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ABSTRACT

We consider online optimization procedures in the context of logistic regression, focusing on the
Extended Kalman Filter (EKF). We introduce a second-order algorithm close to the EKF, named
Semi-Online Step (SOS), for which we prove a O(log(n)) regret in the adversarial setting, paving
the way to similar results for the EKF. This regret bound on SOS is the first for such parameter-
free algorithm in the adversarial logistic regression. We prove for the EKF in constant dynamics a
O(log(n)) regret in expectation and in the well-specified logistic regression model.

Keywords Kalman filter, Logistic Regression, Online Optimization

1 Introduction

In the convex online optimization literature (Hazan, 2016), a crucial issue is the tuning of parameters. Our aim is
to develop parameter-free algorithms in the context of logistic regression. One observes yt ∈ {−1, 1} recursively
through time t = 1, 2, . . .. At each instance t − 1, the objective is to construct a prediction of the next value yt. In
hand, we have explanatory variables Xt in R

d along with the past pairs (Xs, ys)s<t. We reduce the prediction to a
d-dimensional optimization problem thanks to the logistic loss function

ℓt(yt, θ̂t) = log(1 + exp(−ytθ̂
T
t Xt)), t = 1, 2, . . . ,

where θ̂t ∈ R
d, t = 1, 2, . . ., are provided by a recursive algorithm. The aim of online convex optimization is

to provide regret bounds on the cumulative losses
∑n

t=1 ℓt(yt, θ̂t) for algorithms whose recursive update step is of
constant complexity.

The logistic loss is exp-concave, property that guarantees the existence of online procedures achieving O(log(n))
regret in the adversarial setting. The seminal paper of Hazan et al. (2007) proposed two such algorithms, Online
Newton Step and Follow The Approximate Leader, that achieve this rate of convergence. Both methods require the
knowledge of some constants unknown in practice, namely the constant of exp-concavity and an upper-bound on the
gradients of the losses. They also require a projection step on a convex set of finite diameter. We consider these
methods as localized ones because they use the strongly convex paraboloid local approximation of any exp-concave
functions stated in Lemma 3 in Hazan et al. (2007).

On the contrary, some recent papers (Bach and Moulines, 2013; Gadat and Panloup, 2017; Godichon-Baggioni, 2018)
propose global algorithms in the stochastic setting. Bach and Moulines (2013) provide sharp regret bounds for a two-
step procedure where the crucial step is the averaging of a Stochastic Gradient Descent (SGD) with constant learning
rate that has to be tuned. In Gadat and Panloup (2017); Godichon-Baggioni (2018) the authors propose non-asymptotic
regret bounds with large constants of the averaging of a SGD with more robust learning rates that does not need to be
tuned. Our results have the same flavor on a very popular online algorithm, the Extended Kalman Filter (EKF), whose
non asymptotic properties have not yet been studied.



A PREPRINT - FEBRUARY 22, 2019

For linear regression, Kalman filters as originally described in Kalman and Bucy (1961) present a Bayesian perspective.
The idea is to estimate the conditional expectation of the future state and its variance, given a prior on the initial state
and past observations that follow a dynamic model. Kalman recursion is exactly the ridge regression estimator, see
Diderrich (1985), so Kalman filter achieves a O(log(n)) regret for quadratic losses in adversarial setting. Note that
the global strong convexity of the loss is crucial in the analysis of the regret in Cesa-Bianchi and Lugosi (2006).

The Extended Kalman Filter (EKF) of Fahrmeir (1992) yields an online parameter-free algorithm for logistic re-
gression. More generally, EKF works in any misspecified Generalized Linear Model as defined in Rigollet (2012).
Recently, the equivalence between Kalman filtering under constant dynamics and Online Natural Gradient has been
noticed by Ollivier (2018). It is our belief that Kalman filtering offers an optimal way to choose the step-size in an
online gradient descent algorithm. Up to our knowledge, regret bounds have been derived for the batch Maximum Like-
lihood Estimator only, also called Follow The Leader in the online learning literature. The complexity of this batch
algorithm is prohibitive, see the discussion in Hazan et al. (2007). In our paper, we view the EKF as an approximation
of FTL in order to derive a O(log(n)) regret bound.

As an intermediate step, we prove a O(log(n)) regret in the logistic regression problem for a second-order algorithm
between FTL and EKF. We name it the Semi-Online Step (SOS) algorithm as it requires t computations at each step,
i.e. its complexity is quadratic in the number of iterations. Despite its inefficiency, SOS analysis is interesting as
the non-asymptotic guarantee is valid in any adversarial setting. One can also interpret the extra t computations per
iteration compared to the EKF as the cost of the estimation of the local strong convexity constant of the paraboloid
approximation.

The EKF is the natural online approximation of the SOS. It is efficient (constant time per iteration) and we prove a
O(log(n)) regret, in expectation and in the well-specified logistic regression setting only. The analysis of the regret
splits in two steps. When the algorithm is close to the optimum, its regret is logarithmic with high probability. This
logarithmic rate is due to the nice martingale properties of the gradients of the losses. The conditional expectation of
the gradient is proportional to its quadratic variation. The logarithmic regret bound follows from the local paraboloid
approximation of Hazan et al. (2007). The other phase, when the algorithm explores the optimization space, is much
more problematic to analyze because the local paraboloid approximation does not apply uniformly. To circumvent
this issue, we appeal at more robust potential arguments as in Gadat and Panloup (2017). We got a logarithmic control
on the number of iterations spent in the first phase in expectation only. It is an open question whether this number of
iterations can be controlled with high probability.

The paper is organized as follows. In Section 2, we introduce the SOS algorithm and we give its O(log(n)) regret in
Theorem 1 followed by its proof. In Theorem 6 of Section 3, we present our result in expectation for the EKF. We
present the main steps of the proof of Theorem 6 in Section 4. Finally we discuss the results and future work in Section
5.

2 Semi-Online Step algorithm

In Section 2.1, we introduce the SOS algorithm as a semi-online approximation of the batch FTL algorithm

θ∗t ∈ argmin
θ

t−1
∑

s=1

ls(ys, θ) . (1)

We see in Section 2.2 that SOS is also very close to the EKF but with higher complexity. Then we prove a bound on
the regret of SOS in Section 2.3.

2.1 Construction of the SOS algorithm

The Semi-Online Step is described in Algorithm 1. We derive it from the Taylor approximation

∂

∂θ

[

t
∑

s=1

ls(ys, θ)

]

≈ ∂

∂θ

[

t
∑

s=1

ls(ys, θ)

]

∣

∣

∣

θ=θ∗

t

+
∂2

∂θ2

[

t
∑

s=1

ls(ys, θ)

]

∣

∣

∣

θ=θ∗

t

(θ − θ∗t ) ,

which transforms the first order condition of the optimization problem (1) realized by θ∗t+1 into

∂

∂θ

[

t
∑

s=1

ls(ys, θ)

]

∣

∣

∣

θ=θ∗

t

+
∂2

∂θ2

[

t
∑

s=1

ls(ys, θ)

]

∣

∣

∣

θ=θ∗

t

(θ∗t+1 − θ∗t ) ≈ 0 .

2
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Algorithm 1: Semi-Online Steps

1. Initialization: P̃1 is any positive definite matrix, θ̃1 is any initial parameter in R
d.

2. Iteration: at each time step t = 1, 2, . . .

(a) Compute the matrix P̃t+1 =

(

P̃−1
1 +

t
∑

s=1

XsX
T
s

(1+eθ̃
T
t

Xs )(1+e−θ̃T
t

Xs )

)−1

:

Starting from P̃
(0)
t+1 = P̃1, we compute

P̃
(u)
t+1 =

(

P̃−1
1 +

u
∑

s=1

XsX
T
s

(1+eθ̃
T
t Xs )(1+e−θ̃Tt Xs )

)−1

thanks to the recursion

P̃
(u)
t+1 = P̃

(u−1)
t+1 − P̃

(u−1)
t+1 XuX

T
u P̃

(u−1)
t+1

1 +XT
u P̃

(u−1)
t+1 Xup̃

(u)
t (1 − p̃

(u)
t )

p̃
(u)
t (1− p̃

(u)
t ) ,

with p̃
(u)
t = 1/(1 + e−θ̃T

t Xu) for any u = 1, . . . , t, so that P̃t+1 = P̃
(t)
t+1 .

