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Abstract

In Gurson’s footsteps, different authors have proposed macroscopic plastic models for porous
solid with pressure-sensitive dilatant matrix obeying to the normality law (associated ma-
terials). The main objective of the present paper is to extend this class of models to porous
materials in the context of non-associated plasticity. This is the case of Drucker-Prager
matrix for which the dilatancy angle is different from the friction one, and classical limit
analysis theory cannot be applied. For such materials, the second last author has proposed
a relevant modeling approach based on the concept of bipotential, a function of both dual
variables, the plastic strain rate and stress tensors. On this ground, after recalling the basic
elements of the bipotential theory, we present the corresponding variational principles and
the extended limit analysis theorems. Then, we formulate a new variational approach for the
homogenization of porous porous materials with non-associated matrix. This is implemented
by considering the hollow sphere model with a non-associated Drucker-Prager matrix. The
proposed procedure delivers a closed form expression of the macroscopic bifunctionnal from
which is readily obtained the criterion and a non-associated flow rule of the porous material.
It is shown that these general results recover several available models as particular cases.
Finally, the established results are assessed and validated by comparing their predictions to
that of Finite Element computations carried out on a cell representing the considered class
of materials.

Keywords: Bipotential theory, Nonlinear Homogenization, Extended Limit analysis,
Ductile porous materials, Non associated plasticity, Drucker-Prager matrix
2000 MSC: 74C05, 74L10

1. Introduction

In his famous paper, Gurson (1977) proposed an upper bound limit analysis approach of
a hollow sphere and a hollow cylinder having a von Mises solid matrix. Several extensions of
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Gurson’s model have been further proposed in the literature, the most probably important
developments being those accounting for void shape effects (Gologanu et al., 1997; Garajeu et
al., 1997; Monchiet et al., 2007; Madou and Leblond , 2012a,b; Monchiet and Kondo , 2013).
Plastic anisotropy was treated by (Benzerga et al., 2001; Monchiet et al., 2008; Keralavarma
and Benzerga , 2010), while studies by Cazacu et al. (Cazacu and Stewart, 2009) have been
devoted to porous materials exhibiting a tension-compression asymmetry. Other extensions
take into account the plastic compressibility of the matrix through associated Drucker-Prager
model for applications to polymer and cohesive geomaterials (Jeong et al., 1995; Jeong , 2002;
Guo et al., 2008; Barthélémy et al., 2003). Application of this class of models has been done
in (Lin et al., 2011a,b; Shen et al., 2012). It is worth noticing that, in the spirit of Gurson’s
paper, the kinematical limit analysis of porous materials with an associated matrix requires
the choice of a trial velocity field. The latter is generally built by adding linear terms to the
exact one for hydrostatic loading. A notable study concerning the non-associated Drucker-
Prager matrix has been done by Maghous et al. (2009) in the context of modified secant
moduli approach (see also Ponte-Castaneda (1991); Suquet (1995)).

Coming to a more general point of view, a constitutive law in Mechanics is a relationship
between dual variables. The constitutive laws of the materials can be represented, as in
Elasticity, by a univalued mapping or, as in Plasticity, can be generalized in the form of
a multivalued mapping but this representation is not necessarily convenient. When the
graph is maximal cyclically monotone, one can model it thanks to a convex and lower semi-
continuous function π, called a superpotential (or pseudo-potential), such that the graph is
the one of its subdifferential ∂π). The function π and its Fenchel conjugate one π∗ verifies
for any couple of dual variables Fenchel’s inequality. The dissipative materials admitting a
superpotential of dissipation are often qualified as standard (Halphen et al., 1975) and the
law is said to be a normality law, a subnormality law or an associated law.

However, many experimental observations in the last decades have motivated the propo-
sition of non-associated laws, particularly in Plasticity theory. For such laws, the second last
author proposed in (de Saxcé et al., 1991; de Saxcé , 1992) a suitable modeling framework
based on the bipotential, a function b of both dual variables, convex and lower semicontin-
uous in each argument and satisfying a cornerstone inequality saying that for any couple of
dual variables the value of the bipotential is greater than or equal to their duality pairing.
When equality holds, the couple is said extremal. In a mechanical point of view, the ex-
tremal couples are the ones satisfying the constitutive law. Materials admitting a bipotential
are called implicit standard materials (ISM) because the constitutive law is a subnormality
law but the relation between the dual variables is implicit. The classical standard materials
correspond to the particular event for which the bipotential is separated as the sum of a
superpotential and its conjugate one. In this sense, the cornerstone inequality of the bipo-
tential generalizes Fenchel’s one. The existence and construction of a bipotential for a given
constitutive law has been recently discussed in (Buliga et al., 2008, 2009a, 2010a).

Linked to the structural mechanics and in particular with the Calculus of Variation,
the bipotential theory offers an elegant framework to investigate a broad spectrum of non-
associated laws. Examples of such non-associated constitutive laws are:
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• in soil mechanics, non-associated Drucker-Prager (de Saxcé , 1993; Berga et al., 1994;
de Saxcé , 1998a; Bousshine et al., 2001; Hjiaj et al., 2003) and Cam-Clay models (de
Saxcé , 1995; Zouain et al., 2007, 2010),

• the non linear kinematical hardening rule for cyclic Plasticity (de Saxcé , 1992; Bodovillé
et al., 2001) and Viscoplasticity (Hjiaj et al., 2000; Magnier et al., 2006; Bouby et al.,
2006, 2009),

• Lemaitre’s coupled plasticity-damage law (Bodovillé , 1999),

• the coaxial laws (de Saxcé , 2002; Vallée et al., 2005),

• Coulomb’s friction law (de Saxcé , 1998b, 1992, 1993, 1998b,a; Bousshine et al., 2002;
Hjiaj et al., 2002, 2004; Feng et al., 2006b,a; Fortin et al., 1999, 2002; Laborde et al.,
2008),

• the blurred constitutive laws (Buliga et al., 2009b, 2010b).

A complete survey of the bipotential approach can be found in de Saxcé (2002). In the
previous works, robust numerical algorithms were proposed to solve structural mechanics
problems.

Coming back to the Limit Analysis let us say that a general method to determine the
plastic collapse of structures under proportional loading (Suquet, 1982; Salençon , 1983; Save
et al., 1997), even particular in soil mechanics (Chen , 1975; Chen et al., 1990), but it is
restricted to associated plasticity, then with normality law. The classical presentation of the
non-associated plasticity is based on a yield function and a plastic potential. The bipotential
offers an alternative formulation which naturally opening to a variational formulation, and
then paving the way for an extension of limit analysis techniques to non-associated laws
(de Saxcé , 1998a; Bousshine et al., 2001, 2002; Chaaba et al., 2010; Zouain et al., 2007).
Extension of limit analysis theory to the repeated variable loading, known as shakedown
theory, has been successfully generalized to the ISM1 by the bipotential approach in (de
Saxcé , 2002; Bousshine et al., 2001, 2003; Bouby et al., 2006, 2009).

The aim of the present study is to formulate a macroscopic model for “ductile porous ma-
terials with a non-associated Drucker-Prager”-type matrix, using homogenization techniques
combined with the bipotential theory. The paper is organized as follows: the non-associated
Drucker-Prager plastic model, for which the yield criterion and plastic potential are respec-
tively defined by two functions, is first summarized in Section 2. Next, we introduce in
Section 3, the bipotential theory and its two dual fields (stress and velocity fields) based
formulation, which allows us to derive the plastic criterion and the non-associated flow rule.
An application of the bipotential theory to the non-associated Drucker-Prager plastic model
is particularly discussed in subsection 3.3. Section 4 is devoted to the bipotential-based ex-
tended limit analysis approach of non-associated porous media. The proposed formulation

1See also the use of Shakedown theory by (Boulbibane and Weichert , 1997) for non-associated soils.
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provides a fundamental variational theory for the macroscopic modeling of a large class of
porous media. In Section 5, the proposed bipotential-based theory is implemented in the
case of a hollow sphere having a rigid perfectly plastic matrix obeying to a non-associated
Drucker-Prager flow rule. This implementation will be performed by adopting simple trial
stress and velocity fields. This allows to derive in subsection 5.3 a closed-form expression of
the macroscopic criterion and the non-associated plastic flow rule. Furthermore, some spe-
cial cases, corresponding to existing models previously proposed in literature, are discussed
in subsection 6. Finally, in Section 7, the established macroscopic criterion, flow rule and
void evolution are respectively assessed and validated by comparison with Finite Element
solutions.

