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Abstract. A theoretical model for the dynamics of a simple two-phase mixture is presented. 
A classical averaging approach combined with symmetry arguments is used to derive the 
mass, momentum, and energy equations for the mixture. The theory accounts for surficial 
energy at the interface and employs a nonequilibrium equation to relate the rate of work 
done by surface tension to the rates of both pressure work and viscous deformational 
work. The resulting equations provide a basic model for compaction with and without 
surface tension. Moreover, use of the full nonequilibrium surface energy relation allows for 
isotropic damage, i.e., creation of surface energy through void generation and growth (e.g., 
microcracking), and thus a continuum description of weakening and shear localization. 
Applications to compaction, damage, and shear localization are investigated in two 
companion papers. 

1. Introduction 

The dynamics of two-component, or two-phase (and in 
general multiphase), media is a complex and well-studied 
field [see Drew and Passman, 1999] with innumerable natu- 
ral applications to sediment and soil mechanics [Biot, 1941; 
Hill et al., 1980; Birchwood and Turcotte, 1994; see Furbish, 
1997, and references therein], glaciology [Fowler, 1984], oil 
recovery and magma dynamics [McKenzie, 1984; Spiegel- 
man, 1993a, 1993b, 1993c], crystallization in metal alloys 
[Ganesan and Poirier, 1990], and slurries [Loper, 1992]. 
Analysis of dilatant plasticity [Mathur et al., 1996], rate- 
and-state friction models of earthquake dynamics [Segall 
and Rice, 1995; Sleep, 1995, 1997, 1998], and void-volatile 
self-lubrication models of the generation of plate tectonics 
from mantle flow [Bercovici, 1998] also employ the concept 
of two phases by relating porosity to a weakening effect or a 
state variable. 

One of the most complex issues in the mechanics of two- 
phase media concerns the physics of the interface between 
the phases [Groenwald and Bedeaux, 1995; Osmolovski, 
1997]. Interface and surface dynamics is also a vital field 
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for the study of rock mechanics and material science [Jaeger 
and Cook, 1979; Atkinson, 1987; Atkinson and Meredith, 
1987]. One of the primary manifestations of an interface 
is its intrinsic surface energy, partially expressed as sur- 
fhce tension. Surface energy and tension are relevant both 
for melt dynamics in the process of crystallization [Tiller, 
1991a, 1991b; Lasaga, 1998] and percolation under cap- 
illary forces [Harte et al., 1993; Stevenson, 1986]. It is 
also generally recognized that the damage of materials in- 
volves the generation of a surface energy on newly devel- 
oped cracks and voids [Griffith, 1921; Jaeger and Cook, 
1979; Atkinson, 1987; Atkinson and Meredith, 1987]. 

The effects of surface tension have been considered for 

two-phase systems [Drew, 1971; Drew and Segel, 1971; 
Stevenson, 1986; Ni and Beckermatt, 1991; Straub, 1994; 
Groenwald and Bedeaux, 1995; Osmolovski, 1997], although, 
to our knowledge, they have not been self-consistently incor- 
porated in a closed, fully three-dimensional, two-phase con- 
tinuum theory. In this paper we derive the simplest possible 
general equations for a two-phase medium, accounting for 
the possibility of surface free energy existing on the inter- 
face between the two media. Although this surface energy 
is often considered to be in static equilibrium with the net 
work done by the pressure fields of the two phases [e.g., Ni 
and Beckerman, 1991], we propose a more general relation 
in which surface energy is generated through nonequilibrium 
energy sources such as deformational work. Thus the theory 
provides a simple model not only of compaction with and 
without surface tension but also of the creation of surface 
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energy through deformation, and hence microcracking and 
damage. However, the theory is based on viscous fluid me- 
chanics, and thus it is most applicable to viscous and/or long- 
timescale mantle-lithosphere processes, such as magma dy- 
namics and plate boundary formation through ductile local- 
ization mechanisms. 

Although some of the equations derived in this model dif- 
fer little from those derived previously [Drew, 1971; Drew 
and Segel, 1971; Loper and Roberts, 1978; Hills et al., 1983, 
1992; McKenzie, 1984; Fowler, 1984, 1990a, 1990b; Richter 
and McKenzie, 1984; Ribe, 1985, 1987; Bennon and Incr- 

opera, 1987; Scott, 1988; Scott and Stevenson, 1989; Gane- 
san and Poirier, 1990; Poirier et al., 1991; Loper, 1992; Tur- 
cotte and Phipps Morgan, 1992; Spiegelman 1993a, 1993b, 
1993c; Gidaspow, 1994; Schmeling, 2000; see Drew and 
Passman, 1999], others are signficantly different or are en- 
tirely new. Thus it is necessary that the formalism for arriv- 
ing at the theory be established; admittedly, this formalism is 
not in itself new, so its presentation will be as brief as possi- 
ble. In the following subsections we will derive conservation 
laws, which, in two-phase theory, involve a particular aver- 
aging scheme [Drew, 1971;Drew and Segel, 1971; Ganesan 
and Poirier, 1990; Ni and Beckerman, 1991 ]. Although the 
averaging method has been discussed elsewhere, we will re- 
quire it to carry out some of the derivation; thus we describe 
it by example, i.e., through consideration of the mixture's 
properties and the conservation of mass law. 

To keep our theory as simple as possible, we make the 
following assumptions: 

1. Both media have constant densities and are thus incom- 

pressible. 
2. Both media behave as highly viscous fluids (such that 

inertia and acceleration are neglected, i.e., forces are always 
in balance), and their individual viscosities are constant. 

3. The two-phase mixture remains isotropic, i.e., on av- 
erage (see below for how the average is defined), pores and 
grains are not collectively elongated in a preferred direction. 
(Some discussion of anisotropy, however, is included in this 
development.) 

Nevertheless, the two-phase mixture will have noncon- 
stant effective density and viscosity. Other simplifying as- 
sumptions will be stated as necessary. 

stant. The two phases have true (or microscopic) velocities, 
•ri and •rm within their respective volumes, and similarly for 
pressures and stresses. However, in a two-phase or mixture 
theory, we cannot know the location of every parcel of fluid 
or matrix; thus we must average all quantities over some vol- 
ume; the size of this volume determines the validity of the 
continuum limit for two-phase theory. This limit is analo- 
gous to that for single-phase continuum theory in which the 
volume over which properties are averaged must be large 
enough to contain sufficient numbers of molecules but must 
also be small enough to distinguish gradients in properties. 
In two-phase theory the volume must be large enough to con- 
tain sufficient numbers of pores or grains but small enough 
to resolve gradients. As pore and grain sizes can become 
macroscopic, the volume size is potentially very constrained, 
and thus it is much easier to violate the two-phase contin- 
uum limit [Bear, 1988; Furbish, 1997; Drew and Passman, 
1999]. 

Once the two materials, the matrix and fluid, are com- 
bined, the mixture has additional properties prescribed by a 
distribution function which locates pores of fluid or grains 
of matrix (Figure 1 ); we define this distribution function 0 
which is 1 inside the fluid pores and 0 in the matrix [Drew, 
1971; Drew and Segel, 1971; Fowler, 1984; Ganesan and 
Poirier, 1990; Ni and Beckerman, 1991]. The function 0 is 
used to average properties over fluid or matrix volumes. In 
particular, porosity, i.e., the volume fraction of fluid (assum- 
ing the matrix is saturated), is an average quantity defined 
as 

1 • OdV, (1) 
where 8V is the total volume of an element of mixture. The 

masses of fluid and matrix in the volume 8V are thus the 

integrals of py and pm over the fluid and matrix volumes, 
respectively 

2. Mixture Properties 

2.1. Phase Properties and Averaging 

We define the two phases as fluid and matrix to be consis- 
tent with much of the classic literature on this topic. How- 
ever, we derive all equations to maintain their symmetry; that 
is, until we make a symmetry-breaking assumption about 
an extreme difference between the fluid phase and matrix 
phase, they are strictly speaking both incompressible, cons- 
tant-viscosity fluids, and thus how we label them should be 
irrelevant. Therefore an interchange of labels must result in 
the same equations. We will refer to this symmetry as "ma- 
terial invariance." 

We define the fluid and matrix phases to have densities 
t9f and Pm and viscosities •f and •m, all of which are con- 

Figure 1. Schematic of a control volume t$V with a mixture 
of fluid (white) and matrix (black). Shading also represents 
the distribution function 0 which is 1 in the fluid and 0 in 
the matrix. The curve which marks the boundary between 
black and white as viewed in the figure is the intersection of 
the interface between the phases and the surface of the con- 
trol volume, as denoted by Ci in (25). Arrows illustrate the 
flux of fluid and matrix mass, momentum or energy through 
exposures of fluid and matrix at the surface of the control 
volume. 
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Mf-f6vPfOdV, Mm-f6 V ( - o)av, (2) 

which, because the densities are constant, are simply Mf = 
ckpf6V and Mm = (1 - c))pm6V. The fluid velocity aver- 
aged over the fluid volume is vf, defined such that 

1 es øat5 Ovs - 3-ff v (3) 

where vf is often referred to as the interstitial velocity, while 
½vf is the Darcy velocity. The matrix velocity v• is simi- 
larly defined such that 

1 f• %•(1-O)dV. (4) U 
Since the two media are assumed incompressible, their true 
velocities •'• and •'• are solenoidal (V ß •'• = V. •'• = 
0); however, the averaged velocities v f and v• are not 
solenoidal since they have been averaged over pore or grain 
volumes that are variable in space and time. 

2.2.1. Constant C•o. The constant ao is an important 
property throughout the development and application of this 
model; it has units of m -i and is inversely related to charac- 
teristic pore and grain size. Although we cannot offer an 
exact demonstration of this relation, it can be understood 

by a very simple conceptual example [after Spry, 1983). 
We consider a volume where the pores and grains are the 
same shape and size for all porosities and these grains and 
pores fit together exactly; for simplicity, we choose a cubi- 
cal volume with sides L and cubical pores and grains of side 
d < < L. The total number of pores and grains together is 
Ntot = (L/d) a, and if we have N pores, then the porosity 
is ½ = N/Ntot. For a small number of pores (N << Ntot) 
the net interfacial surface area is Ai = N6d 2, while for a 
large number of pores (or small number of grains) where 
N -+ Ntot we have Ai = (Ntot- N)6d 2 (for example, with 
Ntot - I pores, there is just one cubic grain of side d). Thus 
a symmetric formula that gives both limits for Ai would 
be Ai = [N(Ntot- N)/Ntot]6d 2, or since N = Ntot0, 
Ai = NtotO(1 - O)6d 2. The interface area per volume is 

2.2. Interfacial Area Density 

An additional property of the mixture concerns the fabric 
of the mixture which is specified by the location and orien- 
tation of the interface between the two phases. The interface 
location and orientation are given by V0, which is in essence 
a Dirac 6 function, centered on the interface, times the unit 
normal to the interface (in fact, pointing from the matrix to 
the fluid, in the direction of increasing 0). Thus the net in- 
terface area within a volume 6V is simply 

IVOIdV. (5) v 

However, in a mixture formalism we cannot know the loca- 
tion and orientation of the interface between fluid and ma- 

trix, and thus we must define an averaged property. In this 
paper we assume isotropy of the interface (i.e., on average, 
it has no preferred direction) and that in the control vol- 
ume 6V, there is an average interfacial area per unit volume, 
a - 6Ai/6V [see also Ni and Beckerman, 1991). Since 
the system is isotropic, we assume that this single quantity 
is sufficient to characterize the density of the interface. The 
area density a is necesarily a function of porosity since it 
must vanish when the medium becomes a single-phase sys- 
tem, i.e., when ½ - 0 or 1. As discussed by Ni and Beck- 
erman [1991], one simple possibility is that a 
however, we generalize this assumption to 

a = aoOa(1 - O) b , (6) 

where ao, a, and b are assumed constants that depend on 
the material properties of the phases. Although the general 
theory presented here does not depend on the exact form of 
the function a(O ) (and indeed, other forms of the function 
are possible), we adopt (6) in the following application pa- 
pers [Ricard et al., this issue; Bercovici et al., this issue]. 
We next briefly consider the implications of the constant ao, 
while the constants a and b are further constrained in section 
2.2.3. 

