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SUMMARY 
The interpretation of long wavelength geoid and plate motions on the basis of 
dynamic Earth models has usually been done assuming linear viscous rheologies in 
the mantle. In this paper, we develop spherical 3-D models of mantle circulation 
using power-law creep rheologies with an exponent n = 3. We found that the 
stress-dependent rheologies only modify the amplitude of the topography supported 
by an internal load, by a small percentage with respect to the linear predictions. The 
geoid anomalies induced by internal loads can be affected by around 20 per cent. 
These changes are also occurring at degrees and orders different from those of the 
mass anomaly itself. As the geoid spectrum is strongly decreasing with degree, the 
dynamic topography induced at high degrees can be contaminated in a non- 
negligible way by the low degree loads. The main contamination occurs at a 
harmonic triple of that of the most important load. The flow structure is much more 
dependent on the creep law than are the dynamic topography and the geoid. In 
contrast to linear rheology, a power-law creep is able to sustain a toroidal velocity 
field. However, this toroidal component only carries a small percentage of the 
kinetic energy and thus the non-linear creep with n = 3 cannot by itself explain the 
observed quasi-equipartition of plate tectonic energy between toroidal and poloidal 
components. 

Key words: geoid, non-linear rheology , plate motions. 

1 INTRODUCTION 

Since the 1980s, the global mantle dynamics has received 
renewed attention. Large scale asphericities have been 
revealed by seismic tomography (Dziewonski 1984; Wood- 
house & Dziewonski 1984; Nataf, Nakanishi & Anderson 
1986; Montagner & Tanimoto 1991). The nature of their 
relationships with the non-hydrostatic geoid is better 
understood (Ricard, Fleitout & Froidevaux 1984; Richards 
& Hager 1984) and a great effort is devoted to finding a 
consistent model of the mantle circulation of the Earth. 
Such a model has not only to satisfy the constraints imposed 
by seismic tomography but also to explain the gravitational 
field anomalies and the observed plate motion. This effort 
results in a number of models more or less consistent with 
observables (Hager et al. 1985; Forte & Peltier 1987; Ricard 
& Vigny 1989; Ricard & Bai Wuming 1991; Hager & 
Clayton 1989). The main conclusion of the above quoted 
papers is that a viscosity increase with depth is requested by 
the data. This viscosity increase is probably larger than a 

factor 10. However, different viscosity stratifications lead to 
an acceptable fit with the observations. Even the nature of 
the 670-km depth boundary cannot be constrained 
unambiguously by these models. If the mantle heteroge- 
neities are of thermal origin, only models in which the flow 
can cross the upper-lower mantle interface explain the data. 
On the other hand, if one assumes that the strong upper 
mantle seismic heterogeneities are related to compositional 
changes and are not associated with lateral density 
heterogeneities, a two-layered mantle also satisfies the 
observations (Ricard, Vigny & Froidevaux 1989). 

Besides their non-uniqueness, these models have a severe 
limitation: they are based on the assumption of a simple 
Newtonian rheology. This rheology is compatible with 
geophysical evidence but this cannot obscure the fact that 
the linear rheology was mainly chosen to simplify the 
analytical treatment of the problem. The question remains 
whether such a simplification is really justified. Microphysi- 
cal analysis of creep mechanisms in polycrystalline silicates 
leads to the conclusion that processes in the mantle are most 
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probably governed by a non-linear constitutive law (Ranalli 
1991). If this is the case, the geodynamical models derived 
under the assumption of Newtonian rheology may be 
seriously biased. 

Several 2-D simulations of non-Newtonian convection 
have been performed (e.g. Parmentier, Turcotte & 
Torrance 1976; Cserepes 1982; Christensen 1984; Van Den 
Berg, Yuen & Van Keken 1992; Malevsky & Yuen 1992). 
Although the first 3-D computations of non-linear 
convection have already been reported (Christensen & 
Harder 1991), the sensitivity of 3-D solutions to the form of 
the constitutive law has not yet been satisfactorily described. 

In the present paper, we compute and compare the flows 
induced by simple loads in a spherical shell for both 
Newtonian and non-Newtonian rheologies. The goal of this 
comparison is to emphasize the differences between linear 
and non-linear solutions and to estimate the limits of the 
classical linear modelling. The plan of our paper is as 
follows. In section 2, we formulate the forward problem of 
the mantle flow. In the Newtonian case, the problem is 
usually solved by means of a matrix propagator method. 
The non-linear problem requires a different approach. In 
this paper we employ the variational formalism discussed in 
section 3. The computations are performed for a 
rheologically homogeneous mantle shell with steady-state 
power-law creep. We only consider a stress exponent n = 3, 
a value which corresponds to the creep exponent found for 
olivine. To recognize easily the effects associated with a 
non-linear rheology, very simple driving forces, namely the 
buoyancy forces associated with simple harmonic loads, are 
prescribed. 

The main results are discussed in section 4. The major 
attention is focused on the differences betweeen non-linear 
and Newtonian flow. We divide somewhat arbitrarily these 
differences into two effects. The first is the leakage of energy 
into modes different from the mode of the driving force. 
The second is the generation of a toroidal velocity field. 
Finally, we apply our understanding of non-linear behaviour 
to the interpretation of the geoid of the Earth and of the 
surface plate motions. 

2 BASIC EQUATIONS 

The flow in the mantle of the Earth induced by a body force 
f is governed by the equations of mass and momentum 
conservations, 

v . v = o ,  
v * t + f = 0. 

where v denotes the velocity and z is the stress tensor. 
Equation (1) assumes that the mantle is incompressible. We 
ignore the inertial forces in equation (2) since the mantle 
has a very large Prandtl number. We also neglect 
self-gravitation although we know that its effects can be 
significant at very long wavelengths. The mechanical 
behaviour of mantle material is characterized by the 
following rheological equation that relates the strain-rate 
tensor L. to the stress tensor r :  

L. = L . ( t ) .  (3) 
The form of stress-strain relationship (3) depends on 

external physical conditions (temperature, pressure), 
microphysical state of the material (grain size), and on 
material parameters (lattice parameters, shear modulus. . .). 
Under a wide range of physical conditions, the mechanical 
behaviour of silicates and oxides can be described as follows 
(Ashby & Verrall 1977; Ranalli 1991): 

= A ( D : D ) ( ~ - ~ ) / ~ D ,  (4) 
where D denotes the deviatoric part of stress tensor t, 
D:D = DjjD,, and n is a material constant. The other 
external and internal parameters are included in the factor 
A which is a function of spatial variables. 