(b) Update

θ̃t+1 = θ̃t + P̃t+1
ytXt

1 + eytθ̃T
t Xt

.

Using the definition of θ∗t we have

∂

∂θ

[

t−1
∑

s=1

ls(ys, θ
∗
t )

]

= 0 .

Combining this identity and the definition of the derivatives of the logistic loss we obtain

∂

∂θ

[

t
∑

s=1

ls(ys, θ)

]

∣

∣

∣

θ=θ∗

t

=
∂

∂θ
lt(yt, θ)

∣

∣

∣

θ=θ∗

t

=
−ytXt

1 + eytθ∗T
t Xt

,

∂2

∂θ2

[

t
∑

s=1

ls(ys, θ)

]

∣

∣

∣

θ=θ∗

t

=

t
∑

s=1

XsX
T
s

(1 + eθ
∗T
t Xs)(1 + e−θ∗T

t Xs)
.

Therefore θ∗t+1 satisfies approximately

(

t
∑

s=1

XsX
T
s

(1 + eθ
∗T
t Xs)(1 + e−θ∗T

t Xs)

)

(θ∗t+1 − θ∗t ) ≈
ytXt

1 + eytθ∗T
t Xt

.

If the Hessian matrix were invertible, we would obtain

θ∗t+1 ≈ θ∗t +

(

t
∑

s=1

XsX
T
s

(1 + eθ
∗T
t Xs)(1 + e−θ∗T

t Xs)

)−1
ytXt

1 + eytθ∗T
t Xt

.

This relation approximately satisfied by the optima sequence (θ∗t ) motivates the introduction of the SOS algorithm

as defined in Algorithm 1. The computation of P̃t+1 relies on the Sherman-Morrison formula: if A ∈ R
d×d and

u, v ∈ R
d,

(

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
. (2)

We introduce the regularization matrix P̃1 which guarantees the positive definiteness of P̃t in Algorithm 1. A good

choice is for instance P̃−1
1 = I

p1
, p1 > 0. SOS then corresponds to the approximation

θ̃t ≈ argmin
θ

(

t−1
∑

s=1

ls(ys, θ) +
1

2p1
‖θ‖2

)

, t = 1, 2, . . . .

3
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Algorithm 2: Extended Kalman Filter

1. Initialization: P1 is any positive definite matrix, θ̂1 is any initial parameter in R
d.

2. Iteration: at each time step t = 1, 2, . . .

(a) Update

Pt+1 = Pt −
PtXtX

T
t Pt

1 +XT
t PtXtp̂t(1− p̂t)

p̂t(1− p̂t) ,

with p̂t = 1/(1 + e−θ̂T
t Xt).

(b) Update

θ̂t+1 = θ̂t + Pt+1
ytXt

1 + eytθ̂T
t Xt

.

2.2 Comparison with EKF

The Extended Kalman Filter was introduced by Fahrmeir (1992) for any Dynamic Generalized Linear Model. For
constant dynamics, the EKF is shown to be equivalent to the Online Natural Gradient algorithm in Ollivier (2018),
yielding the recursion

P−1
t+1 = P−1

t +
XtX

T
t

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)
,

θ̂t+1 = θ̂t − Pt+1
∂

∂θ
lt(yt, θ)

∣

∣

∣

θ=θ̂t

.

This EKF recursion departs from SOS in the update of the matrix Pt which satisfies

Pt+1 =

(

P−1
1 +

t
∑

s=1

XsX
T
s

(1 + eθ̂
T
s Xs)(1 + e−θ̂T

s Xs)

)−1

, t = 1, 2, . . . .

In EKF, we add a rank-one matrix to get P−1
t+1 from P−1

t in order to update the matrix efficiently. On the contrary,

the matrix P̃t in SOS is recomputed at each step because the Hessian has to be computed at the current estimate θ̃t.
Despite the similarity between Pt and P̃t we were not able to control their differences. Our analysis of SOS and EKF
are distinct and the obtained regret bounds are different in nature.

Thanks to the Sherman-Morrison formula (2), we describe the EKF in Algorithm 2 avoiding any inversion of matrices.

The spatial complexity of the two algorithms is O(d2) due to the storage of the matrices Pt+1 and P̃t+1. In term of

running time, at each step of the SOS algorithm we have to compute recursively P̃
(u)
t+1 for u = 1, . . . , t and then θ̃t+1.

Each recursion on P̃
(u)
t+1 in u requires the computation of a rank-one matrix (product vector-vector) and its addition to

the sum, its complexity is O(d2). Thus, the complexity of step t in SOS is O(td2). As a comparison, the EKF updates
Pt online and therefore requires only O(d2) operations at each step.

2.3 The regret bound for SOS and its proof

In what follows, we denote

DX = max
1≤t≤n

‖Xt‖, Dθ = max
1≤t≤n

‖θ̃t‖, D = max
1≤t≤n

|θ̃Tt Xt|.

SOS offers the advantage to be easier to analyse than EKF. We prove a O(log(n)) regret bound on SOS in Theorem

1. Note that the leading constant is the inverse square of the exp-concavity constant times d3/2DX(Dθ + ‖θ‖). The
localized algorithms of Hazan et al. (2007) satisfy finer regret bounds with the inverse of the exp-concavity constant
times d as the leading constant. We believe that Theorem 1 could be improved to get a constant proportional to the
inverse of the exp-concavity constant instead of the square inverse, see the end of the proof of Lemma 2 where we
use a very loose bound bringing a (1 + eD)/2. Up to our knowledge, SOS is the first parameter-free algorithm that
achieves a O(log(n)) regret bound in the adversarial logistic regression setting.

4
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Theorem 1. Starting from P̃1 = p1I and θ̃1 ∈ R
d, for any (Xt, yt)1≤t≤n and θ ∈ R

d, the SOS algorithm achieves
the regret bound

n
∑

t=1

(

lt(yt, θ̃t)− lt(yt, θ)
)

≤
(√

dDX(Dθ + ‖θ‖)
(

1 + eD
)

4
+ 1

)

1 + eD

2
d log(1 + (n− 1)p1D

2
X)

+
‖θ̃1‖2 + ‖θ‖2

2p1
+DX(Dθ + ‖θ‖) , n ≥ 1.

Proof. We first apply a telescopic sum argument

n
∑

t=1

(

lt(yt, θ̃t)− lt(yt, θ)
)

=

n
∑

t=1

(

t
∑

s=1

ls(ys, θ̃t)−
t−1
∑

s=1

ls(ys, θ̃t)− lt(yt, θ)

)

=

n−1
∑

t=1

(

t
∑

s=1

ls(ys, θ̃t)−
t
∑

s=1

ls(ys, θ̃t+1)

)

+

n
∑

s=1

(

ls(ys, θ̃n)− ls(ys, θ)
)

=

n−1
∑

t=1

(

t
∑

s=1

ls(ys, θ̃t) +
1

2
θ̃Tt P̃

−1
1 θ̃t −

t
∑

s=1

ls(ys, θ̃t+1)−
1

2
θ̃Tt+1P̃

−1
1 θ̃t+1

)

+

n
∑

s=1

ls(ys, θ̃n) +
1

2
θ̃Tn P̃

−1
1 θ̃n −

n
∑

s=1

ls(ys, θ)−
1

2
θT P̃−1

1 θ

+
1

2
θT P̃−1

1 θ − 1

2
θ̃T1 P̃

−1
1 θ̃1 .

