The dietary fibres: definition and analysis in animal feeding, and their role in rabbit nutrition and health
Thierry Gidenne

To cite this version:
Thierry Gidenne. The dietary fibres: definition and analysis in animal feeding, and their role in rabbit nutrition and health. 19. ESCVN conference, Feb 2015, Toulouse, France. hal-02046864

HAL Id: hal-02046864
https://hal.science/hal-02046864
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
European Society of Veterinary and Comparative Nutrition

The dietary fibres: definition and analysis in animal feeding, and their role in rabbit nutrition and health.

Thierry GIDENNE
INRA Toulouse, GenPhySE, France
thierry.gidenne@toulouse.inra.fr

19th ESVCN congress
Toulouse : september 17-19

INDEX

- Context: fibres and digestive health in the growing rabbit
- Recalls on fibres : definition, structure, methods
- Recalls: effects of fibres on rabbit ingestion and digestion
- Fibres and digestive health of the growing rabbit
- Fibres requirements and European tables
- Conclusions & perspectives
1. Context

Digestive health in the growing rabbit

* Digestive troubles after weaning = 10 - 15% mortality
 => preventive antibiotherapy

* Digestive health / troubles = ??
 diarrhoea, caecal impaction, mucus +
 + intake troubles, weak growth, behaviour troubles (caecotrophy ...)

Origins:
- infectious: coccidiosis, colibacillosis, REE
- non-infectious risk factors:
 * stress, environnement (ventilation, heating),
 * unbalanced feeds

impact of nutrition on rabbit digestive health => YES
The rabbit is herbivorous: unsufficient fibres intake =>
higher RISK of digestive trouble after weaning

Main nutrients in a feed for a growing rabbit

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibres</td>
<td>39%</td>
</tr>
<tr>
<td>Sugars+oligo</td>
<td>5%</td>
</tr>
<tr>
<td>Starch</td>
<td>15%</td>
</tr>
<tr>
<td>Fats</td>
<td>3%</td>
</tr>
<tr>
<td>Proteins</td>
<td>17%</td>
</tr>
<tr>
<td>Ashes</td>
<td>10%</td>
</tr>
<tr>
<td>Water</td>
<td>11%</td>
</tr>
</tbody>
</table>

Fibres intake = 51 g / day
 + 11 g/d from soft faeces
Previous studies:
relationship among crude fibre and "mortality by diarrhoea"

Results: requirements in CRUDE FIBRE ??
very variable / unprecise 6 to 14% !

Niehaus 1968 : 6 - 14 %
Morand Fehr 1970 : 12 - 17 %
Heckmann & Menner 1970 : 8 - 9 %
Martina 1974 : 6 - 8,4 %
Lebas 1975, 1984 : 13 - 14 %
Colin 1976 : 12 %
NRC 1977 : 10 - 12 %
Lang 1981 : 12-14 %
Maertens 1992 : > 14,5 %

How to improve the precision of these requirements?
Other criteria to be studied?

2. Recalls on fibres: origin, structure, methods

Standard plant cell wall
inside the plant cell = starch, lipids, proteins, oligonucleotides, sugars, ...

Schematic "3D" representation of the primary cell wall

A complex structure

Plant Cell Wall Structure

- Pectin
- Cross-Linking Glycan
- Cellulose Microfibrils
Simple CLASSIFICATION OF DIETARY FIBRES

- Polyphenolic compounds
- Lignins
- Cellulose
- Hemicelluloses
- Pectic Substances

Total Fibres
- Non Starch Polysaccharides
- = NSP

Water Insoluble Cell Wall
- Water-soluble Fibres
 - Pectines, arabinans, arabinogalactans
 - Hemicelluloses: arabinoxylans,
 - Beta-glucans (DP>60)

MAIN GRAVIMETRIC METHODS FOR DETERMINATION OF DIETARY FIBRES IN ANIMAL FEEDS

- Carré & Brillouet (1989)
- Van Soest (sequential) (1963-1991)
- Henneberg et Stohmann (1864)*

Classes of Polymers
- Lignins
- Cellulose
- Hemicelluloses
- Pectines (water insoluble)
- Water-soluble Fibres

NDSF = sum of pectines (water-solubles & insolubles) + β-glucanes + fructanes + oligosaccharides [DP>15]
Importance of the different fibres fractions in diet for growing rabbit

