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Abstract

The Helmholtz equation is notoriously difficult to solve with standard numerical
methods, increasingly so, in fact, at higher frequencies. Controllability meth-
ods instead transform the problem back to the time-domain, where they seek
the time-harmonic solution of the corresponding time-dependent wave equa-
tion. Two different approaches are considered here based either on the first
or second-order formulation of the wave equation. Both are extended to gen-
eral boundary-value problems governed by the Helmholtz equation and lead
to robust and inherently parallel algorithms. Numerical results illustrate the
accuracy, convergence and strong scalability of controllability methods for the
solution of high frequency Helmholtz equations with up to a billion unknowns
on massively parallel architectures.

Keywords: Helmholtz equation; time-harmonic scattering; exact
controllability; finite elements; domain decomposition; parallel scalability

1. Introduction

The efficient numerical solution of the Helmholtz equation is fundamental to
the simulation of time-harmonic wave phenomena in acoustics, electromagnet-
ics or elasticity. As the time frequency ω ą 0 increases, so does the size of the
linear system resulting from any numerical discretization in order to resolve the5

increasingly smaller wave lengths. With the increase in frequency, however, the
performance of standard preconditioners based on multigrid, incomplete factor-
ization or domain decomposition approaches, originally developed for positive
definite Laplace-like equations, rapidly deteriorates [1].

In recent years, a growing number of increasingly sophisticated precondi-10

tioners has been proposed for the iterative solution of the Helmholtz equation;
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”Shifted Laplacian” preconditioners [2], for instance, have led to modern multi-
grid [3, 4] and domain decomposition preconditioners [5, 6]. While some of
those preconditioners may achieve a desirable frequency independent conver-
gence behavior in special situations [7], that optimal behavior is often lost in15

the presence of strong heterogeneity. Moreover, they are typically tied to a
special discretization or fail to achieve optimal scaling on parallel architectures.

Controllability methods (CM) offer an alternative approach for the numerical
solution of the Helmholtz equation. Instead of solving the problem directly in
the frequency domain, we first transform it back to the time domain where we20

seek the corresponding time-dependent periodic solution, yp¨, tq, with known
period T “ 2π{ω. By minimizing an energy functional Jpv0, v1q which penalizes
the mismatch after one period, controllability methods iteratively adjust the
(unknown) initial condition pv0, v1q thereby steering yp¨, tq towards the desired
periodic solution. Once the minimizer of J has been found, we immediately25

recover from it the solution of the Helmholtz equation. As the CM combines
the numerical integration of the time-dependent wave equation with a conjugate
gradient (CG) iteration, it is remarkably robust and inherently parallel.

In [8], Bristeau et al. proposed the first CM for sound-soft scattering prob-
lems based on the wave equation in standard second-order form. Since the initial30

condition pv0, v1q then lies in H1ˆL2, the original formulation requires the solu-
tion of a coercive elliptic problem at each CG iteration. Heikkola et al. in [9, 10]
presented a higher-order version by using spectral FE and the classical fourth-
order Runge-Kutta (RK) method. For more general boundary-value problems,
such as wave scattering from sound-hard obstacles, inclusions, or wave propaga-35

tion in physically bounded domains, the original CM will generally fail because
the minimizer of J is no longer unique. In [11], we proposed alternative energy
functionals which restore uniqueness, albeit at a small extra computational cost,
for general boundary-value problems governed by the Helmholtz equation.

More recently, Glowinski and Rossi [12] proposed a CM based on the wave40

equation in first-order (or mixed) form using classical Raviart-Thomas (RT)
finite elements. As pv0, v1q then lies in L2 ˆ pL2qd, the solution of an elliptic
problem at each CG iteration is no longer necessary and the CM becomes in
principle trivially parallel. Still, the lack of availability of mass-lumping for
RT elements again nullifies the main advantage of the first-order formulation45

because the mass-matrix now needs to be ”inverted” at each time-step.
Here we revisit the original CM from [8, 12] and consider two distinct dis-

cretizations, which both lead to highly efficient and inherently parallel meth-
ods. In Section 2, we recall the CMCG method based on the wave equation in
second-order form and propose a filtering procedure which permits the use of50

the original energy functional J , regardless of the boundary conditions. Next,
in Section 3, we consider the CM based on the wave equation in first-order
form and again show how to extend it to arbitrary boundary-value problems
governed by the Helmholtz equation. Thanks to a recent hybrid discontinuous
Galerkin (HDG) method [13], which automatically yields a block-diagonal mass-55

matrix, the time integration of the wave equation then becomes truly explicit
and the entire CMCG approach trivially parallel. In Section 4, we perform a
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series of numerical experiments to illustrate the accuracy, convergence behavior
and inherent parallelism of the CMCG approach. In particular, we apply it to
large-scale high-frequency Helmholtz problems with up to a billion unknowns60

to demonstrate its strong scalability on massively parallel architectures.

2. Controllability methods for the second-order formulation

2.1. Time-harmonic waves

We consider a time-harmonic wave field upxq in a bounded connected com-
putational domain Ω Ă Rd, d ď 3, with a Lipschitz boundary Γ. The boundary
consists of three disjoint components, Γ “ ΓD Y ΓN Y ΓS where we impose
a Dirichlet, Neumann and impedance (or Sommerfeld-like absorbing) bound-
ary condition, respectively; the boundary condition is omitted whenever the
corresponding component is empty. In Ω, the wave field u hence satisfies the
Helmholtz equation

´∆upxq ´ k2pxq upxq “ fpxq, x P Ω, (2.1a)

Bupxq

Bn
´ ikpxq upxq “ gSpxq, x P ΓS , (2.1b)

Bupxq

Bn
“ gN pxq, x P ΓN , (2.1c)

upxq “ gDpxq, x P ΓD, (2.1d)

where ω ą 0 is the (angular) frequency, cpxq ą 0 the wave speed, kpxq “ ω{cpxq
the wave number, n the unit outward normal, and f , gN , gS and gD are known65

and may vanish.
The above formulation is rather general and encompasses most common

applications such as sound-soft scattering problems with ΓS ‰ H and ΓD ‰

H, sound-hard scattering problems with ΓS ‰ H and ΓN ‰ H, or physically
bounded domains with ΓS “ H. We shall always assume for any particular70

choice of ω, cpxq, or combination of boundary conditions that (2.1) is well-posed
and has a unique solution u P H1pΩq.