Ai 6 

a- Ntotda = •O(1- O), (7) 
which, by comparison to (6), implies that ao = õ/d (and 
clearly values of a and b different from unity account for 
noncubic pore and grain shapes). Although this is a highly 
idealized example, it illustrates that ao is characteristic of 
the inverse of pore or grain size d. For silicates, grain and 
pore sizes range from microns to milimeters [Spry, 1983], 
and thus ao can be as much as 10 6 m -1. 

2.2.2. A note on anisotropy. Although we assume iso- 
tropy, a few words on extensions to anisotropy are warranted 
since one of the eventual applications of this theory involves 
cracked media which are distinctly anisotropic. Informa- 
tion about fabric anisotropy is necessarily related to inter- 
face orientation, and thus we expect that an averaged ten- 
sor property defining this fabric should involve V0. In gen- 
eral, anisotropic properties, such as various conductivities of 
laminae (e.g., alternating layers of conducting and insulating 
material), can be constructed from second-order dyads based 
on the normals to the laminae. Moreover, fabric anisotropy 
should also depend on interface area density since a region 
with zero area density should be isotropic. We therefore de- 
fine a fabric tensor to involve dyads based on V0 and to re- 
cover, under isotropy, the area density a; one such obvious 
possibility is 

1 f5 VOV0 j-ff ivoaV. (8) 
which is symmetric to insure real principal (eigen-) values. 
Obviously, the trace of this tensor is Tr(•) - • and thus if 

• aI, where I is the identity ma- the system is isotropic • - X _ _ 
trix. (Note that a fabric tensor might also involve other com- 
ponents such as dyads of the interface tangent ? x V0, where 
• is a unit vector directed away from an arbitrary coordinate 
origin.) We postulate that many potentially anisotropic prop- 
erties of the mixture (e.g., permeability) should be related to 
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a-. However, a-- involves five independent quantities in ad- 
dition to a (six total), requiring additional closure relations. 
As even the isotropic theory is complex enough (as shown in 
this paper, it leads to 10 unknowns requiring as many equa- 
tions), we will remark on anisotropy and a- where they are 
likely to be included if desired but will not attempt to pro- 
vide a rigorous anisotropic theory (see Sleep [1998] for dis- 
cussion of anisotropy in rate-and-state theories of earthquake 
dynamics). 

2.2.3. Interface curvature. As discussed in later sec- 

tions, we consider surface tension on the interface, whose 

resulting force intriniscally involves interface curvature; it 
is thus useful to relate a (and a-) to the average curvature 
of the interface. If we assume isotropy and that a is indeed 
a function of •b, then one can show that da/dq3 is related 
to the sum of the interface curvatures. This can be un- 

derstood by a simple conceptual example (although it also 
arises generally from considerations of thermodynamics on 
an interface; see Appendix A2). Consider a model of an 
isotropic two-phase medium as being made up of spheri- 
cal pores (or grains, although we will refer only to pores 
for simplicity), and that the distribution of sizes of pores 
is not extremely broad within a selected volume 6V. At 
the simplest level, consider N spherical pores of one size, 
i.e., each with radius r; in this case each element of inter- 

face has two identical principal curvatures equal to 1/r (in 
contrast to, say, a cylinder of radius r, which also has two 
principal curvatures, but one is 0, while the other is l/r). 
Moreover, •b - N47rr3/(36V) and a - N47rr2/6V; thus 
da/dq3 - (da/dr)/(dq3/dr) - 2/r, which equals the sum 
of the principal curvatures. (Although a/•b has dimensions 
similar to curvature, it is not the sum of the principal cur- 
vatures as can be seen in this example; one can also repeat 
the example with cylinders to see that da/dq3 not a/•b prop- 
erly represents the sum of curvatures.) If the volume 6V 
has N spherical pores and the radius of the ith pore is ri, 
then the average curvature is 1/r (l/N) •v -- Y'•i=I 1/ri, the 

3 _ N47rra/(35V) porosity is •b - [4•r/(35V)] , 
and a (47r/SV) •v 2 _ N47r•/SV. If the distri- -- Zi--1 
bution in sizes of pores is sufficiently narrow within the vol- 
ume (which can more or less bc selected arbitrarily), then 
1/r • 1/•, r • • • (where n is 2 or 3), and thus da/dq3 will 
still bc roughly the sum of the average curvatures. There- 
fore the sum of interface curvatures is represented by da/dq3 
(again, scc also Appendix A2). 

Adopting (6), wc find that 

dq3 = ø•øaOa-1 (1 - •)b-1 (1 - ) (9) 
where q3c - a/(a +b). It is clear that the sign and magnitude 
of the average interface curvature depend on porosity. When 
•b is very small, the medium contains mostly small dispersed 
pores of fluid, and thus the average curvature is large and 
positive (again, curvature is defined hcrc to bc positive when 
the interface is concave to, or encloses, the fluid and negative 
when it is convex to the fluid or encloses matrix); when •b is 
close to l, the medium contains small dispersed grains of 

matrix, and the curvature is thus large and negative. Indeed, 
in the limits that •b -> 0 and •b -> 1 the average curvature 
should be infinite in magnitude. This suggests that both a 
and b are < 1. Moreover, the change in sign of the curva- 
ture occurs at •b = •bc = a/(a + b). If the system is purely 
symmetric, then a = b and the change in sign of curvature 
is at •b = 1/2. However, for real systems, a and b can be 
very different. For foams (in which the air is the fluid phase) 
the curvature remains positive to very large porosities, sug- 
gesting that a >> b. For silicate melts, interconnectedness of 
melt (i.e., dihedral angles < 60 ø) and even disaggregation at 
low melt fractions [see Harte et al., 1993] suggest a behav- 
ior opposite to foam; that is, the curvature becomes negative 
at low porosity, or a << b. 

As indicated above, surfaces are generally defined to have 
two distinct principal curvatures locally (i.e., on an infinites- 
imal area element) and the sum of these curvatures deter- 
mines the surface tension force [Landau and Lifshitz, 1987]. 
With isotropy and averaging, these curvatures are either the 
same or (because of random orientiation of elongate or lam- 
inar grains and pores) their volume averages are the same. 
However, with anisotropy due to coherent alignment of elon- 
gate or laminar grains and pores, the distinct curvatures 
would be manifested as a fabric in the medium, even after 

averaging. Since the averaging is over a volume containing 
whole pores and grains, it involves all the possible curva- 
tures on the surface area of a pore (or grain), not just the 
two local curvatures on an area element. Thus the volume 

average of the curvature of an interface should have at least 
three characteristic principal curvatures (e.g., consider ellip- 
soidal pores) which we assume are extractable from the fab- 
ric tensor a-, in particular de•/dq3. We assume that the three 
principal curvatures are the principal values of de•/dq3; for 
example, the sum of these principal curvatures is a tensor in- 
variant equal to Tr(da/dq3) = da/dq3, which is consistent 
with our isotropic formulation for the sum of the principal 
curvatures. 

3. Conservation of Mass 

Changes of fluid mass inside the volume 6V depend on 
the loss of fluid through the surface of the volume and, if ap- 
propriate, the rate at which matrix is converted to fluid and 
vice versa (e.g., by melting and solidification). For this paper 
we are not concerned with transfer of mass between phases, 
and thus we neglect this conversion rate, which is straightfor- 
ward to include (see section 6) and has been discussed exten- 
sively in previous studies [Hills et al., 1983, 1992; McKen- 
zie, 1984; Spiegelman, 1993a, 1993b, 1993c]. The rate of 
change of fluid mass is thus 

pfOdV - - pf•f . fiOdA (10) • v • 

where the area integral on the right-hand side represents the 
net rate of expulsion of fluid through pores exposed on or 
intersecting the volume's surface area 5A (Figure 1) and fi 
is the unit normal of the area element dA. Clearly, we wish 
to express the area integral in terms of the divergence of the 
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average velocity V f and the porosity •b. However, this is 
only permissible under certain conditions relating to the size 
of the volume 6V. In particular, consider a cubic volume 
centered on the point (x, y, z) and extending over the ranges 
x-x/2 < x < x y-y/2 < y < y 
z- 5z/2 _< z _< z + 5z/2, where 5V - 5xSySz. We can 
examine the area integral over just one face of this volume, 
say at the face parallel to the y - z plane and located at 
x + 5x/2. We first require that any integral (at any x) over 
the area 5ySz includes a sufficient sampling of pores in order 
to be continuous in x, and thus the area 5ySz cannot be too 
small. However, we also require that 5x is small enough for 
this integral to vary no more than linearly in x. With these 
limitations, and applying the integral mean-value theorem to 
linear functions, we may write 

Of•Odydz] 
1 /x+Sx [/Y+SY/2/z+Sz/2 ] - •f• Odydz dx 
•xx •, x LJ y-Sy/2 J z-Sz/2 

= vf• (x + 5x/2, y, z)qS(x + 5x/2, y, z)SySz. (11) 

This gives a practical example of the size constraints on 5x, 
5y, and 5z. For this integral the area 5ySz cannot be too 
small, but 5x cannot be too large; considering the other area 
integrals, the same constraint exists for all permutations of 
5x, 5y, and 5z, and thus the length segments can be neither 
too big nor too small. 

The integrated fluxes through the other five faces of the 
volume lead to similar results as in (11); the sum of all the 
resulting area integrals, divided by 5V, can be replaced with 
a divergence, assuming small enough 5x, 5y, and 5z, and 
thus (10) becomes 

o'W + v. [0vs] - 0. 
(However, since 5x, 5y, and 5z are not, in fact, infinitesimal, 
spatial differential operators in two-phase theory are only ap- 
proximations of their normal continuum counterparts.) An 
identical treatment can be made for the mass of matrix ma- 

terial leading to the symmetric equation 

0(1 - 05) 
+ V-[(1 - •5)Vm] - 0. (13) ot 

Material invariance between (12) and (13) means that re- 
placement of f by m, and 05 by I - 05, in (12) gives (13) 
and vice-versa. 