The Newtonian flow is characterized by n = 1. In this 
case, equation (4) reads 

(5) 

where the Newtonian viscosity 7 ,  has been substituted for 
1/2A. The Newtonian viscosity in equation (5) as well as the 
parameter A in equation (4) are material parameters and 
thus, stress independent. Formally, equation (5) can also be 
used for non-Newtonian flow. In this case, however, an 
effective viscosity f j  is introduced. This viscosity is not a 
material parameter since it depends on stresses according to: 

The rheology of olivine and perovskite has recently been 
reviewed by Ranalli (1991). Extrapolation of laboratory 
experiments on olivine and their analysis by means of 
deformation maps lead to the conclusion that the upper 
mantle rheology could be predominantly non-Newtonian 
with an exponent close to 3. This conclusion is supported by 
observations of seismic anisotropy which cannot be 
explained satisfactorily by a linear creep mechanism (Karat0 
1988). In the lower mantle, the situation is more complex. 
Since direct laboratory investigations of perovskite are not 
yet possible, we can only rely on a few studies peformed on 
materials with analogue perovskite structure (Poirier et af. 
1983; Beauchesne & Poirier 1989). Unfortunately, the 
results of these studies are still inconclusive as n = 1 as well 
as n close to 3.5 have been suggested. The form of the 
constitutive law governing the flow in the lower mantle still 
remains uncertain. In the present paper, we deal only with a 
non-linear flow characterized by a stress exponent n = 3. 
This value is consistent with the results of laboratory 
experiments on olivine and is also relevant in the lower 
mantle provided that the mechanical behaviour of 
perovskite is non-linear. 

The solution of the Stokes problem defined by equations 
(1)-(3) requires the choice of appropriate boundary 
conditions. They can be formulated in terms of velocities, 

v = U  on r, (7) 

of stresses, 

t - v = T o n  r, (8) 

or as a mixed boundary condition like the usual free-slip 
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condition, 

v - v = 0, and 

In equations (7), (8) and (9), r represents the surface of the 
Earth and the core-mantle boundary, v is the unit outer 
normal to r, and T is the surface forces acting on r. In 
mantle flow modelling, the mixed free-slip boundary 
condition (9), corresponding to a zero radial velocity and a 
vanishing shear stress at the boundaries, has generally been 
used. The mantle flow driven by the observed plate motion 
has also been studied by means of models using equation (7) 
(e.g. Hager 8~ O'Connell 1979). The goal of the present 
study is mainly to show the differences between Newtonian 
and non-Newtonian flows. That is why we will also prescribe 
the simple no-slip boundary condition 

t - v - ( v  - t - v)v = 0 on I-. (9) 

v=Oon  r, (10) 
at both boundaries of the mantle. The boundary condition 
(10) is not very relatistic, at least at the core-mantle 
interface, but it leads to a very simple variational 
formulation of the Stokes problem (see section 3) and allows 
a demonstration of some non-linear effects. 

Assuming a Newtonian mantle with a spherically 
symmetric viscosity structure the problem governed by 
equations ( l ) ,  (2) and (5) can be solved by a standard 
spectral method. The body force f as well as the unknown 
functions z and v are expanded in terms of spherical 
harmonics and introduced into the appropriate equations. In 
this way, the partial differential equations, originally 
containing derivatives with respect to spatial coordinates, 
are decomposed according to degrees, and orders into sets 
of ordinary differential equations containing only functions 
of the radius. There are no couplings between unknowns of 
different spectral characteristics. For each degree and order, 
the equations can be solved analytically in some simple cases 
or numerically by a matrix propagator method (Gantmacher 
1960). If the viscosity also depends on angular coordinates 
or if the rheology is non-linear the direct application of a 
matrix propagator technique is impossible. In that case, the 
ordinary differential equations for different degrees and 
orders are mutually coupled and all the non-linear equations 
must be solved simultaneously. The rules of mode coupling 
have been discussed elsewhere (Stewart 1992). When lateral 
viscosity variations are confined within a thin shell, solutions 
can be obtained for surface driven flows (Ricard, 
Froidevaux & Fleitout 1988) or for a real Stokes flow 
induced by internal loads (Ribe 1992). 

Recently, some attention has been paid to a modification 
of the propagator technique for a more general case. By 
applying substitutions the problem can be reformulated so 
that the coupling terms are included in a formal body force. 
In this way, the equations are formally similar to those 
describing the flow in a shell with spherically symmetric 
viscosity. The solution of the problem is then found by 
applying an iterative procedure in which the solution found 
at the ith step is used to modify the source term in equations 
solved at the ( i  + 1)th step. Using this semi-spectral iterative 
procedure, Colin & Fleitout (1991) deal with lateral 
viscosity variations in a Newtonian case with axi-symmetric 
geometry. Zhang & Christensen (1991) use a similar 
strategy to solve the same problem, but with a more general 
geometry. 

3 VARIATIONAL FORMULATION OF THE 
STOKES PROBLEM 

In general, physical processes can be formulated either in 
terms of differential equations or by means of integral 
relationships. The integral formulation is usually based on 
the energy balance or on applying variational principles to 
energy. The variational principles are very suitable for 
mathematical analysis as well as for numerical treatment of 
problems. From a physical point of view, they have the 
attractive feature of providing a deep insight into the physics 
of the problem. In this section, we present a variational 
formulation of the Stokes problem and we show it is a 
powerful tool for modelling the non-linear flow in the 
mantle. 