Then, defining St(θ) =
∂
∂θ

[

t−1
∑

s=1
ls(ys, θ) +

1
2θ

T P̃−1
1 θ

]

, we use the convexity of St + lt to obtain linear bounds:

n
∑

t=1

(

lt(yt, θ̃t)− lt(yt, θ)
)

≤
n−1
∑

t=1

(

St(θ̃t) +
∂lt(yt, θ)

∂θ

∣

∣

∣

θ̃t

)T

(θ̃t − θ̃t+1)

+

(

Sn(θ̃n) +
∂ln(yn, θ)

∂θ

∣

∣

∣

θ̃n

)T

(θ̃n − θ)

+
1

2
θT P̃−1

1 θ − 1

2
θ̃T1 P̃

−1
1 θ̃1 .

We apply another telescopic argument in order to get

n−1
∑

t=1

St(θ̃t)
T (θ̃t − θ̃t+1) =

n−1
∑

t=1

(

St+1(θ̃t+1)− St(θ̃t)
)T

θ̃t+1 + S1(θ̃1)
T θ̃1 − Sn(θ̃n)

T θ̃n .

As S1(θ̃1) = P̃−1
1 θ̃1, we sum up our findings to achieve the regret bound

n
∑

t=1

(

lt(yt, θ̃t)− lt(yt, θ)
)

≤
n−1
∑

t=1

(

St+1(θ̃t+1)− St(θ̃t)
)T

θ̃t+1 − Sn(θ̃n)
T θ +

1

2
θ̃T1 P̃

−1
1 θ̃1 +

1

2
θT P̃−1

1 θ

+
n−1
∑

t=1

(

∂lt(yt, θ)

∂θ

∣

∣

∣

θ̃t

)T

(θ̃t − θ̃t+1) +

(

∂ln(yn, θ)

∂θ

∣

∣

∣

θ̃n

)T

(θ̃n − θ) . (3)

Next we use the following Lemma proved in Appendix A.

Lemma 2. For any t = 1, 2, . . ., we have

∥

∥

∥St+1(θ̃t+1)− St(θ̃t)
∥

∥

∥ ≤
√
dDX

(

1 + eD
)

4

XT
t P̃t+1Xt

(1 + eytθ̃T
t Xt)2

.

5
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Applying Lemma 2 on the norm of the first term in the previous regret bound (3), we get
∥

∥

∥

∥

∥

n−1
∑

t=1

(

St+1(θ̃t+1)− St(θ̃t)
)T

θ̃t+1

∥

∥

∥

∥

∥

≤
n−1
∑

t=1

∥

∥

∥St+1(θ̃t+1)− St(θ̃t)
∥

∥

∥ ‖θ̃t+1‖

≤
√
dDXDθ

(

1 + eD
)

4

n−1
∑

t=1

XT
t P̃t+1Xt

(1 + eytθ̃T
t Xt)2

.

Similarly, we estimate the second term of the regret bound (3) as

∥

∥

∥Sn(θ̃n)
T θ
∥

∥

∥ ≤
n−1
∑

t=1

∥

∥

∥St+1(θ̃t+1)− St(θ̃t)
∥

∥

∥ ‖θ‖ ≤
√
dDX‖θ‖

(

1 + eD
)

4

n−1
∑

t=1

XT
t P̃t+1Xt

(1 + eytθ̃T
t Xt)2

.

Finally, we easily control the last two terms of (3) as we identify

n−1
∑

t=1

(

∂lt(yt, θ)

∂θ

∣

∣

∣

θ̃t

)T

(θ̃t − θ̃t+1) =

n−1
∑

t=1

XT
t P̃t+1Xt

(1 + eytθ̃T
t Xt)2

,

and we use the upper-bound
∥

∥

∥

∥

∥

(

∂ln(yn, θ)

∂θ

∣

∣

∣

θ̃n

)T

(θ̃n − θ)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∂ln(yn, θ)

∂θ

∣

∣

∣

θ̃n

∥

∥

∥

∥

(‖θ̃n‖+ ‖θ‖) ≤ DX(Dθ + ‖θ‖) .

Therefore,

n
∑

t=1

(

lt(yt, θ̃t)− lt(yt, θ)
)

≤
(√

dDX(Dθ + ‖θ‖)
(

1 + eD
)

4
+ 1

)

n−1
∑

t=1

XT
t P̃t+1Xt

(1 + eytθ̃T
t Xt)2

+
1

2
θ̃T1 P̃

−1
1 θ̃1 +

1

2
θT P̃−1

1 θ +DX(Dθ + ‖θ‖) .

In order to conclude, we follow ideas from Cesa-Bianchi and Lugosi (2006) (in particular Lemma 11.11) to prove in
Appendix A the following proposition which yields the result of Theorem 1.

Proposition 3. For any sequence (Xt, yt)1≤t≤n we have

n−1
∑

t=1

XT
t P̃t+1Xt

(1 + eytθ̂T
t Xt)2

≤ 1 + eD

2
d log(1 + (n− 1)p1D

2
X) .

3 Extended Kalman Filter

We were not able to bound the regret of the EKF algorithm in the adversarial setting as we did not control the difference

between the matrices P̃t and Pt. Thus, our EKF regret analysis holds in a restrictive well-specified stochastic setting.

3.1 Discussion on the assumptions

We assume that the stochastic sequence (Xt, yt) follows the logistic regression model: there exists θtrue ∈ R
d such

that

p(yt|Xt, θtrue) =
1

1 + e−ytθT
trueXt

, t = 1, 2, . . . . (4)

We do not make any assumption on the dependence of the stochastic process (Xt) so far. We consider the regret in
term of the expected loss conditionally on Xt: for any random variable Z , we note Et [Z] the conditional expectation
E[Z | X1, y1, ..., Xt−1, yt−1, Xt] (we know the past pairs (Xs, ys)s<t along with Xt the explanatory variables at time
t). We first observe that for any t, θ → Et[lt(yt, θ)] is a convex function minimized in θtrue. Even if (Et[lt(yt, θ)]) is
a stochastic sequence, we apply a convexity argument on the expected losses in order to bound the regret by a linear
regret

n
∑

t=1

(

Et[lt(yt, θ̂t)]− Et[lt(yt, θtrue)]
)

≤
n
∑

t=1

Et

[

ytX
T
t

1 + eytθ̂T
t Xt

]

(θtrue − θ̂t) .

6
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All the regret bounds on EKF provided hereafter actually come from identical bounds on the linear regret. We identify

the expected gradients in the linear regret as Et[ytX
T
t /(1 + eytθ

TXt)] = Ey∼p(y|Xt,θtrue)[yX
T
t /(1 + eyθ

TXt)]. We
observe a key property satisfied by the logistic gradients, proved in Appendix B.

Proposition 4. For any θ,X ∈ R
d, there exists c > 0 satisfying e−|(θtrue−θ)TX| < c < e|(θtrue−θ)TX| and

Ey∼p(y|X,θtrue)

[

yXT (θtrue − θ)

1 + eyθTX

]

= c
(θtrue − θ)TXXT (θtrue − θ)

(1 + eθTX)(1 + e−θTX)
.

Such Bernstein’s type conditions yield fast rates of convergence. However, the constant c in Proposition 4 is relative to

the error |(θtrue − θ)TX | and the fast rate holds only locally: If there exists some τ so that |(θtrue − θ̂t)
TXt| ≤ 1/2 for

any t > τ then an application of Corollary 7 and Theorem 8 (with ε = 0.5 and α = 0.05 so that 1/2 + α = c < e−ε)
yields the following regret bound

n+τ
∑

t=τ+1

Et

[

ytX
T
t

1 + eytθ̂T
t Xt

]

(θtrue − θ̂t) ≤ 30
(

20(1 + eD) log(
1

δ
) +

1 + eD

4
d log(1 + np1D

2
X)

+
1

2p1
‖θtrue‖2

)

,

with probability at least 1− δ, δ > 0.

