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Abstract

A method is proposed for generating reliable representative volume elements
(RVEs) that allows reducing the statistical analysis required for the simu-
lation of the mechanical behavior of isotropic composites highly filled with
monosized spheres. The method combines (i) an algorithm inspired from
molecular dynamics and associated with an analytical equation of state, and
(ii) a geometrical analysis using the two-point correlation function and a
nearest-neighbor distribution function. A restrictive selection process is de-
fined, which leads to microstructures reasonably close to randomness and
isotropy. The pertinence of the proposed generation and selection of RVEs
is confirmed by the simulation of their elastic behavior with the finite ele-
ment method. In particular, it is shown how the selection procedure allows
reducing the computational effort required to reach reliable elastic moduli
by operating on a limited number of suitable RVEs. The results are in
good agreement with the generalized self-consistent model and with original
experimental data obtained on a composite where an acrylate matrix was
reinforced by sifted glass beads.
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1. Introduction

In order to run numerical simulations, accounting for the local proper-
ties and microstructure, of materials highly filled with particles (above 50%)
such as propellants, a first step lies in generating representative isotropic
random microstructures. In the case of monosized spherical particles, sev-
eral methods have been designed to generate random microstructures without
any one winning over (Bargmann et al., 2018). Microstructures extractions
from tomographies or other imaging techniques may be used for their ac-
tual representation of the composites (Louis and Gokhale, 1995; Buffière
et al., 2008; Maire et al., 2003; Tariel et al., 2011). However they might
induce some segmentation complications or restrain the applicable numeri-
cal boundary conditions. The random sequential addition (RSA) procedure
(Widom, 1966), where particles are randomly and sequentially dispersed in
a cell without overlapping, is often adopted (Böhm et al. (2002); Williams
and Philipse (2003), for instance). This scheme is limited to spheres vol-
ume fractions below 38% due to the frozen position of each particle (Cooper,
1988). Therefore, alternative approaches have also been developed such as
rate-dependent densification algorithm (Jodrey and Tory, 1985) or “drop and
roll” algorithm (Visscher and M. Bolsterli, 1972) which are rather dedicated
to analysis of spheres close packing (Torquato et al., 2000). A more recent
approach suggests to start from a Poisson distribution of spheres and exploit
an optimization formulation to improve particle localization while enforc-
ing a non-overlapping constraint (Pathan et al., 2017). However the final
volume fraction reached hardly exceeds 40%. A Monte Carlo methods al-
lows reaching higher volume fractions (Tobochnik and Chapin, 1988). It is
based on the random perturbation of the spheres positions, from an initial
microstructure that is periodic usually, enforcing the impenetrability of par-
ticles. Optimizing and restraining the interval of perturbations ensure the
equilibrium of the final microstructure. Such an approach is known as the
Metropolis algorithm (Metropolis et al., 1953; Torquato, 2002). While up
to 72% volume fractions of particles may be reached this way, the random-
ness of highly filled microstructures is questionable (Rintoul and Torquato,
1996), and combined approaches have been developed by mixing the pre-
vious methods. The modified RSA scheme, for instance, starts with a low
volume fraction RSA microstructure in a cell where particles are submitted
to random motions. The particles volume fraction is then increased by incre-
mentally reducing the cell volume (Gusev, 1997; Segurado and Llorca, 2002;
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Bailakanavar et al., 2014; Gusev, 2016). Alternatively, the cell size can be
kept fixed but the particles radius is increased while they undergo a Brown-
ian motion, modeling molecular dynamics (Lubachevsky and Stillinger, 1990;
Skoge et al., 2006; Ghossein and Levesque, 2012). Combination of this latter
method with Montecarlo steps (shaking process) has also been envisioned
(Buryachenko et al., 2012) but the molecular dynamics approach is retained
here because an implementation is directly available where the pressure in-
duced in the cell during the process is computed, which provides very useful
information.