Let us consider the following functional F of three 
independent variables, the deviatoric stresses D,  the 
pressure p and the velocity v, 

where M is the mantle of the Earth. In equation ( l l ) ,  the 
stress tensor t is an implicit function of p and D .  The 
variation of F reads 

GF(D,p, v)= [ A(D:D)("-')''(D:dD)dV 
JM 

6 v .  ( V .  t + f) dV + V' (V * 6t) dV. I, 

I, Jr I, 

(12) 
+ I, 

By applying the Green theorem to the last term of equation 
(12) one can demonstrate that 

v - (V - 6 ~ ) d V  = ( 6 t . v )  * vdS - G t : i d V ,  (13) 

where v is the unit radial normal to the mantle boundary r. 
Combining equations (12) and (13) and employing the 
symmetry properties of both z and i, 6F(z, v) can be 
written: 

(A(D : D)"-')''D - i ) :  6 D  dV 

+ lMf@(V - v) dV + - (V - t + f) d V  

+ v * (62 - v )  dS. (14) I, 
By setting 6 F  to zero we can again derive the equations (l), 
(2), (4) and (10). This shows that equation 6F = 0 where F 
is given by equation ( l l ) ,  is equivalent to the differential 
formulation of the Stokes problem for the simple boundary 
condition (10). 

What is the physical meaning of the above variational 
formulation? The first integral in (11) represents a 
dissipative energy and only includes the deviatoric stress 
tensor. The other integral incorporates the momentum 
equation: this term vanishes if z satisfies equation (2). The 
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solution of 6F = O  corresponds to the minimum of 
dissipative energy on the set of admissible stresses and 
velocities, defined by linear constraints ( l ) ,  (2) and (10). If 
A is a constant, the dissipative energy is formally similar to 
the L++,)-norm of D. This indicates that a non-linear 
rheology tends to dampen the extremes of the deviatoric 
stress. This effect is more and more efficient as n increases. 
Fig. 1 helps to understand the shape of the functional F 
close to 6 F  = O  in a v - D  subspace. For a given v, the 
functional has a minimum in D. On the other hand, the 
functional is perfectly linear as a function of v for a constant 
D (see equation 11). In the valley of the functional F 
following the minimum of deviatoric stresses, the velocity 
reaches its maximum at the saddle point corresponding to 
the solution. From all the admissible stresses and velocities, 
the viscous system chooses the flow with the minimum 
dissipative energy and the maximum possible velocities. The 
real functional F is also pressure dependent. This arises 
from the last term of equation (11) that has an implicit 
dependence on - v - p  which in turn, shows that the 
functional has also a saddle point in the v - p  subspace, but 
for a minimum in p .  

There are several ways to find the saddle-point of 
functional F. The usual approach consists of a linearization 
of the problem by introducing an effective viscosity. This 
leads to an iterative procedure in which the value of 
effective viscosity at the (i + 1)th step is computed from the 
velocities found in the ith step. This procedure, known as 
the method of secant modules (NeEas & HlavaiSek 1981), is 
the variational analogue of the Picard method used for 2-D 
computations of non-linear time-dependent convection 
(Malevsky & Yuen 1991). Applications of the above method 
require the repeated solution of large sets of linear 
equations. 

Another approach consists of applying gradient methods. 
Although these methods usually exhibit notoriously slow 
convergence near the solution, they do have some features 
which make them attractive. First, the gradient methods 
avoid the solution of large systems of equations, at the 
expense of a larger number of iterations. As the gradient 
(equation 14) can be expressed analytically after an 
expansion into harmonic functions, each iterative step is 
easy to perform. Second, since the inaccuracies in both 
rheology and body forces in the Earth’s mantle are still very 
large, we do not need a method with an extremely high 
inner accuracy but rather a method which quickly gives the 
main features of the solution. The gradient methods satisfy 
this requirement. Moreover, we observe that the conver- 
gence generally has the form of dampened oscillations 
allowing the evaluation of the solution accuracy at each 
iteration. Third, the computation of a new solution for 
parameters close to the parameters used in a previous run is 
reached after only a few iterations. 

In the present paper, we use a gradient method based on 
the Uzawa algorithm (NeEas & HlavaEek 1981). We start an 
iterative loop by computing the gradient of F with respect to 
the deviatoric stresses D. We re-evaluate D by a line-search 
in the direction opposite to this gradient, while velocities 
and pressure are kept fixed. This brings the solution to the 
valley of the functional F depicted in Fig. 1. Then, the 
gradient with respect to velocity is computed and the 
solution is re-evaluated following this gradient, moving the 

Figure 1. Schematic behaviour of the F functional around the 
solution in the v - D subspace. The exact solution corresponds to 
the saddle point of this surface. The functional exhibits a minimum 
as a function of D but is linear in v. 

solution on a line of constant D and p of Fig. 1. A new 
estimation of pressure is then deduced from a step in the 
direction opposite to the gradient of F with respect to p. 
After these three steps, in deviatoric stress, in velocity and 
in pressure, a new loop is performed until a satisfactory 
convergence is obtained. 

The tricky part of the algorithm is to choose the length of 
the steps in pressure and velocity, as no minima are present 
in these two directions. Physically, the amplitude of these 
steps can be chosen equal to 10 bars and 1 cm per yr, as an 
example. These steps are reduced if an oscillatory behaviour 
of the solution is found with amplitude larger than an a 
prior! threshold. For geophysical purposes, an accuracy of 
0.1 per cent on parameters is sufficient. 

To express the functional F, we use a technique of 
spectral decomposition for the angular _coordinates and a 
standard differential method in radius (Cadek, Martinec & 
Matyska 1992). The usual spectral decomposition consists in 
expressing the components of vectors and tensors in terms 
of scalar spherical harmonics and of their first order 
derivatives (e.g. Hager & O’Connell 1978). Since the 
application of this technique to tensor equations may be 
cumbersome we follow Jones (1985) and use generalized 
spherical harmonics. These harmonics are equivalent to, but 
formally different from the generalized spherical harmonics 
introduced in seismology by Phinney & Burridge (1973) and 
are also used in geodynamics (Ricard, Froidevaux & 
Fleitout 1988; Ribe 1992). Our formalism leads to a spectral 
decomposition which is consistent with the general 
formulation of the problem regardless of the value of the 
parameter n. 