In order to get the global regret bound, we need two extra assumptions on the law of Xt:

Assumption 1. There exists m1 > 0 such that for any t = 1, 2, . . .,

m1I

t
≺ E

[

Pt+1XtX
T
t | X1, y1, . . . , Xt−1, yt−1

]

.

Assumption 2. There exists M2 > 0 such that for any t = 1, 2, . . .,

E
[

XT
t P

2
t+1Xt

]

≤ M2

t2
.

One checks these assumptions under the invertibility of the matrix E[XXT ] for bounded iid (Xt):

Proposition 5. In the iid case, if λmin = λmin(E[XXT ]) > 0 and if ‖X‖ ≤ DX a.s. then we have

λmin

t(1 +D2
X)2

≤ λmin

(

E
[

Pt+1XtX
T
t | X1, y1, . . . , Xt−1, yt−1

])

,

λmax

(

E
[

P 2
t+1

])

≤ 16(1 + eD)2

λ2
mint

2

(

1 +
1

t

2de−3
(

3D4
X +D2

Xλmin/2
)3

(λ2
min/8)

2

)

.

The results of Proposition 5 imply Assumption 1 and Assumption 2. Proposition 5 is proved in Appendix B.

3.2 Regret bound in expectation for the EKF

In what follows we assume that

DX ≥ max
1≤t≤n

‖Xt‖, Dθ ≥ max

(

max
1≤t≤n

‖θ̂t‖, ‖θtrue‖
)

and D ≥ max
1≤t≤n

|θ̂Tt Xt| a.s.

It is important to note that these constants are not used in the EKF Algorithm 2, making it parameter-free.

Theorem 6. Assume that (Xt, yt) satisfies the logistic regression (4) for any θtrue ∈ R
d. If the EKF starts with

P1 = p1I , p1 > 0, θ̂1 = 0 and if the assumptions 1 and 2 are satisfied, we have

n
∑

t=1

(E[l(y, θ̂t)]− E[l(y, θtrue)]) ≤ 30
(

20(1 + eD) +
1 + eD

4
d log(1 + np1D

2
X) +

1

2p1
‖θtrue‖2

)

+ (62DXDθ + 60D2
XD2

θ + 15D2
X)
(

1 +
4k+1D2k

X bk
ka− 1

log(n)
)

, n ≥ 1 .

Here a = e−Dm1/(1 + eD) < 1, bk = 5M2

p2
1D

2
X

(

4D2
θ + 2p1DθDX + p21D

2
X

)k
and k is any positive integer satisfying

1 < ka < 2.

Note that m1 as defined in Assumption 1 may be chosen such that a < 1.

7



A PREPRINT - FEBRUARY 22, 2019

4 The sketch of the proof of Theorem 6

One has to distinguish between the localized steps where |(θtrue − θ̂t)
TXt| < ε and the others. To this end, we define

Tε = {1 ≤ t ≤ n | |(θ̂t − θtrue)
TXt| ≤ ε}. In Section 4.1 we exhibit a bound on the sum of the localized terms t ∈ Tε,

and in Section 4.2 we upper-bound the expected value of the non-localized terms t /∈ Tε. Finally Section 4.3 merges
these results to prove Theorem 6. The proofs of the intermediate results used in Sections 4.1, 4.2 and 4.3 are deferred
to Appendix B.

4.1 Bounding the localized steps with high probability

In the well-specified logistic regression, Proposition 4 provides an upper-bound on the linearized regret

Et

[

ytX
T
t

1 + eytθ̂T
t Xt

]

(θtrue − θ̂t) = Ey∼p(y|Xt,θtrue)

[

yXT
t

1 + eyθ̂
T
t Xt

]

(θtrue − θt) .

The following corollary of Proposition 4 provides a simple estimate for localized steps:

Corollary 7. For any step t = 1, 2, . . ., if we have |(θtrue − θ̂t)
TXt| < ε and c < e−ε then it holds

Et

[

ytX
T
t

1 + eytθ̂T
t Xt

]

(θtrue − θ̂t) <
eε

e−ε − c

(

Et

[

ytX
T
t

1 + eytθ̂T
t Xt

]

(θtrue − θ̂t)

−c
(θtrue − θ̂t)

TXtX
T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

)

.

The upper-bound is controlled thanks to the negative quadratic term which is responsible of the fast rate of conver-
gence. It can be seen as a local strong convexity term. We derive the following regret bound with high probability,
parameterizing c = 1/2 + α for some α > 0:

Theorem 8. For any ε, α, δ > 0 and starting the EKF from P1 = p1I , p1 > 0 and θ̂1 = 0, we have

∑

t∈Tε

(

Et

[

ytX
T
t

1 + eytθ̂T
t Xt

]

(θtrue − θ̂t)−
(1

2
+ α

) (θtrue − θ̂t)
TXtX

T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

)

≤1 + eD

α
log(δ−1) +

1 + eD

4
d log(1 + np1D

2
X) +

1

2p1
‖θtrue‖2

− 1

2

∑

t/∈Tε

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

,

with probability at least 1− δ.

Proof. We begin with a lemma whose proof is very much inspired by the proof of the regret bound of the ONS
algorithm in Hazan (2016). We note that the constant 1/2 in front of the quadratic term is responsible to the fast rate
of convergence, as there exists a gap with respect to the constant c ≈ 1 in Proposition 4.

Lemma 9. For any ε > 0 and any sequence (Xt, yt), starting the EKF from P1 = p1I , p1 > 0 and θ̂1 = 0, we have

∑

t∈Tε

( ytX
T
t

1 + eytθ̂T
t Xt

(θtrue − θ̂t)−
1

2
(θtrue − θ̂t)

T (P−1
t+1 − P−1

t )(θtrue − θ̂t)
)

≤1 + eD

4
d log(1 + np1D

2
X) +

1

2p1
‖θtrue‖2

− 1

2

∑

t/∈Tε

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

.

Then we prove the following lemma which is a corollary of a martingale inequality from Bercu and Touati (2008):

8
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Lemma 10. We define ∆Mt = Et

[

ytX
T
t

1+eytθ̂
T
t Xt

]

(θtrue − θ̂t) − ytX
T
t

1+eytθ̂
T
t Xt

(θtrue − θ̂t). Then for any ε > 0 and α > 0,

it holds
∑

t∈Tε

(

∆Mt − α
(θtrue − θ̂t)

TXtX
T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

)

≤ 1 + eD

α
log(δ−1),

with probability at least 1− δ.

Adding the inequalities of Lemma 9 and Lemma 10 yield the result.

From Theorem 8 it is easy to bound the linearized regret of the localized steps in expectation:

Corollary 11. For any ε, α > 0, we have

∑

t∈Tε

(

E

[

ytX
T
t

1 + eytθ̂T
t Xt

(θtrue − θ̂t)

]

− (
1

2
+ α)

(θtrue − θ̂t)
TXtX

T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

)

≤1 + eD

α
+

1 + eD

4
d log(1 + np1D

2
X) +

1

2p1
‖θtrue‖2

− 1

2

∑

t/∈Tε

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

.

4.2 Bounding the expected number of unlocalized steps

It is essential in our proof to lower-bound the cardinal of Tε because the remaining terms in the regret of Theorem 6
are essentially controlled by it:

∑

t/∈Tε

∥

∥

∥Et

[ ytX
T
t

1 + eytθ̂T
t Xt

(θtrue − θ̂t)
]

− eε

e−ε − (12 + α)

1

2

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
) ∥

∥

∥

≤
(

2DXDθ +
eε

e−ε − (12 + α)
(2DXDθ + 2D2

XD2
θ +

1

2
D2

X)

)

(n− Card(Tε)) . (5)

We bound the number of non-localized steps n−Card(Tε) in expectation only, yielding the regret bound in Theorem
6 in expectation.