2. Brief recall the non-associated Drucker-Prager model

Figure 1: Drucker-Prager model: yield criterion and non-associated flow rule

Drucker-Prager model (Fig.1) requires the consideration of a yield criterion in the form:

F (σ) = σe + 3ασm − σ0 ≤ 0 , (1)

where σe is the equivalent stress, σm the mean stress, σ0 > 0 the shear cohesion stress of the
material and α the pressure sensitivity factor related to the friction angle φ by:

tan φ = 3α .

Let us introduce the plastic potential:

G(σ) = σe + 3βσm (2)

where β (β ≤ α) depends on the dilatancy angle ψ through:

tan ψ = 3β .
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Except for the apex of Drucker-Prager cone (σe = 0, σm = σ0 / 3α ) where σe is not
differentiable, the plastic strain rate is given by the non-associated yielding rule:

d = deq
∂G

∂σ
= deq

(
3s

2σe
+ β1

)
, (3)

where σ is Cauchy stress tensor, s the deviatoric stress, 1 the unit tensor. deq =| 2
3
d′ : d′ |1/2

with d′ being the deviatoric part of d. The plastic dilatancy reads:

dm =
1

3
tr d = βdeq (4)

This suggests to introduce:
H(d) = βdeq − dm

The plastic yielding rule (3) is completed at the apex by the admissibility condition:

H(d) ≤ 0

while, because of (4), H(d) = 0 at the other points of the yielding surface (called regular
points). Of course, for the particular event ψ = φ, the normality rule is recovered and the
plasticity model is associated. Without loss of generality, we can assume that:

0 ≤ β ≤ α <
1

2
, (5)

or equivalently 0 ≤ ψ ≤ φ < 56◦18′. In practice, these conditions are fulfilled by the
geomaterials and other pressure sensitive dilatant materials. Some examples of experimental
data concerning the friction angle can be found for polymers, high strength steels and
aluminium in (Guo et al., 2008).

3. Bipotential-based formulation of constitutive models

Rigid perfectly plastic model is usually considered to obtain the analytical solution (plas-
tic criterion and potential) for a large class of materials, simultaneously by adopting the
Limit Analysis approach, which is extensively discussed in literature . However, this con-
ventional approach can only be rigorously used for Generalized Standard Materials (GSM),
that is materials which obey a normality law. the standard limit analysis framework is then
not suitable for materials which obey to a non-associated flow rule (for instance, geomate-
rials). This question has been discussed in several works (Salençon , 1983; Drucker , 1953;
Palmer , 1973; Radenkovic , 1961; Telega , 2002; Telega et al. , 2004).

In order to overcome this problem, de Saxcé et al. has proposed in previous papers a
new modeling of the non-associated constitutive laws based on the concept of bipotential
(de Saxcé et al., 1991; de Saxcé , 1992).
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3.1. The bipotential in short

First of all, let us recall a basic concept of convex analysis, the subdifferential of a
function π in a point x which is the (possibly empty) set:

∂π(x) = {y | ∀x′, π(x′)− π(x) ≥ (x′ − x) : y} . (6)

For more details on convex analysis, the reader is refered for instance to (Ekeland et al.,
1975; Moreau , 2003; Rockafellar , 1970). Moreover, in mechanics, GSM can represented as
a generalized model based on two superpotentials π(x′) and π∗(y′), which are depending on
a represented strain rate variable x and a stress-like one y. Such a couple of superpotentials
satisfies the Fenchel’s inequality (Fenchel , 1949),

∀(x′,y′) π(x′) + π∗(y′) ≥ x′ : y′ (7)

where π(x′) and π∗(y′) are convex, lower semicontinuous and conjugate each of the other.
The r.h.s. of (7) indicates the inner product of x′ and y′. When the equality is achieved,
(x,y) is called an extremal couple:

π(x) + π∗(y) = x : y

It can be proved that this relation is equivalent to the two following differential inclusions:

y ∈ ∂π(x),

x ∈ ∂π∗(y).

It is worth to remark that the convexity properties of π and π∗ are essential in order to
state and prove minimum variational principles and use the limit analysis approach2. When
the normality law fails and is replaced by a non-associated flow rule, the classical presenta-
tion is based on a yield function (to model the yield criterion) and a plastic potential (to
represent the flow rule). Although it is intensively used in the literature, this is, in fact,
not very relevant for the variational methods. On the ground of this observation, de Saxcé
and collaborators proposed in (de Saxcé et al., 1991; de Saxcé , 1992) a suitable modeling
based on more general generating functions called bipotentials and defined by the following
properties:

(a) b is convex and lower semicontinuous in each argument.
(b) For any x′ and y′ we have

b(x′,y′) ≥ x′ : y′ (8)

(c) For x and y we have the equivalences:

y ∈ ∂b(·,y)(x) ⇐⇒ x ∈ ∂b(x, ·)(y) ⇐⇒ b(x,y) = x : y (9)

In a mechanical point of view, the bipotential represents the plastic dissipation power (by
volume unit) and (9) is the constitutive law. The couples (x,y) for which ones equivalence
(9) holds are called extremal couples. The cornerstone inequality (8) clearly generalizes
Fenchel’s one (7).

2Lower and upper bound solutions obtained from the Hill’s principle and Markov’s one.
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3.2. Variational framework of bipotential-based formulations for constitutive laws

Let us now replace the above notations x and y respectively by the strain rate tensor d
and the stress tensor σ. In a mechanical point of view, the corresponding bipotential rep-
resents the plastic dissipation power (by volume unit) and from Eq.(9) the constitutive law
can be obtained. Accounting for the definition (6) of the subdifferential and the cornerstone
inequality (8), the constitutive law reads (Buliga et al., 2009a, 2010a; Laborde et al., 2008;
Buliga et al., 2010b):

min
d′

(b(d′,σ)− d′ : σ) = min
σ′

(b(d,σ′)− d : σ′) = 0 . (10)

It is worth remarking that, with respect to the previous minimization problems, the bipo-
tential has the required convexity properties.
Next, let us show how to recover simply the plastic yielding condition F (σ) = 0 by the
bipotential formalism. To this end, the first minimization problem in (10) becomes:

min
H(d)≤0

(b0(d,σ)− d : σ) = 0 , (11)

where b0 is the finite part of the bipotential when the extremal value is taken. Relaxing
the kinematical condition H(d) ≤ 0 by use of Lagrange’s multiplier λ, this constrained
minimization problem is transformed into an equivalent saddle-point problem

max
λ≥0

min
d

(L(d,σ, λ) = b0(d,σ)− d : σ + λH(d)) = 0 , (12)

where L(d,σ, λ) is the lagrangian function. Its stationarity with respect to d:

∂L

∂d
=
∂b0
∂d

(σ)− σ + λ
∂H(d)

∂d
= 0

Eliminating the lagrangian multiplier λ in above system of equations, the resultant functional
depends only on stress tensor σ. Let us denote it F ; it follows the yield criterion

F (σ) = 0

In a similar way, it is possible to recover the plastic flow rule (3) at a regular point. The
second minimization problem in (10) becomes:

min
F (σ)≤0

(b0(d,σ)− d : σ) = 0 .

Relaxing the plastic yielding condition F (σ) ≤ 0 by use of Lagrange’s multiplier λ∗, this
problem is transformed into an equivalent saddle-point problem

max
λ∗≥0

min
σ

(L∗(d,σ, λ∗) = b0(d,σ)− d : σ + λ∗F (σ)) = 0 , (13)

By calculating the stationarity of the lagrangian L∗(d,σ, λ∗) with respect to σ

∂L

∂σ
=
∂b0
∂σ

(d)− d+ λ∗
∂F (σ)

∂σ
= 0

and eliminating λ∗, the resultant functional (denoted H) depends only on the strain rate
tensor d. Hence, the flow rule can be obtained

H(d) = 0
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3.3. Case of the non-associated Drucker-Prager materials

The finite value bipotential of non-associated Drucker-Prager model (see Section 2) takes
the form (Hjiaj et al., 2003):

b(d,σ) =

{
σ0

α
dm + (β − α)

(
3σm − σ0

α

)
deq if F (σ) ≤ 0 and H(d) ≤ 0

+∞ otherwise

}
, (14)

In view of what will be done in subsections 5.2 and 5.3, for the homogenization problem,
it is convenient to indicate how the derivation of the non-associated yield criterion can be
done from (12) and (14). The lagrangian function reads:

L(d,σ, λ) =
σ0
α
dm + (β − α)

(
3σm −

σ0
α

)
deq − (σedeq + 3dmσm) + λ(βdeq − dm) .

Its stationnarity with respect to deq and dm gives:

σe = (β − α)
(
3σm −

σ0
α

)
+ βλ ,

3σm =
σ0
α

− λ .

Eliminating λ between these relations leads to the plastic criterion :

F (σ) = σe + 3ασm − σ0 = 0 .

