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Box modeling the chemical evolution of geophysical 
systems' case study of the Earth's mantle 

N. Coltice, S. Ferrachat and Y. Ricard 
Laboratoire des Sciences de la Terre, Ecole Normale Sup6rieure de Lyon, France 

Abstract. Geoche•nical measurements have been 

widely used for understanding geophysical dynamic sys- 
tems. Fluid mechanics and box models are quantita- 
tive tools for testing the reliability of these interpreta- 
tions. We present here the connection between these 
two methods, especially in the case of the Earth's man- 
tle. We show that box models implicitly assume a chem- 
ical diffusivity inversely proportional to the number of 
boxes. From fluid dynamics considerations we suggest 
that at least 15 boxes should be used to model the man- 

tle. Then, we compare the results of a simple convective 
geochemical model with box models to illustrate a way 
to incorporate dynamical constraints in them. 

The goal of this paper is to describe quantitatively 
the framework of an accurate box modelisation. The 

results presented are applied mostly to the chemistry of 
the Earth's mantle, which is at the center of conflicts 

between geochemists and geophysicists [see Holmann, 
1997, for a review]. 

Assumptions of box models 

Equations 

To describe the equations used in chemical box mod- 
els, we use the same formalism as in Albar•de [1998]. 
The mass conservation for a reservoir i reads 

Introduction 
dMi j:/:i j•i 
dt = • (•j--•i - Z (•i--•j, (1) 

Modeling the chemical evolution of dynamic systems 
is of interest in various fields of planetary sciences: 
oceanography, atmospheric and solid Earth sciences. 
The fully-dynamical description is the most straight- 
forward approach: in the case of Earth's mantle, it con- 
sists in solving the convection equations and advecting 
chemical tracers [ Gurnis and Davies, 1986; Kellogg and 
Turcotte, 1990; Christensen and Holmann, 1994]. How- 
ever, the difficulties of modeling some physical processes 
(turbulence for the atmosphere and ocean, or generation 
of plate tectonics), and the computational cost of this 
technique, make box models an alternative method. 

Box models refer to the computation of the chemi- 
cal evolution of structural units exchanging elements. 
These units are homogeneous boxes (in some cases de- 
fined by mean and rms concentrations [All•gre and 
Lewin, 1995]). The example of mantle geochemistry 
shows that it is difficult to design coherent and realistic 
box models. The same data has led to contradictory 
views: Albar•de [1998], Coltice and Ricard [1999] argue 
for whole mantle convection, Jacobsen and Wasserburg 
[1979] for a separation between upper and lower mantle, 
and Anderson [1982] for an even more complicated lay- 
ering. These conflicts are essentially due to the choice 
of the number of boxes and the difficulties for incor- 

porating dynamical constraints [Gar9on and Minster, 
1988]. 
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where Mi is the mass of the box i, t the time and Q i-•j 
the mass flux from box i to box j. 

The conservation of the chemical element k with con- 

centration Ci • in the reservoir i is 

dt 

j•i j•i 

+ _(Ak + E Q k • (Qj-•i - Qi-•j) 
j• 

•iKj•i c• • •k-lc•-i (2) 
where Kik_•j is the enrichment factor due to the fraction- 
ation of element k upon transfer from box i to box j. 
The element k can be produced by the parent k- 1 and 
produces the daughter element k + I with radioactive 
decay constants/k k-1 and/k k. 

Equation (2) implicitly states that the concentration 
in each reservoir is homogeneous. A simple example will 
show how the size at which a fluid can be considered 

homogeneous can be linked to, or estimated from the 
flow pattern in this fluid. 

A simple example: the plug flow 

The most obvious characteristics of convection with 

internal heating is that there is only one thermal bound- 
ary layer, the cold lithosphere. The downwellings are in- 
tense and very localized, the hot return flow is very slow 
and diffuse. A possible zero-order model of the mantle 
flow might be a 1-D plug flow: the material that has 
reached the surface is brought back by subduction to 
the bottom of the mantle and then rises slowly back to 
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the surface. To model this scenario with boxes, we can 
divide the mantle into n superposed boxes with masses 
M/n where M is the mass of the mantle. These boxes 
are crossed by a uniform mass flux (2 - pvzS where p 
is the density, S the surface between two boxes, and vz 
the vertical return velocity. 

The easiest case to model is the transport of an inert 
gas. The n equations to solve are of the form 

•/-[ d•'i 
: - (3) 

n dt 

where all Ki are equal to 1 (mass transport) except 
fbr the top box where/(,• = Ktop (degassing) and for 
the bottom box (reinjection) where KoCo = IX•bottom•'n 
(implicitly the atmosphere box accounts for mass con- 
servation of the degassed species). 

By a second order Taylor expansion in z, 

0C 1 02 C 

Ci_, - Ci •zzAZ + •-•-z2 AZ 2 (4) 
(Az - •- where L is the mantle thickness), equation (3) 
becomes 

OC OC v•Az 02C 
Ot + = 2 Oz 2, (S) 

where the concentration C(z,t), is now a function of 
both depth and time. 

