pair of integers (i , j ) such that i
and j are of same parity and 0 < i < j < d or 0 < i = j < d /2 and by Ĩ ′ the empty set if d
is odd, the set containing two elements (d /2, d /2)+ and (d /2, d /2)− if d is even. Let X̃ be
the union of Ĩ and Ĩ ′. We will index the S -matrix as well as the twist of Cmod

0 by X̃ .

Proposition 3.3. — If d is odd, the S -matrix and the values of the twists of the category Cmod
0

are given by

S(i , j ),(k ,l ) =
ζi k −ζ−i k

ζ−ζ−1

ζ j l −ζ− j l

ζ−ζ−1
and θ(i , j ) = ζ

(i 2− j 2)/2.

If d is even, the S -matrix and the values of the twists of the category Cmod
0 are given by

S(i , j ),(k ,l ) =
ζi k −ζ−i k

ζ−ζ−1

ζ j l −ζ− j l

ζ−ζ−1
,

S(i , j ),(d /2,d /2)+ = S(i , j ),(d /2,d /2)− = S(d /2,d /2)+,(i , j ) =

S(d /2,d /2)−,(i , j ) =
1

2

ζi d /2−ζ−i d /2

ζ−ζ−1

ζ j d /2−ζ− j d /2

ζ−ζ−1
,

S(d /2,d /2)+,(d /2,d /2)+ = S(d /2,d /2)−,(d /2,d /2)− =
1

2(ζ−ζ−1)2
�

(−1)d /2−1−d
�

,

S(d /2,d /2)+,(d /2,d /2)− = S(d /2,d /2)−,(d /2,d /2)+ =
1

2(ζ−ζ−1)2
�

(−1)d /2−1+d
�
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and
θ(i , j ) = ζ

(i 2− j 2)/2 and θ(d /2,d /2)+ = θ(d /2,d /2)− = 1.

Proof. — We recall the construction of Müger [Müg04] of the modularization of C0. Fix
ϕ an isomorphism between ε⊗ε and 1. Let D be the category with the same objects as C0

and with space of morphisms

HomD (X , Y ) :=HomC0
(X , Y )⊕HomC0

(X ,ε⊗Y ).

The composition between two morphisms is defined the obvious way, using ϕ if neces-
sary. The tensor product is the same as the one inC0 on the objects and the tensor product
of two morphisms is defined the obvious way, using the braiding and ϕ if necessary. Du-
ality in C0 naturally extends to a duality in D, so does the pivotal structure. Note that the
trace of a morphism f ∈ EndD (X ) coming from a morphism X → ε⊗X in C0 is an element
of HomD (1, 1) coming from a morphism 1→ ε⊗1 in C0 which is necessarily 0.

The modularization Cmod
0 of C0 is then the idempotent completion of D: its objects are

pairs (X , e ) where X is on object of D and e ∈HomD (X , X ) is an idempotent; a morphism
between (X , e ) and (Y , f ) is simply a morphism g : X → Y such that f ◦ g = g ◦ e . All the
structures extend from D to its idempotent completion. Moreover for f ∈ EndCmod

0
((X , e ))

one have

Tr
Cmod

0
(X ,e ) ( f ) = TrDX ( f ◦ e ).

Note that we have denoted in upperscript the category in which we compute the trace
(here, the pivotal structure is spherical, so we droppel the upperscript R ou L). The
functor F is simply X 7→ (X , idX ) and therefore F (X ) is simple if and only if X is simple and
X 6' ε⊗X . If X is simple and X ' ε⊗X , there exists an isomorphism γ ∈HomD (X , X ) such
that γ ◦γ = idX arising from an suitable isomorphism g : X → ε⊗ X . Hence e± =

1
2 (idX ±γ)

is an idempotent and F (X ) = X+⊕X− where X± = (X , e±).
Now suppose that X is a simple object in C0 such that F (X ) = X+ ⊕ X− and that Y is a

simple object in C0 such that F (Y ) is still simple in Cmod
0 . Then

Tr
Cmod

0
F (Y )⊗X±

(cX±,F (Y ) ◦ cF (Y ),X± ) = TrDY ,X (cX ,Y ◦ cY ,X ◦ id⊗e±) =
1

2
TrC0

Y ,X (cY ,X ◦ cX ,Y ),

since the morphism cY ,X ◦ cX ,Y ◦ idY ⊗γ in D comes from a morphism X ⊗Y → ε⊗X ⊗Y in
C0 whose trace is zero. Similarly,

Tr
Cmod

0
X+⊗X±

(cX±,X+ ◦ cX+,X± ) =
1

4
TrC0

X ,X (cX ,X ◦ cX ,X ◦ (idX⊗X ±(ϕ⊗ idX⊗X ) ◦ (idε⊗cX ,ε ⊗ idX ) ◦ (g ⊗ g ))

and

Tr
Cmod

0
X−⊗X±

(cX±,X− ◦ cX−,X± ) =
1

4
TrC0

X ,X (cX ,X ◦ cX ,X ◦ (idX⊗X ∓(ϕ⊗ idX⊗X ) ◦ (idε⊗cX ,ε ⊗ idX ) ◦ (g ⊗ g )).