Instead of solving the Helmholtz equation directly in the frequency domain,
we now reformulate (2.1) in the time domain. Then, the corresponding time-
harmonic wave field, Re

 

upxq e´iωt
(

, satisfies the (real-valued) time-dependent
wave equation

1

c2pxq

B2ypx, tq

B2t
´ ∆ypx, tq “ Re

 

fpxq e´iωt
(

, x P Ω, t ą 0, (2.2a)

Bypx, tq

Bn
`

1

cpxq

Bypx, tq

Bt
“ Re

 

gSpxq e´iωt
(

, x P ΓS , t ą 0, (2.2b)

Bypx, tq

Bn
“ Re

 

gN pxq e´iωt
(

, x P ΓN , t ą 0, (2.2c)

ypx, tq “ Re
 

gDpxq e´iωt
(

, x P ΓD, t ą 0, (2.2d)

ypx, 0q “ v0pxq,
Bypx, 0q

Bt
“ v1pxq, x P Ω, (2.2e)
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for the (unknown) initial values v0 “ Re tuu and v1 “ ω Im tuu.
For sound-soft scattering problems (2.1), where |ΓD| ą 0 and |ΓS | ą 0, Bris-

teau et al. [8, 14] proposed to determine upxq via controllability by computing
a time-periodic solution ypx, tq of (2.2) with period T “ 2π{ω. Once the initial
values v0, v1 of y are known, the solution u of the original Helmholtz equation
(2.1) is immediately given by

u “ v0 `
i

ω
v1, v0, v1 P H

1pΩq. (2.3)

To determine v0 and v1, the problem is reformulated as a least-squares opti-
mization problem over H1pΩq ˆ L2pΩq for the quadratic cost functional

Jpv0, v1q “
1

2

ż

Ω

|∇ypx, T q´∇v0pxq|
2dx`

1

2

ż

Ω

1

c2pxq
pytpx, T q´v1pxqq

2dx, (2.4)

where y satisfies (2.2) with the initial values v0 and v1. The functional J mea-
sures in the energy norm the mismatch between the solution of (2.2) at the initial75

time and after one period. It is non-negative and convex, while Jpv0, v1q “ 0
if, and only if, ∇yp¨, T q “ ∇yp¨, 0q and ytp¨, T q “ ytp¨, 0q for any given initial
values pv0, v1q; in particular, Jpv0, v1q “ 0 if v0 “ Re tuu and v1 “ ω Im tuu.

For more general scattering problems, however, J is no longer strictly convex
as the T -periodicity of yt and ∇y no longer guarantees a unique periodic solution80

y of (2.2). Instead, for the general boundary-value problem (2.1), the situation
is more complicated and summarized in the following theorem [11] .

Theorem 1. Let u P H1pΩq be the unique solution of (2.1) and y P C0pr0, T s;H1pΩqqX
C1pr0, T s;L2pΩqq be a (real-valued) solution of (2.2) with initial values pv0, v1q P

H1pΩq ˆ L2pΩq. If ∇y and yt are time periodic with period T “ 2π{ω, then y
admits the Fourier series representation

pyp¨, tq, ϕq “ pRe
 

u e´iωt
(

, ϕq ` pλ` ηt, ϕq `
ÿ

|`|ą1

pγ` eiω`t, ϕq (2.5)

for any ϕ P H1
D, where the constants λ, η P R and the eigenfunctions γ` “

α` ` iβ`, α`, β` P H
1pΩq, |`| ą 1 satisfy

´∆γ`pxq ´ p`kpxqq
2γ`pxq “ 0, x P Ω, (2.6a)

Bγ`pxq

Bn
` i`kpxq γ`pxq “ 0, x P ΓS , (2.6b)

Bγ`pxq

Bn
“ 0, x P ΓN , (2.6c)

γ`pxq “ 0, x P ΓD, (2.6d)

Let v “ v0 ` pi{ωq v1. Then v satisfies

pv, ϕq “ pu, ϕq ` pλ`
i

ω
η, ϕq `

ÿ

|`|ą1

pα` ` i`β`, ϕq, @ϕ P H1
D. (2.7)
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Furthermore, if |ΓS | ą 0, then η “ 0. If |ΓD| ą 0, then λ “ η “ 0.
Here H1

D :“ tw P H1pΩq : w “ 0 on ΓDu and p¨, ¨q denotes the standard L2pΩq
inner product.85

Proof. See [11].
For sound-soft scattering problems (|ΓS | ą 0, |ΓD| ą 0), where both Dirichlet

and Sommerfeld-like absorbing boundary conditions are imposed on Γ, all the
eigenfunctions γ`, |`| ą 1, and the constants λ, η in (2.7) vanish identically.
Thus, the minimizer v “ v0 ` pi{ωqv1 of J in (2.4) then coincides with u.90

For scattering problems from sound-hard obstacles or penetrable inclusions
(|ΓS | ą 0, |ΓD| “ 0), the eigenfunctions γ` and the constant η in (2.7) still
vanish identically, yet the constant λ may be nonzero. Given any minimizer
v “ u ` λ of J , we can recover u by subtracting the spurious shift λ using the
compatibility condition:

λ “
1

}k}2L2pΩq ` i|k|L1pΓSq

ˆ
ż

Ω

k2v ` i

ż

ΓS

kv `

ż

Ω

f `

ż

ΓS

gS `

ż

ΓN

gN

˙

.

In fact, any impedance condition (2.1b) that includes a positive (or negative)
definite zeroth order term, such as a more accurate absorbing boundary condi-
tion [15, 16], also circumvents the indeterminacy due to λ.

For wave propagation in physically bounded domains (|ΓS | “ 0), the eigen-
functions γ` and the constants λ, η in (2.7) typically do not vanish. However,95

we can always restore uniqueness by replacing J with an alternative energy
functional, thereby incurring a small increase in computational cost – see [11].

2.2. Fundamental frequency extraction via filtering

From Theorem 1 we conclude that a minimizer of J generally yields a time-
dependent solution y of (2.2), which contains a constant shift determined by100

λ, a linearly growing part determined by η, and higher frequency harmonics
determined by γ`, all superimposed on the desired time-harmonic field u with
fundamental frequency ω. Those spurious modes can be eliminated by replacing
J with an alternative energy functional at a small extra computational cost [11].
Instead we now propose an alternative approach via filtering which removes all105

spurious modes without requiring a modified energy functional.
Let ypx, tq be the time-dependent solution of (2.2) that corresponds to a

minimizer pv0, v1q of J . Next, we define py P tw P H1pΩq | w “ gD on ΓDu as

pypxq :“
1

T

ż T

0

`

ypx, tq `
i

ω
ytpx, tq

˘

eiωt dt. (2.8)

To extract upxq from ypx, tq, we now take advantage of the mutual orthogonality
of different time harmonics exppiω`tq in L2p0, T q. Hence, we multiply (2.5) with
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eiωt and integrate in time over p0, T q to obtain

pypxq “
1

T

ż T

0

`

Retu e´iωtu ` λ` ηt` i Imtu e´iωtu `
iη

ω

˘

eiωt dt

“
1

T

ż T

0

u e´iωt eiωt dt´
iη

ω
“ u´

iη

ω
. (2.9)

This yields

upxq “ pypxq `
iη

ω
, x P Ω (2.10)

where λ and all γ` have vanished but the constant η is still undetermined.
If |ΓS | ą 0 or |ΓD| ą 0, Theorem 1 implies that η “ 0 and thus upxq “ pypxq.

Otherwise in the pure Neumann case (Γ “ ΓN ), we determine η by integrating
(2.10), multiplied by k2pxq, over Ω and using the compatibility condition

´

ż

Ω

k2pxqupxq dx “

ż

Ω

fpxq dx`

ż

BΩ

gN pxq ds. (2.11)

from (2.1a). This immediately yields the remaining constant

iη

ω
“ ´

1

}k}2L2pΩq

ˆ
ż

Ω

fpxq dx`

ż

BΩ

gN pxq ds`

ż

Ω

k2pxqpypxqdx

˙

. (2.12)

We summarize the above derivation in the following proposition.