Once a microstructure has been generated, its linear elasticity can be
estimated to assess its potential as representative volume elements (RVEs)
of the composite material (Huet, 1990; Hazanov and Huet, 1994; Gusev,
1997; Kanit et al., 2003; Ghossein and Levesque, 2012; Garboczi and Kushch,
2015). Characterizations of the geometry of the microstructures can also be
performed (Rintoul and Torquato, 1996, 1998), and complement the former
analysis. The concept of the present approach is to explore the ability of the
generating presure, the two-point correlation function and various nearest-
neighbor distribution functions (Torquato, 2002) to efficiently help selecting
the more random and isotropic microstructures (Chiu et al., 2013). Apply-
ing such a preselection is arguably uninteresting when dealing only with the
linear mechanical responses. Nonetheless, it becomes hard to avoid when
running finite elements analyses dealing with nonlinear behavior or with co-
hesive interfaces (Park and Paulino, 2011). Understanding the statistical
discrepancy when considering relatively small RVEs, our goal is to reduce
the number of numerical microstructures required to still reach accurate es-
timates of the material mechanical response, and linear elasticity is used only
to validate the preselection. Some recent studies (Segurado and Llorca, 2002;
Gusev, 2016) consider spheres volume fractions over 50% and compare finite
element results to the differential model (McLaughlin, 1977), the Torquato
model (Torquato, 1998, 1991), or the generalized self-consistent model (GSC)
(Christensen and Lo, 1979; Christensen, 1990). Since quantitative compar-
ison with experimental data is scarce in the literature, a model composite
made of a rubbery matrix highly filled with sifted glass beads was prepared
and tested in uniaxial tension in the present study. This was already the case
in the work of Gilormini et al. (2017), where a finite element analysis (FEA)
was applied to a single microstructure generated through a much simpler and
less validated procedure than here.

The paper is organized as follows. In the next section, an algorithm gen-
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erating microstructures is described. The impact of its seed parameters in
regards of the resulting microtructures and geometries is presented. Based
on the requirement of isotropic mechanical properties, a selection procedure
is defined in Section 3 from the finite element analysis of the microstructures,
including a careful mesh refinement. Finally, the obtained numerical prop-
erties are confronted to homogenization models and to original experimental
data in Section 4.

2. Microstructures highly and randomly filled with monosized spheres

2.1. Random cell generation

The Lubachevsky and Stillinger (1990) approach is applied here to gen-
erate microstructures. A detailed example of implementation is availaible in
Ghossein and Levesque (2012), and an other version of the algorithm, de-
veloped by S. Torquato and his coworkers (Skoge et al., 2006), is available
for download on the website of this author. First, a classical RSA algorithm
is applied to disperse a low volume fraction of monosized spheres randomly
in a periodic cubic cell. Then, an initial velocity v is given to each particle
according to a Maxwell-Boltzmann distribution:

f (v) =

(
m

2πkBT

)3/2

exp

(
−m v.v

2kBT

)
(1)

where all particles have the same normalized mass m = 1, kB is the Boltz-
mann constant, and the only parameter driving the distribution of velocities
is the thermodynamic temperature T . To reach the desired high volume
fraction, a growing factor gfact is applied to all spheres while their mass is
kept constant, resulting in an unaffected distribution of velocities. Due to
the growing spheres size, the probability of collision between moving spheres
increases, and an event-driven process is defined (Lubachevsky and Stillinger,
1990), where all velocities are decreased uniformly after a given number of
events reducing the risks of two simultaneous collisions that would stop the
algorithm. Applying the latter constraint also lowers the risk of strong pres-
sure divergence (this phenomenon will be discussed in Section 2.3 below)
that may prevent reaching the expected volume fraction. Examples of con-
figurations obtained during a cell generation are presented in Figure 1 with
specification of the main generating parameters: temperature T and growing
factor gfact.
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1% 5% 14% 30% 55%

Figure 1: Examples of microstructures obtained at various intermediate volume fractions
during a microstructure generation with a mixed method combining an initial RSA scheme
and particles velocities and growth defined by parameters T = 0.2 and gfact = 0.005.