If d is odd, there are no simple objects X in C0 such that X ' ε ⊗ X . Therefore the
S -matrix of Cmod

0 is simply a submatrix of the S -matrix of C0.
If d is even, there is exactly one simple object X such that X ' ε⊗X . The S -matrix has

then the following form

SC
mod

0 =





s t l t l
l α β
l β α




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where s is a square matrix, l a row vector and α,β are scalars. We have arranged the
simple objects in an order such that X+ and X− are the two last ones. The only un-
known values in this matrix are α and β . We have 2(α+ β ) = SC0

X ,X . Now, the relation
S 2 = dim(Cmod

0 )E , where E is the permutation matrix giving the duality, gives




s 2+2t l l s t l + (α+β )t l s t l + (α+β )t l
l s + (α+β )l l t l +α2+β2 l t l +2αβ
l s + (α+β )l l t l +2αβ l t l +α2+β2



= dim(Cmod
0 )





1 0 0
0 γ δ
0 η ν



 ,

where
�

γ δ
η ν

�

is the identity or
�

0 1
1 0

�

whether X+ and X− are auto-dual or dual to

each other. Therefore, (α− β )2 = dim(Cmod
0 ) if X+ and X− are auto dual, and (α− β )2 =

−dim(Cmod
0 ) if X+ and X− are dual to each other, so that in any cases (α−β )4 = dim(Cmod

0 )2.
Denoting by T the diagonal matrix with entries the action of the inverse of the twist on

simple objects ofCmod
0 , we have (ST −1)3 = dim(Cmod

0 )τ+(Cmod
0 )1. By explicitly computing

(ST −1)3, we obtain that θ−3
X (α− β )

3 = dim(Cmod
0 )τ+(Cmod

0 ). Hence α− β = θ 3
X τ
−(Cmod

0 ).
Finally

α=
1

4

�

SC0
X ,X +2θ 3

X τ
−(Cmod

0 )
�

and β =
1

4

�

SC0
X ,X −2θ 3

X τ
−(Cmod

0 )
�

.

The computation of τ−(Cmod
0 ) requires the knowledge of Gauss sums, but we can avoid

this technical step. We notice that 2τ+(Cmod
0 ) =τ+(C ). Indeed, we have

τ+(C ) =
∑

X ∈Irr(C0)

|X |2θX +
∑

X ∈Irr(C1)

|X |2θX =
∑

X ∈Irr(C0)

|X |2θX =τ
+(C0)

because θε⊗X = −θX for X ∈ Irr(C1) and because tensorization by ε has no fixed points
on Irr(C1). But τ±(C0) = 2τ±(Cmod

0 ). Now, since C is equivalent to of Cd �C rev
d , we have

τ+(C ) =τ+(Cd )τ−(Cd ) = dim(Cd ) and

dim(Cd ) =
d−1
∑

i=1

�

ζi −ζ−i

ζ−ζ−1

�

=−
2d

(ζ−ζ−1)2
.

Finally,

α=
1

2(ζ−ζ−1)2
�

(−1)d /2−1−d
�

and β =
1

2(ζ−ζ−1)2
�

(−1)d /2−1+d
�

.

Now we renormalize the S -matrix by the positive square root of dim(Cmod
0 ) which is

equal to
Ç

dim(Cmod
0 ) =−

d

(ζ−ζ−1)2
.