Theorem 12. We define a = e−Dm1/(1 + eD). For any positive integer k such that 1 < ka < 2, provided that
Assumptions 1 and 2 are satisfied, we have

E [n− Card(Tε)] ≤ 1 +
4D2k

X bk
ε2k(ka− 1)

log(n).

with bk = 5M2

p2
1D

2
X

(

4D2
θ + 2p1DθDX + p21D

2
X

)k
.

Proof. We first find a recursive bound on E

[

‖θ̂t − θtrue‖2k
]

for any positive integer k:

Lemma 13. Provided that Assumptions 1 and 2 are satisfied, it holds

E

[

‖θ̂t+1 − θtrue‖2k
]

≤ E

[

‖θ̂t − θtrue‖2k
] (

1− ka

t

)

+
bk
t2
, t ≥ 1.

It is easy to derive from this lemma the following corollary:

Corollary 14. If Assumptions 1 and 2 are satisfied and 1 < ka < 2 then we have

E

[

‖θ̂t − θtrue‖2k
]

≤ 4bk
t(ka− 1)

, t ≥ 2.

9
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Then, using first the Cauchy-Schwarz inequality |(θ̂t−θtrue)
TXt| ≤ ‖θ̂t−θtrue‖‖Xt‖ and second the Markov inequality,

we get

P

(

|(θ̂t − θtrue)
TXt| > ε

)

≤ P

(

‖θ̂t − θtrue‖ >
ε

‖Xt‖

)

≤
E

[

‖θ̂t − θtrue‖2k
]

ε2k/‖Xt‖2k

≤ 4‖Xt‖2kbk
ε2k(ka− 1)

1

t
.

which proves the Theorem by a summation argument for 2 ≤ t ≤ n together with the trivial bound

P

(

|(θ̂1 − θtrue)
TX1| > ε

)

≤ 1.

4.3 Proof of Theorem 6

Summing Corollary 11 and Equation 5 along with Theorem 12 yields the regret bound in expectation

n
∑

t=1

(

E[l(y, θ̂t)]− E[l(y, θtrue)]
)

≤ eε

e−ε − (12 + α)

(1 + eD

α
+

1 + eD

4
d log(1 + np1D

2
X) +

1

2p1
‖θtrue‖2

)

+
(

2DXDθ +
eε

e−ε − (12 + α)
(2DXDθ + 2D2

XD2
θ +

1

2
D2

X)
)(

1 +
(DX

ε

)2k 4bk
ka− 1

log(n)
)

,

for any 0 < α < 1
2 and 0 < ε < − log(1/2 + α). Choosing ε = 0.5 and α = 0.05, we get eε

e−ε−( 1
2+α)

≈ 29.2 < 30

and we obtain the result of Theorem 6.

5 Conclusion and future work

We have designed an algorithm called SOS that is a second-order algorithm very close to the EKF. We obtain a
compromise between time complexity and regret guarantee. Indeed, its complexity lies between FTL, which is com-
putationally greedy, and the EKF, which is the least expensive second-order algorithm. Moreover, we prove that SOS
achieves the optimal O(log(n)) regret in the adversarial setting. The dependence of the constant of Theorem 1 on the
exp-concavity constant might be reduced.

An interesting challenge is to adjust this regret bound for the EKF. In this paper we obtained weaker guarantees
for the EKF, a O(log(n)) regret bound with prohibitive constants, in expectation and in the well-specified logistic
regression. It would be interesting to obtain the result in the misspecified setting. Another improvement would be to

find conditions for the convergence of
∑

t P(|(θ̂t − θtrue)
TXt| > ε), transforming our regret in expectation to a regret

with high probability.

Also, as though we focused on logistic regression, it seems to us that our approach might be applied to any Generalized
Linear Model.
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A Details for the proof of Theorem 1

Proof of Lemma 2. Let S
(i)
t (θ) = ∂

∂θi

[

t−1
∑

s=1
ls(ys, θ) +

1
2θ

T P̃−1
1 θ

]

be the ith coordinate of St(θ). We prove that

∣

∣

∣S
(i)
t+1(θ̃t+1)− S

(i)
t (θ̃t)

∣

∣

∣ ≤
DX

(

1 + eD
)

4

XT
t P̃t+1Xt

(1 + eytθ̃T
t Xt)2

. (6)

Applying a Taylor expansion, there exists 0 < α
(i)
t < 1 satisfying

S
(i)
t+1(θ̃t+1)−S

(i)
t+1(θ̃t)−

(

∂S
(i)
t+1(θ)

∂θ

∣

∣

∣

θ̃t

)T

(θ̃t+1− θ̃t) =
1

2
(θ̃t+1− θ̃t)

T

(

∂2S
(i)
t+1(θ)

∂θ2

∣

∣

∣

θ̃t+α
(i)
t (θ̃t+1−θ̃t)

)

(θ̃t+1− θ̃t).

Thanks to the update of θ̃t+1, we have the relation

S
(i)
t+1(θ̃t)− S

(i)
t (θ̃t) +

(

∂S
(i)
t+1(θ)

∂θ

∣

∣

∣

θ̃t

)T

(θ̃t+1 − θ̃t) = 0.

Therefore, summing last two identities, we get

S
(i)
t+1(θ̃t+1)− S

(i)
t (θ̃t) =

1

2
(θ̃t+1 − θ̃t)

T

(

∂2S
(i)
t+1(θ)

∂θ2

∣

∣

∣

θ̃t+α
(i)
t (θ̃t+1−θ̃t)

)

(θ̃t+1 − θ̃t).

From the definition of the logistic loss, we identify

∂2S
(i)
t+1(θ)

∂θ2
= −

t
∑

s=1

X
(i)
s XsX

T
s (e

θTXs − e−θTXs)

(1 + eθTXs)2(1 + e−θTXs)2
, θ ∈ R

d.

Using the bound
|eθ

T Xs−e−θT Xs |

(1+eθT Xs )(1+e−θT Xs )
< 1, we have

∣

∣

∣

∣

∣

1

2
(θ̃t+1 − θ̃t)

T

(

∂2S
(i)
t+1(θ)

∂θ2

∣

∣

∣

θ̃t+α(θ̃t+1−θ̃t)

)

(θ̃t+1 − θ̃t)

∣

∣

∣

∣

∣

≤ DX

2
(θ̃t+1 − θ̃t)

T

(

t
∑

s=1

XsX
T
s

(1 + e(θ̃t+α(i)(θ̃t+1−θ̃t))TXs)(1 + e−(θ̃t+α(i)(θ̃t+1−θ̃t))TXs)

)

(θ̃t+1 − θ̃t).

11
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Noticing that

1

(1 + e(θ̃t+α(i)(θ̃t+1−θ̃t))TXs)(1 + e−(θ̃t+α(i)(θ̃t+1−θ̃t))TXs)
<

1 + eD

2

1

(1 + eθ̃
T
t Xs)(1 + e−θ̃T

t Xs)
,

we obtain
(

t
∑

s=1

XsX
T
s

(1 + e(θ̃t+α(i)(θ̃t+1−θ̃t))TXs)(1 + e−(θ̃t+α(i)(θ̃t+1−θ̃t))TXs)

)

≺ 1 + eD

2
P̃−1
t+1.

Combining our findings with the updates θ̃t+1 − θ̃t = P̃t+1
ytXt

1+eytθ̃
T
t Xt

yields Eqn. (6). The desired result follows

easily as
∥

∥

∥St+1(θ̃t+1)− St(θ̃t)
∥

∥

∥ ≤
√
d max
1≤i≤d

∣

∣

∣S
(i)
t+1(θ̃t+1)− S

(i)
t (θ̃t)

∣

∣

∣ .