Proposition 1. Let u P H1pΩq be the unique solution of (2.1) and y the time
dependent solution of (2.2) corresponding to a minimizer pv0, v1q P H

1pΩq ˆ110

L2pΩq of J , i.e. Jpv0, v1q “ 0. Then u is given by (2.10) with η “ 0 if |ΓS | ą 0
or |ΓD| ą 0, and with η given by (2.12) when ΓN “ BΩ.

Not only does the above filtering approach allow us to use the original cost
functional J , it also involves a negligible computational effort or storage amount,
as the time integral for py can be calculated cumulatively via numerical quadra-115

ture during the solution of the wave equation (2.2).

2.3. The CMCG Algorithm

To minimize the quadratic cost functional J defined by (2.4) over H1pΩq ˆ
L2pΩq, a natural choice is the conjugate gradient (CG) method [8], which re-
quires the Fréchet derivative of J at v “ pv0, v1q:120

xJ 1pvq, δvy “ ´

ż

Ω

∇pypx, T q ´ v0pxqq ¨∇δv0pxq dx (2.13)

´

ż

Ω

1

c2pxq
pytpx, T q ´ v1pxqqδv1pxq dx

`

ż

Ω

1

c2pxq

`

ppx, 0qδv1pxq ´ ptpx, 0qδv0pxqq dx (2.14)

`

ż

ΓS

1

cpxq
ppx, 0qδv0pxq ds.
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Here δv “ pδv0, δv1q denotes an arbitrary perturbation, x¨, ¨y the standard du-
ality pairing, and p the solution of the adjoint (backward) wave equation:

1

c2pxq

B2

B2t
ppx, tq ´ ∆ppx, tq “ 0, x P Ω, t ą 0, (2.15a)

Bppx, tq

Bn
´

1

c

B

Bt
ppx, tq “ 0, x P ΓS , t ą 0 (2.15b)

Bppx, tq

Bn
“ 0, x P ΓN , t ą 0, (2.15c)

ppx, tq “ 0, x P ΓD, t ą 0, (2.15d)

ppx, T q “ p0pxq,
Bppx, T q

Bt
“ p1pxq, x P Ω, (2.15e)

and the initial conditions satisfy for any w P H1
DpΩq

p0pxq “ ytpx, T q ´ v1pxq, x P Ω,
ż

Ω

p1pxq

c2pxq
wpxq dx “

ż

ΓS

p0pxq

cpxq
wpxq ds´

ż

Ω

∇pypx, T q ´ v0pxqq ¨∇wpxq dx.

The derivation of (2.13) and (2.15) can be found in [8]. In each CG iteration
the derivative J 1pvq requires the solution of the forward and backward (adjoint)
wave equations (2.2) and (2.15) over one period r0, T s. Moreover, each CG
iteration requires an explicit (Riesz) representer g̃ “ pg̃0, g̃1q P H

1
DpΩq ˆ L2pΩq

of the gradient g “ pg0, g1q “ J 1pvq defined in (2.13), which is determined by
solving the symmetric and coercive elliptic problem [8, 17]:

p∇g̃0,∇ϕq “
ż

Ω

g0pxqϕpxq dx

“

ż

Ω

∇pv0pxq ´ ypx, T qq ¨∇ϕpxq ´
1

c2pxq
ptpx, 0qϕpxq dx

`

ż

ΓS

1

cpxq
ppx, 0qϕpxq ds, @ϕ P H1

D, (2.16a)

g̃1 “ g1 “ v1 ´ ytp¨, T q ` c
´2pp¨, 0q. (2.16b)

For the sake of completeness, we list the full CMCG Algorithm – see [8, 11]:

CMCG Algorithm.

(1) Initialize vp0q “ pv
p0q
0 , v

p0q
1 q (initial guess).

(2) Solve the forward and the backward wave equations (2.2) and (2.15) to de-
termine the gradient of J , gp0q “ J 1pvp0qq, defined by (2.13).125

(3) Solve the coercive elliptic problem (2.16) with g “ gp0q to determine the new
search direction g̃p0q.

(4) Set rp0q “ dp0q “ g̃p0q.
(5) For ` “ 1, 2, . . .

5.1 Solve the wave equation (2.2) with f “ gD “ gS “ gN “ 0 and the130

initial values dp`q “ pd
p`q
0 , d

p`q
1 q and the backward wave equation (2.15).

Compute the gradient gp`q “ J 1pdp`qq defined by (2.13).
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5.2 Solve the coercive elliptic problem (2.16) with g “ gp`q to get g̃p`q.

5.3 α` “
} ∇rp`q0 }2L2pΩq ` }p1{cq r

p`q
1 }2L2pΩq

p ∇g̃p`q0 ,∇dp`q0 qL2pΩq ` pp1{c2q g̃
p`q
1 , d

p`q
1 qL2pΩq

5.4 vp``1q “ vp`q ´ α`d
p`q

135

5.5 rp``1q “ rp`q ´ α`g̃
p`q

5.6 β` “
}∇rp``1q

0 }2L2pΩq ` }p1{cq r
p``1q
1 }2L2pΩq

}∇rp`q0 }2L2pΩq ` }p1{cq r
p`q
1 }2L2pΩq

5.7 dp``1q “ rp``1q ` β`d
p`q

5.8 Stop when the relative residual lies below the given tolerance tol

g

f

f

e

}∇rp``1q
0 }2L2pΩq ` }p1{cq r

p``1q
1 }2L2pΩq

}∇rp0q0 }2L2pΩq ` }p1{cq r
p0q
1 }2L2pΩq

ď tol.

(6) Return approximate solution uh of (2.1) given by

uh “ v
p`q
0 `

i

ω
v
p`q
1 .

Since g̃0 P H
1pΩq, the updates of r

pkq
0 , d

pkq
0 and v

pkq
0 in Steps 5.4, 5.5 and

5.7 in the CMCG Algorithm also remain in H1pΩq. We emphasize that (2.16a)140

is independent of ω and leads to a symmetric and positive definite linear sys-
tem, which can be solved efficiently and in parallel with standard numerical
(multigrid, domain decomposition, etc.) methods [18, 6].

3. Controllability methods for first-order formulations

The CMCG Algorithm from Section 2.3 iterates on the initial value pv0, v1q P145

H1pΩq ˆ L2pΩq of the second-order wave equation (2.2) until its solution is T -
time periodic. However, the gradient of the cost functional Jpv0, v1q, which is
needed during the CG update, only lies in the dual space H´1pΩq ˆ L2pΩq.
To ensure that the solution remains sufficiently regular and in H1pΩq ˆ L2pΩq,
the corresponding Riesz representative is computed at every CG iteration by150

solving the strongly elliptic problem (2.16a). In [12], Glowinski et al. derived
an equivalent first-order formulation for sound-soft scattering problems, where
the solution instead lies in pL2pΩqqd`1, which is reflexive. As a consequence,
all CG iterates automatically lie in the correct solution space pL2pΩqqd`1, while
the solution of (2.16a) is no longer needed.155

3.1. First-order formulation for general boundary conditions

Again, we always assume for any particular choice of ω, cpxq, f and com-
bination of boundary conditions that (2.1) has a unique solution u P H1pΩq.
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Following [12], we now let v “ yt, p “ ∇y and rewrite the time-dependent wave
equation (2.2) in first-order form:

1

c2pxq
vtpx, tq ´∇ ¨ ppx, tq “ Re

 

fpxq e´iωt
(

, x P Ω, t ą 0, (3.1a)

B

Bt
ppx, tq “ ∇vpx, tq, x P Ω, t ą 0, (3.1b)

ppx, tq ¨ n`
1

cpxq
vpx, tq “ Re

 

gSpxq e´iωt
(

, x P ΓS , t ą 0, (3.1c)

ppx, tq ¨ n “ Re
 

gN pxq e´iωt
(

, x P ΓN , t ą 0, (3.1d)

vpx, tq “ Re
 

´iωgDpxq e´iωt
(

, x P ΓD, t ą 0 (3.1e)

with the initial conditions

ppx, 0q “ p0pxq P Rd, vpx, 0q “ v0pxq P R, x P Ω. (3.1f)

Hence, the solution pp, vq of (3.1) lies in the function space Q [19, 20],

Q “ C0pr0, T s;Hpdiv; Ωq ˆ L2pΩqq X C1pr0, T s; pL2pΩqqd`1q. (3.2)

In terms of p and v, the energy functional J defined in (2.4) now becomes

pJpp0, v0q “
1

2

ż

Ω

|ppx, T q´p0pxq|
2 dx`

1

2

ż

Ω

1

c2pxq
pvpx, T q´v0pxqq

2 dx, (3.3)

where pp, vq solves (3.1) with initial value pp0, v0q P Hpdiv; Ωq ˆ L2pΩq.
The CMCG Algorithm for the first-order formulation is identical to that for

the second-order formulation from Section 2.3 except for Steps 2 and 5.1, where
J 1 is now replaced by pJ 1:

x pJ 1pp0, v0q, pδp0, δv0qy “

ż

Ω

pp˚px, 0q ´ p˚px, T qqδp0pxq dx (3.4)

`

ż

Ω

pv˚px, 0q ´ v˚px, T qqδv0pxq dx.

Here pδp0, δv0q P Pˆ L2pΩq denotes an arbitrary perturbation with

P “ tp P Hpdiv; Ωq | p ¨ n “ 0 on ΓNu, (3.5)

whereas pp˚, v˚q P P ˆ L2pΩq solves the backward (adjoint) wave equation in
first-order form [12], that is (3.1) with f ” gS ” gN ” gD ” 0 and

p˚p¨, T q “ pp¨, T q ´ p0, v˚p¨, T q “ vp¨, T q ´ v0.

For sound-soft scattering problems (|ΓD|, |ΓS | ą 0), the functional pJ always
has a unique (global) minimizer, which therefore coincides with the (unique)
time-harmonic solution Re

 

upxq e´iωt
(

of (3.1). For more general boundary160

value problems, however, the minimizer of pJ is not necessarily unique, as shown
in the following theorem.
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Theorem 2. Let u P H1pΩq be the unique solution of (2.1) and pp, vq P Q be a
real-valued solution of (3.1) with initial values pp0, v0q P Hpdiv; Ωq ˆ L2pΩq. If
p and v are time periodic with period T “ 2π{ω, then p and v admit the Fourier
series representation

pp¨, tq “ Re
 

∇u e´iωt
(

` λ`
8
ÿ

|`|ą1

γp` e´iω`t, (3.6a)

vp¨, tq “ ω Im
 

u e´iωt
(

` η `
8
ÿ

|`|ą1

γv` e´iω`t, (3.6b)

where the constant η P R, λ P P with
ż

Ω

λ ¨∇ϕ dx “ 0, @ϕ P H1pΩq, ϕ|ΓD
” 0, (3.7)

and the complex-valued eigenfunctions γp` P P, γv` P L
2pΩq, |`| ą 1 satisfy

´c2pxq∇ ¨ γp` pxq ` iω`γ
v
` pxq “ 0, x P Ω, (3.8a)

iω`γp` pxq “ ∇γv` pxq, x P Ω, (3.8b)

cpxqγp` pxq ¨ n` γ
v
` pxq “ 0, x P ΓS , (3.8c)

γp` pxq ¨ n “ 0, x P ΓN , (3.8d)

γv` pxq “ 0, x P ΓD. (3.8e)

Furthermore, if |ΓS Y ΓD| ą 0, then η “ 0.

Proof. Let

qp¨, tq “ pp¨, tq ´ Re
 

∇u e´iωt
(

, wp¨, tq “ vp¨, tq ´ ω Im
 

u e´iωt
(

.

Then w and q satisfy (3.1) with f ” gD ” gS ” gN ” 0 and initial values

qpx, 0q “ p0pxq ´ Re t∇upxqu , wpx, 0q “ v0pxq ´ ω Im tupxqu , x P Ω.

Since p and v are T -periodic, so are q and w. Moreover, the mappings

t ÞÑ pqp¨, tq,ψq, t ÞÑ pwp¨, tq, ϕq

are T -periodic and continuous for any pψ, ϕq P P ˆ L2pΩq [19]. Hence, they
admit the Fourier series representation,

pqp¨, tq,ψq “
8
ÿ

`“´8

pγp` eiω`t, pwp¨, tq, ϕq “
8
ÿ

`“´8

pγv` eiω`t,

where γp` P Cd , pγv` P C. Next, we define

γp` pxq “
1

T

ż T

0

qpx, tq e´iω`t dt, γv` pxq “
1

T

ż T

0

wpx, tq e´iω`t dt, (3.9)
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which implies that

pγp` “ pγp` ,ψq, pγv` “ pγv` , ϕq.

We shall now show that γp` and γv` satisfy (3.8) for all |`| ě 1. First, inte-
gration by parts, (3.1a)-(3.1b) and the periodicity of q and w imply

γv` pxq “
1

T

ż T

0

wtpx, tq
e´iω`t

iω`
dt´

wpx, tq e´iω`t

iω`T

ˇ

ˇ

ˇ

ˇ

T

0

“
1

T

ż T

0

c2pxq∇ ¨ qpx, tqe
´iω`t

iω`
dt,

γp` pxq “
1

T

ż T

0

qtpx, tq
e´iω`t

iω`
dt´

qpx, tq e´iω`t

iω`T

ˇ

ˇ

ˇ

ˇ

T

0

“
1

T

ż T

0

∇wpx, tqe
´iω`t

iω`
dt.

Together with definition (3.9) of γp` and γv` , we thus immediately obtain

iω`γv` ´ c
2∇ ¨ γp` “ 0, iω`γp` “ ∇γv` in Ω.

Since wpx, tq “ 0 for x P ΓD, we infer from (3.9) that

ż

ΓD

γv` pxqϕpxq ds “
1

T

ż T

0

ż

ΓD

wpx, tqϕpxq ds e´iω`t dt “ 0, ϕ P L2pΓDq,

and hence γv` satisfies (3.8e). Similarly, (3.8c), (3.8d) follow from the fact that
q and w satisfy (3.1c), (3.1d) with gN ” gS ” 0. Hence γp` , γ

v
` satisfy (3.8) for165

all |`| ě 1. In fact for ` “ 1, (3.8) corresponds to (2.1) in first-order formulation
with γp1 “ ∇u, γv1 “ iωu, homogeneous boundary conditions and no sources.
By uniqueness, γp1 and γv1 , together with their complex conjugates, are therefore
identically zero.