If d is odd, the renormalized S -matrix S̃ is given by

S̃(i , j ),(k ,l ) =
ζi k− j l +ζ−i k+ j l −ζi k+ j l −ζ−i k− j l

d
,

for i and j integers of same parity such that 0 < i < j < d or 0 < i = j < d /2. The
renormalized S -matrix S̃ is given by

S̃(i , j ),(k ,l ) =
ζi k− j l +ζ−i k+ j l −ζi k+ j l −ζ−i k− j l

d
,
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for (i , j ), (k , l ) ∈ Ĩ , and if d is even

S̃(i , j ),(d /2,d /2)+ = S̃(d /2,d /2)+,(i , j ) = S̃(i , j ),(d /2,d /2)− = S̃(d /2,d /2)−,(i , j ) =
1

d

�

(−1)(i− j )/2− (−1)(i+ j )/2� ,

for (i , j ) ∈ Ĩ , and if d is even

S̃(d /2,d /2)+,(d /2,d /2)+ = S̃(d /2,d /2)−,(d /2,d /2)− =
1

2d

�

1− (−1)d /2+d
�

S̃(d /2,d /2)+,(d /2,d /2)− = S̃(d /2,d /2)−,(d /2,d /2)+ =
1

2d

�

1− (−1)d /2−d
�

.

Let Ψ0 : X → X̃ sending (i , j ) ∈ I to ( j − i , i + j ) and, if d is even, (0, d /2)′ on (d /2, d /2)+
and (0, d /2)′′ on (d /2, d /2)−. It is easily checked that Ψ0 is a bijection, and its inverse on Ĩ

is given by (i , j ) 7→
�

j−i
2 , i+ j

2

�

. The following for the matrix S̃ is due to Lusztig [Lus94, 3.8].

Theorem 3.4. — The category Cmod
0 is a categorification of the modular datum associated to the

dihedral group. More explicitly, if S̃ denotes the renormalized S -matrix of Cmod
0 and θ the twist,

S̃Ψ0(x ),Ψ0(x ′) = {x , x ′} and θΨ0(x ) = tx ,

for every x , x ′ ∈ X .

3.5. The degree 1 part of C . — We now turn to the study of the matrix extracted from
the degree 1 part ofC and show that we recover the Fourier matrix associated to dihedral
groups with non-trivial automorphism, as described in Section 3.2. The simple objects of
the category C1 are Vk �Vl with 0 < k , l < d and k 6≡ l mod 2 and we have ε ⊗Vk �Vl =
Vd−k �Vd−l . We then choose {Vk �Vl |0 < k < l < d , k 6≡ l mod 2} as representatives of the
orbits on Irr(C1) under tensorization by ε. Denote by J̃ the set of pairs of integers (k , l )
such that 0< k < l < d and k 6≡ l mod 2.

The matrix S0,1 (resp. S1,0) is indexed by Ĩ × J̃ (resp. J̃ × Ĩ ) and

(S0,1)(i , j ),(k ,l ) =
ζi k −ζ−i k

ζ−ζ−1

ζ j l −ζ− j l

ζ−ζ−1
,

for any (i , j ) ∈ Ĩ and (k , l ) ∈ J̃ .
Let Ψ1 : J → J̃ sending (k , l ) ∈ I to

�

l−k
2 , k+l

2

�

. It is easily checked that Ψ1 is a bijection,
and its inverse is given by (k , l ) 7→ (l −k , k +l ). An easy computation shows the following.

Theorem 3.5. — The renormalized S -matrix S̃0,1 associated to C is the Fourier matrix associ-
ated to the non trivial family of “unipotent characters” of the dihedral group with non-trivial
automorphism:

(S̃0,1)Ψ0((i , j )),Ψ1((k ,l )) = 〈(i , j ), (k , l )〉.
Moreover, the inverse of the eigenvalue of the Frobenius is given by the square of the twist on C1:

θ−2
Ψ1((k ,l )) = ζ

k l

Therefore the matrix F1 is equal to the matrix T −1
0 and the matrix F2 is the matrix T 2

1 .
The relation [GM03, Theorem 6.9, (F6’)] translates into the relation

(T 2
1 S̃10T0S̃01)

2 = 1,

and we have proven that in general

(T −2
1 S̃10T −1

0 S̃01)
2 =
τ+(C0)
τ−(C0)

dimR (1̄)S̃10S̃01.
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But in this setting, the category C is spherical, hence 1̄ = 1, we have seen that τ+(C0) =
τ−(C0) and every object is auto-dual, so that S̃1,0S̃0,1 = 1. Finally noticing that the entries
of S̃0,1 and S̃1,0 are real shows that the two relations are indeed equivalent.

4. Drinfeld double of a central extension of a finite group and 2F4

In this section, we show that the modular category of representations of the Drinfeld
double of a central extension by a cyclic group fits into the framework of Section 2. If
we consider a central extension of the symmetric group S4 we then recover the Fourier
matrix of the big family for the Ree group 2F4, which was defined in [GM03] and for
which no categorical explanation was known.

