N
N

N

HAL

open science

Focusing Wave Group Propagating in Finite Depth in
the Presence of Surface Current and Vorticity
Julien Touboul, Christian Kharif

» To cite this version:

Julien Touboul, Christian Kharif. Focusing Wave Group Propagating in Finite Depth in the Presence
of Surface Current and Vorticity. Nonlinear Waves and Pattern Dynamics, Springer International

Publishing, pp.77-90, 2018, 10.1007/978-3-319-78193-8 4 . hal-02046506

HAL Id: hal-02046506
https://hal.science/hal-02046506
Submitted on 22 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02046506
https://hal.archives-ouvertes.fr

Focusing Wave Group Propagating
in Finite Depth in the Presence
of Surface Current and Vorticity

Julien Touboul and Christian Kharif

Abstract The kinematics of two-dimensional focusing wave trains on a shearing
flow in water of finite depth are investigated analytically. In the absence of waves,
the vorticity due to the vertical gradient of the horizontal current velocity is assumed
constant. A linear kinematic model based on the spatio-temporal evolution of the fre-
quency is derived predicting the focusing distance and time of a chirped wave packet
in the presence of constant vorticity, and surface current. Based on this model, the
kinematic behavior of the transient wave packet is analyzed, and described in terms
of spreading of the focusing point into a wider area. The effects of bathymetry, vor-
ticity, and surface current are analyzed and discussed. Two main results are obtained:
(1) the combined effects of surface current and vorticity, in deep water, are nontrivial,
highly depending on the presence of surface current (ii) the effects of bathymetry,
in the presence of shear, are also counterintuitive in the presence of vorticity, since
significant effects can be observed when considering high values of the depth param-
eter.

1 Introduction

Freak, rogue, or giant waves are extreme events, localized in time and space. Most
of the time, they are defined by a wave height briefly exceeding some statistical
properties of the wave field, such as twice the significant wave height. They are
characterized by their unpredictability, which explains that they are known as “waves
from nowhere”. They are responsible for an important number of large damages,
caused to ships or offshore rigs, which explains they have focused the attention of
the scientific community for the last 30 years.
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Formation of these waves might be explained through various mechanisms, such
as spatio-temporal focusing Kharif et al. [15], Johannessen and Swan [11], Brown [4],
Brown and Jensen [5], nonlinear or modulational instability Benjamin and Feir [2],
Dyachenko and Zakharov [9], envelope soliton and breather interactions Clamond
and Grue [6]. These mechanisms have been reviewed by Kharif and Pelinovsky [14]
and by Dysthe [10].

Wave—current interaction contributes also in the freak wave formation and histor-
ically; this mechanism was the first to explain the origin of freak waves Lavrenov
[20], White and Fornberg [35]. This is due to an important modification of water
waves kinematics in the presence of currents reviewed extensively in Peregrine [23]
and Jonsson [13].

Since all these mechanisms can exist simultaneously at sea, it is interesting to
analyze their robustness when considered together. This, for instance, was achieved
for studying the influence of sheared currents on modulational instability in Johnson
[12]. The influence of wind on dispersive focusing was studied in Touboul et al. [27],
and in Kharif et al. [16], while the evolution of modulation instability under wind
action was studied in [17, 30, 31].

Such a question can be asked about the dispersive focusing under the action of
currents. This was initially addressed by Touboul et al. [28], who investigated the
modification of the dispersive focusing mechanism for water waves propagating in
deep water in the presence of uniform currents. But generally, the characteristic length
scales of wind waves and swells are much smaller than the spatial scales of horizontal
variations in oceanic currents. On the opposite, there are many circumstances in
which this claim cannot be applied to current velocity variations in vertical direction.
Consequently, the vorticity due to the vertical gradient of the horizontal current
velocity which may have an important effect on the dynamics of ocean surface waves
cannot be ignored. Various studies of water waves propagating in such conditions
can be found in the literature. Among them, one can cite Tsao [33], Dalrymple [8],
Brevik [3], Simmen [24], Simmen and Saffman [25] Teles da Silva and Peregrine
[26], Kishida and Sobey [19], Pak and Chow [22], Constantin [7], etc. Thus, Touboul
and Kharif [32] extended their previous study [28] to this more realistic case of water
waves propagating in the presence of vorticity.

Besides, such vortical flows are observed in coastal areas [1, 29]. As pointed
out by Professor Ezersky, the effect of bathymetry on dispersive properties should
be taken into account. This study was realized experimentally and numerically for
water waves propagating in waters of finite depth, in the presence of uniform currents
in Merkoune et al. [21].