We may also define mixture and difference quantities, 
given, for any general quantity q, by 

q -- (•qf q- (1 - (•)qm, Aq -- qm -- qf , (14) 

respectively; q is, of course, materially invariant or symmet- 
ric, while Aq is antisymmetric. We can thus combine the 
mass equations in two ways, i.e., by first adding (12) and 
(13) to yield 

v .v -0 (•5) 

(where • is the mixture or mean velocity) and second by 
finding (1 - 05)x (12) -OSx (13), to obtain 

005 
+ 9-V•b - V. [05(1 - 05)Av] (16) 

Ot 

(where Av is the velocity difference or phase separation ve- 
locity). An interchange of the implicit subscripts f and m 
leaves these equations unchanged. 

The entire development above is, of course, fairly triv- 
ial and has been presented innumerable times and in vari- 
ous forms in previous papers and texts [Drew, 1971; Drew 
and Segel, 1971; McKenzie, 1984; Ganesan and Poirier, 
1990; Ni and Beckerman, 1991]; we have only provided it 
to demonstrate the formalism, as well as the necessary as- 
sumptions, for obtaining further conservation laws, which 
are gradually more complex and novel. 

Before proceeding to the other conservation laws, it is 
necessary to establish one more relation regarding volume 
integrals involving products of fluid or matrix velocity and 
VO; these, in particular, arise when we consider stress ten- 
sors. Since the individual phases are assumed incompress- 
ible, their true velocities are solenoidal (V. •f - V. •m = 
0). Therefore the average of the divergence of the fluid ve- 
locity over the fluid volume is zero, leading to 

1 f• (V- gr•)0av 5V v 

= 1 f• [V-(•,i0)-•'i-V0]dV-0 (17) 5V v 

Given the same constraints and assumptions leading from 
(10) to (12), this relation yields 

I f• •.f. VOdV - V-[qSvs] (18) 5V v 

We arrive by similar arguments at the symmetric relation for 
the matrix velocity field 

1 ]i •'m' V(X - O)dV - V-[(1 - •b)Vm] (19) 5V v 

Both (18) and (19) are obviously related to changes in poros- 
ity through (12) and (13). 

4. Momentum Equations 

For simplicity, we assume (along with many other stud- 
ies, e.g., McKenzie [1984]; Richter and McKenzie [1984]; 
Spiegelman [1993a, 1993b, 1993c]) that both fluid and ma- 
trix undergo creeping flow; that is, their forces are always 
in balance and thus acceleration and inertia are neglected. 
An extension of this to higher Reynolds number systems is 
tractable [Loper and Roberts, 1978; Hills et al., 1983, 1992; 
Bennon and Incroprera, 1987; Ganesan and Poirier, 1990; 
Ni and Beckerman, 1991; Loper, 1992]. 

The total force on the fluid phase is the sum of surface 
and body forces acting on the fluid part of the volume; since 
these forces are assumed to balance, we arrive at 
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where &---I is the true total stress tensor in the fluid, g is 
the fluid body force per unit mass, H I is the effective in- 
terfacial stress tensor, and Ai and fii are the area and unit 
normal of the fluid-matrix interface (and, obviously, fii = 
-X70/IX701). The first integral on the right-hand side of (20) 
represents the net surface force acting on the fluid that is ex- 
posed at the surface of the volume 5V, while the second in- 
tegral represents the net interfacial force, that is, the force 
acting on the fluid at the fluid-matrix interface (also referred 
to as the interaction force [Drew and Segel, 1971; McKenzie, 
1984]). Given that the fluid is an incompressible isoviscous 
medium, then 

&---I - -/5II + r---I, (21) 
where/5 I is the true fluid pressure and 

(22) 

is the true viscous deviatoric stress tensor ([ it implies ten- 
sor transpose). Moreover, we assume for now that the body 
force per mass is the same for both phases and is entirely 
gravitational' g - -g•, where g is gravitational accelera- 
tion. We can use previous arguments involving area integrals 
(again, see the discussion surrounding (11)) to rewrite (20) 
as 

0 - -X7[•bPI] + X7. [•brl]- pfc)g• + hi, (23) 

where PI is the pressure averaged over the fluid volume and 
rf is the viscous stress tensor averaged over the fluid vol- 
ume. The interaction force h I results from forces acting on 
the fluid across the interface. A similar development for the 
matrix results in 

0 - - x7[(1 -4')em] + x7. [(1 - 
- pro(1 -- + hm (24) 

where Pm and r__ m are the average pressure and stress in the 
matrix, while the interaction force hm results from forces 
acting on the matrix across the interface. 

Given the complexity of the interface between the phases, 
precise knowledge of its orientation and location using the 
continuum (i.e., volume averaging) approach is not possible. 
Thus the interfacial forces hf and hm are difficult to quan- 
tify and have been the subject of much discussion in the two- 
phase literature [Drew and Segel, 1971; McKenzie, 1984; 
Ganesan and Poirier, 1990]. They are generally treated as 
effective body force vectors, which, in the absence of sur- 
face tension, are equal and opposite [Drew and Segel, 1971; 
McKenzie, 1984]. However, they are not equal if the inter- 
face has an intrinsic surface free energy and tension. The 
surface tension force acting on a control volume 6V is ap- 
parent when considering the total force on the whole volume 
6V of the fluid-matrix mixture, which leads to 

o - -vP + v. pgi + a[de 
i 

(25) 

(see (14) for the definition of mixture quantities P, r__-, and 
p), where 5 is the true surface tension (with units of N m- 1), 

A 

A 

Figure 2. Side view of a cross section of a segment of 
the mixture adjacent to the surface of a control volume (as 
shown in Figure 1); the solid line on the left of the rectan- 
gular sample shows the surface boundary, while the dashed 
boundaries indicate that the sample is connected to the rest 
of the volume. Black and white material is the same as in 

Figure 1; that is, they represent either fluid or matrix. The 
unit tangents to the interface (at the intersection with the sur- 
face of the control volume) • and unit normal to the surface 
of the control volume fi are illustrated; see text surrounding 
(25) and (26). 

which differs from surface free energy (denoted by •ci in sec- 
tion 5 and Appendix A2), Ci is the curve which traces the 
intersection between the interface and the surface of the con- 

trol volume (see Figure 1), dœ is a line element along Ci, and 
• is a unit vector that is both normal to the line element dœ 

and tangent to the interface (Figure 2 )[see also Drew and 
Segel, 1971]. However, we seek the effective surface ten- 
sion force acting on an element of surface area dA (a small 
segment of 5A); the element dA itself contains the intersec- 
tion curve ci, which is a small portion of Ci. As shown in 
Appendix A1, we can, with isotropy, replace fc• •dœ with 
aafidA, where cr is a reduced surface tension (the reduction 
is typically O(1); see Appendix A1). Thus summing over all 
area elements on 5A, the net surface tension force per unit 
volume becomes (1/SV) f•A ac•fidA, in which case the net 
force equation assumes the form 

0 - -X7P + X7. •_- pg• + X7(aa). (26) 

The last term in (26) is an effective surface tension body 
force on the total mixture. (If we were to allow for anisotropy, 

then fc• • dœ would be most likely related to a•_. fidA, in 
which case, the surface tension force would be replaced by 
a term proportional to X7 ß (aa); see also Drew and Segel 
[1971].) 

The force equations for each phase, (23) and (24), must 
sum to equal (26), indicating that 

h I + hm - V(rroz) (27) 
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[see also Drew and Segel [1971]. Equation (27) might be 
easily misconstrued as a stress jump condition since it ap- 
pears similar to the jump condition for the interface between 
two fluids with surface tension [Landau and Lifshitz, 1987; 
Leal, 1992]. Such a jump condition is required at an internal 
boundary whose shape, location, and orientiation are known 
and that separates two adjacent but distinct fluid volumes 
that do not individually fill the entire domain. Given the 
continuum approach of two-phase theory, however, the spe- 
cific location and orientation of the interface are unknown; 

the interface as well as the two phases are treated as contin- 
uous quantities that exist at all points in the domain. (Even 
if anisotropy is allowed, the tensor a_q_ gives only the average 
orientation of fabric due to the interface but not the loca- 

tion and orientation of the interface itself.) Thus the two- 
phase equations do not require an internal boundary condi- 
tion, and the inappropriate imposition of such a condition 
would lead to an overdetermined problem. Therefore (27) 
does not indicate that there is a jump in the interaction forces 
but rather that the interaction forces themselves each con- 

tain some component of the surface tension force. Since 
surface tension acts through the common interface between 
fluid and matrix, then the volume-averaged, effective body 
force X7 (orca) acts equally on equal-sized particles of fluid or 
matrix (i.e., it does not act differently on the two phases as 
does, say, the gravitational body force); we thus assume that 
at any point (or infinitesimal volume) in the mixture a frac- 
tion q• of this force acts on the fluid, while a fraction 1 - q• 
acts on the matrix. We therefore write 

hf = n + q•v' (orca) (28) 

h,• = -n + (1 - ½) v (ac•) (29) 

where r/is the component of the interaction forces that act 
equally and oppositely to each other; (28) and (29) automat- 
ically satisfy (27). 

The force r/has few constraints. By material invariance, 
r/has to be a function of vector variables that are antisym- 
metric to a switch of the subscripts f and m, such as Av 
and X7q•. Moreover, r/must account for (1) the viscous in- 
teraction due to relative motion between the fluid and ma- 

trix and (2) pressure acting at the interface. The simplest 
viscous interaction force that preserves Galilean invariance 
(frame independence) is c(vm - v f) -- cAv, where c is a 
scalar to be discussed further below [Drew and Segel, 1971; 
McKenzie, 1984]. The pressure contribution to the interfa- 
cial force must allow for equilibrium (no motion) when pres- 
sure is constant everywhere; for example, at least a portion 
of this force must cancel the part of the pressure force term 
in (23) that goes as -Pf Vq3 (and similarly for (24)). There- 
fore the most basic form of the interface force is 

r/- cAv + P*X7q•, (30) 

where P* is some averaged pressure that must be the same 
in each phase and is invariant to a switch of f and m. In 
general, we write P* - •/Pf + (1 - ')')Pro, where '), is some 
unknown weighting that is _< 1 and that, like q•, switches 

to 1 - 3' if f and m are switched. (Note that in writing 
P* as a function of Pf and Pro, we assume that the interfa- 
cial average pressures are linearly dependent on the average 
pressures in each phase; see Drew and Passman [ 1999] for a 
discussion of interfacial pressure.) Also, if the system were 
anisotropic, the relation for r/would need to be adjusted; see 
the comment at the end of section 4.3. 

It is important to recognize that r/represents the equal and 
opposite force of one phase against the other, not the force 
of either phase against surface tension on the interface. In 
fact, one can see by (26) that all the other forces involving 
VP and V ß •, etc. work against the surface tension force 
V(cra). (Indeed, the correct stress jump condition arises 
from integrating (26) about a vanishingly thin volume cen- 
tered on the interface, accounting for that the fact that a be- 
comes a Dirac r5 function centered on the interface (see (5)), 
not by integrating (27) about the interface.) Thus the forces 
hf and hm include surface tension, while all the other forces 
potentially balance surface tension. 