Fig. 2 illustrates an example of convergency of our 
algorithm. A simple harmonic load of degree 3 with 
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F i r e  2. Behaviour of the functional F and of the three sets of variables during the search for the solution. The L,-norm of the variables, 
normalized by the highest value obtained during the iteration is plotted. The convergency takes the form of dampened oscillations and the 
solution is reached after a few hundred iterations. 

amplitude constant with depth is driving a flow in a 
non-Newtonian mantle with a power-law exponent n = 3. 
The harmonic expansions are truncated at degree 15. The 
mantle is divided into 20 layers of equal thickness. In this 
computation, the steps in pressure and velocity are kept 
constant. The top left panel depicts the behaviour of the 
functional F during the iterative procedure. The three other 
panels represent the &-norms of the three sets of variables. 
After 300 iterations, a stable solution is reached. The large 
number of iterations is related to the choice of the starting 
values for the unknowns to be identical to zero. When a 
more realistic initial solution, e.g. a solution obtained with a 
linear rheology, the number of iterations can be reduced by 
a factor 10. 

The variational formulation (11) is only valid for no-slip 
boundary conditions given by equation (10) on both sides of 
the mantle. More realistic boundary conditions can be 
included in the following way 

G ( D , p , v ) = F ( D , p , v ) - l  ( t . v ) - U d S  
r, 

(t * v - T) - v dS - * V )  * (U - (U - V ) V )  dS, (15) 

where r,, rc, and rf are the different parts of the boundary 
where the conditions (7), (8) and (9) are prescribed, 

respectively. The reader can verify that SG = 0 corresponds 
to the requested solution. 

4 COMPARISON BETWEEN NEWTONIAN 
AND NON-NEWTONIAN FLOW 

The linear processes are characterized by the principle of 
superposition: if Sl(fl) and &(fJ are solutions correspond- 
ing respectively to the body forces f, and f,, then the flow 
induced by the force f, + f, is simply the sum of solutions S, 
and S,. For the non-Newtonian rheology the principle of 
superposition is not valid any more. Another elementary 
property of non-linear flow follows directly from the 
variational equations (15) and (16): for a given distribution 
of body force f and imposed no-slip or free-slip boundary 
conditions, the dependence of stress on the magnitude of 
this body force is linear regardless of the value of the creep 
exponent n. In constrast, the velocity is proportional to the 
nth power of f. In other words, if t and v solve the Stokes 
problem for a given body force f, the solutions for the body 
force a f ,  where a is a real number, are at and d v .  While 
an increase of the body force f by a factor 2 generates 
stresses two times higher, it generates a velocity increase by 
a factor 8 if n = 3. 

The method described in the previous section can be used 
for an arbitrary rheological function A and for various 
values of the stress exponent n. Here, we consider only a 
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simplified physical model of the mantle where the parameter 
A is constant with depth. In such a rheologically 
homogeneous mantle we compute the non-linear flow 
(n=3)  induced by a given distribution of the buoyancy 
force and we compare it with the Newtonian flow driven by 
the same body force distribution. 

Leakage of the dissipative energy into different modes 

In a Newtonian mantle with a spherically symmetric 
viscosity structure, a body force of a given degree and order 
can only drive a motion which has the same spectral 
characteristics. In contrast, a non-linearity of the stress- 
strain relationships leads to a partial redistribution of the 
dissipative energy among other modes. This means that a 
pure harmonic body force can drive a motion characterized 
by a large number of spectral terms. 

This feature of the non-linear flow is illustrated in Fig. 3 
where the spectral response to a simple load (I = rn = 1) is 
shown. The magnitude of the load is constant with depth 
and two different boundary conditions are used. The 
spectral amplitude of a given variable of degree 1 is the 
&-norm of its distribution throughout the mantle. The 
black circles correspond to a no-slip boundary condition (10) 
at both sides of the mantle. The results obtained for a 
free-slip condition (9) are depicted by a square. For pressure 
and deviatoric stresses, the amplitudes have been normal- 
ized by the values obtained for a linear case with free-slip 
boundary conditions. The parameter A scaling the 
amplitude of velocity is chosen to give a spectral component 
of degree 1 = 1 equal to 1 when free-slip conditions are 
applied. The term of degree 1 remains dominant but other 
non-zero modes appear. These modes are confined to odd 
degrees by symmetry. The leakage is especially visible in the 
spectra of velocity and deviatoric stress, while the pressure 
spectrum is more weakly disturbed. The components of 
degree 3 of the first two fields in the no-slip case are larger 
than 10 per cent of the amplitude of degree 1, but the 

pressure of degree 3 is less than 4 per cent of that of degree 
1. The no-slip boundary condition strongly dampens the 
velocity. It also concentrates the deviatoric stresses on both 
sides of the mantle and thus enhances the non-linear effects. 
This explains why the ratio between the fundamental 
velocity mode (I = 1) and the first excited harmonic (I = 3) is 
somewhat smaller in this case then when a free-slip 
condition is applied. 

Although the higher modes in the spectrum of velocity are 
smaller by 1 or 2 orders of magnitude than the term of 
degree 1, they are able to change considerably the global 
flow pattern. A comparison between the Newtonian and 
non-Newtonian style of circulation is given in Fig. 4 (a and 
b), where the flows at 1000 km depth are depicted. To 
emphasize the differences between the two patterns, we 
apply the no-slip conditions that lead to a larger relative 
amplitude of high modes than the free-slip conditions. The 
Newtonian viscosity and the parameter A in the non-linear 
case have been chosen so that the two flows have the same 
maximum velocity. The Newtonian flow correlates with the 
lateral distribution of the density anomaly and the maxima 
of vertical motion coincide with the maxima of the buoyancy 
force. The non-Newtonian rheology leads to a strikingly 
different pattern as the maximum of vertical motion forms a 
ring around the centre of the load. Such an effect has not 
been observed using free-slip boundary conditions. 