2.2. Geometrical analysis

In accordance with the literature (Gusev, 1997; Ghossein and Levesque,
2012; Gusev, 2016), elementary periodic cells containing 64 spheres of equal
diameters were generated (Chiu et al., 2013). A microstructure can be ana-
lyzed by computing various geometrical characterization functions, but only
few of them lead to usable results here for the relatively small number of
spheres (Torquato, 2002). Nonetheless, the two-point correlation function S2

and some nearest-neighbor distribution functions have revealed interesting
properties to detect poor randomness. Since reference values have been es-
timated theoretically by Torquato et al. (1990) based on Reiss et al. (1959),
the neighbor distribution functions Hv that characterizes the distance from
every point of the matrix to the closest sphere centers, is chosen.

The S2 function is a common tool for a first characterization of random-
ness (Lee et al., 2011; Chiu et al., 2013). In the present context, its eval-
uation will focus on the reinforcement phase and will therefore be defined
as the probability for a vector r with its origin, orientation and length cho-
sen randomly to have both its origin and end located in the particle phase,
taking the cell periodicity into account. A classical procedure based on fast
Fourier transform, recalled in appendix A (Ohser and Schladitz, 2009), was
implemented as a Matlab (Matlab, 2016) routine.

Figure 2 illustrates the S2 values obtained when 55% volume fraction of
spheres are either organized as a BCC lattice (Figure 2a) or disordered ac-
cording to a Percus-Yevick (Percus and Yevick, 1958) random distribution
(Figure 2b). Note that the later is a rather close representation of a per-
fect random distribution at the considered volume fractions (Katzav et al.,
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2017). Both figures, where r1/D, r2/D and r3/D denote the components
of the sampling vector normalized by the spheres diameter D, show the S2

values computed in the three coordinate planes of one eighth (because of
periodicity and parity of the S2 function) of the cell. While usual analyses
are restrained to few directions, uncommon 2D plots are proposed here as
extensive samples of the full 3D sets of S2 values given by the above numeri-
cal procedure. Circular lines, which correspond to |r|/D = 1, 2, 3, ..., are also
plotted to help the eyes recognizing the isotropy symmetry. In Figure 2a,
the crystallographic BCC arrangement in the cell is clearly revealed by the
periodic variations of the S2 function. In contrast, the S2 values in Figure
2b, computed from the results tabulated by Torquato and Stell (1985) for the
Percus-Yevick distribution, obey a spherical symmetry that reveals isotropy.
In Figures 2a and 2b, the S2 value at the origin of the axes is the volume
fraction of spheres (η), as it stands for the probability for a point chosen
randomly (i.e., a zero-length sampling vector) to lie in a reinforcement. In
addition, as soon as sampling vectors growth in Figure 2b, S2 reaches values
close to this fraction squared (η2) which denotes a large range of test vectors
with decorrelation at their origin and end, as should apply in a perfectly
random distribution. Figure 3b shows the S2 values obtained from the tomo-
graphic analysis of a composite material that has been prepared by randomly
mixing a volume fraction of nearly 55% of sifted glass beads in a rubbery
matrix (Figure 3a). This experimental two-point correlation function exhibit
the same features as displayed in Figure 2b, which is in favor of a fairly ran-
dom and isotropic distribution of reinforcements for the actual composite.

2.3. Pressure evolution

The selected generation algorithm provides with an estimate of the re-
duced pressure p during spheres growth. The latter is obtained by calculating
the Clausius virial function and normalized it with the perfect gas pressure
(Pgas = nkBT/V , where n is the number of particles and V the volume)

p = 1 +
1

2Ec

〈
n∑

i=1

ri · FInt
i

〉
, (2)

where the expression of the Boltzmann kinetic energy Ec = 3nkBT/2 has
been used and brackets correspond to time averaging. Since the only poten-
tial considered during the microstructure generation process is the interaction
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Figure 2: Maps of the two-point correlation function S2 for various microstructures at
55% volume fraction for (a) a perfectly ordered microstructure and (b) a Percus-Yevick
random microstructure.