Interest of “Van-Soest” criteria:
allow to assess the quality of fibre
"routine" method

<table>
<thead>
<tr>
<th>Fibres</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignins</td>
<td>2-8%</td>
</tr>
<tr>
<td>Cellulose</td>
<td>10-20%</td>
</tr>
<tr>
<td>Hemicelluloses</td>
<td>7-15%</td>
</tr>
<tr>
<td>Pectins water-insoluble</td>
<td>4-10%</td>
</tr>
<tr>
<td>Water soluble fibres</td>
<td>≈ 2-6%</td>
</tr>
</tbody>
</table>

Not accounted with Van-Soest meth.

Fibres composition of some raw materials

- Alfalfa meal
- Wheat bran
- Beet pulp

- Pectines w-ins.
- Hemicel. 'VS'
- Cellulose 'VS'
- Lignins ADL
3. Fibres: effects on rabbit digestion

3.1 Microbial activity in the caecum

VFA concentrations: interaction Age and dietary fibre level

Fibrolytic activity of caecal bacteria according to dietary fibre level

(Fidenne et al., 2000)
Microbial activity and biomass production according to dietary fibre quality

Diets
- ADF = 20%
- Diet S: + 15% starch
- Diet DF: + 15% pectines + hemicell.

<table>
<thead>
<tr>
<th>S</th>
<th>Diets</th>
<th>D.F</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 mM VFA</td>
<td>7.3 g DM/d. Biomass</td>
<td>13.3 g DM/d</td>
</tr>
</tbody>
</table>

Stimulation of the microbial activity with "digestible fibres"

3.2 Microbial community

cellulolytic bacteria

- According to the dietary fibre level
- Higher abundance of the cellulolytic bacteria with high fibre diet

Cultivation method
- Adult rabbit

Boualahrouf et al., 1991
Caecal microbiota according to the dietary fibre level

Diets:
- High fibre 19% ADF
- Fibre Deficient 9% ADF

Bacteria “total”
- **Archaea**
 - a
 - b
- **Bacteroides**
 - a
 - b
- **Fibrolytic bacteria**
 - NS

Molecular microbiology: 16S RNA probes

Age = 70d / adult rabbits

Bennegadi et al., 2003

Progress in caecal microbial ecosystem analysis

Diets:
- Control 19% ADF
- Fibre Deficient 9% ADF

Molecular microbiology: 16S RNA sequencing
- fingerprint “SSCP”
- + PCA analysis

Michelland et al., 2011

One point = one sample = 1 rabbit
Further progress in caecal microbiota characterisation

Molecular microbiology:
16S RNA high throughput sequencing
+ improved statistical analysis

3.2 Effect of fibre on digestion

<table>
<thead>
<tr>
<th>Class of dietary fibres</th>
<th>Mean, %</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignins (ADL)</td>
<td>-10 + 15</td>
<td>-13 to +50</td>
</tr>
<tr>
<td>Cellulose (ADF – ADL)</td>
<td>15 - 18</td>
<td>5 to 40</td>
</tr>
<tr>
<td>Hemicelluloses (NDF – ADF)</td>
<td>25 - 35</td>
<td>10 to 60</td>
</tr>
<tr>
<td>Pectins (total uronic acids)</td>
<td>70 - 76</td>
<td>30 to 85</td>
</tr>
<tr>
<td>Soluble fibre (TDF-NDF)</td>
<td>70-90</td>
<td>??</td>
</tr>
</tbody>
</table>

Digestion of other nutrients

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Mean, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>90 - 100%</td>
</tr>
<tr>
<td>Proteins</td>
<td>70 - 75</td>
</tr>
<tr>
<td>Lipids</td>
<td>70 - 80</td>
</tr>
</tbody>
</table>

Conclusion:
fibres => reduction of diet digestibility
4. Fibres and digestive health of the growing rabbit

For a pure nutritionist, any reduction of fibre level will induce a reduction of nutritional costs

Thus: the BEST FIBRE LEVEL Should be THE LOWEST….?

BUT “breeders” and “pathologists” have observed:

low dietary fibres levels are associated with a higher risk of digestive troubles and mortality, after weaning

Thus, 2 questions:
1 - How to estimate the sanitary risk for digestive troubles?
2 - Which type of fibre to reduce the risk, and at which level?