Proof of Proposition 3. For any 1 ≤ s ≤ t ≤ n we have 1

(1+eθ̃
T
t Xs )(1+e−θ̃Tt Xs )

> 1
2(1+eD) and

XsX
T
s

(1 + eθ̃
T
t Xs)(1 + e−θ̃T

t Xs)
≻ XsX

T
s

2(1 + eD)
.

Summing this inequality along with 1 > 1
2(1+eD)

and P̃−1
1 ≻ 0 yields

P̃−1
t+1 = P̃−1

1 +

t
∑

s=1

XsX
T
s

(1 + eθ̃
T
t Xs)(1 + e−θ̃T

t Xs)
≻ 1

2(1 + eD)

(

P̃−1
1 +

t
∑

s=1

XsX
T
s

)

.

Using that if A and B are positive definite matrices, A ≻ B =⇒ A−1 ≺ B−1, we get

P̃t+1 ≺ 2(1 + eD)

(

P̃−1
1 +

t
∑

s=1

XsX
T
s

)−1

.

We then apply Lemma 11.11 of Cesa-Bianchi and Lugosi (2006) to get

XT
t

(

P̃−1
1 +

t
∑

s=1

XsX
T
s

)−1

Xt = 1−
det

(

P̃−1
1 +

t−1
∑

s=1
XsX

T
s

)

det

(

P̃−1
1 +

t
∑

s=1
XsXT

s

)

≤ log









det

(

P̃−1
1 +

t
∑

s=1
XsX

T
s

)

det

(

P̃−1
1 +

t−1
∑

s=1

XsXT
s

)









,

thanks to the inequality 1− x ≤ log(1/x) for any x > 0. As 1

(1+eθ̃
T
t Xt )(1+e−θ̃Tt Xt )

≤ 1
4 , we get

XT
t P̃t+1Xt

(1 + eθ̃
T
t Xt)(1 + e−θ̃T

t Xt)
≤ 1 + eD

2
log









det

(

P̃−1
1 +

t
∑

s=1
XsX

T
s

)

det

(

P̃−1
1 +

t−1
∑

s=1
XsXT

s

)









.

Summing from 1 to n− 1, we obtain

n−1
∑

t=1

XT
t P̃t+1Xt

(1 + eθ̃
T
t Xt)(1 + e−θ̃T

t Xt)
≤ 1 + eD

2
log









det

(

P̃−1
1 +

n−1
∑

s=1
XsX

T
s

)

det(P̃−1
1 )









=
1 + eD

2
log

(

det

(

I + p1

n−1
∑

s=1

XsX
T
s

))

,

12
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because P̃1 = p1I . The biggest eigenvalue of

(

I + p1
n−1
∑

s=1
XsX

T
s

)

is bounded by 1 + p1
n−1
∑

s=1
XT

s Xs. We get

det

(

I + p1

n−1
∑

s=1

XsX
T
s

)

≤
(

1 + p1

n−1
∑

s=1

XT
s Xs

)d

≤
(

1 + p1(n− 1)D2
X

)d
.

and that concludes the proof.

B Details for the proof of Theorem 6

Proof of Proposition 4. We develop the expectation

Ey∼p(y|X,θtrue)

[

yXT (θtrue − θ)

1 + eyθTX

]

=
(θtrue − θ)TX

(1 + eθTX)(1 + e−θTX)

[

1 + e−θTX

1 + e−θT
trueX

− 1 + eθ
TX

1 + eθ
T
trueX

]

.

Therefore, we bound
[

1+e−θT X

1+e−θTtrueX
− 1+eθ

T X

1+eθ
T
trueX

]

in terms of XT (θtrue − θ). We first rearrange it:

1 + e−θTX

1 + e−θT
trueX

− 1 + eθ
TX

1 + eθ
T
trueX

=

(

1 +
e−θTX − e−θT

trueX

1 + e−θT
trueX

)

−
(

1 +
eθ

TX − eθ
T
trueX

1 + eθ
T
trueX

)

=
e(θtrue−θ)TX − 1

1 + eθ
T
trueX

− e−(θtrue−θ)TX − 1

1 + e−θT
trueX

.

There exists |α| ≤ |(θtrue − θ)TX | such that

e(θtrue−θ)TX − 1

1 + eθ
T
trueX

− e−(θtrue−θ)TX − 1

1 + e−θT
trueX

=

[

eα

1 + eθ
T
trueX

+
e−α

1 + e−θT
trueX

]

XT (θtrue − θ).

As the function x → a
1+x + b

1+1/x is monotonic with limits a and b in 0 and +∞ respectively, we get

e−(θtrue−θ)TX <
eα

1 + eθ
T
trueX

+
e−α

1 + e−θT
trueX

< e(θtrue−θ)TX .

Proof of Proposition 5. We define St+1 =

(

I +
t
∑

s=1
XsX

T
s

)−1

. As St ≺ Pt ≺ 2(1 + eD)St, we give the desired

results first on St and the desired results on Pt follow easily.

We first give a lower bound on E[St+1XtX
T
t | X1, y1, . . . , Xt−1, yt−1]. Using the relation St+1 = St − StXtX

T
t St

1+XT
t StXt

,

we write

St+1XtX
T
t = StXtX

T
t − StXtX

T
t St

1 +XT
t StXt

XtX
T
t =

1

1 +XT
t StXt

StXtX
T
t .

Noting that St < I , ‖Xt‖ ≤ DX , and StXtX
T
t < 0 as a rank-one matrix with eigenvalue XT

t StXt > 0, we get

St+1XtX
T
t <

StXtX
T
t

1+D2
X

. It implies

E[St+1XtX
T
t | X1, y1, . . . , Xt−1, yt−1] <

1

1 +D2
X

E[StXtX
T
t | X1, y1, . . . , Xt−1, yt−1]

=
1

1 +D2
X

StE[XtX
T
t | X1, y1, . . . , Xt−1, yt−1] .

The independence hypothesis yields E[XtX
T
t | X1, y1, . . . , Xt−1, yt−1] = E[XXT ]. Also, from λmax(S

−1
t ) ≤

1 + (t− 1)D2
X we obtain λmin(St) ≥ 1

1+(t−1)D2
X

≥ 1
t(1+D2

X )
. Therefore

λmin(E[St+1XtX
T
t | X1, y1, . . . , Xt−1, yt−1]) ≥

1

1 +D2
X

λmin(St)λmin(E[XXT ]) ≥ λmin

t(1 +D2
X)2

.

13
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In order to get an upper bound on λmax(E[P
2
t+1]), we first bound P

(

λmax(St) >
2

tλmin

)

. Then we estimate

λmax(E[P
2
t+1]) ≤ E[λmax(P

2
t+1)] ≤ 4(1 + eD)2E[λmax(St)

2] with

E[λmax(St)
2] = E[λmax(St)

2
1λmax(St)>

2
tλmin

] + E[λmax(St)
2
1λmax(St)≤

2
tλmin

]

≤ P

(

λmax(St) >
2

tλmin

)

+
4

t2λ2
min

,

because λmax(St) ≤ 1 and P

(

λmax(St) ≤ 2
tλmin

)

≤ 1.

We control the deviations of λmax(St) first by centering as

P

(

λmax(St) >
2

tλmin

)

= P

(

λmin(S
−1
t ) <

λmin

2
t

)

= P

(

λmin

(

t
∑

s=1

XsX
T
s

)

<
λmin

2
t− 1

)

≤ P

(

λmin

(

t
∑

s=1

XsX
T
s

)

<
λmin

2
t

)

= P

(

λmin

(

t
∑

s=1

XsX
T
s

)

− tλmin(E[XXT ]) < −λmin

2
t

)

.