Figure 3: Experimental microstructure obtained by X-Ray tomography analysis (a) and
the corresponding two-point correlation function (b). The composite is made of a 55%
volume fraction of glass beads dispersed randomly in an elastomeric matrix.
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between colliding particles (Skoge et al., 2006), the scalar product of sphere
position ri with internal force FInt

i can be estimated from the momentum
Xm exchanged by particles collisions during duration ∆t,

p = 1 +
Xm

2Ec ∆t
. (3)

The pressure in systems of randomly dispersed monosized hard spheres has
already been addressed theoretically, and several equations of states (EOS)
have been proposed for its evolution with the particles volume fraction η. The
Carnahan-Starling-Kolafa model (Boubĺık and Nezbeda, 1986), as expressed
by Robles et al. (2014), is used here:

p =
1 + η + η2 − 2

3
(1 + η) η3

(1− η)3
. (4)

Figure 4 shows the evolution that can be obtained for three representative
microstructures, depending on the parameters used in the generation process
(see Section 2.1). An atypical confrontation to their corresponding geomet-
rical properties is performed. First, a pressure drop may be observed for low
values of the gfact/T ratio. The S2 values for the corresponding microstruc-
tures have similarities with the ordered case of Figure 2a, suggesting that
some crystallization happened during the generation process (Hoover and
Ree, 1968). This result is confirmed by the nearest-neighbor distribution
function, which diverges from the reference defined for a random microstruc-
ture. This phenomenon is explained by a drop of the number of reachable
random states above a ‘freezing point’ at about 49.4% volume fraction, when
the system tends to order (Rintoul and Torquato, 1996). Figure 4 illustrates
also that a divergent pressure evolution may appear if the gfact/T ratio is
too large. The corresponding microstructures have S2 values close to the
distribution of Figure 2b, but their nearest-neighbor distribution functions
differ from the reference for a random distribution, suggesting a particles
clustering consistent with the sudden increase of the number of collisions.
Finally, when intermediate values of gfact/T are used, the pressure follows
the EOS closely, and some of the obtained microstructures are found satisfac-
tory in terms of both S2 and Hv. Therefore, the two main parameters of the
generation process must be balanced carefully in order to ensure a pressure
evolution close to the EOS, and random microstructures may be expected
after the geometrical analysis is applied.
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Figure 4: Three types of reduced-pressure evolutions for various gfact/T ratios, compared
to the Carnahan-Starling-Kolafa equation of state.

3. Tests of the microstructures isotropy by finite element analysis

3.1. FEA framework

The generated microstructures are meshed in order to calculate their elas-
tic properties by FEA and to recognize the less anisotropic microstructures as
reasonnable RVEs. The Netgen free meshing software (Schberl, 1997; Schnei-
der et al., 2016) conveniently generates periodic meshes and lists the periodic
displacement constraints to be used by the finite element code Abaqus (2014).
Most FEAs of monosized spheres systems previously performed in the liter-
ature (Gusev, 1997; Segurado and Llorca, 2002; Barello and Levesque, 2008)
were based on RVEs with limited minimum interparticle distances (δ) for
improving the mesh quality. However, Gusev (2016) noticed recently that
the mechanical properties are underestimated when large interparticle dis-
tances are imposed, typically δ/D > 10−3. To avoid interparticle distance
restrictions without introducing distorted elements, the mesh is refined where
spheres are very close (Figure 5). For any given pair of close particles, a set
of circles of latitudes is defined around the pole at the point closest to the
other sphere. Several points are uniformly distributed on these circles to
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Figure 5: (a) A generated microstructure. (b) Its discretization using the meshing proce-
dure. (c) Enlarged view illustrating the local mesh refinement.

reduce the element size ensuring a high quality mesh. Although the refine-
ment induces a significant increase of the number of degree of freedom, the
computational duration is shortened. For discretizations with C3D10 tetra-
hedra, one million elements are generated typically, with five millions degree
of freedom. Such a method allows automatic and robust meshing of the mi-
crostructures without user input, therefore it can be operated for systematic
analyses as easily as the technique based on fast Fourier transform (Moulinec
and Suquet, 1998) which is classically preferred for its straightforwardness
(Ghossein and Levesque, 2012; Dunant et al., 2013). FEA is adopted in the
present contribution for its proven flexibility to explore further features of
the composite such as finite strain, viscoelasticity and interface debounding
(Park and Paulino, 2011).