The two boundary conditions read, at the surface 

oc oc 

at (top) + vz •z 
Vz 

(top) -- •ZZ(1 -- J(top)C(top), (6) 
and at the core mantle boundary 

C (bottom) - Kbotto,• C (top). (7) 

The physical meaning of a box model representation 
is clearly shown by equation (5). Implicitly this type of 
box model assumes that the transport is characterized 
by an advection term and a diffusion term. The latter 
has an equivalent diffusivity vzAz/2. When the num- 
ber of boxes increases to infinity (Az -• 0), the equiva- 
lent diffusivity goes to zero and the concentrations are 
purely advected by the flow. Fig. 1 depicts various con- 
centration profiles computed either with equation (3) 
(thin line) or with equation (5) (thick line). The good 
agreement between the two computations increases with 
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Figure 1. Concentration profiles, C(t)/C(O), as a func- 
tion of normalized depth (Ktop - 10, Kbottom -- 0.2, 
t- 1.8 Gyrs, v• - 1 mm.yr-•). 

the number of boxes (5 on the left, 25 in the middle, 
100 on the right). 

The return velocity imposed by slab subduction Vz 
is around I mm yr -• (the flux of slab divided by the 
Earth's surface). When geochemical data are explained 
by a two reservoir mantle, a diffusivity coefficient of 
25.10 -sm 2 s -• is implicitly assumed. We will see in the 
following that tiffs implicit diffusivity coefficient is not 
related to that of solid state chemical diffusivity. The 
latter is • 10 -20 m 2 s -• [Allggre and Turcotte, 1986], 
hence a diffusivity 14 orders of magnitude smaller than 
that of a 2 box model. 

The fluid dynamicist point of view 

Modeling the evolution of concentration in a convec- 
tion model where the incompressible velocity field is 
only consists in solving 

OC 
+ - 0, (8) ot 

assuming a negligible chemical diffusivity. 
Following the reasoning of Taylor [1921], the disper- 

sion of particles around a mean position in a mixing 
flow is similar to a diffusive behavior' in Lagrangian co- 
ordina, tes. The convective velocity can be divided into a 
large scale, slowly varying velocity, V and a remaining 
velocity '•. Taylor has shown that equation (8) can be 
recast as 

OC • O•- + (V.•)C - rV2C, (9) 
where r is the correlation time of the velocity field, i.e. 
the time after which the memory of the initial field has 
vanished, and • some average of Intuitively the 
advection by a small scale, time dependent flow that is 
responsible for chaotic mixing is equivalent to diffusion 
at a larger scale. 

Equation (9) has been mostly used for turbulent flows 
[i.e., Pedlosky, 1987] and in hydrology where this Tay- 
lor diffusivity is called dispersivity [Bear and Bachmat, 
1990]. However the idea that transport at a given scale 
•ppears as diffusion at a larger scale can be extended 
to most complex flows. When Taylor's idea of modeling 
sub-scale transport by diffusion does not hold, mixing 
cannot be understood without the computation of the 
finest scales of Zhe flow, and hence the interpretation of 
transport by b'.)x model becomes impossible. 

By comparison of equations (5) and (9), one sees that 
modeling convective mixing with box models requires a 
number of boxes given by 

L 

n- 2at' (10) 

where we assume comparable amplitudes for V and 
Putting numbers in (10) is certainly hazardous, our 

goal is only to show that the number of boxes can, in 
principle, be deduced from the space and time char- 
acteristics of mantle convection. Lower mantle veloci- 
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ties are around 1 mm yr -•. The mantle has a memory 
of about 100 Myrs, a value that has been estimated 

0.8 

from convection models [Ricard et al., 1993; Bunge et 
al., 1998]. In this case, a box model would require at .•o.6 
least 15 boxes to predict the results of a convection code -? 
(i.e., boxes with sizes comparable to that of the bound- a:o.4 
ary layers of the mantle), a number larger than what is 0.2 
commonly assumed. This corresponds to a diffusivity 
of • 3.10 -6 m 2 s -• , an order of magnitude smaller than 
that corresponding to a simple two box model. 

Box vs. geodynamic models: case 
studies 

We compare the two approaches using a 2D circula- 
tion model in a rectangular domain of aspect ratio 3. 
We do not solve the whole convection system includ- 
ing the heat equation ß the flow is only driven by a 
surface forcing simulating two plates diverging from a 
ridge, and by an internal forcing corresponding to two 
associated slabs [see Ferrachat and Ricard, 1998]. The 
ridge moves sinusoidally and sweeps the whole surface 
every 180 Myrs. The viscosity increases by a factor 100 
in the lower 2/3 •d of the box.-During-3Gyrs,-300,000 -- 
tracers are advected carrying 3He and U with an ini- 
tially homogeneous concentration. 

To model melt fractionation and outgassing at ridges, 
we compute the running average over 3,000 tracers of 
the He and U contents of the tracers that enter a semi 

circular area beneath the ridge (mimicking a magma 
chamber of radius 150 kin). As soon as a new tracer 
enters the magma chamber, a tracer is released, either 
in the crust (7 km thick) with probability 1/10, or in the 
underlying lithosphere (63 k•n thick) with probability 
9/10. This tracer is degassed with respect to the xnagma 
chamber by a factor 1/1000 in the crust, or 1/50 in the 
lithosphere. Similarly its U-content is enriched by 9.91 
in the crust or depleted by 1/100 in the lithosphere. 