The purpose of this work is to analyze both the effects of surface current and
vorticity for rogue waves propagating in waters of finite depth, extending results
presented in [21] to take vorticity into account. To achieve this goal, attention is
focused on the kinematic behavior of a focusing wave group. The components
should merge at a given point in both time and space, producing a rogue wave.
The transformation of this point into a wider area, under the combined effects of
surface current, vorticity, and depth is investigated here. The chapter is organized as
follows: in Sect. 2, the kinematic model is formulated, focusing on the computation



of the coordinates of the focusing point without and with current and vorticity, in
finite depth. In Sect. 3, the results are discussed in detail, and briefly summarized in
Sect. 4, describing the main conclusions of the work.

2 The Kinematic Model

Since water waves are known to be dispersive, short waves propagating in front
of longer ones will be overtaken, and a large amplitude wave can occur at a fixed
point. A linear approach of the problem would lead to consider sea surface as
a superposition of linear waves of frequencies w (x, t). The following nonlinear
hyperbolic equation governs the spatiotemporal evolution of these components, as
pointed out by Brown [2] and Whitham [34],

00 @ =0 (1)
o ey T

where C, is the group velocity, defined as C; = dw/dk. The boundary value problem
for this equation can be solved using the method of characteristics. Its solution is

w@x, 1) =wy(r),ont=1+x/Cq (), 2)

where w, corresponds to the temporal frequency distribution of the wave train at
x = 0. By differentiating the frequency, it comes

g
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The latter equation can be solved once the dispersion equation is known, and var-
ious examples of solutions can be found in the literature. In the classical formulation
of water propagating in deep water, for instance, this dispersion equation reads

o’ = gk, )
where k stands for the wavenumber, and g is the acceleration due to gravity. We can

now obtain an expression of the group velocity given by C, = g/ (2w). Equation (3)
might thus be rewritten

w Bau;[)
9 (5)
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and one can notice that the case dwy/dt < 0, which corresponds to the case of
short waves emitted before longer waves, leads to a singularity. This singularity



corresponds to the focusing of several waves at t = Ty and x = X;. Given the
expression of the group velocity in the case at hand, we can find out the frequency
to impose to a wave maker located at x = 0, and for 0 < t < T, given by
g Tf —t

00.0=7 ;e

(6)

This frequency modulation, varying linearly from @, to Wy, provides the opti-
mal focusing of the linear wave packets in still water of infinite depth, and is very
often applied in the laboratory conditions. Such a wave train will involve components
which will propagate and all merge at the same place X, and at the same time 7.
Coordinates of the focusing point in the (x — ¢) plane would thus be given by
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If we now consider water waves propagating in deep water, in the presence of
uniform currents, the dispersion Eq. (4) can be modified to take a Doppler shift into
account, and now reads

(w — kU)? = gk. (8)

This specific case was investigated in Touboul et al. [28], where Eq. (5) was
demonstrated not to be solution anymore, but to be replaced with
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This is true, since the group velocity admits a new expression, C, = U +

g/ Qw — kUyp). Equation (9) shows a difference in the kinematics of the wave group,
which becomes more complicated. Indeed, the denominator is now a function of time,
and is equal to zero for several values of space and time. The focusing point is not
a unique singularity anymore, and the waves present in the group do not merge at
a single location of time and space. The singularity is now spread over a focusing
area, ranging from L,,;, and L,,,,, where

2U min 2 2U m 2
Lm=&0+ f )ﬂmumz&0+—%ﬂ), (10)

where 0,,;, and 0,4, are the intrinsic, Doppler shifted, frequencies, respectively given
by Omin = (wmin - kmin UO) = gkmim and Omax = (wmax - kmaxUO) = gkmax

In a recent work, Touboul and Kharif [32] investigated the evolution of a chirped
wave packet in the presence of a horizontally constant current presenting linear
variations with respect to depth, so that
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where U is the current velocity at the undisturbed free surface, and S is the value of
the shear of the current. As an immediate consequence, the vorticity vector associated
to this flow field is given by = VAU = (0, S, 0). In such a configuration, the
dispersion equation is also known analytically (see, e.g., [13, 18, 29])

(w —kUp) (w0 —kUy +S) = g |k, (12)

and the related group velocity now reads Cy = Ug+g/ [00 + 02], where op and o, are
respectively the Doppler shifted intrinsic frequencies (w — kUp) and (w — kU;) =
(w — k (Up — S/k)). In such configuration, neither Eq. (5) nor Eq. (9) is the solution
of Eq. (1) anymore. Instead, the solution (3) reads

ow d‘%
m = - rex o (13)

[g+Uo(oo+02)] dt

Here again, the focusing point turns out to be a focusing area, where the values
of L,y and L,,,, are now given by

2 2
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where 00 min, 02.mins 00.max aNd 03 gy, are respectively the minimum and maximum
of intrinsic frequencies oy and o07.