Therefore, upon substituting 

hf = cAv + ['7Pf + (1 - 9')Pm]Vq• + q•V(aa) (31) 

h,• =-cAv-['yPf+(1-3`)P,•]Vcg+(1-c))V(aa) (32) 
into (23) and (24), we obtain (after some rearrangement) 

o = - [vP + + v ß 
+ cAv + (1 - 7)APVq• + q•V(aa) (33) 

0 = - (1 - q•)[VP,• + p,•!/i] + V. [(1 - q•)r__,•] 
- cAv + 9,/XPVq• + (1 - q•)V(aa) (34) 

We can estimate 9' by considering the conditions for no 
motion; this requires zero velocities, zero nonhydrostatic 
pressure gradients, zero viscous stresses, and a constant cr 
(since a gradient in surface tension in a viscous medium can 
only be balanced by viscous stresses; see Landau and Lif- 
shitz, 1987; Leal, 1992). In this case, (33) and (34) become 

(1 - 7)APVq• + q•crVa = 0 (35) 

-7APVq• + (1 - q•)crVc• = 0, (36) 

which can only both be true if 
On the assumption that 7 - 1 - ½ for aI } situations our 

equations become 

o = - [vP + + v ß 
+ c•v + O [•PVO + V(aa)] (37) 

0 - - (1 - qS)[VPm + ping •'1 + V' [(1 - qS)Zm] 
- cAv + (1 - qS)[APVq5 + V(ac•)]. (38) 

The force equations in the form of (37) and (38) are by no 
means complete since there are various issues that remain 
to be developed, such as the nature of the surface tension 
force, the form of the volume-averaged viscous stresses 
and *'m, the meaning of c, etc. We will deal with these se- 
quentially. 
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4.1. Surface Tension Force and Interface Equilibrium 

As discussed in section 2.2 the interface area density a is 
assumed a function of •b wherein da/dck is the sum of av- 
erage interface curvatures. With this assumption the surface 
tension body force in (26) becomes 

da 

V(aa) - a•V•b + aver. (39) 
The first term on the right-hand side of (39) represents the 
surface tension force due to interface curvature, while the 
second term is a force due to gradients in cr itself which 
result from temperature fluctuations (or gradients in surfac- 
tants; Landau and Lifshitz, 1987; Leal, 1992). Gradients in 
yield effects such as Marangoni convection wherein temper- 
ature anomalies in an exposed, thin fluid layer cause imbal- 
ances in surface tension at the layer's free boundary which 
in turn drive motion (see review by Berg et al. [ 1966]). 

In the case of no motion, as in (35) or (36) using '7 = 1-(b, 
there can be no gradient in cr (which can only be balanced by 
viscous stresses in a fluid [Landau and Lifshitz, 1987; Leal, 
1992]), and the force equations yield the equilibrium surface 
tension (Laplace's) condition (assuming the force balance 
holds for all 

da 
Pt - Pm = rr• (40) 

(see also Appendix A2). However, we must emphasize this 
condition is only true when the system is static or quasi- 
static, adiabatic, and in equilibrium; a more general condi- 
tion will be explored in section 5. 

4.2. Average Viscous Stress Tensors 

To obtain a closed theory, it is necessary to express the 
average viscous stress tensors T_f and Zm in terms of aver- 
age velocities vf and vm. While the assumption that these 
stresses obey the constitutive laws for single-phase media 
[e.g., Loper and Roberts, 1978; McKenzie, 1984; Loper, 
1992] is somewhat ad hoc, we can provide some constraints 
which partially justify such an approach. 

By our definition of volume averaging, the average vis- 
cous fluid stress r_f is given by 

1 f• (V•/+ [V•/] t) OdV (41) 
given that pf is assumed constant. Derivation of the relation 
between Zf and vf requires an evaluation of the integral of 
the true velocity gradients; by considering one gradient term 
we can write (again given the same assumptions associated 
with (11 )) 

1 f• (X7•,f)OdV_ 1 fa [X7(Ogf)-(VO)•'f]dV 5V • 5V • 

1 f• (VO)•rfdV. (42) = V(0vi) - -ff v 
The other velocity gradient term can be treated identically, 
leading to 

c•Zf -- pf {V(oSvf) + [V(oSvf)] t - (U l + IJ})}, (43) 
where 

1 f• (VO)•rfdV. (44) Es=aft v 
The tensor U__f contains bulk information about the fluid ve- 
locity at the interface; its evaluation is by no means trivial 
and has been given a variety of treatments [Ganesan and 
Poirier, 1990; Ni and Beckerman, 1991 ]. Although Uf can- 
not be solved exactly in terms of average velocities, there are 
several fundamental constraints that can help us estimate its 
form: 

1. [If must contain a term to insure that the stress tensor 
T_f is Galilean invariant. In particular, it must have a part 
that depends on (V 4)uf, where uf is some as yet undefined 
velocity; in this case, the stress terms dependent on velocity 
in (43) will appear as (V•5)(vf - uf) thereby removing the 
velocity of the frame of reference. 

2. The trace of Uf is given by (18) and thus 

Tr(Ui) = •bV.v I + v I ß V•b. (45) 

3. The whole stress tensor Zi itself must have zero trace; 
that is, it remains the deviatoric stress even after volume av- 
eraging. This is required because regardless of how we do 
any volume averaging, the fluid and matrix are always in- 
compressible, and thus when the mixture is exposed to a uni- 
form isotropic stress, it should not undergo compression and 
only its pressure should increase. 

4. Since U.i is linear in • and 0, it is reasonable to expect 
that it be linear in vi and •b (as also suggested by (45)). 

5. U__i must contain unique terms; that is, it cannot only 
be made up of terms that merely cancel all of V (•bvi), thus 
leading to a null stress tensor Zi. In other words, although 
U__i = V (•bvi) would satisfy all the previous constraints, it 
would also lead to Zi = 0, which is unacceptable. 

6. Finally, any stress tensor Zi resulting from the choice 
of U__i must have a positive definite contribution to the dissi- 
pation function, i.e., Vvi: Zi _• 0, in order to satisfy the 
second law of thermodynamics; see section 5 for discussion 
of dissipation. 

The simplest (but by no means unique) form of U__i that 
satisfies these six basic constraints is 

U i - (V4)v/+ •4V. vii. (46) 
This leads to a stress tensor given by 

•T---f -- •tZ f ( vv f + [vv f ]t 2 0 -õV.vs , (47) 

which is, of course, the simple deviator for nonsolenoidal 
velocity fields and is thus intuitively appealing. By similar 
arguments, and by symmetry, we arrive at the relation for the 
average matrix stress tensor 

( , i_) (1--•))T' m -- (1--•))•m VYm -• [VYm] t -- •V'¾m ß 
(48) 
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Neither (47) nor (48) explicitly contain the bulk viscosity 
term used by McKenzie [1984] since we have precluded 
compression under a uniform isotropic stress. However, 
isotropic compaction is allowable if the two phases expe- 
rience different isotropic stresses; for example, the matrix 
is isotropically loaded but the fluid is left free to escape (D. 
McKenzie, personal communication, 2000); as discussed in 
section 5 (see the explanation surrounding (68)), this pro- 
cess is treated through the pressure difference Ap instead 
of through a bulk viscosity effect. 

The constitutive laws (47) and (48) are somewhat simpler 
than those arrived at by various workers [Ishii, 1975; Ni and 
Beckerman, 1991] and not very different from what others 
[Loper and Roberts, 1978; McKenzie, 1984] have assumed 
would be the constitutive laws. However, while (47) and (48) 
are not derived uniquely, they are arrived at more rigorously 
than usual, and their deduction from the above considera- 

tions partially justifies their simple form. Finally, we briefly 
note that if we were to consider anisotropy it undoubtedly 
occurs in the tensor Uf (and its matrix counterpart) as it 
derives from integrals of the quantity •70; we would thus 
assume that an anisotropic version of Uf would involve c•, 
thereby leading to an anisotropic stress tensor. 

4.3. Interaction Coefficient c and Darcy's Law 

The fluid force equation (37) reduces to something similar 
to Darcy's law when Zf (or more precisely/•f) is negligible 
and APV•b+ V(act) = 0 (implying that either the pressure 
drop balances surface tension or that surface tension and the 
pressure drop are both zero), i.e., 

C(Vf -- Vm) = -qb(VPf q- pfg9•) (49) 

[see also McKenzie, 1984]. If there is sufficient interconnect- 
edness of pores, (49) suggests that the coefficient c should 
be related to the permeability of the matrix and the viscos- 
ity of the fluid, i.e., c = I•fqb2/k, where the permeability k 
is a function of porosity •b [McKenzie, 1984; Ganesan and 
Poirier, 1990]. However, this relation for c cannot be used 
generally (i.e., for arbitrary viscosities) since it would violate 
material invariance (i.e., symmetry to a switch of subscripts 
m and f) of the force equations (37) and (38). We can es- 
timate a more general expression for c by considering the 
balance of viscous forces at the fluid-matrix interface. We 

assume that (1) the forces represented by cAv arise from 
viscous deformation at the pore and grain scale, i.e., due 
to deformation of fluid or matrix within the pore or grain; 
(2) the scales for the viscous force per volume in the two 
phases have similar forms; and (3) these forces match at the 
interface. These assumptions lead to a relationship between 
viscous force scales: 

V m -- V i V i -- Vf 

, (50) 
where vi is the interface velocity and 6; is the typical size 
of an element of phase j (meaning a fluid pore if j - f and 

terms of vf and vm, we can estimate the viscous force scale 
(either side of (50)) and equate it to the interface force on the 
fluid, leading to 

C(V m -- Vf) -- ]gmIgf(Vm -- Vf) I•f62• + 1•,•6• ' (51) 
If we assume that 6f and 6m are related to permeability k 

and (like permeability) me assumed to be functions only of 
porosity ½, then to preserve symmetry of the equations (ma- 
terial invariance), they must be related to the same function 
of porosity, i.e., 

6f =6(0) 6• = 6(1 - O). (52) 

If we wish to recover Darcy's law, then in the limit •f (( •m 
we obtain 

lim c- /•f(/)2 /•f (53) 

which implies we would use 5(•b) - V/•(•b)/•b. As ex- 
pected, permeability is related to pore and/or grain size and 
thus contains information about the mixture's fabric; there- 

fore k is necessarily also related to the interface density a 
(see section 2.2). If pore and grain sizes are uniquely repre- 
sented by permeability, then a general form of c is 

•m•f•b2(1 -- •b) 2 
c -- 02 k(•b)(1 0) 2' (54) /•ik(1 - •b) +/•m - 

which has the proper symmetry. 
The dependence of permeability on porosity has vari- 

ous forms [Bear, 1988; Furbish, 1997], although these are 
largely based on empirical estimates in which the matrix is 
immobile (/•,• >> /•). For small porosities one often uses 
the simple model k(•b) - koc) n [see Spiegelman, 1993c, and 
references therein]. If there is not sufficient interconnected- 

ness of pores and/• is not <</•m, then use of Darcy's law 
as a constraint is not valid, although a relation of the form 
given in (5 l) is probably still general enough to even cap- 
ture relative motion of isolated bubbles in a matrix [e.g., see 
Batchelor, 1967]. 