Next, we consider γp0, γv0 . Again, since q and w satisfy (3.1a)-(3.1e) with
f “ 0 and homogeneous boundary conditions, we obtain from (3.9) with ` “ 0
and the periodicity of q and w

ż

Ω

p∇ ¨ γp0q ϕ dx “
1

T

ż T

0

ż

Ω

1

c2
wtϕ dxdt “ 0, @ϕ P L2pΩq, (3.10)

ż

Ω

γv0∇ ¨ψ dx “
1

T

ż T

0

ż

Ω

qt ¨ψ dxdt´
1

T

ż T

0

ż

ΓS

w ψ ¨ n dsdt (3.11)

“
1

T

ż T

0

ż

ΓS

c q ¨ n ψ ¨ n dsdt “

ż

ΓS

c γp0 ¨ n ψ ¨ n ds, @ψ P P.

In particular, (3.10)-(3.11) implies with ϕ “ γv0 and ψ “ γp0 that
ż

ΓS

c|γp0 ¨ n|
2 ds “ 0,

and hence, γp0 ¨ n “ 0 on ΓS , since c ą 0. Moreover, Green’s formula, together
with (3.10) and the homogeneous boundary conditions, implies that
ż

Ω

γp0 ¨∇ϕ dx “ ´

ż

Ω

p∇ ¨ γp0q ϕ dx`

ż

BΩ

γp0 ¨ n ϕ ds “ 0, @ϕ P H1pΩq, ϕ|ΓD
” 0,
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and therefore λ “ γp0 satisfies (3.7).170

To show that γv0 is constant, we now let ϕ P C8c pΩq and ψ “ ejϕ P Hpdiv; Ωq,
j “ 1, . . . , d, where ej is the j-th unit basis vector of Rd. Integration of (3.1b)
over r0, T s, definition (3.9) with ` “ 0 and the periodicity of q then yield

0 “
1

T

ż T

0

ż

Ω

qt ψ dxdt “ ´
1

T

ż T

0

ż

Ω

w ∇ ¨ψ dxdt “ ´

ż

Ω

γv0
Bϕ

Bxj
dx. (3.12)

From (3.12), we conclude that Bxj
γv0 “ 0, j “ 1, . . . , d, which implies

γv0 pxq ” η, γv0 P H
1pΩq.

Since γv0 satisfies (3.1e) with ` “ 0, η “ γv0 “ 0, if |ΓD| ą 0. Similarly, if
|ΓS ą 0|, (3.1c), together with γp0 ¨ n “ 0 on ΓS , yields

0 “
1

T

ż T

0

“

cpxqqpx, tq ¨ n` wpx, tq
‰

dt “ cpxqγp0pxq ¨ n` γ
v
0 pxq “ η, x P ΓS .

Thus, η “ 0 when |ΓD Y ΓS | ą 0, which completes the proof.

For sound-soft scattering problems, where |ΓD| ą 0 and |ΓS | ą 0, η “ 0 and
all eigenfunctions γp` , γ

v
` , |`| ą 1 of (3.8) trivially vanish in (3.6) [21]. Therefore,

(3.6)-(3.7) in Theorem 2 with t “ 0 imply that175

pp0,∇ϕq “ pRe t∇uu ,∇ϕq, ϕ P H1pΩq, ϕ|ΓD
“ 0,

v0 “ ω Im tuu .

From the real part of (2.1) we than conclude that

u “ ´k´2
`

Re tfu `∇ ¨ p0q ` iω
´1v0. (3.13)

3.2. Fundamental frequency filtering for first-order formulation
When the CMCG method is applied to the first-order formulation (3.1), any

minimizer of pJpp0, v0q “ 0 generally consists of spurious perturbations η, λ
and eigenfunctions γp` , γ

v
` superimposed on the desired (unique) solution u of

(2.1). To extract u from pp0, v0q, we apply a filtering approach, similar to that
in Section 2.2, and thereby restore uniqueness. Again, we multiply the Fourier
series representation in (3.6) of v by eiωt and integrate over p0, T q. Since η and
λ are independent of time, while eiωt is orthogonal to eiω`t, |`| ą 1, all spurious
modes vanish and the resulting expression simplifies to:

2

T

ż T

0

vp¨, tq eiωt dt “
2

T

ż T

0

Re
 

´iωu e´iωt
(

eiωt dt “ ´iωu,

which immediately yields

upxq “
2i

Tω

ż T

0

vp¨, tq eiωt dt. (3.14)

We summarize this result in the following proposition.

Proposition 2. Let u P H1pΩq be the unique solution of (2.1) and pp, vq P Q
be a T -time periodic solution of (3.1). Then u is given by (3.14) .
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3.3. Hybrid DG FE-Discretization180

In [12], Glowinski et al. used standard Raviart-Thomas (RT) finite ele-
ments to discretize (3.1). Since no mass-lumping is available for RT elements
on triangles or tetrahedra [22], each time-step then requires the inversion of the
mass-matrix. To avoid that extra computational cost, which strongly impedes
parallelization, we instead consider the recent hybrid discontinuous Galerkin185

(HDG) FEM [13] to discretize (2.1) in its corresponding first-order formula-
tion together with (3.1). Then, the mass-matrix is block-diagonal, with (small
and constant) block size equal to the number of dof’s per element, so that the
time-stepping scheme becomes truly explicit and inherently parallel.

Let Th denote a regular triangulation of Ωh, Eh the set of all faces and Pr
the space of polynomials of degree r. In addition, we define

Ph “ tr P pL2pΩqqd : r|K P pPrpKqqd,@K P Thu, (3.15)

Vh “ tw P L2pΩq : w|K P PrpKq,@K P Thu, (3.16)

Mh “ tµ P L2pEhq : µ|F P PrpF q,@F P Ehu. (3.17)

Following [13], the HDG Galerkin FE formulation reads:
Find pph, vh, pvhq P Ph ˆ Vh ˆMh such that

`Bph
Bt

, r
˘

K
“ ´ pvh,∇ ¨ rqK ` xpvh, r ¨ nyBK , (3.18a)

`1

c

Bvh
Bt

, w
˘

K
“ pf, wqK ´ pph,∇wqK ` xpph ¨ n, wyBK , (3.18b)

xpph ¨ n`
1

c
pvh, µyBKXΓS

“ xRe tgS expp´iωtqu , µyBKXΓS
, (3.18c)

xpph ¨ n, µyBKXΓN
“ xRe tgN expp´iωtqu , µyBKXΓN

, (3.18d)

xpvh, µyBKXΓD
“ xω Im tgD expp´iωtqu , µyBKXΓD

, (3.18e)

for all pr, w, µq P Ph ˆ Vh ˆMh, K P Th and t P r0, T s, where p¨, ¨qK and x¨, ¨yD
denote the L2-inner product on K or D, respectively and the numerical flux is

pph ¨ n “ ph ¨ n´ τpvh ´ pvhq on BK (3.18f)

with the stabilization function τ from [13]. In addition, pph, vhq satisfies the
initial conditions

phpx, 0q “ p0pxq, vhpx, 0q “ v0pxq, x P Ω. (3.18g)

For the time integration of (3.18), we use the standard explicit fourth-order190

Runge-Kutta (RK4) method.