4.1. Reminders on the Drinfeld double of a finite group. — The Drinfeld double of a
finite group G is a special case of a more general construction for finite dimensional Hopf
algebras [Kas95, Chapter IX]. Let CG be the group algebra of G and C[G ] the algebra of
C-valued functions on G . We denote by g ∈CG the element corresponding to g ∈G and
by eg ∈C[G ] the function such that eg (h ) =δg ,h . The Drinfeld double D (G ) is isomorphic,
as a vector space, to the tensor product C[G ]⊗CG and (eg h )g ,h∈G is therefore a basis of
D (G ). On this basis, the multiplication is defined by

(eg h )(eg ′h
′) =δg ,hg ′h−1 eg (hh ′).

The unit is
∑

g∈G eg . This algebra is also a Hopf algebra, its coproduct ∆, its counit ε and
its antipode S are given by

∆(eg h ) =
∑

g1g2=g

eg1
h ⊗ eg2

h , ε(eg h ) =δg ,1 and S (eg h ) = h−1eg −1 = eh−1g −1h h−1.

The category D (G )-mod of finite dimensional D (G )-modules is a fusion category [BK01,
Section 3.2]: it is in particular semisimple and has a finite number of simple objects.

The algebra D (G ), as any Drinfeld double, has a universal R -matrix given by

R =
∑

g∈G

g ⊗ eg ,

which endows the category D (G )-mod with a braiding [Kas95, Proposition XIII.1.4]. The
square of the antipode is the identity, hence the usual identification of a vector space with
its bidual defines a pivotal structure, which is moreover spherical since the quantum
dimensions are nothing more than the usual dimensions.

The classification of simple modules is given in [BK01, Section 3.2]. They are in bi-
jection with the pairs (g ,ρ), where g ∈ G and ρ is an irreducible representation of the
centralizer ZG (g ) of g in G , modulo the equivalence relation given by (g ,ρ)∼ (hg h−1,hρ).
Here, hρ the representation of hZG (g )h−1 = ZG (hg h−1) defined by hρ(h x h−1) = ρ(x ). We
will denote the simple representation of D (G ) corresponding to (g ,ρ) by Vg ,ρ . Finally, it is
not difficult to compute the S -matrix of this category [BK01, Section 3.2] and the category
D (G )-mod is modular: its S -matrix is invertible or equivalently the only simple object in
its symmetric center is 1.

4.2. Drinfeld double of a central extension. — We fix here a finite group G and we
consider a central extension G̃ of G by a cyclic group A of order n . We have an exact
sequence

1 A G̃ G 1,ι π
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and we will see A as a subgroup of G̃ .
The representations Va ,1 for a ∈ A generate in D (G̃ )-mod a subcategory isomorphic to

Rep(Â). Then the category of finite dimensional modules over D (G̃ ) is graded by the
group Â. Remark that Va ,1 is a one dimensional representation of D (G ) and that Va ,1 ⊗
Vb ,1 'Va b ,1 for any a , b ∈ A.

Lemma 4.1. — Let α ∈ Â. For g ∈ G̃ and ρ an irreducible representation of ZG̃ (g ), the simple
module Vg ,ρ is in the component of degree α if and only if A acts on ρ by multiplication by the
character α.

Proof. — It suffices to compute the double braiding of Vg ,ρ with any object of the form
Va ,1, a ∈ A. The morphism cVa ,1,Vg ,ρ

: Va ,1⊗Vg ,ρ→Vg ,ρ ⊗Va ,1 is given by

cVa ,1,Vg ,ρ
(v ⊗w ) =

∑

g∈G̃

eg ·w ⊗ v =w ⊗w

and the morphism cVg ,ρ ,Va ,1
: Vg ,ρ ⊗Va ,1→Va ,1⊗Vg ,ρ is given by

cVg ,ρ ,Va ,1
(w ⊗ v ) = v ⊗a ·w ,

since eg (Va ,1) = 0 if g 6= a . The double braiding is then given by the action of a on Vg ,ρ as
expected.

In order to extract form the S -matrix of D (G̃ )-mod a crossed S -matrix as in Section 2,
we need to understand the fixed points on the set of simple objects of the component of
trivial degree, under tensorization by Va ,1.

Proposition 4.2. — Let g ∈ G̃ and ρ an irreducible representation of ZG̃ (g ). The simple object
Vg ,ρ is stable under tensorization by Va ,1 if and only if the conjugacy class of g and a g are equal
and ρ ' rρ, where r ∈ G̃ is such that a g = r g r −1.