Highly contrasted phases with small-strain linear elastic behaviors are
considered in the following numerical applications. The composite consists
of an incompressible soft matrix with a Young modulus of 6 MPa filled with
hard particles with a Young modulus of 69 GPa and a Poisson’s ratio of
0.25. Hybrid elements are used in the incompressible matrix phase. Note
that the impact of the matrix properties will also be tested by increasing its
stiffness and compressibility in Section 4. A perfect adhesion is assumed at
the filler-matrix interface and periodic boundary conditions are applied to
the cubic cell. When run on eight cluster nodes (2.5 GHz Intel Xeon E5-
2640 CPU, 64 GB RAM), the simulation of one uniaxial tensile test requires
approximately one hour. In order to test the isotropy of the composite, each
microstructure is submitted to six loadings consisting in either a uniaxial
tension or a simple shear along a cell axis, so that three Young moduli (E1,
E2, E3) and three shear modului (µ1, µ2, µ3) are obtained. The lowest
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dispersions for each set of moduli are expected to select the less anisotropic
microstructures. Moreover, an additional and original criterion for isotropy
is proposed when an incompressible soft matrix is considered: because of the
incompressible overall behavior of the composite due to an incompressible
matrix and comparatively rigid inclusions, in addition to E1 = E2 = E3 and
µ1 = µ2 = µ3, the ratio E/3µ, where E = (E1+E2+E3)/3 and µ = (µ1+µ2+
µ3)/3, should be exactly equal to 1 for a perfectly isotropic composite. While
perfect isotropy is unrealistic for the present microstructures, this test reject
ordered microstructure with cubic symmetry where the equalities between
moduli apply although E/3µ differs from 1.

3.2. Statistical Analysis

Twenty different microstructures containing a 55% volume fraction of
spheres have been built with generation parameters providing cell pressure
evolutions in good agreement with the EOS (see Section 2.3). Their elastic
behaviors have been computed and are presented in Figure 6 in terms of the
three Young moduli and shear moduli normalized by the respective matrix
values, and the additional isotropy criterion computed as

∣∣E/3µ− 1
∣∣. The

whole generation process was repeated for each microstructure, starting from
a different RSA distribution, so that the number identifying each microstruc-
ture is arbitrary and on te figure each color stand for the properties of one
realization. One notes in Figure 6 that all microstructures do not perform
equally. For instance, microstructure 6 presents low dispersions of Young
moduli and shear moduli, with averages close to the values estimated over
the twenty microstructures, and a very good value for the isotropy criterion.
In contrast, microstructure 7 exhibits a small dispersion of Young modulus
but a large dispersion of shear modulus, with a poor value for the isotropy
criterion. Therefore, the following question arises: instead of running FEAs
on every generated microstructures, can geometrical analyses be used prelim-
inarily to select fewer microstructures to which FEA is worth being applied?
Such a procedure might not be crucial for elastic behaviors, but it might
become mandatory when finite strain, interfacial damage, or viscoelasticity,
for instance, are considered, because of long computation durations.

Consequently, the geometrical analysis described in 2.2 has been applied
to each of the above 20 microstructures, in order to show ability to reject
the cases where unsatisfactory mechanical properties could have been ex-
pected before running FEA. In order to illustrate the results, we will focus
on four microstructures, which are representative of the features that can be
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Figure 6: Values of the Young modulus (a) and shear modulus (b) obtained in the direc-
tions of the three cell axes and normalized by the matrix values for 20 microstructures.
Isotropy criterion (c) calculated with the average Young modulus and average shear mod-
ulus for each microstructure. Insets correspond to the same data but considering only the
7 selected microstructures