3.4. Convergence and superconvergence

For a FE discretization with piecewise polynomials of degree r, we usually
expect convergence as Ophr`1q with respect to the L2-norm. For the above
HDG discretization, however, an extra power in h can be achieved by applying195
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Figure 1: Convergence and superconvergence: the numerical error }u ´ uh} vs. mesh size
h “ 2´i, i “ 3, . . . , 6, obtained with the CMCG method for the second-order formulation
with P2-/P3-FE or for the first-order formulation with P2-HDG discretization, either with
or without post-processing.

a cheap local post-processing step [13]. The same (super-) convergence in space
of order r ` 2 using only P r-FE can be achieved with the CMCG method by
applying the post-processing step to the numerical solutions ppnT

h , vnT

h q of (3.1)
at the final time T “ nT∆t.

Let ppmh , v
m
h , v̂

m
h q denotes the fully discrete solution of (3.18) at tm “ m∆t.

First, we compute the new (more accurate) approximation pnT ,˚
h of pp¨, T q by

solving the local problem

ppnT ,˚
h ,ψqL2pKq “ ´pvnT

h ,∇ ¨ψqL2pKq ` xpv
nT

h ,ψ ¨ nyBK , @ψ P Ph

on each K P Th. Then, we calculate the additional approximations ynT ,˚
h of

yp¨, T q “ Retupxqu given by (3.13), vnT ,˚
h of vp¨, T q in Pr`1pKq, which satisfy

p∇ynT ,˚
h ,∇ϕqL2pKq “ ppnT

h ,∇ϕqL2pKq, @ϕ P Pr`1pKq,

pynT ,˚
h , 1qL2pKq “ pynT

h , 1qL2pKq,

p∇vnT ,˚
h ,∇ϕqL2pKq “ ppnT ,˚

h ,∇ϕqL2pKq, @ϕ P Pr`1pKq,

pvnT ,˚
h , 1qL2pKq “ pvnT

h , 1qL2pKq,

for any element K P Th. The new approximate solution u is then given by (3.14)200

with p and v replaced by pnT ,˚
h and vnT ,˚

h .
To illustrate the accuracy and verify the expected convergence rates for the

various FE discretizations in the CMCG method, we now consider the following
one-dimensional solution

upxq “ ´ exppikxq

of (2.1) in Ω “ p0, 1q with c “ 1, k “ 5π{4, ΓD “ t0u and ΓS “ t1u. Figure 1
shows the error }u ´ uh} obtained with the CMCG method for the first-order
formulation (2.2) and a P 2-HDG discretization on a sequence of increasingly
finer meshes h “ 2´i, i “ 3, . . . , 6. Clearly as we refine the mesh, we always205
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Figure 2: Physically bounded domain: comparison of the exact solution u of (2.1) with the
numerical solutions uh obtained with the CMCG method either applied to the second-order
formulation with standard FEM or to the first-order formulation with an HDG discretization.

reduce the time-step in the RK4 method to satisfy the CFL stability condition.
The CG iteration stops once the tolerance tol “ 10´12 is reached. We also
compare the solutions obtained with the CMCG method applied to the second-
order formulation using a (continuous) P2 or P3-FEM. All numerical solutions
display the expected optimal convergence of order r ` 1 with polynomials of210

degree r, while the first-order HDG approach even achieves superconvergence
of order r ` 2, once local post-processing is applied to the final CG iterate.

3.5. Physically bounded domain

In the absence of Dirichlet or impedance boundary conditions, the first-order
formulation does not yield the correct minimizer of J . As a simple remedy,
we proposed in Section 3.2 a filtering procedure which removes the unwanted
spurious modes. To illustrate the effectiveness of the filtering procedure, we now
consider the exact solution of (2.1)

upxq “ 16x2px´ 1q2 (3.20)

in Ω “ p0, 1q with homogeneous Neumann boundary conditions and k “ ω “
π{4, c “ 1. Note that k2 is not an eigenvalue of (2.6) and therefore the solution215

of (2.1) is well-posed. However, as p4kq2 “ π2 indeed corresponds to the first
eigenvalue of the negative Laplacian, the CMCG method in general will not
yield the correct (unique) solution – see Theorems 1 and 2. Indeed as shown in
Figure 2, the original CMCG method [8] applied to the second-order formulation
with the energy functional J in (2.4) does not yield the exact solution of (2.1),220

unlike the numerical solutions obtained after filtering – see Sections 2.2 and 3.2.

4. Numerical results

Here we present a series of numerical examples that illustrate the accuracy,
convergence behavior and parallel performance of the CMCG method. First, we
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Figure 3: Semi-discrete convergence: Comparison of the numerical solution uh, obtained
with the CMCG method, and u˚h , obtained with a direct solver for the same fixed P 2-FE

discretization (H1-conforming or HDG), both either with or without mass-lumping (ML)

verify that the numerical solution uh of (2.1) obtained with the CMCG method225

converges to the numerical solution u˚h obtained with a direct solver for the same
spatial FE discretization as the time step ∆t Ñ 0 in the numerical integration
of (2.2). Next, we evaluate different stopping criteria for the CG iteration in the
CMCG Algorithm from Section 2.3. We also compare the CMCG Algorithm to
a long-time solution of the wave equation without controllability (“do-nothing”230

approach) to demonstrate its effectiveness, in particular for nonconvex obstacles.
Moreover, we show how an initial run-up yields a judicious initial guess pv0, v1q

for the CG iteration thereby further accelerating convergence. Finally, we apply
the CMCG method to large scale scattering problems on a massively parallel
architecture, where the elliptic problem (2.16) is solved in parallel with domain235

decomposition methods.

4.1. Semi-discrete convergence

First, we consider a simple 1D example to show for a fixed FE-mesh that
the numerical solution uh, obtained with the CMCG method, converges to the
numerical solution u˚h, obtained with a direct solver, as ∆t Ñ 0. Hence we
consider the following solution u of (2.1) in Ω “ p0, 1q with ω “ k “ 6π, c “ 1
and f ” 0:

upxq “ exppikxq, with up0q “ 1, u1p1q ´ ik up1q “ 0.

Now, let u˚hpxq be the FE Galerkin solution corresponding to the direct solution
of the linear system

Ahu
˚
h “ bh, (4.1)

resulting from the same standard H1-conforming or HDG P 2-FE discretization
of the Helmholtz equation (2.1) in second- or first-order formulation, respec-
tively. For the time integration of (2.2) or (3.1) in the CMCG Algorithm, we240

use the standard explicit fourth order Runge-Kutta (RK4) method.
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Figure 4: Computational domain Ω with a convex square (a) or a nonconvex cavity (b)
shaped obstacle

Usually we avoid inverting the mass-matrix at each time step via order pre-
serving mass-lumping [23] which, however, introduces an additional spatial dis-
cretization error. Here to ensure a consistent comparison, we thus compute uh
and u˚h both either with, or without, mass-lumping (ML). For the CG iteration,245

we always choose v
p0q
0 ” 0, v

p0q
1 ” 0 and fix the tolerance to tol “ 10´14 to

ensure convergence to machine precision accuracy.
In Figure 3, we monitor the difference between the numerical solution u˚h

or u˚h,HDG of (4.1), obtained with a direct solver, and uh or uh,HDG, obtained
with the CMCG method using either the second or the first order formulation,250

respectively. As expected, for increasingly smaller ∆t and a fixed stringent
tolerance in the CG iteration, the numerical solution of the CMCG method
always converges to the discrete solution of the Helmholtz equation for the
same FE discretization.