Then we want to show that XsX
T
s and E[XXT ] are commuting in order to rewrite the centered smallest eigenvalue

as the smallest eigenvalue of a centered matrix and apply the Bernstein inequality of Tropp (2011) on it. We note that
XsX

T
s E[XXT ] is a rank-one matrix with eigenvalue XT

s E[XXT ]Xs > 0 if Xs 6= 0. Therefore XsX
T
s E[XXT ] < 0

is symmetric and XsX
T
s E[XXT ] = (XsX

T
s E[XXT ])T = E[XXT ]XsX

T
s . Similarly, we get that

∑t
1 XsX

T
s and

E[XXT ] are commuting, thus they are simultaneously diagonalizable. Using their joint diagonalization, we infer that

λmin

(

t
∑

s=1

(XsX
T
s − E[XXT ])

)

≤ λmin

(

t
∑

s=1

XsX
T
s

)

− λmin

(

t
∑

s=1

E[XXT ]

)

.

Combining those results, we obtain that

P

(

λmax(St) >
2

tλmin

)

≤ P

(

λmin

(

t
∑

s=1

(XsX
T
s − E[XXT ])

)

< −λmin

2
t

)

= P

(

λmax

(

t
∑

s=1

(E[XXT ]−XsX
T
s )

)

>
λmin

2
t

)

.

We apply Theorem 1.3 of Tropp (2011) which is a Bernstein inequality on the largest eigenvalue of sums of indepen-
dent centered matrices. We check the conditions:

• E
[

E[XXT ]−XsX
T
s

]

= 0,

• λmax(E[XXT ]−XsX
T
s ) ≤ D2

X a.s.,

• from ‖Xs‖ ≤ D2
X as 0 4 E

[

(E[XXT ]−XsX
T
s )

2
]

4 E
[

(XsX
T
s )

2
]

, the largest singular value of

E
[

(E[XXT ]−XsX
T
s )

2
]

is upper-bounded by D4
X .

Therefore we obtain

P

(

λmax

(

t
∑

s=1

(E[XXT ]−XsX
T
s )

)

> u

)

≤ d exp

(

− u2/2

tD4
X +D2

Xu/3

)

, u > 0.

14



A PREPRINT - FEBRUARY 22, 2019

Applying it with u = λmin

2 t, we get

P

(

λmax(St) >
2

tλmin

)

≤ d exp

(

− (λmin/2)
2t2/2

tD4
X +D2

X(λmin/2)t/3

)

= d exp

(

−t
λ2
min/8

D4
X +D2

Xλmin/6

)

≤ 1

t3
27de−3

(

D4
X +D2

Xλmin/6
)3

(λ2
min/8)

3
,

because max
x∈R

(e−axx3) = 27e−3

a3 for any a > 0. Therefore the desired result is obtained as

E[λmax(St)
2] ≤ 4

λ2
mint

2

(

1 +
1

t

2de−3
(

3D4
X +D2

Xλmin/2
)3

(λ2
min/8)

2

)

.

Proof of Corollary 7. Denoting Et = Et

[

ytX
T
t

1+eytθ̂
T
t Xt

]

(θtrue − θ̂t) and Qt =
(θtrue−θ̂t)

TXtX
T
t (θtrue−θ̂t)

(1+eθ̂
T
t Xt )(1+e−θ̂Tt Xt )

, we have the

sandwich relationship e−εQt < Et < eεQt according to Proposition 4. Therefore we obtain

Et − cQt > (e−ε − c)Qt >
e−ε − c

eε
Et,

and the Corollary follows.

Proof of Lemma 9. We start from the Kalman recursion

P−1
t+1 = P−1

t +
1

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)
XtX

T
t ,

θ̂t+1 = θ̂t + Pt+1
ytXt

1 + eytθ̂T
t Xt

. (7)

Multiplying Equation (7) by P−1
t+1 and (7) and subtracting θtrue, we obtain

(θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue) = (θ̂t − θtrue)
TP−1

t+1(θ̂t − θtrue) +
XT

t Pt+1Xt

(1 + eytθ̂T
t Xt)2

+ 2
ytX

T
t

1 + eytθ̂T
t Xt

(θ̂t − θtrue),

yielding the following equality:

∑

t∈Tε

(

(
ytXt

1 + eytθ̂T
t Xt

)T (θtrue − θ̂t)−
1

2
(θ̂t − θtrue)

T (P−1
t+1 − P−1

t )(θ̂t − θtrue)

)

=
1

2

∑

t∈Tε

XT
t Pt+1Xt

(1 + eytθ̂T
t Xt)2

+
1

2

∑

t∈Tε

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

=
1

2

n
∑

t=1

XT
t Pt+1Xt

(1 + eytθ̂T
t Xt)2

+
1

2

n
∑

t=1

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

− 1

2

∑

t/∈Tε

XT
t Pt+1Xt

(1 + eytθ̂T
t Xt)2

− 1

2

∑

t/∈Tε

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

.

As
∑

t/∈Tε

XT
t Pt+1Xt

(1+eytθ̂
T
t

Xt )2
≥ 0, we obtain

∑

t∈Tε

(

(
ytXt

1 + eytθ̂T
t Xt

)T (θtrue − θ̂t)−
1

2
(θtrue − θ̂t)

T (P−1
t+1 − P−1

t )(θtrue − θ̂t)

)

≤ 1

2

n
∑

t=1

XT
t Pt+1Xt

(1 + eytθ̂T
t Xt)2

+
1

2

n
∑

t=1

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

− 1

2

∑

t/∈Tε

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

.
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Using similar arguments than in the proof of Proposition 3, we obtain

n
∑

t=1

XT
t Pt+1Xt

(1 + eytθ̂T
t Xt)2

≤ (1 + eD)

2
d log

(

1 + np1D
2
X

)

.

The telescopic sum yields the desired result

n
∑

t=1

(

(θ̂t − θtrue)
TP−1

t (θ̂t − θtrue)− (θ̂t+1 − θtrue)
TP−1

t+1(θ̂t+1 − θtrue)
)

≤ 1

p1
‖θtrue‖2.

Proof of Lemma 10. We apply Lemma B.1 of Bercu and Touati (2008)) on the martingale difference

∆Mt1|XT
t (θ̂t−θtrue)|<ε (as XT

t (θ̂t − θtrue) is adapted to the filtration σ(X1, y1, . . . , Xt−1, yt−1, Xt)) in order to ob-

tain

E

[

exp

(

∑

t∈Tε

(

λ∆Mt −
λ2

2
((∆Mt)

2 + Et[(∆Mt)
2])

)

)]

≤ 1, λ > 0 .

We will prove that

(∆Mt)
2 + Et[(∆Mt)

2]) ≤ 2(1 + eD)
(θtrue − θ̂t)

TXtX
T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)
(8)

in order to achieve

E

[

exp

(

∑

t∈Tε

(

λ∆Mt − λ2(1 + eD)
(θtrue − θ̂t)

TXtX
T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

))]

≤ E

[

exp

(

∑

t∈Tε

(

λ∆Mt −
λ2

2
((∆Mt)

2 + Et[(∆Mt)
2])

)

)]

≤ 1. (9)

We obtain the inequality (8) by first developing the quadratic term Et[(∆Mt)
2]) as

Et[(∆Mt)
2]) = (θtrue − θ̂t)

T XtX
T
t

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)
(θtrue − θ̂t)Et

[

1 + e−ytθ̂
T
t Xt

1 + eytθ̂T
t Xt

]

,

Et

[

1 + e−ytθ̂
T
t Xt

1 + eytθ̂T
t Xt

]

=
1 + e−θ̂T

t Xt

(1 + eθ̂
T
t Xt)(1 + e−θT

trueXt)
+

1 + eθ̂
T
t Xt

(1 + e−θ̂T
t Xt)(1 + eθ

T
trueXt)

=
a

1 + x
+

a−1

1 + x−1
,

with a = 1+e−θ̂Tt Xt

1+eθ̂
T
t

Xt
and x = e−θT

trueXt . As the function x → a
1+x + a−1

1+1/x is monotonic with limits a and a−1 in 0

and +∞, we get Et

[

1+e−ytθ̂
T
t Xt

1+eytθ̂
T
t Xt

]

≤ 1+eD

1+e−D < 1 + eD. To conclude to the inequality (8) we write

(∆Mt)
2 =

(θtrue − θ̂t)
TXtX

T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

1 + eytθ̂
T
t Xt

1 + e−ytθ̂T
t Xt

,

and we notice that 1+eytθ̂
T
t Xt

1+e−ytθ̂
T
t Xt

≤ 1+eD

1+e−D < 1 + eD. Therefore the inequality (8) is proved.