The latter formulation might reduce to both previous cases. Indeed, for S=0, we
find the result oy = 03, and Eq. (14) reduces to Eq. (10). Furthermore, with Uy = 0,
this equation further reduces to L, = Lyax = Xy, correspondingly to the solution
(7) of Eq. (5).

Still, as pointed out in Touboul and Kharif [32], solution (14) also has an interesting
behavior, when investigating the only effect of vorticity S, independently of any
surface current Uy. Indeed, when considering the absence of surface current, Uy = 0,
a nonzero vorticity S # 0 turns out to change the focusing area in a single point.
All frequencies have group velocities affected in such a way that the focusing point
is not affected by the value of the vorticity. On the other hand, the focusing time is
significantly affected, and all components of the chirped wave packet will reach the
focusing point X at a time T given by

S
T =T +=X; (15)
g

This result is very different from what was observed in the presence of uniform
current. Indeed, when uniform current was considered, each component was affected



by Doppler shift, so that the focusing was not optimal. Here, the components are also
affected, but the focusing point remains unchanged. This means that the focusing of
energy remains optimal, even if delayed or leaded.

These three configurations are interesting, since they admit analytical solutions,
allowing to emphasize the effect of a uniform current, or a sheared current, on the
focusing behavior of a chirped wave packet. But another effect, of possible great
significance, was not considered here. This effect is the influence of the water depth,
which has, as it is classically known, a significant impact on dispersive properties of
water waves. This idea was raised by Pr. Ezersky, and investigated both numerically
and experimentally in Merkoune et al. [21]. In this work, we extend this analysis to
the presence of a linearly sheared current.

In the latter case, the above derivation of C, and 9C, /9w can still be performed.
The dispersion equation now reads ogo, = gktanh (kh), where o and o, are still
the previous Doppler shifted frequencies, but now read respectively (w — kUy) and
(w — kUp + Sth (kh)). This new dispersion equation provides the following expres-
sion:

tanh (kh kh Sh
, glanh (kh) gkt + 0o

C, = Up
oo + 07 oo + 02

(1 — tanh (kh)?) (16)
Starting from this group velocity, and after some algebra, one may derive the
expression of dC,/dw. We obtain
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Finally, introducing these values in the denominator of Eq. (3) leads to the fol-
lowing relationship:

x 8Cgdwy  gx (Co+ Vo)’  gx (1= tanh (kh)?)
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Here again, we notice the complexity of Eq. (18), which is time dependent. Indeed,
the denominator of Eq. (3) now admits an infinity of singularities, ranging from

(UO,min + UZ,min) C; (wmm)
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where the function F (w, k) is given by
1

Flw, k) = . .
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3 Results and Discussion

Results presented here aim to describe the influence of bathymetry, surface current,
and vorticity on the focusing behavior of a wave packet. To achieve this goal, the
chirped wave packet considered here corresponds to the packet studied in a previ-
ous work by Touboul and Kharif [32]. The focusing wave group considered had
a frequency varying from f,,, = 1.3Hz to f,; = 0.7Hz. The peak frequency is
thus given by wuean = 27 (fipax +finin) /2 = 2mrad/s. This chirped wave packet,
when propagating in deep water, in the absence of current and vorticity, presented a
focusing location of Xy = 16.26 m and a focusing time of Ty = 27s.

To illustrate the kinematic effects of bathymetry, surface current, and vorticity, we
focus in the following subsections on the spreading of the focusing point. Based on
the expression of the minimum and maximum distance for caustic formation, L,,;,
and L., provided by Eq. (19), the spreading of the focusing area can be described
as

Lyax — L
Aspread = maxX e (20)
f

This quantity will provide good insights on how vorticity, surface current, and
bathymetry affect dispersion.

a. Effect of vorticity and surface current

In this section, we focus on the combined effects of vorticity and a surface current,
homogeneous with depth, on the spreading area Ayp..qq. In every case considered,
the bathymetry effects are neglected, and water waves propagating in deep water are
considered.