4.1 Question 1: estimating the sanitary risk for digestive troubles, after weaning

Criteria to assess the sanitary status

Classical criterion = Mortality ➔ Yes/No criterion

Example:
fibre deficiency and digestive health (Bennegadi et al., 2001)

(N= 80 rabbits)
MORBIDITY =
- low growth (DWG +/- 2 S.D.), punctual loss of weight
- transitory diarrhoea
- intake troubles

Importance of the frequency of the measure
e.g. daily measure for Bennegadi et al. (2001).

Measure of the health status

17% mortality
36% morbidity

Example:
- fibre deficiency and digestive health
- (Bennegadi et al., 2000)

Health risk index, HRi
= 53%

IMPORTANT
necessary to measure those criteria on large groups of animal

10% mortality = ? 1 dead/10, very different from 100 deads/1000

NEED: large experimental design,
e.g. network of experimental units (french network GEC: 6 units)
4.2 Fibres and digestive health of the growing rabbit

Question: only one fibre criterion for mortality prediction?

Poorly digested fibres “ADF” and mortality from digestive troubles = ?

Conclusions

ADF alone is NOT sufficient to predict digestive health

Requirement: 14% to 22% ADF in diets ?

Question: effects of fibres quality

Y = 1.49X² - 19.8X + 85.4
\[R^2 = 0.77 \]

Effects of lignins on rabbit digestive health??

Requirement: minimum 5% ADL

Beware: ADL is not true lignin…

Overestimation in some cases (tannins -> grape marc, …)
Role of other fibre fractions?

- **Lignins**
- **Cellulose**

= NDF

= ADF

- **Hemicelluloses**
- **Water-insoluble Pectins WIP**
- **Water-soluble fibres**: pectins, β-glucanes, α-galactosides.

Not analysed with Van-Soest method

Digestion

- **Cellulose**
- **Lignins**

≈ ADF

- **NDF**

15-20 %

- **ADF**

25-40 %

- **Poorly digestible fibres**

40-70 %

- **Digestible fibres**

70-90 %

Highly digestible, or rapidly fermentable fibres

Importance of digestible fibres “DgF”

Meta analysis

6 studies, 31 diets

without antibiotics

Mortality rate is globally reduced with addition of digestible fibres (DgF, in iso-ADF diets)

Gidenne et al., 2013

Trocino et al., 2010

Soler et al., 2004

Xiccato et al., 2011

Xiccato et al., 2012

Tazzoli et al., 2009

Perez et al., 2000

Mortality, after weaning, %

0 5 10 15 20 25 30 35 40 45 50

10 15 20 25 30

dietary DgF concentration, % as fed

(for isoADF diets within a study)
Health risk and respective supply in: digestible fibres and lignocellulose (ratio "DgF/ADF").

\[Y = 3.67e^{1.61X} \]

\[R^2 = 0.69 \]

Conclusions
HRi depends from a balance between poorly digested (ADF) and highly digested (DgF) fibres

Requirement: DgF/ADF > 1.3

5 INRA studies 16 diets, without antibiotics

5. Fibre requirements & European tables of ingredients

Lignins + Cellulose

Poorly digestible fibres favourable for digestive health

Hemicelluloses + Pectines w-insol.

Digestible Fibres contribute favourably to health and growth

Balance the two "types" of fibres
Fibres requirements to prevent digestive troubles in the young and growing rabbit

3 key points

<table>
<thead>
<tr>
<th>Unit</th>
<th>Post weaning (28-42d old)</th>
<th>End of fattening (42-70d old)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignocellulose "ADFom" *</td>
<td>≥190</td>
<td>≥170</td>
</tr>
<tr>
<td>Lignins "ADL" *</td>
<td>≥55</td>
<td>≥50</td>
</tr>
<tr>
<td>DgF/ADFom</td>
<td>≤1.3</td>
<td>≤1.3</td>
</tr>
<tr>
<td>Cellulose "ADF-ADL" *</td>
<td>>130</td>
<td>≥110</td>
</tr>
<tr>
<td>Ratio Lignins/Cellulose</td>
<td>>0.40</td>
<td>>0.40</td>
</tr>
<tr>
<td>Hemicelluloses "NDF-ADF" *</td>
<td>>120</td>
<td>>100</td>
</tr>
</tbody>
</table>

Table 4: Proximate fibre composition of some raw materials (90% DM) used in rabbit feeds, and with criteria used in fibre recommendations for the growing rabbit.