4.2. CG iteration and initial run-up255

Next, we first compare different stopping criteria for the CG iteration in
the CMCG Algorithm applied to the original second-order formulation from
Section 2. We then illustrate how the CMCG method greatly accelerates the
convergence of a solution of the wave equation to its long-time asymptotic limit,
in particular for nonconvex obstacles. Finally, we show how an initial run-up260

yields a judicious initial guess for the CG iteration, which further accelerates
the convergence of the CMCG Algorithm.

Hence, we consider a two-dimensional sound-soft scattering problem (2.1)
with c ” 1, k “ ω “ 2π, f ” gD ” gN ” 0 and gS “ ´pBn´ ikqu

in in a bounded
square domain Ω “ p0, 10λq ˆ p0, 10λq, λ “ 1, either with a convex obstacle
or a semi-open square shaped cavity. On the boundary ΓD of the obstacle, we
impose a homogeneous Dirichlet condition and on the exterior boundary ΓS a
Sommerfeld-like absorbing condition on the total wave field. The incident plane
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wave
uinpxq “ exppikpx1 cospθq ` x2 sinpθqqq (4.2)

impinges with the angle θ “ 135˝ upon the obstacle.

4.2.1. CG iteration and stopping criteria

In Algorithm (Section 2.3), the CMCG method terminates at the `-th iter-
ation and returns

u
p`q
h “ v

p`q
0 ` pi{ωqv

p`q
1 (4.3)

when the relative CG-residual in Step 5.8,

|u
p`q
h |CG :“

g

f

f

e

}∇rp``1q
0 }2L2pΩq ` }p1{cq r

p``1q
1 }2L2pΩq

}∇rp0q0 }2L2pΩq ` }p1{cq r
p0q
1 }2L2pΩq

, (4.4)

is less than the tolerance tol. Indeed, a small CG-residual indicates that the265

gradient of J is sufficiently small at pv
p`q
0 , v

p`q
1 q and thus that a minimum has

been reached.
Since the cost functional J also vanishes at the minimum, we can use J

itself, instead of its gradient, to monitor convergence of the CG iteration via the
relative periodicity misfit,

|u
p`q
h |J :“

b

Jpv
p`q
0 , v

p`q
1 q

}f}L2pΩq ` }gS}L2pΓSq

. (4.5)

In fact, the convergence criterion (4.5) is typically used in long-time simula-
tions of the wave equation without controllability (“do-nothing” approach) to
determine the current misfit from periodicity in the energy norm.270

Alternatively, we may also directly compute the current relative Helmholtz
residual from (2.1):

|u
p`q
h |H :“

}Ahu
p`q
h ´ bh}2
}bh}2

, (4.6)

where Ah and bh result from a FE discretization of (2.1) without mass-lumping,

u
p`q
h corresponds to the discrete vector of FE coefficients of u

p`q
h , and }¨}2 denotes

the discrete Euclidean norm.
In Figure 5, we monitor |u

p`q
h |CG, |u

p`q
h |J and |u

p`q
h |H , defined in (4.4)–(4.6)

for the CMCG solution u
p`q
h at the `-th CG iteration. Whether for a convex275

(Figure 4a) or a nonconvex (Figure 4b) obstacle, both the CG-residual |u
p`q
h |CG

and the periodicity misfit |u
p`q
h |J rapidly converge to zero. In contrast, the

Helmholtz residual |u
p`q
h |H stagnates beyond the first hundred CG iterations, as

the mass-matrix that appears in Ah in (4.6) is discretized here without mass-
lumping. That additional discretization error together with the numerical error280

in the time integration of (2.2) both prevent the discrete Helmholtz residual

|u
p`q
h |H from converging to zero; hence, (4.6) is generally not a reliable stopping

criterion for the CMCG method, unless the spatial FE discretizations used in
(2.1) and (4.1) are identical.
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Figure 5: CG iterations and stopping criteria: relative CG residual |u
p`q
h |CG in (4.4),

Helmholtz residual |u
p`q
h |H in (4.6), and periodicity mismatch |u

p`q
h |J in (4.5) at the `-th

CG iteration.

4.2.2. CMCG method vs. long-time wave equation solver285

In general, the solution wpx, tq of the time-harmonically forced wave equation
(2.2) converges asymptotically to the time-harmonic solution [24]

wpx, tq „ Re tupxq expp´iωtqu as tÑ `8, (4.7)

where u is the (unique) solution of the Helmholtz equation (2.1). Thus, with a
wave equation solver at hand, one can in principle compute u from w by solving
(2.2) without controllability until a quasi-periodic regime is reached. Given the
current value of wp¨, tq at time t “ ` T , ` ě 1, one can extract from it the
complex-valued approximate solution of (2.1),

w
p`q
h :“ wp¨, `T q `

i

ω
wtp¨, `T q, ` ě 1, T “ p2πq{ω, (4.8)

which converges to u as ` Ñ `8. This “do-nothing” approach only requires
the time integration of (2.2) without controllability or CG iteration, but it may
converge arbitrarily slowly for nonconvex obstacles due to trapped modes [8, 11].

In Figure 6, we monitor the periodicity misfit of |u
p`q
h |J and |w

p`q
h |J , where

u
p`q
h is the CMCG solution at the `-th CG iteration and w

p`q
h is given by (4.8). In290

addition, we also compare both numerical solutions with the direct solution u˚h
of the linear system (4.1), resulting from the same underlying FE discretization,
yet without mass-lumping.

We observe that the asymptotic solution w
p`q
h and the CMCG solution u

p`q
h in-

deed both converge to the time-harmonic solution u˚h, until the additional errors295

caused by mass-lumping and the time discretization dominate the total error –
see Section 4.1. For the convex obstacle, the number of CG iterations required

by u
p`q
h is only half the number of time periods needed for w

p`q
h to reach the same

19



200 400 600 800 1,000
10´6

10´4

10´2

1

102

`

}u˚h ´ w
p`q
h }

|w
p`q
h |J

}u˚h ´ u
p`q
h }

|u
p`q
h |J

(a) convex obstacle

200 400 600 800 1,000
10´6

10´4

10´2

1

102

`

}u˚h ´ w
p`q
h }

|w
p`q
h |J

}u˚h ´ u
p`q
h }

|u
p`q
h |J

(b) nonconvex obstacle

Figure 6: CMCG method vs. long-time wave equation solver: plane wave scattering from a

convex (a) or a nonconvex obstacle (b). Comparison between the numerical solution, u
p`q
h ,

obtained with the CMCG method at the `-th CG iteration and the approximate solution w
p`q
h ,

obtained via (4.8) from the solution of the wave equation at time t “ ` T without controlla-
bility.

level of accuracy. However, since each CG iteration requires not only the solu-
tion of a forward and backward wave equation but also of the elliptic problem300

(2.16a), simply computing a long-time solution of the time-harmonically forced
wave equation (2.2) without controllability in fact proves cheaper here than the
CMCG Algorithm. For a nonconvex obstacle, however, the long-time numerical

solution of the time-dependent wave equation w
p`q
h converges extremely slowly

and fails to reach the asymptotic time-harmonic regime even after 1000 periods.305

In contrast, the convergence of the CMCG solution u
p`q
h remains remarkably

insensitive to the non-convexity of the obstacle.