Proof. — The simple module Vg ,ρ is supported by the conjugacy class [g ] of g in G̃ and
Va ,1 ⊗Vg ,ρ is supported by a [g ] = [a g ] so that Va ,1 ⊗Vg ,ρ ' Va g ,ϕ for ϕ a simple represen-
tation of ZG̃ (a g ) = ZG̃ (g ). It is checked that we have ϕ ' ρ and then Va ,1 ⊗Vg ,ρ ' Va g ,ρ .
But there is an isomorphism between Va g ,ρ and Vg ,ρ if and only if [g ] = [a g ] and ρ 'r ρ,
where r ∈ G̃ is such that a g = r g r −1.

Remark. — If ρ(a ) 6= id, there is never an isomorphism between Vg ,ρ and Va ,1 ⊗ Vg ,ρ .
Indeed this follows from Lemma 2.4. We can see it directly using Proposition 4.2: if such
an isomorphism exists then we would have χρ(g ) = χρ(a g ), where χρ is the character of
ρ, and therefore χρ(a ) =χρ(1) since a is central in ZG (g ).

Since the category D (G̃ )-mod is modular, the symmetric center of the trivial component
(D (G̃ )-mod)1 is equal to Rep(Â): the only simple objects of this symmetric center are the
Va ,1 for a ∈ A, which are all of dimension 1 and of twist 1. By the criterion of Bruguières
[Bru00], a modularization of this category exists and is unique up to equivalence.

Proposition 4.3. — The modularization of the trivial component of D (G̃ )-mod is the modular
category D (G )-mod.

Proof. — Let C = D (G̃ )-mod and C1 the component of trivial grading. We first define a
functor F :C0→D (G )-mod which respect the braiding and the twist. Let DG̃ (G ) the Hopf
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subalgebra of D (G̃ ) generated by eg h for g ∈ G̃ and h ∈G . The three algebras D (G̃ ), DG̃ (G )
and D (G ) are related as follows:

DG̃ (G )

D (G̃ ) D (G )

p i

where p (eg h ) = egπ(h ) for g , h ∈ G̃ and i (eg h ) =
∑

k∈π−1(g ) ek h for g , h ∈G . The application
p is surjective and i is injective. Now, a representation of D (G̃ ) factors through p if and
only if A acts trivially on it, which is the case if and only if this representation is in C1.
The functor F is defined as the restriction via i of this quotient. Since p and i are Hopf
algebra morphisms, the braiding and the ribbon structure are preserved.

The category D (G )-mod being modular, it remains to show that the functor F is domi-
nant: every D (G )-module is the direct summand of an object in the image of F . Let g ∈G
and ρ a representation of ZG (g ). We first choose g̃ ∈π−1(g ). The quotient map π restricts
into a group morphism ZG̃ (g̃ )→ ZG (g ), which is not necessarily surjective. Let us choose
a simple summand ρ̃ of ρ viewed as a representation of ZG̃ (g̃ ). The subgroup A acts then
trivially on ρ̃ and the simple module Vg ,ρ appears as a direct summand of F (Vg̃ ,ρ̃).

4.3. An example related to the Ree group of type 2F4. — In Section 3.5, we gave an
explanation for the Fourier matrices associated to the big families of unipotent characters
for twisted dihedral groups 2I2(n ). In [GM03], Geck and Malle proposed a notion of
Fourier matrices for Suzuki and Ree groups, which coincide for 2B2 and 2G2 with the
corresponding cases among dihedral groups. We now consider the Ree group of type 2F4

and its family consisting of 13 unipotent characters. An explanation of the Fourier matrix
is given in terms of the Drinfeld double of the binary octahedral group.

4.3.1. The Fourier matrix. — We start by giving explicitly the matrix associated to the big
family of unipotent characters of 2F4:

S =
1

12





















3 3 6 −6 −3 −3 −3 −3 −3 −3 0 0 0
0 0 0 −4 4 4 0 0 0 0 4 4 −8
−6 −6 0 −4 −2 −2 0 0 0 0 4 4 4
3 3 6 2 1 1 3 3 3 3 4 4 4

3
p

2 −3
p

2 0 0 −3
p

2 3
p

2 3
p

2 3
p

2 −3
p

2 −3
p

2 0 0 0
3
p

2 −3
p

2 0 0 3
p

2 −3
p

2 −3
p

2 3
p

2 −3
p

2 3
p

2 0 0 0
3
p

2 −3
p

2 0 0 3
p

2 −3
p

2 3
p

2 −3
p

2 3
p

2 −3
p

2 0 0 0
0 0 0 0 0 0 6 −6 −6 6 0 0 0
3 3 −6 −6 −3 −3 3 3 3 3 0 0 0
−3 −3 6 −2 −1 −1 3 3 3 3 −4 −4 −4
0 0 0 −4 4 4 0 0 0 0 4 −8 4
0 0 0 −4 4 4 0 0 0 0 −8 4 4

3
p

2 −3
p

2 0 0 −3
p

2 3
p

2 −3
p

2 −3
p

2 3
p

2 3
p

2 0 0 0





















.