Regardless of whether or not we use permeability and 
Darcy's law, it is clear that c depends on grain and/or pore 
size and thus should be related to the interface area density 
a (see section 2.2). Thus, if the system were anisotropic, we 
would likely replace c with a tensor c_ that is related to •, 
and the interaction force cAv would be replaced by c_. Av; 
by the same token, an anisotropic permeability also should 
be determined by •. Moreover, the part of the force r/that 
represents a pressure acting on the interface (see (30)) would 
likely be proportional to V .• instead of V•b. 

5. Energy Conservation, Surface Energy, and 
Damage 

So far, we have derived eight conservation equations: two 
continuity equations (12) and (13) (or alternatively (15) and 

a matrix grain if j - m). (Equation (50) accounts for the (16)) from conservation of mass and six force equations (37) 
fact that as in simple shear across a boundary, if v,• > vi, and (38). However, even without anisotropy, this system is 
then vi > vf.) By solving for the interface velocity vi in still underdetermined since we have nine unknowns, poros- 
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ity ½, six velocities vf and v,• (or alternatively V and Av), 
and two pressures Pf and Pm (or alternatively P and Ap). 

To some extent, the ninth relation that we seek is a con- 

straint on the pressure difference AP. For example, a possi- 
ble ninth equation would be the simple equilibrium surface 
tension relation (40); while this is a legitimate equation, it is 
only valid for zero or weak motion and assumes conditions 
of thermodynamic equilibrium and isentropy (see Appendix 
A2), which are not general conditions and are inappropriate 
for problems involving large viscous forces and/or rapidly 
deforming systems. To incorporate deformation and viscous 
stress, it is tempting to posit a vector jump condition on total 
stress such as AZ. X7c) - APVq5 -- V(aa), which would 
be analogous to an interface condition [Landau and Lifshitz, 
1987; Leal, 1992] in which V ½ serves as crude proxy for the 
unit normal to the interface. However, as stated earlier, such 
conditions would be valid only if the interface were well de- 
lineated and thus required a boundary condition across it. 
With the averaging implicit in a mixture theory the interface 
is not delineated; it is, instead, mathematically treated as a 
continuous quantity that exists at all points in the domain 
with a particular concentration (in this case, area per volume 
a); thus a vector jump condition would be inappropriate and 
would impose an overdeterminedness on the system. 

Perhaps the simplest relation for Ap, the equilibrium sur- 
face tension condition (40), is generally derived from ba- 
sic thermodynamics (i.e., conservation of energy assuming 
equilibrium, or minimum energy, and isentropic conditions 
[Landau and Lifshitz, 1987; Bailyn, 1994]); see Appendix 
A2. In this section we attempt to infer a ninth equation to ef- 
fectively constrain AP from a more general thermodynamic 
approach, i.e., conservation of energy far from equilibrium 
and with entropy production. 

Our basic energy conservation law differs little conceptu- 
ally from that derived previously [McKenzie, 1984; Poirier 
et al., 1991]; the time rate of change of internal energy 
within a control volume •V is governed by (1) the rate of 
loss of this energy through the surface of the volume via 
both mass transport and diffusion; (2) the rate at which work 
is done on the volume by the net surface and body forces; 
and (3) the rate of internal energy or heat production. In our 
system, however, the internal energy contained within •V 
exists in not two but three phases, i.e., the fluid and matrix 
phases and the interface. We will first write down the energy 
conservation law and then discuss the various assumptions 
that have gone into it. If sf and Sm are the internal energy 
per unit mass of the fluid and matrix phases, respectively 
(averaged over the volumes of their respective phases) and 
•i is the energy per unit of interface area (averaged over a 
small volume of the mixture), then the rate of energy change 
per volume is given by 

o[ ] 0-• •Sp•e• + (1 - •)Pmem + •iOz -- Q - V.q 
-- V ' (•pf•fVf -•- (1 - •)PmSmV m + •iO• r) 

+ V. (-OvIPI -(1- O)vmPm 

+ •Sv• 'r_• + (1 - •5)Vm-r m + Vac•) 
-- qSvf. (pfg•) -- (1 - •p)v m ß (pmg•), (55) 

where Q is the inherent rate of energy (heat) production per 
unit volume, q is the diffusive energy flux vector (e.g., the 
heat flow vector). The second term on the right of (55) rep- 
resents the rate of energy transport across the surface of the 
volume (Figure 1), the third term represents the rate at which 
work is done by surface forces on the surface of the volume, 
and the last two terms represent the rate at which work is 
done by the body forces on the interior of the volume. As 
basic as this equation appears, several implicit assumptions 
necessary for its derivation should be discussed: 

1. As appropriate for our creeping flow system, changes 
in kinetic energy are neglected [see also McKenzie, 1984]. 

2. In (55) the nonlinear products between various depen- 
dent quantities (in particular, velocity with energy, pressure, 
or stress) appear to be represented only with the products of 
the volume-averaged quantities. This representation is not 
entirely accurate and therefore warrants some discussion. In 
particular, say we have two true fluid quantities .• and •, 
and their averages A and B are defined in the standard way, 
e.g., qSA - (1/SV) far •OdV. Then we can also write that 
A - A + A • and/• - B + B •, where the averages of the 
perturbations A • and B • are zero. The volume average of the 
product A and/• differs from the product of A and B, i.e., 

f6 -- 1 f, A' B' OdV. 1 ABOdV - c)AB + •-• v 5V v 
(56) 

The evaluation of the last term on the right is, of course, a 
classic problem in turbulence mean field and closure theo- 
ries. In problems of heat and chemical transport in porous 
media this term is typically parameterized into a quantity 
called dispersion, which mathematically looks very much 
like diffusion [Bear, 1988; Furbish, 1997]. While this type 
of dispersive transport might be a reasonable representa- 
tion of the bulk transport terms, i.e., the nonlinear prod- 
ucts between velocities and internal energies, it is possibly 
less justified for the products between velocities and stresses 
or pressures. A rigorous estimate of these nonlinear terms 
invariably requires higher-order closure theories, introduc- 
ing yet more equations and unknowns. While this problem 
might prove fruitful in future studies, we presently opt to 
maintain the maximum level of simplicity. We thus assume 
that the nonlinear terms in question are zero (meaning es- 
sentially a zero correlation between the quantities A • and 
B •, regardless of what these quantities are) or that they can 
be deemed a form of dispersion and thus absorbed into the 
quantity q (thus q would not necessarily represent only heat 
flow). Neither assumption is completely satisfactory, yet the 
alternatives are less so. 

3. As discussed in section 4, surface tension, when aver- 
aged over an area element on the surface of a control volume, 
exerts a force per area ac•fi (where fi is the unit normal of 
the area element). Since this effective averaged force acts 
equally on particles of matrix and fluid (given that it actu- 
ally acts through their common interface) we assume that a 
fraction ½ of it acts on fluid which moves at velocity v f, 
while a fraction 1 - ½ acts on matrix which moves at ve- 
locity Vm. Thus the net rate of work done (per area) on 
material at the surface by surface tension is assumed to be 



BERCOVICI ET AL.: TWO-PHASE COMPACTION AND DAMAGE, 1, THEORY 8897 

(•Svf + (1 - •5)v,•). (ac•fi) = V. flack. The integral of this 
rate of work over the surface of the control volume, taken 

per unit volume, of course, leads to the term appemng as 

4. The surface energy per volume •ia is an average quan- 
tity for the total volume •V and is thus represented as a vol- 
umetric energy density. Since the actual surface energy ex- 
ists on the common interface between phases, the volume- 
averaged effective energy density •ia is the same for both 
fluid and matrix. Moreover, this energy is assumed trans- 
ported by the phases also according to their volumes; that is, 
while each phase has the same effective energy density, of 
the total energy in the volume •V the fluid caries a fraction 
• at a velocity v f, and the matrix carries a fraction (1 - •) 
at v•. Thus the total bulk transport or flux of •a is simply 

The energy equation can be reduced in the standard way 
by employing continui W equations (12), (13), and/or (15), 
(16) and momentum (force) equations (37), (38) to agive at 
(after some algebra) 

•P• Dt +(1-•)pm D•+ Dt 
__ 

D• 
= Q-V-q-AP•+cAv • 

+ + (1- )VVm: Zm, (57) 

where Dj/Dt - O/Or + vj ß V (in which j - f or m), 
•/Dt - O/Ot + V. V, and Av 2 - Av. Av. However, we 
have, with our ninth and new equation, introduced three new 
dependent variables c f, c,,•, and •ci. 

Because both phases are considered incompressible, pres- 
sure cannot do work to change the internal energies of either 
phase. Thus, by basic thermodynamics the internal ener- 
gies of the phases •f and •,• are influenced only by their 
respective entropies, which are themselves only functions 
of temperature; no adiabatic heating can occur in this case 
[cf. McKenzie, 1984]. If we assume that the two phases 
have different temperatures, we have not reduced the num- 
ber of unknowns. Thus, for simplicity, we make the common 
assumption that the phases are in thermal equilibrium with 
each other [e.g., McKenzie, 1984; Poirier et al., 1991] and 
thus have the same temperature T; the thermal equilibration 
time between phases is likely to go as (/•OZ2o) --1, where n 
is thermal diffusivity (which is of order 10 -c m 2 s -i) and 
OZo "'" 10 6 m -1 (see section 2.2.1) and thus thermal equi- 
libration between phases is possibly nearly instantaneous 
(at least on geologically relevant timescales). Thus, given 
incompressibility and a single temperature, we write the 
energy increments (exact differentials) de• - c•dT and 
de,• - c,•dT, where cf and c,• are the heat capacities of 
the two phases (whether for constant volume or pressure is 
irrelevant if the phases are incompressible). 

For our simple system, both the surface energy per area 
•ci and surface tension a are functions of T only and can be 
related according to 

da 
•ci - a- T-- (58) 

dT 

(see Appendix A2). The factor -da/dT is the entropy per 

unit area on the interface and is expected to be a positive 
quantity [Berg et al., 1966; Tiller, 1991a; Bailyn, 1994](see 
Appendix A2; cf. Cardin et al. [1991]). Thus the surface 
tension a is generally found to be a decreasing function of 
T, e.g., a - A(1 -/•T) [Bailyn, 19941. Such a linear a(T) 
function only can be true for sufficiently small/•T since it 
is implausible that a, which represents the electrostatic at- 
traction of interfacial molecules for their own species, would 
become a repulsion at high enough T; however, a could con- 
ceivably vanish at very high T, meaning the two phases be- 
come miscible if hot enough. Thus it may be more appropri- 
ate to state that a - Ae -•T [see also Straub, 1994]. 

Note that in writing (58) we assume that •ci is related to 
the effective or geometrically reduced surface tension a (see 
Appendix A 1) and thus must be the reduced surface energy 
itself. This is done for consistency with the assumption that 

ß the surface tension work done on the mixture is enacted by 
a (as per the force equation (26)). As noted in Appendix A1, 
the reduction in surface tension with the averaging approach 
is not large, i.e., of O(1). Moreover, the underestimation of 
•ci can also be thought to partially compensate for the ne- 
glect of nonlinear fluctuation energy sources and fluxes (see 
assumption 2, following (55), and the closing discussion in 
Appendix A1). 