12



obtained. Microstructure number 6 presents a reasonable randomness while
numbers 2, 7 and 11 are examples of microstructures that should be dis-
carded before being meshed (See Figure 6). Figure 7 presents the S2 values
for these four microstructures, with a reduced color scale centered on the
asymptotic value (η2). Microstructures 2 and 7 can be discarded readily as
they do not exhibit any asymptotic trend and as their dispersed peaks are
inconsistent with a symmetric evolution of S2. In contrast, microstructures
6 and 11 present S2 values with features similar to the reference displayed in
Figure 2b, meaning spherical symmetry of S2 and convergence to η2 for long
test vectors, which suggests promising randomness and isotropy. As a further
test, Figure 8 compares the nearest-neighbor distribution function Hv com-
puted on microstructures 6 and 11 to the perfect random reference described
in 2.2 (Reiss et al., 1959). This comparison allows rejecting microstructure 11
while microstructure 6 shows the best randomness from the nearest neighbor
point of view. Considering all 20 microstructures, we have noticed that every
microstructure presenting non-negligible anisotropic shows either a poor S2

periodicity or unsatisfactory nearest neighbor distribution. Therefore, S2 and
Hv characterizations provide efficient tools to discard undesired anisotropic
microstructures.

The mechanical properties of the seven microstructures selected (namely,
microstructures number 3, 4, 6, 8, 14, 17, and 18) are reported in the insets
of Figure 6, highlighting the reduction of the moduli dispersions by a factor
of nearly 2 and the exclusion of microstructures with unsatisfactory values
for the isotropy criterion. It may be noted that averaging the Young modulus
and the shear modulus over the seven final microstructures leads to values
(80.9 MPa and 27.9 MPa, respectively) similar to the averages computed over
the twenty generated microstructures. Two thirds of the computational effort
involved in meshing and finite element simulations would have been avoided
by applying the geometrical analysis right after microstructures generation.
The remaining fluctuations in the insets of Figure 6 (standard deviations of
10.2% for the Young modulus and 7.3% for the shear modulus) highlight the
unfeasibility of generating perfectly isotropic microstructures with such a few
number of particles and periodicity justifying the requirement for a statistical
approach. Convergence is finally facilitated when, despite studying all the
generated realizations, the analysis is retrained to the most representatives
microstructures, that can be considered as RVEs.
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Figure 7: S2 values for typical microstructures with a reduced color scale centered on η2.
Solid lines are guides for eyes to estimate spherical symmetry. Spherical trend of the left
diagrams clearly differ from dissipated peaks of the right ones.

4. Representativeness of the selected RVEs

The elastic moduli obtained by FEA on the set of selected RVEs are now
compared to the predictions of mean field homogenization models, to FEA
results taken from the literature, and to original experimental data measured
on a rubbery acrylate network filled with sifted glass beads.

In the case of an incompressible matrix filled with a 55% volume fraction
of glass beads, the shear moduli given by the FEA simulations compare very
favorably to the predictions of the GSC model (Christensen and Lo, 1979;
Christensen, 1990) for a wide range of matrix Young modulus Em values, as
shown in Figure 9a. This result is consistent with recent literature (Gusev,
2016; Ghossein and Levesque, 2012), even when taking into account the re-
duced uncertainty obtained with the previous selection process, as illustrated
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Figure 8: Nearest-neighbor distribution function for microstructures 6 (top) and 11 (bot-
tom). The dotted line is the reference function.
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for Em = 6 MPa. It should be noted that the predictions of the Torquato
model (Torquato, 1991, 1998) and the differential model (McLaughlin, 1977)
would lay roughly 50% below the FEA results at such a large volume frac-
tion. In order to complete our analysis, much larger matrix stiffnesses were
considered while the matrix Poisson’s ratio was lowered to 0.4, in order to
model a polymer in the glassy state. As shown in Figure 9b, the coherence
between numerical results and the GSC model is more questionable in these
conditions.