The order of rows and columns is not the one of [GM03, Theorem 5.4] but the one chosen
in the package CHEVIE [GHL+96, Mic15] of GAP. As in Section 3.2 we have two diagonal
matrices F1 and F2 given by

F1 = diag(1, 1, 1, 1, 1,ζ4,−ζ4,−1, 1, 1,ζ3,ζ2
3,−1)

and

F2 = diag(1, 1, 1,−1,−1,−1,−ζ4,ζ4,ζ4,−ζ4,−ζ3,−ζ2
3,−1).
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Proposition 4.4 ([GM03, Theorem 6.9]). — The matrix S is unitary and satisfies (F2S F −1
1 S )2 =

id. Moreover, for any i , j , k ∈ {1, 2, . . . , 13}, the number

N k
i , j :=

13
∑

l=1

Si ,l Sj ,l Sk ,l

S4,l

is a non-negative integer.

Thanks to the unitarity of S , we can define a free unital and associative Z-algebra with
a basis (bi )1≤i≤13 with multiplication given on this basis by

bi · b j :=
13
∑

k=1

N k
i , j b13,

and the unit element is b4.

4.3.2. The binary octahedral group and its Drinfeld double. — Using the notation of Section
4.2, we take G =S4 and A = Z/2Z. Since H 2(G ; A) is isomorphic to the Klein four-group,
there exists four non-isomorphic central extensions of G by A. We take for G̃ the binary
octahedral group, which has a presentation given by [HH92, Theorem 2.8]

G̃ =



z , t1, t2, t3

�

� z 2 = 1, t 2
i = z , (t1t2)

3 = z , (t2t3)
3 = z , (t1t3)

2 = z
�

.

In GAP, one can acces to the binary octahedral group using SmallGroup(48,28).
The element z is central and the quotient map π: G̃ → G sends the element ti on the
transposition (i , i + 1). The conjugacy classes are given in [HH92, Theorem 3.8] and we
take as representatives of these classes the following elements:

1, z , t1, t1t3, t1t2, z t1t2, t1t2t3, z t1t2t3.

In order to compute the simple modules of D (G̃ ), we need to know the structure of the
centralizers of the above elements. Computations with GAP shows that

ZG̃ (1) = ZG̃ (z ) = G̃ , ZG̃ (t1)'Z/4Z, ZG̃ (t1t3) =Z/8Z, ZG̃ (t1t2) = ZG̃ (z t1t2)'Z/6Z
and ZG̃ (t1t2t3) = ZG̃ (z t1t2t3)'Z/8Z.

The character table of G̃ is given in [HH92, Table 4.7] and reproduced in Table 1.

1 z t1 t1t3 t1t2 z t1t2 t1t2t3 z t1t2t3

1 1 1 1 1 1 1 1 1
ε 1 1 −1 1 1 1 −1 −1
χ2 2 2 0 2 −1 −1 0 0
χ3 3 3 1 −1 0 0 −1 −1
χ ′3 3 3 −1 −1 0 0 1 1
ψ2 2 −2 0 0 1 −1

p
2 −

p
2

ψ′2 2 −2 0 0 1 −1 −
p

2
p

2
ψ4 4 −4 0 0 −1 1 0 0

TABLE 1. Character table of G̃

Except from the centralizers of 1 and z , every other centralizer is cyclic and there is
then 56 irreducible D (G̃ )-modules. We introduce the following labelling: for k ∈ 4, 6, 8, we
choose a primitive k -th root of unity ζk and we identify Irr(Z/kZ) with

�

ζr
k

�

� r ∈Z/kZ
	

.
Let ε be the representation Vz ,1, which is of dimension 1, of twist 1 and of tensor square
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isomorphic to the unit object. The category D (G̃ )-mod is graded by Z/2Z. The component
of degree 0 contains the 30 simple modules labelled by

(1, 1), (1,ε), (1,χ2), (1,χ3), (1,χ ′3), (z , 1), (z ,ε), (z ,χ2), (z ,χ3), (z ,χ ′3),