Figure 1 depicts the spreading area A4 of the chirped wave packet as a function
of the normalized vorticity S/wpeqn. In the figure, various lines are represented.
These lines are colored as a function of the reference current velocity Uy/cmean-
The word “reference” here means the wavenumber considered that corresponds to
the wavenumber computed in the absence of vorticity (S/wyeq, = 0) for the mean
pulsation of the wave packet ®,;eqn-

This figure shows the strong dependence of the focusing area to both the vorticity
and the surface current, in a nontrivial coupling. Indeed, it appears that for strong
currents, either positive or negative, the width of the focusing area is sensitive to the
vorticity. For positive values of the surface current, the width of the area increases
with the vorticity, while it decreases when considering negative values of the surface
current. Furthermore, when considering counter flowing currents (negative values of
Uo/Cmean), the spreading of the focusing area tends to be limited. This is connected to
the limiting value of the blocking current velocity. When considering positive values
of the current, this limiting behavior is not observed, and the focusing area seems
to be unbounded. One may observe it is greater than 1, meaning the width of the
focusing is as wide as the focusing distance, for relatively weak values of the surface
current.
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Fig. 1 Spreading area Agp.qq of the focusing wave packet plotted versus normalized vorticity
S /Wmean- Various lines are colored as a function of the normalized reference current velocity
U 0/ Cmean

In the meantime, when considering zero surface current (this case is emphasized
by the thick black line in Fig. 1), the focusing area turns out to remain a singularity,
corresponding to a focusing point, and to be insensitive to the vorticity. This is a
confirmation of the result initially obtained in Touboul and Kharif [32]. This result
appears not to remain valid for constant, but nonzero values of the surface current.

The dependence of the width of this focusing area can also be analyzed as a
function of the normalized effective surface current velocity. The word “effective”
here means the phase velocity considered for normalization is still the phase velocity
of the average pulsation of the group, weqn, but now accounts for the actual value
of vorticity. This behavior is presented in Fig. 2, where the spreading area is plotted
versus the normalized effective current velocity, Uy/Cean- In this figure, various lines
appear, colored as a function of the normalized vorticity, S/®pean-

Confirming the previous result, every curve intersects in Ag,.qq = 0 for the value
of surface current Uy/cpeqan = 0. But beyond this point, it is interesting to notice
that the area of focusing always increases with the velocity of the surface current (in
modulus). Though, from these curves, it also appears the vorticity has an influence
on this behavior, since for strong positive vorticities, the increase rate is smaller than
it is when considering strong negative vorticities.

These results are summarized in Fig. 3, where the evolution of the spreading area
(in modulus) of the focusing wave packet is presented in the (Uy/Cpeans S /@mean)
plane. From this figure, the dependence of the focusing area to both surface current
velocity and vorticity might become more intuitive. It appears that for zero values
of the surface current, the focusing area is always zero, corresponding to optimal
focusing. But this focusing area is found to depend on both surface velocity and
vorticity. However, this coupling is nontrivial, since the enlargement of the focus-
ing area is more sensitive to the surface current when considering strong negative
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Fig. 3 Evolution of the modulus of the focusing area in the (S/®mean, Uo/Cmean) plane

vorticity. It can also be emphasized that the dependence of this area with vorticity is
more important when considering strong values (positive or negative) of the surface
velocity.

b. Effect of Vorticity and Bathymetry

In this section, we focus on the combined effects of bathymetry and vorticity on the
spreading area Agp.qq. In every case considered, the surface current velocity is taken
equal to zero.
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Fig. 4 Spreading area Agpeqq Of the focusing wave packet plotted versus normalized vorticity.
Various lines are colored as a function of the reference depth parameter kh

Figure 4 depicts the spreading area Ap,.qq of the chirped wave packet as a function
of the normalized vorticity S/wpeqn. On the figure, various lines are represented.
These lines are colored as a function of the reference depth parameter kh. The word
“reference” means the wavenumber considered that corresponds to the wavenumber
computed in the absence of vorticity (S/wyeqn = 0) for the mean pulsation of the
wave packet wyeq.,. From this figure, various behaviors appear for large or small
values of kh. Indeed, for large values of the depth parameter, the spreading area
Agpreaa 18 zero for almost every value of the vorticity. This is a confirmation of the
result initially obtained in Touboul and Kharif [32] for wave packets propagating in
deep water. In this study, the focusing location was found to be unaffected, whatever
the value of the vorticity. The vorticity, in deep water, has no effect on the dispersive
behavior of the chirped wave packet.