Simultaneously, from the second minimization problem of (10), we have the corresponding
lagrangian by introducing the multiplier λ∗

L∗(d,σ, λ∗) =
σ0
α
dm + (β − α)

(
3σm −

σ0
α

)
deq − (d′ : s+ 3dmσm) + λ∗(σe + 3ασm − σ0) .

In the same way, the stationnarity with respect to s and σm reads,

d′ = λ∗
3s

2σe
, (15)

(β − α)deq − dm + αλ∗ = 0 . (16)

From (15) one obtains λ∗ = deq. Eliminating λ∗ in (16) leads to the kinematical condition
at the regular points upon the yield surface:

H(d) = βdeq − dm = 0 , (17)

That allows to recover the non-associated yielding rule (3):

d = d′ + dm1 = deq

(
3s

2σe
+ β1

)
.

For the treatment of the apex, the reader is refered to (Hjiaj et al., 2003), which is specifically
devoted to this question.
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4. Extended limit analysis of porous materials with a non-associated matrix

Unlike the classical presentation of the non-associated constitutive laws by means of the
yield function and the plastic potential, the bipotential formulation naturally opens into
a variational formulation; this is crucial for an extension of limit analysis techniques to
the context of non-associated laws. We present here the main elements of this variational
framework in the context of porous media.

4.1. Determination of the macroscopic bifunctional and its variational properties

This presentation is directly done in the framework of homogenization of porous material,
considering a reference cell Ω composed of a void ω and a matrix ΩM = Ω− ω made of an
Implicit Standard Material. The macro-cell Ω is enclosed by surface ∂Ω and the void ω by
∂ω. The external boundary of the cell is subjected to a uniform strain rate: v = D · x, x
being the position vector at the boundary. The macroscopic stress Σ and strain rate D are
then classically defined as volume averages of their microscopic counterpart σ and d:

Σ =
1

| Ω |

∫
Ω

σ dV , D =
1

| Ω |

∫
Ω

d dV . (18)

Note that the set of kinematical admissible velocity fields is defined in the following sense:

Ka = {v s.t. v(x) = D.x on ∂Ω} . (19)

and the associated strain rate field is given by d(v) = gradsv = 1
2

(
gradv + gradTv

)
.

The set of statically admissible stress fields is:

Sa = {σ s.t. div σ = 0 in ΩM , σ · n = 0 on ∂ω, σ = 0 in ω} . (20)

The set of admissible couples is the product A = Ka × Sa and the set of extremal ones is
defined by:

E = {(v,σ) s.t. (d(v),σ) is extremal in ΩM} .

The homogenization problem consists in determining the setA×E of admissible and extremal
fields. Owing to the non linearity of the problem, no exact solution can be found in general.
Due to this difficulty, we present an equivalent variational formulation, more appropriate for
simple approximations, thanks to relevant choice of trial fields and minimization procedure.
By Hill’s lemma, any admissible couple (v,σ) complies with:

D : Σ =
1

| Ω |

∫
Ω

d(v) : σ dV =
1

| Ω |

∫
ΩM

d(v) : σ dV , (21)

This suggests introducing the following two field macroscopic bifunctional:

B(v′,σ′) =
1

| Ω |

∫
ΩM

b(d(v′),σ′) dV −D : Σ ,

9



As previously indicated, we are interested for homogenization purpose in finding the admis-
sible and extremal couples (v,σ). In fact, they are solutions of the following simultaneous
minimization problems:

B(v,σ) = min
v′∈Ka

B(v′,σ) = min
σ′∈Sa

B(v,σ′) = 0 . (22)

Indeed, if (v′,σ′) is admissible, relation (21) and (8) entail:

B(v′,σ′) =
1

| Ω |

∫
ΩM

(b(d(v′),σ′)− d(v′) : σ′) dV ≥ 0 .

In particular, this occurs for admissible couples (v′,σ), (v,σ′), (v,σ). Moreover, for the
latter, owing to (9):

B(v,σ) = 0 .

In short, one has for all admissible fields v′ ∈ Ka and σ′ ∈ Sa:

B(v′,σ) ≥ B(v,σ) = 0 and B(v,σ′) ≥ B(v,σ) = 0 ,

which prove (22).
Now, let us discuss some relevant aspects of the variational principles for a rigid perfectly

plastic matrix such as the one described in the previous sections. The set of plastically
admissible velocity and stress fields are respectively defined as:

Kp = {v s.t. H(d(v)) ≤ 0 in ΩM}

Sp = {σ s.t. F (σ) ≤ 0 in ΩM} .
(23)

while the sets of licit velocity and stress fields are respectively Kl = Ka∩Kp and Sl = Sa∩Sp.
We considered the finite valued bifunctional:

B0(v
′,σ′) =

1

| Ω |

∫
ΩM

b0(d(v
′),σ′) dV −D : Σ . (24)

the finite valued bipotential b0 being introduced in (11).
Hence, the bipotential-based variational homogenization problem becomes:

B0(v,σ) = min
v′∈Kl

B0(v
′,σ) = min

σ′∈Sl

B0(v,σ
′) = 0 . (25)

Note that the determination of the above macroscopic bifunctional can be done by means of
any of the two minimization principles, providing that the exact stress field or exact velocity
field is given.
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4.2. Application of the variational principle to the plastic porous material

For a rigid perfectly plastic matrix, since b0 is positively homogeneous of order one in
d, there is a trivial kinematical solution to the previous problem (equation (25) together
with (24)) where v and D vanish. The limit analysis approach consists in finding non
trivial solutions qualified as ruin mechanisms. It is expected that these non trivial solutions
exist only under an equality condition on Σ that can be interpreted as the equation of the
macroscopic yielding surface in the model.

It is worth noting that if both D and Σ are chosen arbitrarily, there is in general no
solution to the problem (25). In a practical point of view, it is more convenient for instance to
fix only Σ and to findD and v satisfying the first minimization problem in (25). Introducing
Lagrange’s multiplier field x 
→ Λ(x), this constrained minimization problem is transformed
into an equivalent saddle-point problem

max
Λ≥0

min
v∈Ka

(
L(v,σ,Λ) = B0(v,σ) +

1

| Ω |

∫
ΩM

ΛH(d) dV

)
.

We perform a first approximation by imposing Lagrange’s multiplier field to be uniform in
ΩM :

max
Λ≥0

min
v∈Ka

(
L(v,σ,Λ) = B0(v,σ) + Λ

1

| Ω |

∫
ΩM

H(d) dV

)
, (26)

that is equivalent to minimize the bifunctional B0 under the relaxed kinematical condition:

1

| Ω |

∫
ΩM

H(d) dV = 0 . (27)

Satisfying the kinematical condition only in an average sense but not locally anywhere
in ΩM is a strong approximation but leading to easier calculations. As consequence of this
approximation, it is crucial to remark that the minimum of B0 may not be expected to
be zero. Nevertheless, in the spirit of Ladevèze’s method of the error on the constitutive
law (Ladevèze , 1975; Ladevèze et al. , 1986, 1991, 1997, 2001, 2006a,b), its value for the
minimizer can be used as a variational error estimator (Fortin et al., 1999). The mini-
mum principle allows obtaining the “better”solution within the framework imposed by the
approximations.

Introducing

Y (v,σ,Λ) =
1

| Ω |

∫
ΩM

b0(v,σ)dV + Λ
1

| Ω |

∫
ΩM

H(d) dV

and considering (24), the Lagrangian function can be recast into

L(v,σ,Λ) = Y (v,σ(Σ),Λ)−D : Σ (28)

from which, as it will be shown by introducing the trial stress and velocity fields, one obtains
the macroscopic criterion and flow rule.
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For now, let us just indicate that the ultimate step is to solve the Saddle-point problem by
computing its subdifferentials with respect to parameters D:

∂L

∂D
(Λ,Σ) = 0 (29)

Eliminating the Lagrangian multiplier Λ in the system of functionals (29), one obtains

F(Σ(φ, ψ, f)) = 0 (30)

A priori, the above macroscopic criterion depends not only on the porosity f and the friction
angle φ, but also on the dilatancy angle ψ of the matrix.