<table>
<thead>
<tr>
<th>g/kg on as fed basis</th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>WIP</th>
<th>UAi</th>
<th>DgF</th>
<th>CF</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa meal 17</td>
<td>418</td>
<td>326</td>
<td>73</td>
<td>68</td>
<td>55</td>
<td>160</td>
<td>261</td>
<td>153</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>428</td>
<td>128</td>
<td>35</td>
<td>30</td>
<td>14</td>
<td>330</td>
<td>102</td>
<td>158</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>750</td>
<td>474</td>
<td>80</td>
<td>22</td>
<td>20</td>
<td>298</td>
<td>395</td>
<td>36</td>
</tr>
<tr>
<td>Sugarbeet pulp</td>
<td>428</td>
<td>212</td>
<td>78</td>
<td>250</td>
<td>190</td>
<td>466</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Citrus pulp</td>
<td>220</td>
<td>155</td>
<td>16</td>
<td>120</td>
<td>80</td>
<td>185</td>
<td>83</td>
<td>59</td>
</tr>
<tr>
<td>Soya bean husks</td>
<td>588</td>
<td>426</td>
<td>21</td>
<td>92</td>
<td>60</td>
<td>254</td>
<td>85</td>
<td>122</td>
</tr>
<tr>
<td>Sunflower husks</td>
<td>693</td>
<td>562</td>
<td>202</td>
<td>100</td>
<td>75</td>
<td>231</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>Cocoa husk</td>
<td>390</td>
<td>300</td>
<td>140</td>
<td>30</td>
<td>20</td>
<td>120</td>
<td>83</td>
<td>164</td>
</tr>
<tr>
<td>Palm cake</td>
<td>520</td>
<td>317</td>
<td>90</td>
<td>30</td>
<td>10</td>
<td>233</td>
<td>50</td>
<td>185</td>
</tr>
<tr>
<td>Soyabean meal 48</td>
<td>104</td>
<td>65</td>
<td>5</td>
<td>55</td>
<td>24</td>
<td>94</td>
<td>50</td>
<td>468</td>
</tr>
</tbody>
</table>

Whole seeds

<table>
<thead>
<tr>
<th></th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>WIP</th>
<th>UAi</th>
<th>DgF</th>
<th>CF</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soya</td>
<td>117</td>
<td>73</td>
<td>8</td>
<td>60</td>
<td>25</td>
<td>104</td>
<td>56</td>
<td>369</td>
</tr>
<tr>
<td>Barley</td>
<td>175</td>
<td>55</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>126</td>
<td>46</td>
<td>108</td>
</tr>
<tr>
<td>Maize</td>
<td>100</td>
<td>25</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>82</td>
<td>19</td>
<td>92</td>
</tr>
</tbody>
</table>
6. Perspectives
further understanding of fibre effects on health?

Fibre – microbiota – immunity in the young rabbit

Barrier role
- Competition for adhesion to mucosa
- Competition for access to nutrients
- Production of antimicrobial substances

In the young rabbit:
* “feed” the microbiota (early during implantation)
* fibres? before weaning?

In the young rabbit:
* “feed” the microbiota (early during implantation)
* fibres? before weaning?

Rabbit research team

- 3 PhD students
 - Aïssa Benhouda
- Technical staff
 - Béatrice Gabinaud

Thanks for your attention
Question 2: how to differentiate the effect of fibres from that of starch?

Answer 1:
factorial design 2×2 with: 2 starch (12% vs 19%) X 2 ADF (19% vs 16%) levels (4 diets)

Large scale study
n=507 rab./diet,
6 sites
weaning - slaughter

Effect of ADF: 7 vs 15%
P<0.05
Effect of starch = NS

Conclusions:
No effect of starch on mortality
ADF reduces the mortality

Answer 2:
isoADF diets but variations in starch quality: maize, wheat, barley, extruded maize

Diet with some "risks": ADF < 18% and starch ≈ 20%
n=446 rab./diet
5 sites
period: weaning - slaughter

Starch level at ileum (50d) % DM: 6b 5b 11a 2c

P=0.33 => NS

Conclusion: NO correlation among ileal starch and mortality,
NO starch overload

(Gidenne et al., 2005)