The fact that, between the up- and down-welling zones, 
the vertical velocity changes more abruptly in the non-linear 
case than in the Newtonian is easy to understand. The 
effective viscosity distribution shows a significant increase 
close to the centre of the load where the deviatoric stresses 
are minimum (see equation 6). Two high viscosity plugs 
tend to slow down the flow and to push it toward regions 
where the body force is somewhat smaller but where the 
viscosity is low enough to allow the material circulation 
(Froidevaux 1973). 

The simple example discussed above illustrates stumbling- 
blocks associated with the interpretation of non-linear flows 
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Figure 3. &-norm spectra of deviatoric stresses, pressure and velocity. The load exciting the flow is a pure harmonic function of degree 1 
constant with depth. The results for free-slip and no-slip boundary conditions are depicted with squares and circles, respectively. The spectra of 
pressure and deviatoric stress are normalized by their values obtained with a free-slip model computed using a linear rheology. The amplitude 
of the degree 1 velocity is scaled to 1 for the free-slip model. The non-linearity of the constitutive relationship induces terms of degrees larger 
than 1. Their amplitudes are a small percentage of the amplitude of degree 1. 
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Figure 4. Flow at the depth of lOOOkm, induced by a pure 
harmonic load of degree 1. The amplitude of the load is constant 
with depth. No-slip boundary conditions have been applied on both 
sides of the mantle. On top (a), the mantle rheology is linear. The 
bottom (b) has been computed for a rheology with power-law 
exponent n = 3. The vertical flow is shown by means of a shadow 
pattern. In the non-Newtonian case the width of the vertical 
currents widens. 

by means of an effective Newtonian model. To explain the 
velocity field shown in Fig. 4b, one would have either to 
admit a more complex density structure containing loads of 
degree 3, 5, 7 . .  . , or to introduce lateral variations of 
viscosity. Both interpretations are misleading: the former 
gives a wrong density structure, while the latter leads to the 
conclusion that regions of minimum densities have higher 
viscosities, even though they could be expected to be 
associated with hotter and less viscous material. 

The pressure is much less sensitive to the change of the 
power law exponent n than the velocity. The same is valid 
for the dynamic topography formed by the non-linear flow 
at the boundaries of the mantle. Although its shape, 
proportional to the vertical stress, is influenced by the 
velocity gradient which may strongly depend on the 
rheology, the topography at low degrees mainly reflects the 
pressure variations. The geoid undulations associated with 
internal loads are crucially dependent on the induced 
topography. In fact, the potential perturbation associated 
with only the internal masses is of the same amplitude as the 
potential perturbation associated with the topography but of 
the opposite sign (Ricard et al. 1984; Richards & Hager 
1984). As the geoid modelling in conjunction with seismic 
tomography has been used to infer the mantle viscosity 
profile, it is important to verify if the conclusions drawn 
within the framework of linear models hold for non-linear 
models. 

In the linear case, the relationships between internal loads 
and surface observables (topography, geoid, surface 

divergence field) are often expressed by means of Green 
functions. Such kernels are only meaningful when the modes 
are completely decoupled, which is not the case using 
non-linear rheologies where the responses are also a 
function of the order rn of the source. Nevertheless, to 
quantify the possible drawbacks in the interpretation of the 
long-wavelength geoid, we compute the response functions 
associated with zonal harmonics and compare them to the 
usual Green function. A response function is simply the 
response of the non-linear mantle to a load expressed as the 
product of a pure spherical harmonic by a delta function in 
radius. By symmetry, zonal harmonics distribute their 
energy only to other zonal harmonics. 

Fig. 5 depicts the divergence, topography and geoid 
induced by a load of degree 2 and order 0 located at a given 
depth in a mantle with power law rheology. Dashed lines 
correspond to the usual Green functions computed for a 
uniform Newtonian mantle with viscosity qo. We chose q0 
and A so that the maximum of divergence for degree 2 is 1. 
The distribution of energy on the other modes is very 
important for the divergence field. The major contamination 
arises at degree 6 (26 per cent of degree 2 amplitude) then, 
at degree 4. The topographies are normalized with respect 
to the surface value which in both cases corresponds to 
perfect isostasy. The amplitude of the degree 2 non-linear 
response is basically identical to the linear Green function. 
The contamination on other degrees is almost negligible. 
The geoid is more sensitive than topography to the rheology 
as it is related to the difference between two approximately 
opposite contributions, the potential of the load and the 
potential of the deflected interfaces. On the right panel the 
geoid contribution of degree 2 and the Green function are 
normalized by 4nGa/(21+ 1) where G is the gravitation 
constant and a the radius of the Earth. While the two curves 
are somewhat similar, differences of more than 30 per cent 
exist between them at certain depths in the lower mantle. 
The contamination on higher modes seems rather weak, and 
like for the divergence affects degree 6 more than degree 4. 
However, taking into account the fact that the observed 
geoid spectrum strongly decreases with 1 and that its degree 
2 has an amplitude more than 3 times larger than that of 
degree 4, and more than 6 times larger than that of degree 
6, one can see that the geoid of degree 4 and 6 may be 
strongly contaminated by non-linear effects related to loads 
of degree 2. 