For completeness, the macroscopic non-associated flow rule, with the boundary condi-
tions v = D · x, can be directly obtained from the stationnarity of the lagrangian function
(28) with respect to the multiplier Λ:

G =
1

| Ω |

∫
ΩM

H(d) dV = 0 . (31)

5. The hollow sphere model with a non-associated Drucker-Prager matrix

The major objective of this section is to apply the above bipotential-based variational
approach and limit analysis technique to the hollow sphere model, which is made up of a
spherical void embedded in a homothetic cell of a rigid-plastic isotropic and homogeneous
matrix, the latter being described by a non-associated Drucker-Prager model. The inner and
outer radii of the hollow sphere are respectively denoted a and b, giving the void volume
fraction f = (a/b)3 < 1. The hollow sphere is subjected at its exterior boundary to a
uniform strain rate tensor D (see Fig. 2).
Primarily, we aim at deriving a macroscopic criterion for the non-associated porous material
and the corresponding flow rule.

a

b

r

ΩM ω

v = D · x

Figure 2: Hollow sphere model
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5.1. Proposed trial stress and velocity fields

As mentioned in Section 4, in order to derive the macroscopic model, it is indispensable
to propose a couple of trial stress and velocity fields. In order to limit the errors due to
approximations, we will consider trial fields for which the macroscopic model is exact at least
for pure hydrostatic loadings. In Cheng et al. (2012), we obtain closed analytical formula
for the limit hydrostatic stresses. For this case, the stress field and limit load do not depend
on the dilatancy angle ψ and they are identical to the ones of the associated case with same
friction angle φ, previously obtained in Thoré et al. (2009). Only the collapse mechanism is
dilatancy angle dependent. This insensitivity of the hydrostatic limit load to the dilatancy
angle agrees with the model of Maghous et al. (2009) already mentioned. For this reason,
and taking into account the symmetry of the hollow sphere model, the trial stress field is
considered as the sum of the two following fields:

• A heterogeneous part corresponding to the exact field under pure hydrostatic load-
ings (Thoré et al., 2009); it reads, in spherical coordinates with orthonormal frame
{er, eφ, eθ}:

σ(1) = A0

(
b

r

)3γ [
er ⊗ er +

(
1−

3γ

2

)
(eθ ⊗ eθ + eφ ⊗ eφ)

]
(32)

where A0 is a constant to be determined, s = 1 + 2εα and γ = 1− 2εα
1+2εα

,
with a loading parameter ε = ±1, which will be interpreted later.

• A homogeneous part in the cylindrical coordinates with orthonormal frame {eρ, eφ, ez}:

σ(2) = A1 (eρ ⊗ eρ + eφ ⊗ eφ) + A2ez ⊗ ez (33)

where A1 and A2 are also constant parameters.
It should be noted that σ(2) allows to capture the macroscopic shear effect.

The resultant three parameters based trial stress field is defined in the matrix ΩM as:

σ = σ(1) + σ(2) (34)

Note that a vanishing stress field is considered in the void ω.
It is worth to remark that with a stress field is in internal equilibrium, one has:

Σvoid =
1

| Ω |

∫
ω

σdV =
1

| Ω |

∫
∂ω

(σn)⊗ xdS

Hence:

Σvoid
m =

1

| Ω |

∫
ω

σmdV = (3V )−1

∫
∂ω

x · (σn)dS

As the continuity condition:

(σn)− + (σn)+ = 0 on ∂ω (35)
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is difficult to satisfy by the very simple chosen trial field, we relax it as follows:

(3V )−1

∫
∂ω

x · ((σn)− + (σn)+)dS = 0 (36)

which can be equivalently written as:

f−γA0 +
2A1 + A2

3
= 0 , (37)

On the other hand, the macroscopic stress field is:

Σ = A0

(
1− f 1−γ

)
1+ (1− f) [A1 (ex ⊗ ex + ey ⊗ ey) + A2ez ⊗ ez] , (38)

Taking into account (37), the macroscopic mean stress is:

Σm = A0(1− f−γ) , (39)

while the macroscopic deviatoric stress reads:

Σe = (1− f) | A1 − A2 | . (40)

These two last relations allow to express the stress parameters in terms of the macroscopic
stress:

A0 =
Σm

1− f−γ
, | A1 − A2 |=

Σe

1− f
. (41)

Next, following Guo et al. (2008) (see also (Thoré et al., 2009)), we adopt, in cylindrical
coordinates, the following trial velocity field which depend on the dilatancy angle ψ, not on
the friction angle φ,

v = C0

(
b

r

)3/s̃

(ρeρ + zez) + C1ρeρ + C2zez , (42)

with r =
√
ρ2 + z2, s̃ = 1 + 2εβ, where ε is the sign of C0. The first term is the exact

solution for the hydrostatic case (Cheng et al., 2012). As in Gurson’s model (Gurson, 1977)
and in its extension to pressure sensitive dilatant materials (Guo et al., 2008), this term is
completed by two linear terms in order to capture the shear effects.

D being the applied macroscopic strain rate, the trial velocity field (42) must comply
with the boundary conditions:

v = D · x

In the case of axisymmetric macroscopic strain rate (D = Dxx(ex ⊗ ex + ey ⊗ ey) +
Dzzez ⊗ ez), considered in the present study, C0, C1 and C2 are such that:

Dm =
1

3
trD = C0 +

1

3
(2C1 + C2)

Dzz −Dxx =
2

3
(C1 − C2)

(43)

from which it follows:

De =

√
2

3
D′ : D′ =

2

3
| C1 − C2 | (44)

D′ being the deviatoric part of D.
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5.2. Closed-form expression of the macroscopic bifunctional

In order to derive the non-associated macroscopic model by solving the saddle point
problem (26), we aim now at parametrically expressing the macroscopic bifunctional (24)
thanks to the proposed trial stress (34) and trial velocity fields (42). It should be pay
attention that the bipotential (14) depends on the microscopic mean stress σm, mean strain
rate dm and equivalent strain rate deq. From (34) and (42), and considering (41), these
quantities can be respectively calculated as

σm(r) =
Σm

1− fγ

[
1−

fγ

s

(
b

r

)3γ
]
, (45)

dm(r) =
1

3
trd =

(
1−

1

s̃

)
C0

(
b

r

)3/s̃

+
1

3
(2C1 + C2) (46)

deq(r) =
2

3

√
(C1 − C2)2 + (C1 − C2)

3C0

s̃

(
b

r

)3/s̃

(3 cos2 θ − 1) +

(
3C0

s̃

)2 (
b

r

)6/s̃

(47)

for which one must have in mind the relations:

dm(r) = Dm + C0

[
(1−

1

s̃
)(
b

r
)3/s̃ − 1

]
(48)

deq(r) =
2

3

√
D2

e + sign(C1 − C2)De
3C0

s̃

(
b

r

)3/s̃

(3 cos2 θ − 1) +

(
3C0

s̃

)2 (
b

r

)6/s̃

(49)

For simplicity, let us introduce the normalized stress tensor

T =
Σ

σ0
, (50)

and the contribution of the void to average strain rate

D(a) = C0f
γ̃1+ f [C1(ex ⊗ ex + ey ⊗ ey) + C2ez ⊗ ez] , (51)

with γ̃ = 1− s̃−1.
Combining (14), (22) and (50), the normalized macroscopic bifunctional can be obtained as
follows:

B̄0(v,σ) =
B0(v,σ)

σ0
=

1

3α
tr (D −D(a)) +

(
1−

β

α

)
Π̂(v,σ)−D : T (52)

with

Π̂(v,σ) =
1

| Ω |

∫
ΩM

deq dV −
1

| Ω |

∫
ΩM

3α
σm
σ0
deqdV (53)

Hence, it is convenient to introduce

Π(v) =
1

| Ω |

∫
ΩM

deq dV ,
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which by considering (47) and (43), can be reduced into

Π(C0, De) = De

∫ 1

f

K(ξ)
√
1 + τ 2x−2/s̃ dx , (54)

with

τ =
2C0

s̃De

, x = (
r

b
)3, ξ =

2τx−1/s̃

1 + τ 2x−2/s̃
sign(C1 − C2), | ξ |≤ 1 . (55)

K(ξ) =
1

2

∫ π

0

√
1 +

1

2
(3 cos2 θ − 1)ξ sin θ dθ , (56)

Putting (45) into (53), Π̂ can be recast into the following parametric form

Π̂(C0, De, Tm) =

(
1−

3αTm
1− fγ

)
Π(C0, De) +

3αTm
1− fγ

fγ

s
I(De) (57)

with

I(De) = De

∫ 1

f

x−γK(ξ)
√
1 + τ 2x−2/s̃ dx . (58)

Finally, the closed form expression of the macroscopic bifunctional reads:

B̄0(C0, Dm, De, Tm, Te) =
1

α

[
(1− f)Dm −

(
f γ̃ − f

)
C0

]
+

(
1−

β

α

)
Π̂(C0, De, Tm)− (DeTe + 3DmTm)

(59)

This constitute one of the key practical respect of the study.