Comparing a model to other models provides with interesting fundamen-
tal outcomes but does not prove its relevance for actual materials. While
most of the reference studies restrain their confrontation to homogenization
models (Gusev, 2016; Ghossein and Levesque, 2012; Segurado and Llorca,
2002), a composite made of an acrylate polymer network higly filled with
sifted glass beads has been prepared and tested. The polymer matrix was
obtained by mixing 98% molar mass of methacrylate (MA) with 2% molar
mass of polyethylene glycol dimethacrylate (PEGDMA) of molar weight 750
g/mol and adding 2,2-Dimethoxy-2-phenylacetophenone (DMPA) as photo-
initiator. This composition was chosen to synthetize a rubbery network at
room temperature in order to obtain a composite with a soft and incom-
pressible matrix. Glass beads with diameters ranging from 200 to 250 µm
were slowly poured into the acrylate mix, avoiding beads agglomeration and
ensuring complete wetting. The compound was poured between two glass
plates spaced by a 3 mm teflon frame and maintained vertical during poly-
mer crosslinking in an ultraviolet chamber for 40 minutes. A fairly isotropic
distribution of spheres is obtained, as already shown with the tomographic
analysis shown in Figure 3. Specimens of 40×12×3 mm3 were punched at the
bottom of the plates to ensure similar glass beads volume fractions in every
sample. Moreover, 1 mm-thick plates of pure polymer were also prepared to
measure the matrix elastic properties and implement them in the numerical
simulations. The composite high volume fraction results from the gravity ap-
plying on the beads in a low viscosity uncrosslinked matrix, which prevents
any adjustment during the synthesis. Densimetry measures revealed an av-
erage density of 52% with a rather small scatter of 1%. Tensile tests at low
constant crosshead speed (0.1 mm/min) were carried out, during which the
strain was measured by video extensometry (Instron AVE2) and the force by
a class 0.5 10 kN cell. Six specimens were tested for the pure acrylate and
for the composite, showing good reproducibility. The matrix Young mod-
ulus was measured at 5.7 ± 0.5 MPa and the composite Young modulus at
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Figure 9: Shear moduli given by the FEA simulations and the GSC model when the
polymer matrix (Young modulus Em) of the composite is either rubbery (a) or glassy (b).
The volume fraction of glass beads is 55% and the results without error bars were obtained
with microstructure number 6.
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measured experimentally.

55 ± 1 MPa. A comparison between the actual composite modulus, includ-
ing uncertainties on modulus and on volume fraction, and the average FEA
results obtained from 7 selected RVEs at volumes fractions of 55% and 50%
(for which the generation and selection procedures presented above at 55%
have been repeated) is shown in Figure 10. Results given by GSC model are
also plotted when accounting for the matrix modulus uncertainty. Both this
model and FEA applied to the set of selected RVEs predict very satisfactorily
the stiffness of an actual incompressible rubbery polymer matrix filled with
monosized glass beads at the high density experimentally obtained.

The present approach has been developed and tested only for monosized
spherical particles with a high contrast between the rigid inclusions and the
rubbery matrix. Further extensions may be envisioned for more complex
fillers as dedicated approximation of the equation of state are available mostly
based on the scaled particles theory (Boubĺık, T., 1974; Reiss, 1992; Allen
et al., 1993). This would allow selecting complex microstructures based on
the analysis of the generated pressure coupled with the geometric charac-
terization, which is the major originality of the current approach. However
particles irregularities require an orientational order analysis in addition to
present positioning order examinations. That would be exacerbated when
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large aspect ratio particles are considered, which could also induce consid-
erations for a nematic thermodynamic state (Frenkel and Mulder, 1985).
Therefore, the natural extension of the present approach to monosized ellip-
soid for instance, will require a deep revision of the selection process even
if Lubechevsly and Stillinger algorithm for such particles as been already
developed (Donev et al., 2005a,b). The pressure-based selection will have
to consider nematic states (orientationnal order) in addition to solids state
(positional order) and the geometrical characterization will have to include
orientation characterization functions. Such extensions are beyond the frame-
work of the present study despite the interests that may arouse for a selection
process efficient with complex RVEs.

Another extension would have been analyses of the impact of phases
contrast on the relevance of the selection process. Reduction of the contrast
has been briefly considered in section 4 without any experimental validation
of the numerical estimation of the composite mechanical properties. Studying
the inversion of the phase contrast (voids instead of rigid inclusions) might
be of particular interest especially for modeling rocks behavior.