Modelling of the long wavelength geoid in the framework 
of Newtonian models has suggested an increase in the 
mantle viscosity at the upper-lower mantle interface. It is 
not so easy to translate such a viscosity increase in terms of 
non-Newtonian rheology as we are able to control the 
parameter A,  but not the effective viscosity. Fig. 6 depicts 
the same observables as Fig. 5, but for a nowNewtonian 
mantle where A is increasing by a factor lo00 at 670 km 
depth. The shapes of the three response functions are close 
to the Green function obtained for linear models with a 
viscosity increase with depth. The surface divergence is little 
affected by loads stuck in the highly viscous lower mantle. 
The loads are efficiently supported by the stiff lower mantle 
and the induced topography at the surface of the Earth is 
strongly decreasing with the depth of the load. As a 
consequence of this decrease in amplitude of topography, 
the geoid changes sign. An interesting point is that the 
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Figure 5. Surface divergence, topography and geoid induced by a unit load of degree 2 and order 0 as a function of the depth of load. The 
dashed line corresponds to the Green functions obtained for a linear rheology with uniform viscosity. The full lines depict the amplitudes of 
components of degrees 2, 4 ,  6, 8.  . . , excited in a mantle with power law creep. The divergence curves have been normalized with respect to 
the maximum values obtained at degree 2 .  The topographies are equal to -1 at the surface, a value which corresponds to a perfect isostatic 
compensation. The geoid curves are in units of 4aGa/(21+ 1) where G is the gravitation constant and a the Earth’s radius. 

response functions for an increase in A by a thousand 
roughly correspond to the Green functions obtained for a 
viscosity increase of only about 10-50 (e.g. Hager & 
Clayton 1989). The mapping of an increase in A into an 
increase in Newtonian viscosity is obviously non-linear. The 
leakage between modes is lower in the stratified case (Fig. 
6) than in the uniform case (Fig. 5). 

In Newtonian models with lateral viscosity variations 
where density and viscosity variations are related, the most 
severe contamination occurs at the doubled harmonic of the 
dominant heterogeneity (e.g. Richards & Hager 1989). We 
can qualitatively understand why we instead obtain most of 
the contamination at the triple harmonic. The couplings 

occur in the constitutive equation (3). For lateral viscosity 
variations in phase with density, both deviatoric stresses and 
inverse of viscosity are essentially of the same degree 1 and 
therefore the strain tensor related to their product is mostly 
of degree 21. In the non-linear case with a power law 
exponent n = 3, the inverse effective viscosity corresponding 
to a load of degree 1 is proportional to the square of stresses, 
and has a dominant degree 21. Therefore, the strain tensor is 
mostly affected at degree 31. 

Generation of the toroidal flow 
Any vector field v satisfying the equation of incompres- 
sibility (1) can be expressed as the sum of a toroidal and a 

TOPOGRAPHY 
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Figure 6. Same as Fig. 5 ,  but for an increase of the parameter A by a factor lo00 at a depth of 670 km. 
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I T\ I 

lo-' 4 
0 5 15 

DEGREE 
Figure 8. Spectra of poloidal (circles) and toroidal (squares) 
velocity components of the flow pattern given in Fig. 7 (middle). 
The large poloidal components of degree 1 and 2 correspond to the 
loads. All the other terms are induced by mode coupling. 

tion that allows a quantitative evaluation of the possible 
drawbacks in geoid and plate motion simulations induced by 
a neglect of non-linear effects of the mantle rheology. 

The geoid undulations of the Earth are probably induced 
at degrees 2 and 3 by lower mantle mass anomalies, whereas 
the components of higher degrees are strongly related to the 
presence of slabs in the upper mantle (e.g. Hager & Clayton 
1989). We use these results to build a very simple model of 
mantle heterogeneities where the anomalies of degrees 2 
and 3 are only located at a depth of 2000km and where 
those of degrees 4, 5 and 6 are located in the upper mantle 
at a depth of 400 km. Our distribution of density anomalies 
convolved with the Green functions computed for a 
homogeneous Newtonian mantle reproduces exactly the 
observed geoid. We know that the homogeneous Newtonian 
mantle does not correspond to the real situation in the Earth 
where a large viscosity increase with depth is likely to occur. 
We choose such a simple rheological model to avoid the 
difficult mapping of linear viscosity profiles into profiles of 
A. Using our model of density distribution, we compute the 
induced flow and the resulting geoid for both linear and 
non-linear rheologies. Our model of mass distribution 
induces an unrealistic velocity pattern at the surface as it 
does not include the masses associated with slabs and ridges 
that drive the plate motion. However, we think that the 
comparison between the linear and the non-linear surface 
flows is indicative of the effects that might occur for the real 
Earth. 

Fig. 9 shows the geoids computed with a uniform linear 
rheology (top) and with a non-linear rheology (middle). B y  
construction the top map is the observed geoid filtered for 
degrees larger than 6. The middle map includes all the 
degrees up to 1 = 15. The bottom map depicts the difference 
between the middle and top maps. The geoid computed with 
a non-linear rheology has a larger amplitude than the real 
geoid. This related to the larger response functions already 

-120 rn 0 +I20 rn 

-20 rn 0 +20 rn 

Figure 9. Synthetic non-hydrostatic geoids in meters obtained with 
a linear rheology (top) and a non-linear rheology (middle). The 
difference between them is plotted in the bottom map with a 
different scale. We choose the mantle density so that the top map 
exactly fits the real geoid up to degree 6. A change in the rheology 
modifies the amplitude of the geoid more than its shape. 

seen in Fig. 5. The bottom map has an amplitude reaching 
20 per cent of that of the real geoid and is highly correlated 
with it. This suggests that the interpretation of the geoid by 
means of a linear rheology might lead to an overestimation 
of the lower mantle density heterogeneities by some 20 per 
cent, if the mantle is really non-linear. The changes in geoid 
heights are related to -a change of the induced topography. 
As was already clear from Fig. 5, this change of topography 
is very small. 

Fig. 10 depicts the surface divergences induced at the 
surface of a Newtonian mantle (top), a non-Newtonian 
mantle (middle) and the difference between the two 
(bottom) in the same way as Fig. 9. Our oversimplified 
model of mantle density induces upwellings beneath the 
geoid highs which are obviously not observed. The viscosity 
and the parameter A are chosen so that the top and middle 
maps have the same maximum. The differences between the 
results are more striking than in Fig. 9. The non-linearity 
increases the flow where the Newtonian velocities are 
already large and dampen the flow elsewhere. This is why, 
in the middle map, the flow is rather stagnant in the east 
Pacific and the Atlantic with respect to the west Pacific 
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-0.4 0 +0.4 

F b r e  10. Synthetic surface divergence obtained with a linear 
rheology (top) and a non-linear rheology (middle). The difference 
between them is plotted in the bottom map with a different scale. 
The top and middle maps have been normalized by their respective 
maxima. A change in the rheology modifies the shape of the 
predicted divergence. 

upwelling. For the geoid, the difference between the two 
rheologies is mainly a weak change in the amplitude. For 
the velocities, the pattern itself is rather different, leading to 
a maximum change in magnitude close to 40 per cent of the 
signal. 