5.3. Determination of the macroscopic criterion and of the macroscopic flow rule

Having in hand the bifunctional B0, we are already now to determine the kinematical
admissibility condition (27), written as

βΠ(C0, De)−
[
(1− f)Dm −

(
f γ̃ − f

)
C0

]
= 0 (60)

which plays the role of the macroscopic flow rule.
Concerning the determination of the macroscopic criterion, let us first introduce a normalized
multiplier Λ̄ = Λ/σ0, the normalized lagrangian can be written as

L̄(C0, Dm, De, Tm, Te, Λ̄) =
L(C0, Dm, De, Tm,Λ)

σ0

=

(
1

α
− Λ̄

)[
(1− f)Dm −

(
f γ̃ − f

)]
+ Λ̄βΠ(C0, De)

+

(
1−

β

α

)
Π̂(C0, De, Tm)− (DeTe + 3DmTm)

(61)
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For the minimization of the macroscopic bifunctional (59), one needs to calculate the partial
derivatives of the normalized lagrangian (61). Considering

τ = τ(C0, De), Π(C0, De) = Π(τ,De), Π̂(C0, De, Tm) = Π(τ,De, Tm)

its stationarity with respect to De, Dm and C0 gives for the normalized stress tensor T = Σ
σ0
:

Te(τ) = Λ̄βΠ,De
(τ) +

(
1−

β

α

)
Π̂,De

(τ) , (62)

3Tm(τ) =

(
1

α
− Λ̄(τ)

)
(1− f) , (63)

Λ̄βΠ,C0
(τ) +

(
1−

β

α

)
Π̂,C0

(τ)−

(
1

α
− Λ̄(τ)

)
(f γ̃ − f) = 0 . (64)

from which, we deduce the expression of the normalized multiplier:

Λ̄(τ) =
1
α
(f γ̃ − f) +

(
β
α
− 1

)
Π̂,C0

(τ)

f γ̃ − f + βΠ,C0
(τ)

.

Eliminating Λ̄ in (62) and (63), delivers the closed-form macroscopic criterion in the form:

Te =
(f γ̃ − f)

[
β
α
Π,De

+
(
1− β

α

)
Π̂,De

]
+
(
1− β

α

)
β

(
Π,C0

Π̂,De
− Π,De

Π̂,C0

)
f γ̃ − f + βΠ,C0

,

3Tm = (1− f)
β
α
Π,C0

+
(
1− β

α

)
Π̂,C0

f γ̃ − f + βΠ,C0

.

(65)

in which Π̂ is given by (57), and it is recalled that γ̃ = 2εβ
1+2εβ

.

The explicit expressions for Π,C0
, Π,De

, Π̂,C0
, Π̂,De

and their antiderivatives Π, Π̂ are cal-
culated and detailed in Appendix A. It is worthy to noted that the above macroscopic
criterion (65) is established in a parametric form which depends on the strain rate ratio τ
(55) corresponding to the velocity imposed condtion v = D ·x. More precisely, the points of
plastic limit stress curve can be obtained from the parametric macroscopic criterion (65) for
different fixed values of τ . This also allows to deduce the normalized triaxiality T = Tm/Te.

Finally, the stationarity of the normalized lagrangian (61) with respect to Λ̄ gives directly
the macroscopic flow rule (see (60)).

Note also that, macroscopic associated flow rule is obtained by β = α, non-associated
one otherwise. Let us recall from (55) that

C0 =
s̃

2
τDe (66)

and introduce

P =
Π

De

(67)
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which only depends on τ . Inserting (66) and (67) into (60) provides a new form of the
admissibility condition (60) (flow rule):

Dm

De

=
1

1− f

[
βP(τ) + (f γ̃ − f)

s̃

2
τ

]
(68)

Hence, the plastic flow direction Υ can be obtained once the value of τ is pre-proposed,

Υ = acot

[
1

1− f

(
βP(τ) + (f γ̃ − f)

s̃

2
τ

)]
(69)

Finally, owing to the matrix compressibility, the void growth rate readily reads,

ḟ = 3(1− f)Dm −
1

| Ω |

∫
ΩM

trd dV (70)

which, by considering (42), (46) and (66), takes the final expression,

ḟ = 3(f γ̃ − f)C0 =
3

2
(f γ̃ − f)s̃τDe (71)

Note that (65), (68) and (71) are probably some of the most important and practical results
of the study. They are the basic blocks of the non-associated constitutive law of the porous
material having a non associated Drucker-Prager matrix.

6. Examination of some special cases

We analyze in this subsection the predictions obtained for some special cases for which
results are available in literature. Let us first note that the general problem involves three
constants defining the velocity field (42). These constants are linked by the three relations
(43), (44) and (60). These equations can be easily explicit in the particular cases examined
below.

• Hydrostatic case: De = 0 and C0 = 0
From (43) and (47), the microscopic equivalent strain rate in this case reads

deq(r) =
2 | C0 |

s̃

(
b

r

)3/s̃

It follows from (54) and (58) that

Π =
C0

β

(
1− f γ̃

)
, I =

2 | C0 |

s̃

1− f γ̃−γ

γ̃ − γ

in which τ = C0

De
has been also considered. Hence, taking also into account (57), the

macroscopic stress is given from (65) in the form:

Te =
Σe

σ0
= 0 , Tm =

Σm

σ0
=

1

3α
(1− fγ) , (72)
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which is the plastic limit state for the pure hydrostatic loading Σe = 0 (traction and
compression). This result corresponds to the exact solution in non-associated case
derived by Cheng et al. (2012), which have also verified that for the hydrostatically
loaded hollow sphere, the limit loads for the non-associated case are the same as for
the corresponding associated one given by Guo et al. (2008) (see also (Thoré et al.,
2009)). Finally, due to De = 0, (60) readily implies C0 = Dm and then, by (71),
ḟ = 3(f γ̃ − f)Dm.

• C0 = 0 and De = 0
In this case, from (47), (54) and (58) we have

deq =
2

3
| C1 − C2 |=

2

3
De

Π = De (1− f) , I = De
1− f 1−γ

1− γ

The macroscopic limit stresses can be obtained from (65)

Tm =
Σm

σ0
= 0, Te =

Σe

σ0
= 1− f (73)

Similarly, the plastic flow direction can be derived from (68) or (69):

Dm

De

= β, or Υ = acot β (74)

In this case, the macroscopic admissibility condition appears as the exact couterpart
of the microscopic one. For completeness to this case, the void growth rate can be
immediately obtained from (71), that is ḟ = 0. All of the above results obtained from
C0 = 0 reflects and proves that the hollow sphere model is under a pure shear loading
(73). They provide the same result as the solution obtained by Gurson (1977) and
Guo et al. (2008). Obviously, it leads to the conclusion that no matter the matrix of
the porous media take a normality rule or not, solution for pure shear loading depends
only on the value of porosity, neither on the friction angle nor the dilatancy one. This
is a limitation which comes from the simplicity of the trial fields. Equally important,
the plastic flow follows a constant and regularly direction (74), which is independent
on the friction angle φ. It can be calculated when and only when the dilatancy angle
ψ is fixed.

• Case of associated matrix
When the matrix complies with an associated flow rule, ψ = φ and β = α in Eqs. (1)
and (2). It is worthy to indicate that for the pressure-sensitive matrix there is such as
β = α = 0. Consequently, one gets from (65) the following macroscopic criterion

Te =
fγ − f

fγ − f + α ∂Π
∂C0

∂Π

∂De

3Tm =
1− f

fγ − f + α ∂Π
∂C0

∂Π

∂C0

(75)
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and from (69) and (71) that the plastic flow direction and the void growth rate, re-
spectively

Υ = acot

[
1

1− f

(
αP(τ) + (fγ − f)

s

2
τ
)]

ḟ = 3(fγ − f)C0 =
3

2
(fγ − f)sτDe

which is precisely the so called Upper Bound Model (UBM)3 proposed in Guo et al.
(2008). For completeness, we present in Appendix B the derivation of our methodology
in the case of associated matrix.

• von Mises matrix
For the porous material with an incompressible matrix, for instance the von Mises yield
criterion at microscopic level, the pressure-sensitive parameter φ and ψ both vanish,
or in another word α = β = 0. In this case, we have

s̃ = s = 1, γ̃ = γ = 0

and owing to (60), one obtains Dm = C0. As a result, (47) then takes the form

deq =
2

3

√
D2

e + 3DmDe(3 cos2 θ)(
b

r
)3 + (3Dm)2(

b

r
)6

and (65) reduced to

Te =
Σe

σ0
=

∂Π

∂De

3Tm = 3
Σm

σ0
=

∂Π

∂Dm

(76)

Considering (54) and (71), we get the following macroscopic criterion

T 2
e + 2f cosh(

3

2
Tm)− (1 + f 2) = 0 , (77)

and the void growth equation

ḟ = 3(1− f)Dm . (78)

which are the well-known results of Gurson (1977) obtained by a kinematical limit
analysis approach.