On the other hand, for strong negative values of the vorticity S/ ®yean, Fig. 4 shows
a spreading of the focusing area, even for the strongest values of the ki parameter
(up to values of kh = 48). These values of the vorticity correspond to a strong co-
flowing current, which will intuitively result in large values of the wavelength. Thus,
the effective wavenumber, taking the influence of the vorticity into account, will be
smaller, and the influence of the bathymetry will have a significant effect on the
dispersive behavior of the wave packet, resulting in a spreading of the focusing area.

When considering the smallest values of the reference depth parameter k#, it
turns out that the spreading area is not equal to zero. This means no optimal focusing
can be reached in such conditions, and the influence of bathymetry is predominant,
regardless to the value of vorticity. Nevertheless, it seems the value of zero will
eventually be reached asymptotically, for values of the vorticity large enough.



Fig. 5 Spreading area Agpreqq Of the focusing wave packet plotted versus depth parameter kh.
Various lines are colored as a function of the normalized vorticity S /@mean

Given the previous results, it is also interesting to consider the influence of effec-
tive depth parameter ki on the focusing area Ay, qq. This is the purpose of Fig. 5,
which presents the evolution of the spreading area as a function of the effective depth
parameter. The word “effective” here means k# is evaluated using the real wavenum-
ber k, computed using the mean pulsation of the wave packet w,eqn, and taking the
real vorticity value into account. In this figure, several lines are observed, colored as
a function of the normalized vorticity magnitude, S/®yean-

In this figure, we observe various behaviors given the magnitude of the vorticity
considered. Indeed, when considering strong vorticity, the spreading area appears
to tend to a zero value, meaning the parameter k% has less influence when vorticity
is important. On the opposite, for strong, but negative values of the vorticity, the
parameter kh is found to have a strong influence on the focusing area of the chirped
wave packet.

The values of the parameter kh are striking. Indeed, in the absence of vorticity,
depicted by the green lines in Fig. 5, the bathymetry seems to have an influence up to
kh = 7. This is explained through the frequency width involved in the chirped wave
packet. But in the meantime, these values are larger than 10 when vorticity becomes
important, but negative.

In Fig. 6, the evolution of the spreading area (in modulus) of the focusing wave
packet is presented in the (S/@pmean, kh) plane. From this figure, it appears that the
focusing area is zero, corresponding to optimal focusing, for deep water conditions,
and for positive values of the vorticity. On the other hand, the important influence
of the depth parameter on the focusing area appears clearly on that figure, when
considering important opposing vorticities. This observation is probably explained
through a broadening of the spectral width of the group in the presence of vorticity.
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Fig. 6 Evolution of the modulus of the focusing area in the (S/wmean, kh) plane

Thus, the mean frequency is not accurate enough to provide a good indicator of the
depth effects on the spreading area. Indeed, components involved in the wave packet
are now sensitive to finite depth effects, resulting in a spreading of the focusing
area. Same remark can be done when considering the vorticity effects for waves
propagating in shallow water (small values of the ki parameter). When components
of the group tend to become nondispersive, due to shallowness, vorticity has no
influence anymore, and the focusing cannot be reached anymore.

4 Conclusion

The kinematic behavior of a focusing wave group propagating in finite depth, in the
presence of constant vorticity and surface currents is studied analytically. Within the
framework of the linear theory we use an approximate kinematic model allowing to
describe the focusing point, and its transformation to a focusing area.

Confirming previous results by Touboul and Kharif [34], the effect of vorticity
in deep water is found to be surprising, and very different from what is expected
in the presence of surface current, varying uniformly with depth. Indeed, when the
only vorticity is present, the spreading of the focusing area is not expected anymore.
On the other hand, when both current and vorticity are present the focusing area of
the wave packets exhibits a dependence on the vorticity. Namely, the modulus of
the focusing area always increases with the modulus of the vorticity, whatever its
sign. On the other hand, this area is always found to depend on the surface current
intensity, with or without vorticity. However, the rate of this dependence is found to
be sensitive to the value of vorticity considered.



The effect of bathymetry on the focusing area is also investigated. Here again,
results are surprising, since bathymetry turns out to have a strong impact on the
focusing area, even for very large values of kk. Indeed, this can be explained by
a broadening of the wavelength within the wave group. In the presence of strong
negative vorticities, the spatial spectral width is increased in such a way the reference
wave number might be misleading. Thus, some parts of the components suffer the
influence of the bathymetry where we should not expect it. Influence of bathymetry
is thus found, indirectly, to have even more significant impact on the dispersive
behavior of the chirped wave packet than surface currents do.
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