90 

0 

-90 I I I 

0 90 180 270 360 

Figure 11. Toroidal velocity field induced at the surface of our 
model. The maximum velocity reaches 15 per cent of the maximum 
poloidal velocity associated with the divergence plotted in Fig. 10 
(middle). 

The use of a non-linear rheology also generates a toroidai 
motion. The maximum toroidal velocity is around 15 per 
cent of the poloidal one (Fig. 11). As for the surface 
divergence, the toroidal velocities are mainly excited where 
the flow predicted with a linear viscosity is already vigorous, 
i.e. around the west Pacific margin; it is stagnant elsewhere. 

5 CONCLUSIONS 

This paper has shown the efficiency of variational 
formulations for mantle dynamics. With a simple gradient 
method we reach the solutions of non-linear 3-D problems 
even when large jumps in mechanical properties are present. 
The number of iterations needed to reach the convergence is 
quite large but the computation can be performed on a 
simple work-station. Our method can also be easily used for 
intrinsic viscosity variations within the mantle. 

An important result of the present study is that 
Newtonian and non-Newtonian flow can be very different 
while the distribution of pressure does not significantly 
change. The non-linearities contaminate modes with degrees 
different from those of the load. When there is dominant 
degree in the load, the main contamination occurs at a 
degree triple from the main load. This result differs from the 
observation of Newtonian flows with lateral viscosity 
variations in phase with loads where the doubled harmonics 
are mostly contaminated. 

The steady-state surface deformations that we compute 
are found to be not very sensitive to the form of the 
constitutive equation. Our study does not address the 
problem of transient deformation such as post-glacial 
rebound. The time-varying topographies involved in 
transient problems are directly related to the computation of 
vertical velocities and should be much more sensitive to the 
rheological law (e.g. Wu 1992; Gasperini, Yuen & Sabadini 
1992). 

The geoid anomalies are affected by the pressure field 
inducing dynamic topographies at the surface of the Earth 
and at the core-mantle boundary. Although more sensitive 
than the topographies, the geoid prediction is still robust 
with respect to the constitutive law. A neglect of non-linear 
rheology affects mainly the estimation of the sources 
amplitude. This is a small effect in comparison with the 
present uncertainties in the mantle heterogeneities and in 
the mechanical stratification of the mantle. 

The prediction of plate motions from internal loads may 
be strongly affected by non-linearities. The velocities 
computed with non-linear rheologies are enhanced where 
linear models already predict large velocities. A toroidal 
field is induced by the coupling of modes. However, the 
related kinetic energy is only a small percentage of the total 
energy and thus, a power-law creep with n = 3 cannot by 
itself explain the observed equipartition between toroidal 
and poloidal energy. 

ACKNOWLEDGMENTS 

This work was partly supported by the INSU-DBT 
(Dynamique et Bilan de la Terre) program (Global 
Dynamics, contribution 477). 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/112/1/103/652800 by guest on 03 February 2021



114 0. &dek et al. 

REFERENCES 

Ashby, M. F. & Verrall, R. A., 1977. Micromechanisms of flow and 
fracture, and their relevance to the rheology of the upper 
mantle, Phil. Trans. R. SOC. Lond. A ,  288, 59-95. 

Beauchesne, S. & Poirier, J. P., 1989. Creep of barium titanate 
perovskite: a contribution to a systematic approach to the 
viscosity of the lower mantle, Phys. Earth planet. Interiors, 55, 

Cadek, O.,  Martinec, Z. & Matyska, C., 1992. Spectral variational 
approach to the non-Newtonian Stokes problem in a spherical 
shell, Comput. Phys. Communs, in press. 

Cadek, 0. & Ricard, Y., 1992. Toroidal/poloidal energy 
partitioning and global lithospheric rotation, Earth planet. Sci. 
Lett., 109, 621-632. 

Christensen, U., 1984. Convection with pressure- and temperature- 
dependent non-Newtonian rheology, Geophys. J. R. astr. SOC., 

Christensen, U .  & Harder, H., 1991. 3-D convection with variable 
viscosity, Geophys. J. Int., 104, 213-226. 

Colin, P. & Fleitout, L., 1991. Interaction of deep mantle 
heterogeneities with the lithosphere, in Abstracts of X X  
General Assembly IUGG, Vienna. 

Cserepes, L., 1982. Numerical studies of non-Newtonian mantle 
convection, Phys. Earth planet. Interiors, 30, 49-61. 

Dziewonski, A. M., 1984. Mapping the lower mantle: determina- 
tion of lateral heterogeneity in P velocity up to degree and 
order 6, J. geophys. Res, 89, 5929-5952. 

Forte, A. M. & Peltier, W. R., 1987. Plate tectonics and aspherical 
Earth structure: the importance of poloidal-toroidal coupling, 
J.  geophys. Res., 89, 3645-3679. 

Froidevaux, C., 1973. Energy dissipation and geometric structure at 
spreading plate boundaries, Earth planet. Sci. Lett., 20, 

Gantmacher, F. R., 1960. The Theory of Matrices, translated by K. 
A. Hirsh, Chelsea Publishing, New York. 

Gasperini, P., Yuen, D. A. & Sabadini, R., 1992. Postglacial 
rebound with a non-Newtonian upper mantle and a Newtonian 
lower mantle rheology, Geophys. Res. Lett., submitted. 

Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & 
Dziewonski, A. M., 1985. Lower mantle heterogeneity, 
dynamic topography and the geoid, Nature, 313, 541-545. 