With the above assumptions regarding c f, •.•, and •i the 
energy equation can be recast (with minor algebra) as 

F•-• Dt •• - Q- V.q 

+ •- AP -a Dr' (59) 
where 

• -- cAv 2 + •bVvf ß r_f + (1 - •b)VVm ß r_ m, (60) 
p-•- (•pfCf + (1- (•)pmCm, (61) 

__ 

- ) D _ 1 ( D I D,• Dt - •-• OPlCl•-• - + (1- O)p,•c,•-•- . (62) 
We have arranged (59) to describe the relation between en- 
tropy growth (which would be the left-hand side of the equa- 
tion, less a factor of T) and possible entropy sources (th e 
right-hand side). The second term on the left-hand side of 
(59) accounts for interfacial entropy growth. 

__ 

The last term on the right-hand side of (59) aDc•/Dt 
accounts for the growth in reversible surface energy (per 
unit volume)due to surface tension work (see Appendix A2, 
equation (A19)). We know from interface stress jump con- 
ditions [Landau and Lifshitz, 1987; Leal, 1992] that the rate 
of change of this energy is driven by mechanical work from 
the pressure and viscous stress fields, which are represented 
by the third and fourth terms on the right-hand side of (59), 

__ 

i.e., ß and -APDqb/Dt; however, only portions of these 
work terms, the reversible portions, affect reversible surface 
energy, while the irreversible portions contribute only to en- 
tropy production. 

Even from simple surface tension equilibrium we know 
that the pressure difference AP affects surface energy. How- 
ever, in nonequilibrium, when dilation or compaction is oc- 
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curring, a portion of the work done by LIP arises from vis- 
cous resistance to dilation/compaction (see Appendix B) and 
is thus necessariliy irreversible. We must therefore assume 
that part of LIP involves irreversible (viscous) deformation, 
and we will refer to this part as APir. The pressure work 
acting on the interface to change reversible surface energy 
is thus -(LIP - APir)Dqb/Dt, while the portion contribut- 
ing to entropy production is -APi•Dqb/Dt. However, by 
the second law of thermodynamics, this source of entropy 
production must be positive definite and thus 

Dq5 
APi• - - B D•-' (63) 

where B is a positive coefficient with units of viscosity. 
From micromechanical models (see Appendix B) one can 
infer a simple materially invariant form of this coefficient 
given by 

B - Ko (l•f + •m) (64) 
- ' 

where Ko is a dimensionless constant of O(1). 
As stated above, in addition to pressure work on the inter- 

face we must also allow for work done on the interface by de- 
viatoric stresses. The deformational work from all deviatoric 

stresses is represented by the function •. In a single-phase 
viscous medium, ß is readily identified with the dissipation 
function because the deformation is entirely irrecoverable 
and thus ß is a source of irreversible entropy production or 
heating; this would also be true in a two-phase medium if the 
interface had no intrinsic energy. However, in a two-phase 
medium with interfacial energy the deformational work can 
act against surface tension to increase the interface area and 
thus deposit energy into interfacial surface energy. We there- 
fore assume that a fraction of the deformational work asso- 

ciated with • goes to deforming the interface (i.e., works 
against surface tension) and is stored as surface energy rather 
than dissipated; we consider this fraction conservative or re- 
versible (although we use the term "reversible" with some 
qualifications; see below). If we knew the exact location 
and orientation of the interface, we could estimate the por- 
tion of ß working to deform the interface (using the stress 
jump condition [Landau and Lifshitz, 1987; Leal, 1992]); 
however, in an isotropic mixture theory the interface, like 
the phases it separates, mathematically exists at all points in 
the medium, and its presence is only measured by the area 
density c•. Thus we cannot know specifically what part of ß 
acts on the interface and stores energy as surface energy; we 
can only assume that a fraction f of ß is stored, i.e., is con- 
servative, or involves reversible work. The remaining part 
(1 - f)• is the dissipative contribution. The quantity f is 
thus the partitioning fraction (where 0 < f < 1), and we 
refer to the partitioning of a portion of ß toward work on the 
interface and thus to production of surface energy as "dam- 
age", although this definition may differ from other defini- 
tions of damage [e.g., Ashby and Sammis, 1990; Hansen and 
Schreyer, 1992; Lemaitre, 1992; Lyakhovsky et al., 1997]. 
The partitioning of deformational work between a dissipa- 
tive and a stored component has been noted, in fact, since at 

least the 1920s [Farren and Taylor, 1925; Taylor and Quin- 
ney, 1934; Chrysochoos and Martin, 1989, and references 
therein] and has been considered in experimental [Chryso- 
choos and Martin, 1989; Chrysochoos et al., 1989, 1996] 
and theoretical [Lemonds and Needleman, 1986; Povirk et 
al., 1994] studies of ductile void growth, dilatant plasticity, 
and metal composites. 

In total, the reversible portions of the energy growth terms 
isolated on the right-hand side of (59) must balance or can- 
cel since processes involving only reversible energy and 
work cannot contribute to internal entropy production. (By 
analogy, in compressible single-phase fluid mechanics, me- 
chanical pressure work is generally assumed to contribute 
only to reversible thermodynamic energy; that is, mechan- 
ical and thermodynamic pressures are assumed equivalent.) 
We therefore obtain two energy relations 

(65) 

•q5 (/_if nt-/gin) (•qS) 2 = - AP •-• - Ko qS(1 - qS) •-• + f •' (66) 
which are both materially invariant. 

Equation (66) describes a basic thermodynamic work state- 
ment. That is, the work necessary to create new interfacial 
area against surface tension is provided by the net work of 
the two pressure fields (acting against each other on the in- 
terface) as well as by viscous deformational work. How- 
ever, (66) also acts as a nonequilibrium proxy for the inter- 
face stress jump (surface tension) condition in an isotropic 
medium for which the interface location and orientation are 

unknown and thus represented by averaged quantities. In 
many ways it bears the same form as a stress-jump condi- 
tion, however it involves rates of work for all points in the 
effective medium and is a scalar relation that provides one 
equation for LIP. 

In the limit that there is zero or negligible motion and 
deformational work on the interface (i.e., both f9 and 

B (•qb/Dt)2 • 0), (66) becomes 

LIP + cr•-• • - 0, (67) 
which recovers (40), the equilibrium surface tension condi- 
tion, assuming (67) holds for any Dqb/Dt. 

If surface tension and damage are negligible (a - f• = 
0), we obtain a relation for simple isotropic compaction 

AP- -Ko (lUf + [gin) Dq5 (68) 
q5(1- qS)Dr' 

which occurs if each phase is exposed to a different isotropic 
stress, and the imbalance in stresses or pressures causes one 
phase to squeeze and expel the other from the mixture (D. 
McKenzie, personal communication, 2000). Equation (68) 
predicts compaction of the matrix if Pm> P•. The process 
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of isotropic compaction is discussed by McKenzie [1984] 
with a thought experiment involving spherically-symmetric 
flow [see McKenzie, 1984, Appendix C; see also Ricard et 
al., this issue). However, in that theory the fluid and ma- 
trix pressures are assumed equivalent, and thus resistance to 
isotropic compaction is provided by a bulk viscosity effect 
in the matrix. Since the bulk viscosity effect is assumed to 
reside entirely in the matrix, it can only apply to a system 
that is explicitly not materially invariant; for example, only 
the matrix can provide resistance to isotropic compaction. 
In the theory presented in this paper, resistance to isotropic 
compaction is instead provided by the pressure difference 
Ap, the expression for which, illustrated in (68), is mate- 
rially invariant, depending on properties of both phases and 
the interface topology. 

It is important to note another possible difference between 
this theory and some other previous models [e.g., McKenzie, 
1984; Spiegelman, 1993a, 1993b, 1993c]. In the limit a = 
0, pf <<Pm and thuszf • 0, but where the matrix is 
deforming at a nonnegligible rate such that (68) applies, the 
fluid force equation (37) does not recover a simple modified 
Darcy's law but instead 

Ko t• D q3 X7 q3 , (69) + 
which suggests that the fluid pressure gradients work not 
only to move the fluid relative to matrix but also resist the 
force associated with collapse or dilation of a nonuniform 
matrix (i.e., with nonconstant porosity). If the matrix is not 
collapsing/dilating, or gradients in porosity are negligible, 
then the modified Darcy's law is recovered as expected (i.e., 
Darcy's law is an empirical relationship strictly relevant only 
for stationary matrix material). 
Equation (66) suggests that work done by deviatoric stresses 

to change energy on the interface is always positive, which 
may seem counterintuitive. As a conceptual example, con- 
sider a bubble stretched in shear or in an extensional flow 

such that the interface area and thus surface energy increases; 
however, if one reverses the shear or extension, the bubble 
is theoretically unstretched (assuming it has not undergone 
a capillary instability and broken up) and its surface area 
and energy decreases. However, (66) suggests that the de- 
formational work acts to make surface area and energy in- 
crease regardless of the direction of motion. This result is a 
manifestation of the imposed isotropy of the system. Pores 
are assumed never to develop a preferred sense of direction, 
even under shear or extension. Thus, in a sense, stretching of 
a bubble results in more smaller bubbles, not a long bubble. 
Reversing the shear or extension will not by itself recombine 
the bubbles but instead will break them up even further when 
it either acts to stretch them (e.g., in shear) or flatten them (in 
uniaxial compression), creating even more surface area and 
energy. Thus, while the deformational work can be stored in 
a nondissipative fashion on the surfaces, the creation of new 
surface area and surface energy in this formulation cannot 
be reversed by imposed deformational work. Thus the vis- 
cous deformational work on the interface, or damage, would 

have the appearance of being irreversible, although it is not 
irreversible in the traditional sense since it is, in fact, storing 
energy on the interface; indeed, this energy can be recov- 
ered as mechanical work if the bubbles recoalesce (which 
is allowed in this formulation [see Ricard et al., this issue; 
Bercovici et al., this issue). Such apparent irreversibility is 
perhaps in keeping with cataclastic processes wherein de- 
formation always causes damage regardless of whether the 
original application of deformation is reversed. 

Constraints on the partitioning fraction f are unfortu- 
nately scarce. Empirical calorimetric studies on deforma- 
tion in metals [Chrysochoos and Martin, 1989; Chryso- 
choos et al., 1989, 1996] have shown that of the order of 
15-20% of the applied work goes into surface energy as- 
sociated with structural defects, e.g., voids, microcracks, 
and interfaces (i.e., the temperature of the medium increases 
less than would be expected if all the viscous deformational 
work went into dissipative heating), although for the initial 
phases of deformation this fraction is possibly as high as 
60% [Chrysochoos and Martin, 1989; Chrysochoos et al. , 
1989, 1996]. However, the f presented here does not nec- 
essarily represent this measured partitioning fraction. Given 
that da/dT < 0, the growth in interfacial entropy (the sec- 
ond term on the left-hand side of (65)) represents an ap- 
parent sink of energy while the interfacial area is growing 
(while Da/Dt - (da/dck)Dck/Dt > 0) and thus this effect 
by itself, even with f - 0, would give the result that not 
all of the input energy goes into increasing the temperature 
of the medium. It would be difficult, in an experiment, to 
separate this effect from direct partitioning of deformational 
work into surface energy. 