(t1, 1), (t1,−1), (t1t3, 1), (t1t3,ζ2
8), (t1t3,ζ4

8), (t1t3,ζ6
8), (t1t2, 1), (t1t2,ζ2

6), (t1t2,ζ4
6),

(z t1t2, 1), (z t1t2,ζ2
6), (z t1t2,ζ4

6), (t1t2t3, 1), (t1t2t3,ζ2
8), (t1t2t3,ζ4

8), (t1t2t3,ζ6
8),

(z t1t2t3, 1), (z t1t2t3,ζ2
8), (z t1t2t3,ζ4

8), (z t1t2t3,ζ6
8),

and the component of degree 1 contains the 26 others labelled by

(1,ψ2), (1,ψ′2), (1,ψ4), (z ,ψ2), (z ,ψ′2), (z ,ψ4), (t1,ζ4), (t1,ζ3
4),

(t1t3,ζ8), (t1t3,ζ3
8), (t1t3,ζ5

8), (t1t3,ζ7
8), (t1t2,ζ6), (t1t2,ζ3

6), (t1t2,ζ5
6),

(z t1t2,ζ6), (z t1t2,ζ3
6), (z t1t2,ζ5

6), (t1t2t3,ζ8), (t1t2t3,ζ3
8), (t1t2t3,ζ5

8), (t1t2t3,ζ7
8),

(z t1t2t3,ζ8), (z t1t2t3,ζ3
8), (z t1t2t3,ζ5

8), (z t1t2t3,ζ7
8).

We saw in proposition 4.2 that the simple objects which are fixed under tensorization
by ε are the Vg ,ρ with [g ] = [z g ] and rρ ' ρ, where r ∈ G̃ with z g = r g r −1. Only the
conjugacy classes of t1 and of t1t3 satisfy the first condition.

Let us start with the study of the representations of the form Vt1,ρ . The centralizer
ZG̃ (t1) is isomorphic to Z/4Z and t1 generates this group. We check that t3t1t −1

3 = z t1

and therefore we look at the representations ρ of ZG̃ (t1) which satisfy t3ρ ' ρ. Since
t3t1t −1

3 = z t1 = t −1
1 , only the representation labelled by 1 and ζ2

4 satisfy this condition.
Now, we continue with the representations of the form Vt1t3,ρ . The centralizer ZG̃ (t1t3)

is isomorphic to Z/8Z and is generated by h := t1t2t1t3t2. We check that t3t1t3t −1
3 = z t1t3

and therefore we look at the representations ρ of ZG̃ (t1t3) which satisfy t3ρ ' ρ. Since
t3h t −1

3 = h−1, only the representation labelled by 1 and ζ4
8 satisfy this condition.

Finally, we obtain 4 simple representations which are fixed under tensorization by ε,
which agrees with Theorem 2.5. It only remains to compute the non-trivial orbits of
isomorphism classes of simple objects under tensorization by ε.

In degree 0, we have the following isomorphisms:

ε⊗V1,1 'Vz ,1, ε⊗V1,ε 'Vz ,ε , ε⊗V1,χ2
'Vz ,χ2

,

ε⊗V1,χ3
'Vz ,χ3

, ε⊗V1,χ ′3
'Vz ,χ ′3

, ε⊗Vt1t3,ζ2
8
'Vt1t3,ζ6

8
,

ε⊗Vt1t2,1 'Vz t1t2,1, ε⊗Vt1t2,ζ2
6
'Vz t1t2,ζ2

6
, ε⊗Vt1t2,ζ4

6
'Vz t1t2,ζ4

6
,

ε⊗Vt1t2t3,1 'Vz t1t2t3,1, ε⊗Vt1t2t3,ζ2
8
'Vz t1t2t3,ζ2

8
, ε⊗Vt1t2t3,ζ4

8
'Vz t1t2t3,ζ4

8
,

ε⊗Vt1t2t3,ζ6
8
'Vz t1t2t3,ζ6

8
,

and in degree 1 we have the following isomorphisms:

ε⊗V1,ψ2
'Vz ,ψ2

, ε⊗V1,ψ′2
'Vz ,ψ′2

, ε⊗V1,ψ4
'Vz ,ψ4

,

ε⊗Vt1,ζ4
'Vt1,ζ3

4
, ε⊗Vt1t3,ζ8

'Vt1t3,ζ7
8
, ε⊗Vt1t3,ζ3

8
'Vt1t3,ζ5

8
,

ε⊗Vt1t2,ζ6
'Vz t1t2,ζ6

, ε⊗Vt1t2,ζ3
6
'Vz t1t2,ζ3

6
, ε⊗Vt1t2,ζ5

6
'Vz t1t2,ζ5

6
,

ε⊗Vt1t2t3,ζ8
'Vz t1t2t3,ζ8

, ε⊗Vt1t2t3,ζ3
8
'Vz t1t2t3,ζ3

8
, ε⊗Vt1t2t3,ζ5

8
'Vz t1t2t3,ζ5

8
,

ε⊗Vt1t2t3,ζ7
8
'Vz t1t2t3,ζ7

8
.
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We do the following choice of representatives of orbits of isomorphism classes of sim-
ple objects of degree 0:

Vz ,χ3
, Vt1t2,1, Vz ,χ2

, V1,1, Vz t1t2t3,1, Vt1t2t3,ζ6
8
, Vt1t2t3,ζ2

8
, Vt1t3,ζ6

8
, Vz ,χ ′3

, Vz ,ε , Vt1t2,ζ4
6
, Vt1t2,ζ2

6
, Vz t1t2t3,ζ4

8

and the following choice for the degree 1:

Vt1t3,ζ8
, Vt1t3,ζ3

8
, Vt1,ζ4

, V1,ψ4
, V1,ψ′2

, V1,ψ2
, Vt1t2t3,ζ5

8
, Vt1t2t3,ζ3

8
, Vt1t2t3,ζ7

8
, Vt1t2t3,ζ8

, Vz t1t2,ζ6
, Vz t1t2,ζ5

6
,

Vz t1t2,ζ3
6
.

With these choices and orders, we obtain

S0,1 =





















6 6 12 −12 −6 −6 −6 −6 −6 −6 0 0 0
0 0 0 −8 8 8 0 0 0 0 8 8 −16
−12 −12 0 −8 −4 −4 0 0 0 0 8 8 8

6 6 12 4 2 2 6 6 6 6 8 8 8
6
p

2 −6
p

2 0 0 −6
p

2 6
p

2 6
p

2 6
p

2 −6
p

2 −6
p

2 0 0 0
6
p

2 −6
p

2 0 0 6
p

2 −6
p

2 −6
p

2 6
p

2 −6
p

2 6
p

2 0 0 0
6
p

2 −6
p

2 0 0 6
p

2 −6
p

2 6
p

2 −6
p

2 6
p

2 −6
p

2 0 0 0
0 0 0 0 0 0 12 −12 −12 12 0 0 0
6 6 −12 −12 −6 −6 6 6 6 6 0 0 0
−6 −6 12 −4 −2 −2 6 6 6 6 −8 −8 −8
0 0 0 −8 8 8 0 0 0 0 8 −16 8
0 0 0 −8 8 8 0 0 0 0 −16 8 8

6
p

2 −6
p

2 0 0 −6
p

2 6
p

2 −6
p

2 −6
p

2 6
p

2 6
p

2 0 0 0





















and the diagonal matrices T0 and T 2
1 given by the action of the inverse of the twist are

T0 = diag(1, 1, 1, 1, 1,ζ4,−ζ4,−1, 1, 1,ζ3,ζ2
3,−1),

and
T 2

1 = diag(−1,−1,−1, 1, 1, 1,−ζ4,ζ4,ζ4,−ζ4,ζ2
3,ζ3, 1).

The category D (G̃ )-mod is spherical, so that the invertible object 1̄ is the unit ob-
ject 1. Finally, we renormalize S0,1 by a factor 24 which is the positive square root of
dim((D (G̃ )-mod)0)

2 , and we denote by S̃0,1 the matrix S0,1
24 .

Theorem 4.5. — The matrix S̃0,1 is equal to the Fourier matrix of the big family of unipotent
characters of 2F4. Moreover the matrix T 2

1 is the opposite of the diagonal matrix of eigenvalues of
the Frobenius. More precisely, we have:

S̃0,1 = S , F1 = T0 and F2 =−T −2
1 .

This theorem gives another proof of [GM03, Theorem 6.9, (F5), (F6)’] which does not
require the explicit computation of the structure constants or the product (F2S F −1

1 S )2.

Remark. — The appearance of the binary octahedral group is still quite mysterious, but
not the one of S4. Indeed, there exists a unipotent class in the reductive group F4(C),
denoted by F4(a3) in [Car85, Section 13.3], whose component group of the centralizer is
S4, and which is the special class associated to the corresponding family of unipotent
characters.
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