3It should be emphasized that the macroscopic model proposed by Guo et al. (2008) cannot be seen as
an upper bound. For the corresponding demonstration, readers can be referred to Cheng (2013).
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7. Illustration and numerical validation of the established criterion

In this section, the predictions of established macroscopic criterion (65) in non-associated
cases will be firstly compared with the associated one (75) (see also the so called UBM of
Guo et al. (2008)) in subsection 7.1. The expected influence of the non-associated feature is
clearly illustrated. Next, Finite Element Method (FEM) based limit analysis computations
are performed in subsection 7.2 and their results allow to assess the obtained theoretical
criterion. For completeness, due to the fact that the plastic flow rule has been formulated
in an implicit form except for the pure shear loading, we will perform in subsection 7.3 the
illustration of the analytical plastic flow direction (68) for such a particular case, which will
be validated from the corresponding FEM solutions.

7.1. Preliminary illustration of the established criterion

We aim now at illustrating the macroscopic criterion (65) established in subsection 5.3
both in associated and non-associated cases. As mentioned before, the matrix pressure sensi-
tivity is characterized by the friction angle φ and the dilatancy one ψ for the Drucker-Prager
model (see Eqs.(1) and (2)). These two angles must satisfy the condition 0 ≤ ψ ≤ φ < 56◦18′

(see also Eq.(5)). It is convenient to note that porosity values in geomaterials are relatively
bigger comparatively to porous metals or polymers, etc.. Accordingly, in this subsection,
we provide illustration of the established criterion for a porosity f = 0.2 and friction angle
φ = 30◦. The corresponding associated case ψ = φ = 30◦ is denoted AC, while two non-
associated cases are considered; they are respectively defined by dilatancy angles ψ = 15◦

(denoted NAC1) and ψ = 5◦ (NAC2).
As already mentioned, for hydrostatic loadings (traction and compression), the non-associated
cases provide the same predictions as that of the associated one (see Guo et al. (2008); Thoré
et al. (2009). Note again that this observation is in full agreement with the theoretical and
numerical results already established in Cheng et al. (2012). Furthermore, unlike the previ-
ous work of Maghous et al. (2009), as mentioned in sections 4 and 5.3, the non-associated
cases show in general different yield loci with respect to the associated one: as expected,
the yield surface for a non associated case is lower than for the associated one. Note that a
decrease of the dilatancy angle leads to a weaker strength, the difference between the cases
ψ = 15◦ and ψ = 5◦ being slight. These results will be investigated in subsection 7.2 by
means of numerical results.

To simplify the presentation here, additional results are provided in Appendix C.1 (see
Figs. C.10 and C.11); they allow to illustrate the effects of porosity (f = 0.15, f = 0.25) on
the macroscopic yield surfaces in the context of the non-associated plastic matrix. In the
same appendix, effects of the friction angle φ are also provided for a porosity f = 0.2.
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Figure 3: Comparison of yield surfaces between the associated case (denoted AC) with dilatancy angle
ψ = 30◦ and two non-associated cases (65) (denoted NAC1 and NAC2) with ψ = 15◦ and 5◦, respectively.
Porosity: f = 0.2; friction angle φ = 30◦

7.2. Numerical investigations of the macroscopic yield surface and plastic flow rule in the

context of the Druker-Prager non associated matrix

In this subsection, the predictions of the established macroscopic criterion will be com-
pared with the Finite Element Method (FEM) solutions. For the FEM analysis, we consider
an axisymmetric model of the spherical shell. Hence, owing to the geometrical symme-
try, only a quarter of this model is considered by adopting 1500 quadratic axisymmetric
elements (see Fig.4). Moreover, the numerical analysis is carried out in the context of
non-associated elastoplasticity and small deformations. The computations are performed
by means of ABAQUS/Standard software and a user subroutine MPC (Multi-Points Con-
straints). The main reason for which we need to enforce MPC conditions in the code is that
we have to impose the velocity field v from v = D ·x (on the external boundary of the hollow
sphere) such that the constraint of constant macroscopic stress triaxiality (T = Σm/Σe) be
fulfilled. In practice, as in Guo et al. (2008), this is done by applying a constant macroscopic
stress ratio Σρ/Σz corresponding to the desired Σm/Σe. Note that the implementation of
this procedure has been already described by Cheng and Guo (2007) for their study of voids
interaction and coalescence in an associated Drucker-Prager matrix.
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Figure 4: Hollow sphere model: Geometry of the elementary cell and boundary conditions.

Fig.5 displays the FEM results not only for the macroscopic limit stress, but also for the
direction of plastic flow. As in subsection 7.1, the values of porosity f = 0.2 and friction
angle φ = 30◦ are considered here. Also, the direction of plastic flow for the associated
case and two non-associated cases are denoted DA(ψ = 30◦), DNA1 (ψ = 15◦) and DNA2
(ψ = 5◦), respectively. Moreover, the numerical yield surfaces, obtained by connecting each
FEM point of plastic limit state, are indicated by SFA(ψ = 30◦), SFNA1(ψ = 15◦) and
SFNA2(ψ = 5◦), respectively. Note that each FEM point has been obtained by performing
computation at fixed stress triaxialities Σm/Σe (equivalently at fixed Tm/Te).

Coming now to the results, an excellent agreement between the DA and SFA is noted
(see Fig.5), the plastic flow direction (DA) at each FEM point being normal to the yield
surface (SFA). Concerning the plastic flow direction (DNA1 and DNA2) for the cases of
non-associated matrix, a lack of normality to the corresponding yield surfaces (SFNA1 and
SFNA2) is noted. These FEM results proves the non-associated character of the macroscopic
flow rule in the case of a non-associated matrix. It must be noted that the lack of normality
is more pronounced when the dilatancy angle ψ is small, that is a material with a pronounced
non associated matrix.

For completeness, additional results and validations are provided on Figs. 12(a), 13(a),
14(a) and 15(a) in Appendix C.2. This allows to illustrate the effects of the porosity and
friction angle.
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Figure 5: Illustration of FEM results: plastic flow directions (denoted DA for associated case, DNA1 and
DNA2 for non-associated ones) and yield surface (denoted SFA for associated case, SFNA1 and SFNA2 for
non-associated ones).

7.3. Validations of the established criterion and of the corresponding flow rule

For validation purpose, the analytical yield surfaces for the associated case (AC) as well as
the non-associated ones (NAC1 and NAC2) are compared with the corresponding numerical
limit stresses on Fig. 6. The FEM results confirm that the limit stresses of non-associated
cases (denoted FNAC1 and FNAC2) and the associated one (denote FAC) are very close in
the vicinity of traction dominant region Tm > 0 (or Σm > 0). In contrary, a slight difference
is observed in a part of the compression dominate region Tm < 0 (or Σm < 0). The above
numerical results validate the predictive capabilities of the analytical criterion.

Let us recall that other validating results showing also the influences of the porosity and
friction angle are provided on Fig. 12(b), 13(b), 14(b) and 15(b) in Appendix C.2.
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Figure 6: Comparison between the yield surfaces obtained from the established criteria (65) and FEM results
(denoted FAC for associated case, FAC1 and FAC2 for non-associated ones).

Concerning the assessment of the obtained macroscopic flow rule (see Eq. (68)). We
display on Fig.7 the plastic direction obtained from the analytical function (69) and that
numerically computed from the FEM computation. Both of these results are illustrated
with respect to the different values of macroscopic stress triaxiality Tm/Te. The illustrations
have been realized for f = 0.2 and φ = 30◦, ψ = 30◦, ψ = 15◦ and ψ = 5◦. Noticeable
difference between the associated case and the non associated ones is obtained, both for the
analytical results and for the numerical data. Moreover, for any fixed value of triaxiality, the
obtained value of acot(Dm/De) representing the plastic flow direction is smaller when the
dilatancy angle ψ diminishes. Finally, very good qualitative agreement is observed between
the theoretical predictions and the corresponding numerical data.
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Figure 7: Analytical result and FEM solutions for plastic flow direction with the fixed values of porosity
f = 0.2 and friction angle φ = 30◦.