From the velocity field, we compute the rms verti- 
cal flux (horizontally- and time-averaged) < Q(z) >. 
We also monitor the horizontally averaged 3He and U 
concentrations as a function of time and depth. 

ZZ • 

Z 1 -- 

Z2 •' 

{Q(zl) )• 

{Q(z2) )t 

(a) (Q(z)) (b) (c) 
Figure 2. Averaged vertical fluxes < Q(z) > of (a) the 
geodynamic model, from which schemes of fluxes of (b) 
"diffusive" and (c) localized models are extracted. 

0-%:0 

ß _ ._-•-"-..-•. Diffusive model -•----•i •" 10 boxes model ' . --• --• 50 boxes oca,,ze boxes "-- • 

o.= o.4 o.s o.• •.o 

c(•e) 

Figure 3. Vertical profiles of 3He concentration nor- 
malized by the initial concentration for "diffusive" (dot- 
ted), "localized" (thin line) and convection (thick line) 
models. 

Case one: 3He degassing 

We investigate two opposite organizations of the fluxes 
in the box models. In the first case we consider that 

each horizontal box only exchanges with adjacent boxes. 
We call this model the "diffusive" model. In the second 

case, we consider that the down-going mass fluxes are 
very localized, as downwellings carry directly the con- 
cent•-•tio• from th•-t•-• bb-X•s•-Therefore we add fluxes 
from the uppermost boxes where toward lower boxes 
(see Fig. 2). We call this model the "localized" model. 
Results from the convective code and from the "diffu- 

sive" and "localized" box models are depicted in Fig. 3, 
for different numbers of boxes. The upward fluxes in 
the box models at each box interfaces are exactly those 
of the circulation model, < •)(z) >. 

The horizontally averaged content of 3He of the con- 
vection model (thick line) shows that 60% of the mantle 
is degassed. Despite of the rather high viscosity jump, 
the mantle is surprisingly homogeneous in agreement 
with previous studies [van Keken and Ballentine, 1999]. 
The only acceptable box model is the "localized" model, 
independently of the number of boxes. In this model, 
each layer has roughly the same input flux of degasseal 
material from the near surface which results in a ho- 

mogeneous mantle. In the "diffusive" model, the signal 
of degassing is diluted with depth so that the deepest 
boxes are kept unclegassed. According to equation (5), 
more diffusion occurs in models with a low number of 
boxes. 

Case two: U trapping in D" 

The only way with our simple convection model to ob- 
tain a significant depth dependence of element concen- 
trations is to artificially impose the segregation of the 
oceanic crust which enters the lowermost 200 km [Hof- 
mann and White, 1982]. Storing the U-rich crust into 
an isolated D" layer depletes the lower mantle [Coltice 
and Ricard, 1999]. 

In the box model, crustal segregation implies that 
only depleted material enters the boxes in the bottom 
200 kin, because U-enriched crust is removed from the 
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Figure 4. Vertical profiles of U concentration normal- 
ized by the initial concentration with natural decay for 
"localized" (thin) and convection (thick line) models. 
The convection model assumes oceanic crust segrega- 
tion in D". 

budget. This effect is introduced in the "localized" 
model by an enrichment coefficient Kbottom =0.01 from 
the top box toward the lower-most boxes. 

Fig. 4 depicts the U concentration computed with 
the convective model after 3 Gyrs of simulation (thick 
line). As for 3He, the horizontally averaged U content is 
relatively constant with depth, except near the bottom 
where it is depleted by segregation. The D" layer is not 
represented and has stored 1/10 of the initial amount 
of U. The box model results are shown by thin lines 
for various numbers of boxes. The box model predicts 
the vertical structure of the convective model fairly well 
for a number of boxes larger than 20. With a smaller 
number, the equivalent diffusivity is too large and the 
whole mantle is depleted. 

Conclusions 

Although ultimately, chemical exchanges will have to 
be modeled by a fully dynamical description, this goal 
is presently out of reach for several reasons that make 
box model of particular interest. We have shown that 
the box model equations are equivalent to advection- 
diffusion equations with a diffusivity related to the mix- 
ing properties in a fluid dynamics analysis. Then, the 
topology and the number of boxes must be deduced 
from a flow analysis, that would give, for mantle con- 
vection, a number of boxes larger (• 15) than what is 
commonly considered. 

The results of box models are highly dependent on 
the flux configuration: a box model assuming local- 
ized downwellings ("localized" model) reproduces our 
fluid dynamics results whereas a box model assuming 
symmetrical upwellings and downwellings ("diffusive" 
model) does not. However, a good prediction requires 
•0 20 superposed boxes. 

These conclusions leave apart the fact that the fluid 
dynamics code also predicts large scale lateral variations 
that have not been considered by our depth-dependent 
box model, and the fact that 3 D mixing properties 
might not be easily extrapolated from simple 2 D mod- 
els [Ferrachat and R•card, 1998]. 
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