The partitioning fraction f is unlikely to be constant and 
clearly must depend on the properties of the medium. For 
example, the extent to which the viscous stresses can act on 
the interface must depend on the interface area density, and 
thus we should expect f to depend on a and thus, implic- 
itly, on ½. Moreover, since we assume that an amount of 
deformational work f9 is stored as surface energy on the 
interface, we must also assume that no such work can be 
stored if the interfacial surface energy is zero, i.e., if a - 0; 
therefore f should be a function of a. The variability of f is 
discussed further by Bercovici et al. [this issue] who study 
applications to shear localization and damage. 

6. Summary: Final Governing Equations 

For convenience, we summarize the final governing equa- 
tions below: 

1. Conservation of mass yields two alternative sets of 
equations, either a set involving transport of the separate 
phases 

+ V. [qbvf] = 0 (70) Ot 

0(1-½) 
Ot 

+v. o (71) 

or a mixture/difference set that prescribe transport of poros- 
ity and continuity of average velocity 
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oo 
+ V-•7•5 = •7. [•5(1 -•5)Av] (72) Ot 

V.•' =0 (73) 

and where the average and difference of any quantity q are 
defined as q = •Sqi + (1 - •5)q• and Aq = q,• - qi, re- 
spectively. Mass conversion rates due to a phase change are 
easily incorporated into the theory by including AI'/pi and 
-AI'/p,• on the right-hand side of (70) and (71), respec- 
tively; AP = p,• - p f, where P,,• is the rate of conver- 
sion of matrix mass (per unit volume of total mixture) into 
fluid and I'f is the rate of conversion of fluid into matrix [see 
also McKenzie, 1984; Spiegelman, 1993a, 1993b, 1993c). In 
using these conversion rates one must take care to include 
them in the derivation of any subsequent relations that use 
the mass conservation equations. 

2. The momentum or force balance equations also yield 
two alternate sets of equations; one describing the dynamics 
of the two phases 

0 - - 0 [vP• + .•ai] + 
+ •ZXv + 0 [zxPVO + v(•,•)] (74) 

0 - - (1 - 0)[vP,• +,,ai] + v. [(1 - 
- cAv + (1 - 05)[APVo5 + (75) 

where 

7'f -- Pf ( •7v f -•- [•7v f ]t 2 ) -- •'•7' Vf! (76) 

( , ) r__,• - tt,• Vv,• + [Vv,•] t - õV. v,•I . (77) 
We can also add (74) and (75) to obtain the total or mixture 
force equation 

o - -vP + w. t_- •a•. + W(ac•) (78) 
ß and find ½ x (75)-(1 - ½)x (74) to obtain a force-difference 
or "action-reaction" equation 

0 - - 0(• - 0)[vzxP + zxpa•.] 
+ V. [4•(1 - 40At] - t-V4• - cav. (79) 

3. The energy equation is separated into two coupled 
equations representing the evolution of thermal energy and 
rate of work done on the interface: 

.••--r• •-•-V.q 

+ (• - •)• + • • (80) 

Dt =-a• + f•-B • , (81) 
where we have rewritten (66) to emphasize that it is invari- 
ably a relation for &P; again, we can assume for simplicity 
that B - Ko(•i + •)/[0(1 - 0)] with Ko • O(1). 

7. Discussion and Conclusion 

7.1. Surface Energy Scales for Geophysical Applications 

The scale of the surface energy density, or equivalently the 
surface tension force per area, goes as aCCo. As discussed in 
section 2.2.1, C•o • 10 • m -1 for a mixture with micron- 
sized pores and grains. For silicates in contact with melt or 
water, a is typically between 0.1 and 1 J m -2 [Spry, 1983; 
Lasaga, 1998], while surface energies related to fractures 
can be much higher, i.e., from 10 J m -2 to effective values 
of nearly 1000 J m -2 [Jaeger and Cook, 1979; Atkinson, 
1987; Atkinson and Meredith, 1987]. To estimate the impor- 
tance of surface tension, one needs to compare aCCo to other 
relevant forces. The dimensionless number rmo/(ApgR) 
indicates the importance of surface tension with respect to 
the relative buoyancy of the two phases in a system with 
length scale/L The number aC•o/i•/(p,• U) indicates the im- 
portance of surface tension relative to a viscous stress of a 
system with/• >> /•f, a velocity scale U, and changes in 
velocity over a length scale/L Thus for silicate melts (Ap 
of the order of a few hundred kilograms per cubic meter), 
surface tension is potentially important over length scales of 
a few hundred meters to a few kilometers [see Ricard et al., 
this issue). For stresses and microcracking in the lithosphere 
(assuming/•,• > 1023 Pa s, U • 5 cm yr -1), surface ten- 
sion forces are always relatively small, as is to be expected 
(i.e., surface-tension-driven segregation of rock and fluid in 
cracked media is negligible, except for possible effects of 
¸stwald ripening [Sleep, 1994]); however, the influence of 
surface energy on shear localization and cracking is not so 
much as a driving force but as an intermediary for damage 
and weakening of the material [Bercovici et al., this issue). 

7.2. Future Applications 

Apart from a somewhat different treatment of the pres- 
sure drop AP, surface tension, stress tensors, and other 
features, our mass and momentum equations do not dif- 
fer greatly from those of previous workers [e.g., McKen- 
zie 1984; Richter and McKenzie, 1984; Spiegelman, 1993a, 
1993b, 1993c]. However, our proposed energy equations 
provide significantly new physics and describe a variety of 
effects. Ricard et al. [this issue] and Bercovici et al. [this is- 
sue] examine some of the simplest and most fundamental ap- 
plications of this theory. For example, when there is little or 
no deformational work done on the interface (f• m 0) and 
surface tension rr is temperature-independent (i.e.,/• = 0), 
the temperature field has no effect on the dynamics (except 
through thermal buoyancy, which we have neglected, keep- 
ing our phases strictly incompressible), and we can ignore 
the thermal energy equation (80). In this case, we have a 
simple relation between surface tension and the pressure dif- 
ference AP, and we can thus examine compaction in the 
presence of interfacial surface tension which has many ap- 
plications to magma dynamics, oil migration and other prob- 
lems of percolation through a deformable matrix. This and 
other compaction problems are examined in Ricard et al. 
[this issue]. When we assume significant viscous deforma- 
tional work on the interface (f• > 0) and a temperature- 



BERCOVICI ET AL.' TWO-PHASE COMPACTION AND DAMAGE, 1, THEORY 8901 

independent a (i.e., /• = 0), we again have a decoupled 
set of equations in which the temperature equation has no 
bearing on the dynamics, but the occurrence of damage and 
shear localization is potentially dramatic. These applications 
to damage and shear localization are addressed by Bercovici 
et al. [this issue]. 

Appendix A: Surface Tension and Energy 
Considerations 

A1. Effective Surface Tension Force 

As shown in (25), the surface tension force acting on the 

surface area 6A of a volume 6V is fc• •;dœ, where ff is the 
true surface tension, Ci is the intersection between the in- 
terface and 6A, dœ is a line element along Ci, and • is a 
unit tangent to the interface at the intersection. On the area 
element dA (a small segment of 6A) is a portion of the in- 
tersection curve ci, and the surface tension force acting on 

this element is fc• •dœ. With isotropy, we assume that the 
net surface tension force on dA is only normal to this area 
element, i.e., in the fi direction (since with isotropy the com- 
ponents of ff• parallel to dA cancel when summed over this 
small area); in other words, 

(A1) 

We define the reduced surface tension 

a = A<•), (A7) 

and summing over all the area elements in 6A, we arrive at 
the net surface tension force on the control volume 

/c• •dœ - /A a•fidA, (A8) 
which then leads to (26). 

To illustrate the above formalism, we consider a simple 
example involving a random distribution of spherical fluid 
pores (or spherical matrix grains, either of which represent 
isotropic fabric of the mixture). We also assume the true 
surface tension • is constant. 

Any given pore has radius r, and its center is a distance h 
normal to the area element dA (where dA is assumed much 
larger than •rr 2 so that it samples a sufficient cross section of 
pores; see Figure A1 ). We assume h > 0 if it is on the side 
of dA in the +fi direction and h < 0 if it is on the side in the 

-fi direction (Figure A1). If •h• < r, then the pore's surface 
is cut by the •ea element dA and the resulting intersection 
of these surfaces has a circumference 2•r •1 - h 2/r 2. The 
unit tangent to the interface at this intersection is 

t = (•1 - h2/r2)fi + (h/r)•, (A9) 

As with other variables we wish to define an average sur- 
face tension. Ideally, we would average • over the do- 
main on which it exists, i.e., the interface between phases. 
The area of interface contained within the small volume 

dAdx,• (where dx,• is a line element in the fi direction) is 
fci (• '•1)--1 dœdx•, assuming dx• is small enough that the in- 
terface element extends across the length dx,• before leaving 
the volume. By definition this interface area is also o•dAdx,•, 
and thus 

adA - / (t . •l)-ld•. (A2) i 

Moreover, if we define the factor 

(A3) 
fcl (t' •1)--1 de ' 

then 

/ •; . fide = AadA, (A4) i 

where typically ,• < 1, although it is of O(1); for spherical 
fluid pores or matrix grains, as shown below, ,• = 2/3. We 
can then average the surface tension over the interface area, 
but with a weighting factor that facilitates estimation of the 
effective surface tension force; i.e., 

fc. •St . fidœdx,• (A5) 

which, cancelling the dx, and using (A1) and (A4), leads to 

A(•)afidA-fi•i•{.fid•-•,•d•. (AS) 

Figure A1. Side view of a cross section of an idealized 
spherical pore as discussed in Appendix A1. The pore is 
of radius r centered a distance h from an area element dA 

(only a small part of which is marked by the solid vertical 
line) on the surface of the control volume (a portion of the 
control volume is delineated by dashed lines). Also shown 
are the relevant unit vectors, i.e., fi the unit normal to dA, 
•; the unit tangent to the spherical surface at its intersection 
with dA, and g the unit vector pointing radially outward from 
the center of the intersection circle in the plane of dA. If the 
pore intersects the control volume's surface, then h must be 
within r of dA, i.e., -r < h < r; as shown, with the pore 
centered to the right of dA, h > O. 
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where g points radially outward from the center of the in- 
tersection circle but in the plane of dA (Figure A1). Thus 
the total surface tension force pulling on this intersection 
is 27rr(1 - h2/r2)Sfi (since the component in the • direc- 
tion vanishes when integrated around the circumference of 
the interesection). We assume that any spherical pore that 
intersects dA has equal probability of being centered any- 
where within a distance r on either side of dA, i.e., with 
-r < h < +r. Thus, if N (where N > > 1) is the number 
of randomly distributed pores of radius r centered within a 
distance r of the area element dA, then the total surface ten- 
sion force on dA is 