Using (9) and the Chernoff’s bound, we get for any α, γ > 0 and λ = α/(1 + eD),

P

(

∑

t∈Tε

(

∆Mt − α
(θtrue − θ̂t)

TXtX
T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

)

> γ

)

≤ exp(−λγ)E

[

exp

(

∑

t∈Tε

(

λ∆Mt − λ2(1 + eD)
(θtrue − θ̂t)

TXtX
T
t (θtrue − θ̂t)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)

))]

≤ e
− αγ

1+eD .

Setting γ = 1+eD

α log(δ−1) for any δ > 0 yields the result.
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Proof of Lemma 13. We use power functions of ‖θ̂t+1 − θtrue‖2 identified as

(θ̂t+1 − θtrue)
T (θ̂t+1 − θtrue) = (θ̂t − θtrue)

T (θ̂t − θtrue) + 2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

+
XT

t P
2
t+1Xt

(1 + eytθ̂T
t Xt)2

.

Developing the power function of order k, we obtain

‖θ̂t+1 − θtrue‖2k =

(

‖θ̂t − θtrue‖2 + 2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)k

+
XT

t P
2
t+1Xt

(1 + eytθ̂T
t Xt)2

k
∑

i=1

(

k

i

)

(

‖θ̂t − θtrue‖2 + 2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)k−i(

XT
t P

2
t+1Xt

(1 + eytθ̂T
t Xt)2

)i−1

.

By definition we note that Pt+1 4 P1 = p1I so that
∣

∣

∣

∣

∣

‖θ̂t − θtrue‖2 + 2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

∣

∣

∣

∣

∣

≤ ‖θ̂t − θtrue‖2 + 2p1‖θ̂t − θtrue‖‖Xt‖ ≤ 4D2
θ + 2p1DθDX ,

and
XT

t P
2
t+1Xt

(1 + eytθ̂T
t Xt)2

≤ p21D
2
X .

Assumption 2 gives the rate

E

[

XT
t P

2
t+1Xt

(1 + eytθ̂T
t Xt)2

]

≤ M2

4t2
.

Summing those bounds in the binomial expansion of order k, we get

E





XT
t P

2
t+1Xt

(1 + eytθ̂T
t Xt)2

k
∑

i=1

(

k

i

)

(

‖θ̂t − θtrue‖2 + 2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)k−i(

XT
t P

2
t+1Xt

(1 + eytθ̂T
t Xt)2

)i−1




≤ M2

4t2
1

p21D
2
X

k
∑

i=1

(

k

i

)

(

4D2
θ + 2p1DθDX

)k−i (
p21D

2
X

)i ≤ bk,1
t2

,

with bk,1 = M2

4p2
1D

2
X

(

4D2
θ + 2p1DθDX + p21D

2
X

)k
. Similarly, we use again the binomial expansion of order k in order

to obtain

(

‖θ̂t − θtrue‖2 + 2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)k

= ‖θ̂t − θtrue‖2k + 2k ‖θ̂t − θtrue‖2(k−1) (θ̂t − θtrue)
TPt+1ytXt

1 + eytθ̂T
t Xt

+

(

2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)2 k
∑

i=2

(

k

i

)

‖θ̂t − θtrue‖2(k−i)

(

2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)i−2

.

We use again the elementary bound
∣

∣

∣

∣

∣

2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

∣

∣

∣

∣

∣

≤ 2p1DθDX ,

and the following estimate which holds under Assumption 2

E





(

2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)2


 ≤ (4Dθ)
2
E
[

XT
t P

2
t+1Xt

]

≤ (4Dθ)
2M2

t2
.

Summing the terms in the binomial expansion of order k we get

E





(

2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)2 k
∑

i=2

(

k

i

)

‖θ̂t − θtrue‖2(k−i)

(

2
(θ̂t − θtrue)

TPt+1ytXt

1 + eytθ̂T
t Xt

)i−2


 ≤ b2,k
t2

,
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with

b2,k = (4Dθ)
2M2

1

(2p1DθDX)2
(4D2

θ + 2p1DθDX)k =
4M2

p21D
2
X

(4D2
θ + 2p1DθDX)k.

Hence we have

E

[

‖θ̂t+1 − θtrue‖2k
]

≤ E

[

‖θ̂t − θtrue‖2k
]

+ 2kE

[

‖θ̂t − θtrue‖2(k−1) (θ̂t − θtrue)
TPt+1ytXt

1 + eytθ̂T
t Xt

]

+
bk
t2
,

with bk ≥ b1,k + b2,k. We then apply Proposition 4 deriving

Et

[

yt

1 + eytθ̂T
t Xt

]

= − XT
t (θ̂t − θtrue)

(1 + eθ̂
T
t Xt)(1 + e−θ̂T

t Xt)
ct ,

with e−D < ct < eD and the tower property in order to obtain

E

[

‖θ̂t+1 − θtrue‖2k
]

≤ E

[

‖θ̂t − θtrue‖2k
]

− kct
1 + eD

E

[

‖θ̂t − θtrue‖2(k−1)(θ̂t − θtrue)
T
(

Pt+1XtX
T
t

)

(θ̂t − θtrue)
]

+
bk
t2

.

Then Assumption 1 applied thanks to the tower property yields

E

[

‖θ̂t+1 − θtrue‖2k
]

≤ E

[

‖θ̂t − θtrue‖2k
]

(

1− e−Dkm1

t(1 + eD)

)

+
bk
t2
.

Proof of Corollary 14. Defining lt = E

[

‖θ̂t − θtrue‖2k
]

and according to Lemma 13 we have the inequality

lt+1 ≤ lt

(

1− ka

t

)

+
bk
t2
, t ≥ 1 .

By a recursive argument it yields to the estimate for t ≥ 2

lt ≤
t−1
∑

τ=1

bk
τ2

t−1
∏

s=τ+1

(

1− ka

s

)

+ l1

t−1
∏

s=1

(

1− ka

s

)

≤
t−1
∑

τ=1

bk
τ2

t−1
∏

s=τ+1

(

1− ka

s

)

,

because l1 > 0, 1− ka < 0 and for s > 1, 1− ka
s > 0. Moreover, taking the logarithm of the products, we estimate

t−1
∑

s=τ+1

log
(

1− ka

s

)

≤ −ka

t−1
∑

s=τ+1

1

s
≤ −ka

t
∫

τ+1

du

u
= ka (log(τ + 1)− log(t)) .

It provides the bound
t−1
∏

s=τ+1

(1 − ka

s
) ≤ (τ + 1)ka

tka
,

yielding the estimate

lt ≤
bk
tka

t−1
∑

τ=1

(τ + 1)ka−2

(

τ + 1

τ

)2

≤ 4bk
tka

t−1
∑

τ=1

(τ + 1)ka−2.

As −1 < ka− 2 < 0, we infer that

t−1
∑

τ=1

(τ + 1)ka−2 ≤
t
∫

1

uka−2du =
1

ka− 1
(tka−1 − 1),

so that

lt ≤
4bk

ka− 1
(
1

t
− 1

tka
),

and Corollary 14 follows for t ≥ 2.
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