Hager, B. H. & Clayton, R. W., 1989. Constraints on the structure 
of mantle convection using seismic observations, flow models 
and the geoid, in Mantle Convection, Plate Tectonics and 
Global Dynamics, pp 657-763, ed. Peltier, W. R., Gordon & 
Breach Scientific Publishers. 

Hager, B. H. & O’Connell, R. J., 1978. Subduction zones dip 
angles and flow driven in the Earth’s mantle, Tectonophysics, 

Hager, B. H. & O’Connell, R. J. ,  1979. Kinematic models of large 
scale flow in the Earth’s mantle, J. geophys. Res., 84, 

Jones, M. N., 1985. Spherical Harmonics and Tensors for Classical 
Field Theory, Research Studies Press Ltd., Letchword. 

Karato, S., 1988. The role of recrystallization in the preferred 
orientation of olivine, Phys. Earth. planet. Interiors, 51, 

Malevsky, A. V. & Yuen, D. A., 1991. Strongly chaotic 
non-Newtonian mantle convection, Geophys. Astrophys. Fluid 
Dynamics, in press. 

Montagner, J.-P. & Tanimoto, T., 1991. Global upper-mantle 
tomography of seismic velocities and anisotropies, J. geophys. 
Res., %, 20337-20352. 

Nataf, H.-C., Nakanishi, I. & Anderson, D. L., 1986. 
Measurements of mantle wave velocities and inversion for 

187-199. 

77, 343-384. 

4 19-424. 

50, 111-133. 

1031-1048. 

107-122. 

lateral heterogeneities and anisotropy, 3. Inversion. J. geophys. 
Res., 91, 7261-7307. 

NeEas, J. & HlavBEek, I., 1981. Mathematical Theory of Elastic and 
Elastico-Plastic Bodies: An Introduction, Elsevier, Amsterdam. 

O’Connell, R. J. & Hager, B. H., 1991. Toroidal-poloidal 
partitioning of lighospheric plate motions, in Glacial Isostasy, 
Sea-Level and Mantle Rheology, pp. 535-552, eds, Sabadini R. 
et al.,  Kluwer Academic Publishers, Netherlands. 

Olson, P. & Bercovici, D., 1991. On the equipartition of kinetic 
energy in plate tectonics, Geophys. Res. Lett., 18, 1751-1754. 

Parmentier. E. M., Turcotte, D. L. & Torrance, K. E., 1976. 
Studies of finite amplitude non-Newtonian thermal convection 
with application to convection in the Earth’s mantle, 1. 
geophys. Res., 81, 1839-1846. 

Phinney, R. A. & Burridge, R., 1973. Representation of the 
elastic-gravitational excitation of a spherical Earth model by 
generalized spherical harmonics, Geophys. J .  R. astr. SOC., 74, 

Poirier, J. P., Peyronneau, J., Gesland, J. Y. & Brebec, G . ,  1983. 
Viscosity and conductivity of the lower mantle: an experimen- 
tal study on a M,SiO, perovskite analogue, KZnF,, Phys. 
Earth. planet. Interiors, 32, 273-287. 

Ranalli, G., 1991. The microphysical approach to mantle rheology, 
in Glacial Isostasy, Sea-Level and Mantle Rheology, pp. 
343-378, eds, Sabadini R. et al., Kluwer Academic Publishers, 
Netherlands. 

Ribe, N. M., 1992. The dynamics of twin shells with variable 
viscosity and the origin of toroidal flow, Geophys. 1. Int., 110, 

Ricard, Y. & Bai Wuming, 1991. Inferring the viscosity and the 3-D 
density structure of the mantle from geoid, topography and 
plate velocities, Geophys. J. Int., 105, 561-571. 

Ricard, Y., Fleitout, L. & Froidevaux, C., 1984. Geod heights and 
lithospheric stresses for a dynamic Earth. Ann. Geophysicae, 2 ,  

Ricard, Y. & Vigny, C., 1989. Mantle dynamics with induced plate 
tectonics, I .  geophys. Res., 94, 17543-17559. 

Ricard, Y., Vigny, C. & Froidevaux, C., 1989. Mantle 
heterogeneities, geoid and plate motions: a Monte-Carlo 
inversion, 1. geophys. Res., 94, 13739-13754. 

Ricard, Y., Froidevaux, C. & Fleitout, L., 1988. Global plate 
motion and the geoid: a physical model, Geophys. J. R. mtr. 

Richards, M. A. & Hager, B. H., 1984. Geoid anomalies in a 
dynamic Earth, J. geophys. Res., 89, 5987-6002. 

Richards, M. A. & Hager, B. H., 1989. Effects of lateral viscosity 
variations on long-wavelength geoid anomalies and topog- 
raphy, J. Geophys., Res., 94, 10 299-10 313. 

Stewart, C. A., 1992. Thermal convection in the Earth’s mantle: 
mode coupling induced by temperature-dependent viscosity in 
a three dimensional spherical shell, Geophys. Res. Lett., 19, 

Van Den Berg, A. P., Yuen, D. & Van Keken, P. E., 1992. Effects 
of depth-variation in creep laws on the formation of plates in 
mantle dynamics. Geophys. Res. Lett., in press. 

Woodhouse, J. H. & Dziewonski, A. M., 1984. Mapping the upper 
mantle: Three dimensional modeling of Earth structure by 
inversion of seismic waveforms, J. Geophys. Res., 89, 

Wu P., Deformation of an incompressible viscoelastic flat Earth 
with power law creep: a finite element approach, Geophys. J .  
lnt., 108, 35-51. 

Zhang, S. & Christensen, U., 1991. Mode coupling through 
laterally variable viscosity in spherical shell circulation driven 
by internal loads, Ann. Geophysicae (Supplement) 9, 65. 

45 1-487. 

537-552. 

267-286. 

SOC., 93, 477-484. 

337-340. 

5953-5986. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/112/1/103/652800 by guest on 03 February 2021