At the difference of porous media with an incompressible plastic matrix (Gurson, 1977),
void growth (see Eq. (71)) occurs under macroscopic pure shear loading in the case of
a pressure-sensitive matrix (as considered in the present work). For this particular shear
loading, Eq.(74) indicates that the plastic flow is only influenced by the dilatancy parameter
β, but not by the friction one α. Still for the pure shear, we perform on Fig.8 a comparison
of the plastic flow direction given by the analytical solution (74) and the FEM computations.
The following values of fixed material parameters, f = 0.2 and φ = 30◦, are considered. An
excellent agreement between the analytic and FEM results is obtained.
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Finally, Fig. 9 illustrates the variation of porosity with the macroscopic stress triaxiality
for a initial porosity f = 0.2, a fixed value of friction angle φ = 30◦ and for three dilatancy
angles ψ = 30◦, ψ = 15◦ and ψ = 5◦. Noticeable difference between the associated case and
non-associated ones is observed, particularly for high stress triaxialities.

0 2 4 6 8 100

1

2

3

4

5

Tm/Te
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Figure 9: Analytical result of the plastic void growth with a initial value of porosity f = 0.2. Friction angle
φ = 30◦.

8. Conclusion

In this study, a bipotential-based variational framework of ductile porous media has been
proposed. It allowed to extend classical limit analysis of porous media to the context of a
matrix obeying to a non-associated flow rule. This is generally the case of various porous
geomaterials or porous polymers displaying also pressure-sensitivity of the matrix. The
proposed variational formulation combines the bipotential theory earlier introduced by de
Saxcé et al. (1991) with homogenization techniques. It delivers closed-form expression of
the macroscopic criterion for the porous materials, as well as the non-associated flow rule.
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As detailed in Section 4, application of the proposed approach to porous materials with
non associated plastic matrix (characterized by a friction angle and a dilatancy angle) has
led to the formulation of a macroscopic bifunctional. Minimization procedures of the bi-
functional have been proposed with respect to a trial kinematically admissible velocity fields
(respectively the statically admissible stress fields). This can deliver for the considered class
of porous materials an upper bound (respectively lower bound) provided that the exact
stress field (respectively the exact velocity field) has been adopted.

Practical implementation of the approach has been done by considering a hollow sphere
subjected to uniform strain rate boundary conditions. To this end, a choice of a simple stress
field together with a class of trial velocity fields has been made. The whole procedure has
allowed to establish a closed form expression of the macroscopic yield function (see equations
(65)), as well as the macroscopic flow rule (see equations (68)), in a parametric form. The
non-associated character of the matrix (dilatancy angle) affects not only the macroscopic
yield surface, but also the macroscopic flow rule which is shown to be non associated.
Moreover, due to the suitable choice of the trial fields, the model also preserves the exact
solution established in Cheng et al. (2012) for the hollow sphere with the non associated
matrix, under pure hydrostatic loadings. It is also worth noticing that the obtained results
allow to retrieve (as a particular case) the kinematically-based model proposed by (Guo et al.,
2008) for the porous material with an associated Drucker-Prager matrix. This automatically
includes the Gurson model for a von Mises matrix (Gurson, 1977). The predictions of the
general model are fully assessed, both for the macroscopic yield surfaces and for the flow rule.
To this end, numerous Finite Elements computations in non associated plasticity have been
carried out on the hollow sphere. A good agreement has been observed between theoretical
results and numerical data for various configurations of porosity, friction angle and dilatancy
angle.

Finally, it should be noted that some improvements of the basic model are possible, in
particular by searching more refined trial velocity and stress fields. The consideration of voids
saturation by an internal pressure will also constitute a challenging extension which will pave
the way for various applications in geomechanics including non associated poroplasticity.
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Bodovillé, G., de Saxcé, G., 2001. Plasticity with non linear kinematic hardening : modelling and shakedown
analysis by the bipotential approach. Eur. J. Mech., A/Solids, 20, 99-112.

28
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Acad. Sci. Paris, Sér. II, Fasc. b, Méc. Phys. Astron., 328, 519-524.
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30



Curie, Paris.
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Appendix A. Explicit expressions of Π, Π̂ and the derivatives Π,C0
, Π,De

, Π̂,C0
,

Π̂,De

In order to explicitly express the closed-form macroscopic criterion (65), we provide as
follows the expressions of Π and Π̂ and their partial derivatives with respect to C0 and De.

Eqs. (54) for Π(v) and (58) for I(γ) simultaneously contain the term K(ξ), which is
smooth over the compactly supported domain with extreme values Kmax = K(0) = 1 and
Kmin = K(−1) = 0.962. Following (Gurson, 1977), this function is taken to be unity for
simplicity of calculation; that reduces (54) and (58) to:

Π(v) = De

∫ 1

f

√
1 + τ 2x−2/s̃ dx , (A.1)

I(γ) = De

∫ 1

f

x−γ
√

1 + τ 2x−2/s̃ dx . (A.2)

Additionally, Eqs.(A.1), (A.2) and the derivatives Π,C0
, Π,De

, Π̂,C0
and Π̂,De

can not be
calculated into simple forms. Fortunately, they can be expressed by means of the Gauss
hypergeometric function (see for example Fine (1988)) defined by:

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt

This function is a solution of the hypergeometric differential equation

z(1− z)y′′ + [c− (a+ b+ 1)z] y′ − aby = 0
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The regular solution is classically written in the form of the following power series

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (A.3)

where (a)n is the Pochhammer symbol defined by

(a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1)...(a+ n− 1)

.

Let us introduce that
ι =

τ

f 1/s̃

Π and I (Eqs. (A.1) and (A.2)) can be indirectly expressed as follows:
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Finally, considering (A.1), (A.2) and (57), the derivatives Π,C0
, Π,De

, Π̂,C0
and Π̂,De

can be
also computed as follows:
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Π̂,C0
= Π,C0
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3αTm
1− fγ

·
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fγ
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where I,C0
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have the following expressions
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Appendix B. Macroscopic criterion of ductile porous media with an associated

Drucker-Prager matrix

We apply here the general procedure proposed in sections 4 and 5 to the particular case of
the associated Drucker-Prager matrix (ψ = φ = 0 and β = α = 0). This is the case already
studied by Guo et al. (2008) by using the classical kinematical limit analysis approach which
is retrieve here from the proposed variational formulation.
In this case, the associated flow rule reads:

d = deq
∂F

∂σ
= deq

(
3s

2σe
+ α1

)
, (B.1)

The volumetric plastic strain is such that:

dm =
1

3
trd = αdeq (B.2)

The plastic flow rule (B.1) is completed at the apex by the condition:

H(d) = αdeq − dm ≤ 0 (B.3)

The finite valued bipotential is reduced into:

b(d,σ) =

{
σ0

α
dm if F (σ) ≤ 0 and H(d) ≤ 0

+∞ otherwise

}
, (B.4)

It should be emphasized that the bipotential in this case takes the same expression as the
support function for the associated Drucker-Prager model (see for instance by Salençon
(1983)). Moreover, considering the velocity field (42) in the case of associated matrix (see
Guo et al. (2008))

v = C0

(
b

r

)3/s

(ρeρ + zez) + C1ρeρ + C2zez , (B.5)

the microscopic mean strain rate (46) and the equivalent one (47) can be recast into:

dm(r) =

(
1−

1

s

)
C0

(
b

r

)3/s

+
1

3
(2C1 + C2) (B.6)

and

deq(r) =
2

3

√
(C1 − C2)2 + (C1 − C2)

3C0

s

(
b

r

)3/s

(3 cos2 θ − 1) +

(
3C0

s

)2 (
b

r

)6/s

(B.7)

which obviously do not comply with (B.3) everywhere in the hollow sphere.
Due to this difficulty, the idea is to relax the admissibility condition in an average sense by
imposing ∫

ΩM

H(d) dV =

∫
ΩM

(αdeq − dm)dV = 0 (B.8)

34



Next, by introducing (B.6) and (B.4) into (24), the macroscopic bifunctional in the case of
an associated matrix can be written as:

B0(v,σ) =
1

| Ω |

∫
ΩM

σ0
α
dmdV −D : Σ . (B.9)

with the relaxed admissibility constraint (B.8):
∫
ΩM

dmdV =
∫
ΩM

αdeqdV .