5. Conclusion

In this study, a method was proposed for the efficient generation and
selection of reliable RVEs that allows reducing of two thirds the statistical
analysis required for the numerical simulation of the mechanical behavior of
isotropic composites randomly and highly filled with monosized spheres. The
method proceeds in two steps. First, an algorithm inspired from molecular
dynamics is applied, where spheres collide and grow simultaneously in a pe-
riodic cubic cell, starting from an initial RSA distribution at a low volume
fraction. The microstructures obtained at high volume fraction are rejected if
a reference equation of state is not followed during this process, which allows
adjusting the two parameters involved. In a second step, a geometrical anal-
ysis is performed to select microstructures further. The two-point correlation
function is computed and allows identifying the features expected from ran-
dom and isotropic microstructures. Finally, a nearest-neighbor distribution
function is computed and compared to a reference in order to perform a final
selection among the microstructures.

The relevance of the proposed generation and selection of RVEs has been
confirmed by the simulation of their elastic behavior with the finite element
method, where the mesh was refined carefully. First, the microstructures
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selected by the geometrical analysis have been shown to be reasonably close
to isotropy in terms of the dispersions of the Young modulus and shear mod-
ulus. This was also consistent with the ratio of 3 between these moduli
that is expected for isotropic incompressible composites. Moreover, the av-
erage moduli obtained from the selected microstructures were found very
similar to the averages obtained without applying the geometrical analysis,
but with much narrower dispersions. Thus, the proposed selection procedure
allows reducing the computational effort required to reach reliable elastic
moduli by operating on a limited number of suitable RVEs. This confirms
the efficiency of comparing pressure evolution with the EOS and of the con-
sidered geometrical functions for a rapid discrimination of the reasonably
random and isotropic microstructures. While further morphological char-
acterizations might reduce the number of considered realizations and the
properties discrepancies, they will mostly be significantly time consuming or
even inoperative due to the cell size.

The numerical results have been confronted to homogenization models,
and a very good agreement has been obtained with the generalized self-
consistent model, especially when a soft and incompressible matrix contains
a large volume fraction of monosized stiff spheres. Very interestingly, a good
agreement has also been found with original experimental results obtained
on a model composite where a rubbery acrylate matrix was reinforced by
sifted glass beads. This contributes to validate the ability of the proposed
methodology to predict the elastic behavior of composites with good pre-
cision. Keeping the same guidelines, it may also be adapted to nonlinear
behaviors, finite strains or damage at matrix-particles interfaces, for instance.
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Appendix A

A dense set of S2 values can be computed by letting the origin and end
of the sampling vector scan systematically all the nodes of a thin cubic grid,
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and the calculation can then take full advantage of the remarkable properties
of circulant matrices (see for instance Van Loan (1992), for basic relations be-
tween circulant matrices and Fourier transform, and Yongshe et al. (2006) for
application to 3D correlation). Practically, we applied the following simple
numerical procedure to compute the values of the S2 function:

(i) The elementary microstructure cubic cell is sampled into a N ×N ×N
matrix with a value of 1 for each voxel located in a spherical reinforce-
ment and 0 in the matrix.

(ii) This N ×N ×N matrix of integers is changed into a matrix of complex
numbers, where the real part is equal to the integer value (1 or 0) and
the imaginary part is zero.

(iii) The discrete 3D Fourier transform of this complex matrix is computed
by applying a fast Fourier transform (FFT) algorithm.

(iv) All elements of the resulting N × N × N matrix of complex numbers
are modified, with their real parts replaced by their moduli squared and
their imaginary parts set to zero.

(v) The inverse discrete 3D Fourier transform of this modified matrix is
computed by FFT, which leads to a N × N × N matrix of complex
numbers where the imaginary parts are zero and the real parts are the
S2 values.

It is important to note that a division byN3 is included in the definition of the
discrete 3D Fourier transform used above (but not in the inverse transform, of
course), and therefore the division by N3 involved implicitly in the definition
of S2 (to obtain the average over all locations of the origin of a sampling
vector with fixed orientation and length) is performed when the moduli are
squared in step (iv) above.
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