N/_+r r 2zrrS(1 h 2 4 •rr - /r2)fidh- õN7rrSfi. (A10) 
The centers of these N spheres are contained within the vol- 
ume 2rdA, which is itself centered on the element dA. Sta- 
tistically, however, this volume intersects 2N pores, only N 
of which cross the center plane with area dA (i.e., there are 
N pores intersecting each of the volume's two outer sur- 
faces with area dA, assuming that since dA >> 7rr 2, the 
other surfaces are negligible). Any one of these 2N pores 
whose center is h away from the volume's center plane 
(where now -2r < h < 2r) has a segment of its surface 
in the volume 2rdA with area 27rr2(2 -Ihl/•). Thus the 
average pore surface area partially contained in 2rdA (as- 

suming randomly distributed pores)is (1/4r) f_2;r 27rr 2 (2- 
Ihl/r)dh - 27rr 2. The total surface area of pores in the 
volume 2rdA is therefore (2N)27rr 2 = 4N7rr 2, which by 
definition is also a2rdA. Therefore 

27rNr - c•dA, (A11) 

and from (A 10) the surface tension force on the element dA 
is (2/3)SafidA; the net surface tension on the surface 6A is 
thus 

/c• 8•dœ - •A O'C•fidA, (A12) 
where for this illustrative example the reduced surface ten- 
sion is 

2 

a- õ8 (A13) 
(and since 8 is constant, it is equal to {8)). To confirm that 
this result is the same as the general relation (AS), one need 
only determine the factor ,X to see if the reduction in surface 
tension is predicted correctly. Given N randomly distributed 
spherical pores centered within a distance h away from dA, 
(A3) yields 

N r /5,2 ,X - 2-7 f-r 27rr(1 - /r2)dh = 2/a (A14) 
__N f- 27rrdh 

which shows that (A7) is consistent with (A13) (and likewise 
(AS) is consistent with (A12)). 

As discussed in section 5, the energy transport laws in- 
volve the interfacial surface energy per area •i, which is re- 
lated to the reduced surface tension a and not the true sur- 

face tension 8; this means that the surface energy is effec- 

tively underestimated. The didactic model with spherical 
pores presented above can illustrate the need for underesti- 
mating this energy in order to be self-consistent. If we move 
the area element dA in Figure A1 a distance dh in the fi 
direction, then the intersection curve ci, which must move 
tangent to the sphere's surface, undergoes a displacement 
dx - (dh/ V/1 - h 2/r 2 )•,. The energy variation (i.e., the 
increase in surface energy within the control volume) asso- 
ciated with this motion is (using (A9)) 

d•i - dh 8• . fidœ + v/r2 _ h 2 dh 8• . •dœ (A15) i i 

where the first integral accounts for the work of the compo- 
nents of the surface tension perpendicular to the surface dA 
and the second integral accounts for the work of the com- 
ponents of the surface tension parallel to this surface. The 
vector fi is constant and therefore can commute with the in- 

tegral sign, in contrast to the radial vector •, which depends 
on the position along ci. Therefore, using (A6) and (A7), we 
can write 

dt•i - a•dhdA + v/r2 _ h 2 dh 8• ' •dœ. (A16) 
Clearly, adhdA - dAi, which is the change in interface 
area associated with the volume change dhdA. Moreover, 
as 8 is assumed constant, the true surface energy per area 

d•i/d_Ai - • - 8 is also constant (see Appendix A2), and 
thus dEi - •idAi. We can further define the reduced energy 
•i - rr, and thus the energy change from (A16) is 

or, using dAi - c•dhdA, 

h f• 8i. i dœ. (A18) •i - •i + adAx/r 2 _ h2 
The second term in (A18) cannot be treated by an average 
mixture theory given the lack of general information regard- 
ing h, •,, and •; either one must adopt a specific ad hoc 
model of pore geometry (such as our spherical pore model 
above) and thus sacrifice generality and material symmetry, 
or one must include another state variable corresponding to 

re, 8•,. • dœ and thus be faced with further closure problems. 
This is an example of an energy source associated with non- 
linear fluctuations, leading to effects such as dispersion as 
discussed in section 5 (see assumption 2, following (55)). 
For the spherical pore model, •i - (2/3)8, and the reader 
can readily verify that the integral term in (A18) accounts 
for the remaining (1/3)8 contribution to •i. However, since 
the work of the averaged forces must correspond to a pro- 
portional change in the averaged energy, we must, for self- 
consistency, use •i instead of •i. 

A2. Surface and Interface Thermodynamics 

The surface energy relations used in section 5 arise from 
the basic thermodynamics of surfaces. For completeness, 
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we derive the more important concepts regarding surface 
energy and tension, although these can be found in most 
complete texts on thermodynamics [Bailyn, 1994; see also 
Safran, 1994]. 

To begin with, we note that in this appendix, for simplic- 
ity, we make no distinction between true, averaged, or re- 
duced quantities, assuming the same thermodynamic rela- 
tions apply to all. Thus extra notations such as tilde are not 
used. 

Within a two-phase mixture the interface between the 
phases is treated as a third phase with its own energy Ei 
and entropy $i. Given that the interface is two-dimensional, 
its spatial presence is measured by an interfacial area Ai (in- 
stead of volume), which is worked on by the surface ten- 
sion a (instead of by pressure; however, as defined, surface 
tension acts to reduce surface area while pressure within a 
volume acts to expand the volume; thus in fact, a replaces 
-P). 

For simplicity, we assume that the interface has no mass 
and thus no particles of its own (see discussion by Bailyn 
[1994, chapter 7]). We also assume that the interface and 
the two phases have the same temperature (i.e., they are in 
thermal equilibrium with each other) and that over the con- 
sidered volumes the temperature is predominantly uniform 
[Bailyn, 1994]. 

The interface has the standard thermodynamic relation 
(i.e., the combined first and second laws of thermodynam- 
ics) 

dEi = TdSi + adAi (A19) 

and (by an expansion of the scale of the system [see Bailyn, 
1994]) an Euler equation 

Ei = T$i + rrAi, (A20) 

which together yield the Gibbs-Duhem relation 

represent the two phases) gives the variation in total energy 
as 

dEtot = TdS•ot + adAi - PfdV t - PmdVm, (A25) 

where Etot = E t +Em q- Ei and similarly for Stot. Equi- 
librium occurs when total energy is minimized and thus 
dEtot - 0. The surface tension relation also derives from 
the assumption that equilibrium is reached isentropically, 
and thus dStot = 0 as well. To simplify matters, we con- 
sider that the variations in the volumes of each phase are not 
due to changes in density but due to changes in mixture ra- 
tios and that the total volume of the system remains fixed 
at ¬or (imagine a rigid container being fed by two different 
fluids from separate inlet pipes each at their own pressure). 
The mixture ratio is represented by the volume fractions of 
phase f r• fluid) and ,•. phase m (the matrix) 1 --½, which •he w • ,•f ................. 
are variable; the phases' volumes are thus V t = ½¬o• and 
Vm = (1 - •b)¬ot. In this case, the equilibrium condition 
leads to 

adAi + (Pro - Pt) ¬o•d• = 0. (A26) 

Keeping a and the pressures fixed over incremental changes 
in ½ and Ai, we thus seek the mixture ratio which yields 
equilibrium; that is, the ½ at which any work by the pressures 
(against each other) to change ½ further would be balanced 
by the work done by the surface tension to resist change 
in the interfacial area. Assuming that we can express the 
interface area Ai in terms of an area density c•, we write 
Ai = o•Vtot; in this case the equilibrium condition leads to 

0c• 

rr•-• + (P,• - Pj,) - 0, (A27) 
which is analogous to our equilibrum surface tension equa- 
tion (40) assuming that c• is only a function of ½. 

SidT + Aida = 0. (A21) 

From (A21) we see that the entropy per area is 

$i -- ,-.qi/Ai - OT ' (A22) 
and thus the energy per area is 

•i - Ei /Ai - a - T 0-• ' (A23) 
which we employ in section 5. Moreover, substitution of 
sial and •iAi into (A19) leads to da = (Oa/OT)dT, which 
shows that a is only a function of T. 

From these basic thermodynamic relations we can also see 
where the surface tension equilibrium equation comes from, 
along with its limitations. The sum of (A 19) with the analo- 
gous relations for the two phases (whose individual compo- 
sitions are fixed) 

(A24) 

(where, as with the rest of this paper, we use j = f or m to 

Appendix B: Interphase Pressure Difference 
and a Simple Micromechanical Model of Pore 
Collapse 

We consider a simple model of viscous collapse of dis- 
persed pores (or grains) in order to estimate the relation be- 
tween the interphase pressure difference AP and viscous 
flow. Surface tension effects are neglected; the simple'pore 
or grain geometry is assumed to be conserved during col- 
lapse, and thus we ignore large-scale shear stresses as well 
(i.e., the matrix is only compacting or dilating uniformly un- 
der an isotropic stress). We assume that pores are dispersed 
enough so that we can consider a single pore unaffected by 
the collapse of other pores; thus we assume porosity •b << 1. 
As pores are squeezed and drained, we must allow for in- 
terconnectedness of fluid pathways thereby excluding iso- 
lated spherical pores. Thus, for simplicity, we consider a 
cylindrical pore of radius /i• that is much smaller than its 
length so that it can be treated as an infinitely long cylin- 
der. (This approach is similar to that considered by Fowler 
[1984] based on an analysis of boreholes in glaciers by Nye 
[1953].) The cylindrical pore is filled with incompressible 
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fluid of viscosity pf and surrounded by incompressible ma- 
trix of viscosity/•,•. We further assume constant pressure 
fields Pf and P,• for the fluid and matrix, respectively, and 
that the cylinder's radius remains constant along its axis. In 
this case, the equations of motion for creeping flow allow 
a fluid velocity in the axial direction of wf = Wz (where 
z is the along-axis distance) and in the radial direction of 
uf = -Wr/2 (r is radial distance), where W is an as yet 
unspecified constant. We assume matrix motion is primar- 
ily radial as it squeezes the pore and by mass conservation 
has motion um= -Wt•2/(2r). (This velocity is only ap- 
proximate since it does not match the axial fluid velocity at 
the interface, although it does match the fluid shear stress at 
the interface.) Continuity of normal stress at the interface 
prescribes that 

/xp = _ = + (B1) 

If we define the porosity as ½ = AZ•rti•2/AV (where AZ 
is the along-axis length of a segment of the pore and AV is a 
volume containing only this pore segment) and note that the 
radial velocity at the interface is uf(R) = urn(R) = dR/dr, 
then W = -½-• dqb/dt leading to 

½ a-/. 

We can apply the symmetric development to dispersed cylin- 
drical matrix grains (where 1 - ½ << 1) to arrive at 

- 0 

A materially invariant relation that accounts for both limits 
of½ • 0 and ½ • 1 is 

,xp = _ + Urn) a0 (B4) 
0(1- 0)dr' 

Similar developments can be made for pores of other simple 
geometries, In general, we can adopt the relation 

- + 
O(1 - O) dr' 

(B5) 

where Ko is a dimensionless constant of O(1) accounting 
for unknown pore geometry and interface topology. In our 
continuum theory we must replace dcp/dt with a materially 
invariant material derivative, and as shown by thermody- 
namic considerations in section 5, this would be •qb/Dt. 
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