For the first minimization problem of (25), as for the non associated case, it is suggested to
introduce the normalized Lagrangian L̄ by omitting σ0 (or taking it equal to 1), with Λ̄ the
Lagrange multiplier which is assumed constant:

L̄ =
1

| Ω |

∫
Ωm

dm
α
dV −T : D+ Λ̄[

∫
ΩM

(αdeq − dm)dV ] (B.10)

Putting (B.6) and (B.7) into (B.10) leads to:

L̄ = αΛ̄Π + (
1

α
− Λ̄)[(1− f)Dm − (fγ − f)C0]− (3TmDm + TeDe) (B.11)

The following minimization relations are obtained:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L̄
∂C0

= αΛ̄ ∂Π
∂C0

− ( 1
α
− Λ̄)(fγ − f) = 0

∂L̄
∂Dm

= ( 1
α
− Λ̄)(1− f)− 3Tm = 0

∂L̄
∂De

= αΛ̄ ∂Π
∂De

− Te = 0

(B.12)

The first equation of (B.12) delivers the optimal expression of Λ̄

Λ̄ =
1

α
(fγ−f)

fγ−f+α ∂Π
∂C0

(B.13)

which, when reported in the two last ones, leads to the expression of the macroscopic admis-
sible stress components, the parametric expression of the macroscopic criterion then reads:

3Tm = (1− f)

[
1

α
−

1
α
(fγ − f)

fγ − f + α ∂Π
∂C0

]
=

(1− f) ∂Π
∂C0

fγ − f + α ∂Π
∂C0

(B.14)

Te =
(fγ − f) ∂Π

∂De

fγ − f + α ∂Π
∂C0

(B.15)

which corresponds to the result obtained by Guo et al. (2008). It is worth noticing that,
due to the relaxation of the admissibility condition, (B.14) and (B.15) do not guarantee the
upper bound character of the result.
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Appendix C. Complementary results concerning the effects of the porosity, fric-

tion angle and dilatancy angle on the macroscopic criterion

In this section, we will illustrate the influences of the porosity f and the friction angle φ,
together with that of the dilatancy angle ψ. The analytical results described in Appendix
C.1 will be validated from the FEM computations shown in Appendix C.2.

Appendix C.1. Analytical results

Fig.C.10 displays the yield surfaces with a relatively smaller porosity f = 0.15 and a
bigger one f = 0.25, both for the associated case (AC) and two non-associated cases (NAC1
and NAC2). Moreover, the same values of material parameters as described in subsection 7.1
(for the case f = 0.2) are respectively adopted for the three cases. As observed through this
figure, the yield loci of non-associated cases are lower than the corresponding associated one.
It is interesting to point out that the difference between the yield surfaces of the associated
case and non-associated one becomes smaller when the porosity is bigger.
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(a) Porosity: f = 0.15, friction angle φ = 30◦

−2.5 −2 −1.5 −1 −0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

Tm

T e

AC (ψ=30°)
NAC1 (ψ=15°)
NAC2 (ψ=5°)

−1.8 −1.6
0.9

0.95

1

f=0.25, φ=30°
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Figure C.10: Comparison of yield surfaces illustrated from (65) between the associated case (denoted AC)
with dilatancy angle ψ = 30◦ and two non-associated cases (denoted NAC1 and NAC2) with ψ = 15◦ and
5◦, respectively.

Next, in order to estimate the influence of the friction angle φ on the proposed macro-
scopic criterion (65), two groups of comparisons with a fixed value of porosity f = 0.2 but
different friction angles φ = 20◦ and 40◦, are reported on Fig.C.11. More specifically, for
φ = 20◦, the non-associated case NAC1 and NAC2 are defined by ψ = 15◦ and ψ = 10◦.
For the case of φ = 40◦, the values ψ = 30◦ and ψ = 20◦ are considered. As shown on figure
(65), it is observed that the yield locus of non-associated case decreases with the decrease of
ψ. Additionally, from this group of comparisons, it is observed that the difference between
the associated yield surface and the non-associated one diminishes when the value of friction
angle φ is smaller4.

4For the same reductions of dilatancy angle ψ with respect to the associated one.
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Figure C.11: Comparison of plastic flow direction for pure shear loading case obtained from Eq.(69) and
FEM solutions.

Appendix C.2. Assessment of analytical results with FEM computations

The influence of the porosity f on the plastic limit states (directions of plastic flow
and limit stresses) are reported on Figs.C.12 and C.13. It is observed that the difference
between the non-associated case and the associated one is more significant for f = 0.15 in
the compression zone (Tm = Σm/σ0 < 0) than for the case f = 0.25. This fact numerically
confirms that, as in Appendix C.1, the difference of the yield locus between the associated
case and the non associated one is smaller with the decrease of the friction angle φ.

Finally, the influence of friction angle φ is assessed through Figs.C.14 and C.15 by adopt-
ing a fixed value of porosity f = 0.2 and two values of friction angle φ = 20◦ and 40◦, respec-
tively. From the illustrations on Figs. 14(b) and 15(b) 5, it is validated that the difference
between non-associated case with a fixed dilatancy angle ψ and corresponding associated
one is negligible when the friction angle φ is adequately smaller.
It is important to point out that for the case φ = 40◦, the FEM yield surfaces are relatively
higher than the analytical one; this probable results from the proposed stress fields, for
which the internal boundary condition is relaxed because of its homogeneous part.

5For the non-associated cases with material parameters φ = 40◦, ψ = 30◦ and 20◦, there are not enough
FEM results to represent the plastic flow and to construct the yield surface due to the so strong non-
linearity of the non-associated model that the corresponding FEM plastic limit states cannot be obtained
in this paper.
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(a) Illustration of FEM results: plastic flow directions (denoted DA for associated case, DNA1 and DNA2
for non-associated ones) and yield surface (denoted SFA for associated case, SFNA1 and SFNA2 for non-
associated ones).

−4 −3 −2 −1 0 10

0.5

1

1.5

Tm

T e

AC(ψ=30°)
NAC1(ψ=15°)
NAC2(ψ=5°)
FAC(ψ=30°)
FNAC1(ψ=15°)
FNAC2(ψ=5°)

f=0.15, φ=30°

(b) Comparison between the yield surfaces obtained from the established criteria (65) and FEM results
(denoted FAC for associated case, FAC1 and FAC2 for non-associated ones).

Figure C.12: Numerical validation for the established model with fixed porosity f = 0.15 and friction angle
φ = 30◦.
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(a) Illustration of FEM results: plastic flow directions (denoted DA for associated case, DNA1 and DNA2
for non-associated ones) and yield surface (denoted SFA for associated case, SFNA1 and SFNA2 for non-
associated ones).
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(b) Comparison between the yield surfaces obtained from the established criteria (65) and FEM results
(denoted FAC for associated case, FAC1 and FAC2 for non-associated ones).

Figure C.13: Numerical validation for the established model with fixed porosity f = 0.25 and friction angle
φ = 30◦.
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(a) Illustration of FEM results: plastic flow directions (denoted DA for associated case, DNA1 and DNA2
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associated ones).
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(b) Comparison between the yield surfaces obtained from the established criteria (65) and FEM results
(denoted FAC for associated case, FAC1 and FAC2 for non-associated ones).

Figure C.14: Numerical validation for the established model with fixed porosity f = 0.2 and friction angle
φ = 20◦.
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(b) Comparison between the yield surfaces obtained from the established criteria (65) and FEM results
(denoted FAC for associated case, FAC1 and FAC2 for non-associated ones).

Figure C.15: Numerical validation for the established model with fixed porosity f = 0.2 and friction angle
φ = 40◦.
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Appendix D. Complementary results concerning the effects of the porosity,

friction angle and dilatancy angle on the macroscopic flow rule

and on the porosity evolution

In Figs.D.16 to D.19 we aim to illustrate the influences of porosity f and friction angle φ
on the plastic flow rule with respect to the variation of macroscopic stress triaxiality Tm/Te,
both from the established law (69) and the FEM computations. It can be observed again
that the difference between the associated case and the non-associated ones increases with
the decrease of the porosity, and with the increase of friction angle. The same conclusion
can be deduced from the Figs.D.20-D.23, which illustrate the void growth rate also with
repsect to the macroscopic stress triaxiality.
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Figure D.16: Analytical result and FEM solutions for plastic flow direction with the fixed values of porosity
f = 0.15 and friction angle φ = 30◦.
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Figure D.17: Analytical result and FEM solutions for plastic flow direction with the fixed values of porosity
f = 0.25 and friction angle φ = 30◦.
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Figure D.18: Analytical result and FEM solutions for plastic flow direction with the fixed values of porosity
f = 0.2 and friction angle φ = 20◦.
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Figure D.19: Analytical result and FEM solutions for plastic flow direction with the fixed values of porosity
f = 0.2 and friction angle φ = 40◦.
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Figure D.20: Analytical result of the plastic void growth with a initial value of porosity f = 0.15. Friction
angle φ = 30◦.
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Figure D.21: Analytical result of the plastic void growth with a initial value of porosity f = 0.25. Friction
angle φ = 30◦.
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Figure D.22: Analytical result of the plastic void growth with a initial value of porosity f = 0.2. Friction
angle φ = 20◦.

0 2 4 6 8 100

1

2

3

4

5

Tm/Te
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Figure D.23: Analytical result of the plastic void growth with a initial value of porosity f = 0.2. Friction
angle φ = 40◦..
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