4.2.3. Initial run-up

In [25], Mur suggested that convergence of the time-harmonically forced wave
equation (2.2) to the time-harmonic asymptotic regime can be accelerated by
pre-multiplying the time-harmonic sources in (2.2) with the smooth transient
function θtr from zero to one,

θtrptq “

$

&

%

ˆ

2´ sin

ˆ

t

ttr

π

2

˙˙

sin

ˆ

t

ttr

π

2

˙

, 0 ď t ď ttr,

1, t ě ttr,
(4.9)

active during the initial time interval r0, ttrs, ttr “ ` T – see also [8].
Again, we consider plane wave scattering either from a convex or nonconvex

obstacle – see Figure 4. Now, we first solve the wave equation (2.2) with the
modified source terms and zero initial conditions until time t “ ` T , ` ě 1, which
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Figure 7: Initial run-up. Plane wave scattering problems from (a) a convex or (b) a non-
convex obstacle: total number of forward and backward wave equations solved over one period
r0, T s until convergence.

yields the time-dependent solution ytr. After that initial run-up phase, we then
apply the CMCG Algorithm (Section 2.3) using the initial guess

v
p0q
0 “ ytrp¨, `T q, v

p0q
1 “ pytrqtp¨, `T q.

To estimate the total computational effort, we count the total number of time310

periods for which the (forward or backward) wave equation is solved: ` during
initial run-up and 2ˆ#iterCG during the CG iteration. In Figure 7 we display
the total number 2ˆ#iterCG` ` of time periods needed until convergence with
tol “ 10´6, as we vary the number of periods ` in the initial run-up.

For a convex obstacle, the CMCG Algorithm without any initial run-up315

requires 888 time periods. However, as in Section 4.2, convergence can also
be achieved at a comparable computational effort simply by solving the wave
equation, here with the source terms pre-multiplied by θtr in (4.9). Still, the
minimal computational cost is achieved when both the initial run-up and the
CMCG Algorithm are combined.320

For the nonconvex obstacle, however, simply solving the time-harmonically
forced wave equation over a very long time, be it with or without θtrptq smooth-
ing, fails to reach the long-time asymptotic final time-harmonic state. Regard-
less of the length of the initial run-up, convergence indeed cannot be achieved
here (within 1000 time periods) without controllability because of trapped modes.325

Nevertheless, the initial run-up always speeds up the convergence of the CMCG
method by providing a judicious initial guess for the CG iteration.

4.3. Parallel computations

Both the CMCG method for the second-order formulation from Section 2
and that for the first-order formulation from Section 3 lead to inherently paral-330
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lel non-intrusive algorithms, as long as an efficient parallel solver for the time-
dependent wave equation is available. As the first-order formulation with the
HDG discretization neither requires mass-lumping nor the solution of an ellip-
tic problem, it is in fact trivially parallel. Here we demonstrate that even the
CMCG approach for the second-order formulation, which does require the solu-335

tion of (2.16a) at each CG iteration, nonetheless achieves strong scalability on
a massively parallel architecture.

The CMCG Algorithm from Section 2.3 is implemented within FreeFem++ [26],
an open source finite element software written in C++. FreeFem++ defines a
high-level Domain Specific Language (DSL) and natively supports distributed340

parallelism with MPI. The parallel implementation of the CMCG method relies
on the spatial decomposition of the computational domain Ω into multiple sub-
domains, each assigned to a single computing core. Local finite element spaces
are then defined on the local meshes of the subdomains, effectively distributing
the global set of degrees of freedom across the available cores.345

The bulk of the computational work for solving the forward and backward
wave equations in Step 5.1 of the CMCG Algorithm simply consists in per-
forming a sparse matrix-vector product at each time step, which is easily par-
allelized in this domain decomposition framework: it amounts to performing
local matrix-vector products in parallel on the local set of degrees of freedom350

corresponding to each subdomain, followed by local exchange of shared values
between neighboring subdomains.

While the explicit time integration of the wave equation is trivially paral-
lelized thanks to mass-lumping, achieving good parallel scalability for the elliptic
problem in Step 5.2 of the CMCG Algorithm is more difficult. Here we use do-355

main decomposition (DD) methods [18], which are well-known to produce robust
and scalable parallel preconditioners for the iterative solution of large scale par-
tial differential equations. We use the parallel DD library HPDDM [27], which
implements efficiently various Schwarz and substructuring methods in C++11
with MPI and OpenMP for parallelism and is interfaced with FreeFem++ .360

The elliptic problem (2.16a) in the CMCG algorithm is solved by HPDDM
using a two-level overlapping Schwarz DD preconditioner, where the coarse space
is built using Generalized Eigenproblems in the Overlap (GenEO) [28]. The Ge-
nEO approach has proved effective in producing highly scalable preconditioners
for solving various elliptic problems [6, 28].365

All computations were performed on the supercomputer OCCIGEN at CINES,
France 1, with 50544 (Intel XEON Haswell) cores.

4.3.1. 2D Marmousi Model

Here we consider the well-known Marmousi model from geophysics [29], that
is (2.1) in Ω “ p0, 9.2q ˆ p0, 3q rkms with the source

fpxq “ expp´2000ppx´ x˚1 q
2 ` py ´ x˚2 q

2qq, px˚1 , x
˚
2 q “ p6,´3{16q.

1https://www.cines.fr/calcul/materiels/occigen/
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Figure 8: Marmousi model: propagation velocity 1.5 ď cpxq ď 5.5 rkm{ss

Frequency Wave number #Unknowns #Nodes
ν [Hz] k “ ω{c “ 2πν{c ndof 24 cores per node

10 11 – 42 116581443 1–8
20 22 – 84 616281881 1–16
40 45 – 168 2615051761 8–64
60 68 – 252 5916301641 16–128
80 91 – 336 10610031521 16–128

160 182 – 671 42319751041 64–256
250 285 – 1048 1103512411009 128–512

Table 1: 2D-Marmousi model: P 2-FE with 15 points per wave length

The velocity profile cpxq is shown in Figure 8 and we apply absorbing boundary
conditions on the lateral and lower boundaries and a homogeneous Dirichlet con-
dition at the top. For the spatial discretization, we use a P 2-FE method with
(order preserving) mass-lumping [23] and at least 15 points per wave length.
For the time integration of (2.2), we apply the leap-frog scheme (LF); here, the
number of T {∆t “ 390 time steps per period remains constant at all frequencies
ν “ ω{2π, as both T and ∆t are inversely proportional to ν. To speed-up the
convergence of the CMCG method, we also use an initial run-up (Section 4.2)
until time ttr, which lets waves travel at least once across the entire computa-
tional domain during run-up; hence, we set

` “

R

?
9.22 ` 32

Tcmin

V

, ttr “ ` T, T “ p2πq{ω.

For any particular frequency ν, we apply the CMCG method for fixed pa-
rameters and FE-mesh while increasing the number of (CPU) cores. Figure 9370

displays the real part of the wave field with ν “ 250 [Hz]. In Figure 10, we ob-
serve linear speed-up (strong scaling) at every frequency with increasing number
of cores. In fact, the speed-up is even slightly better than linear due to cache
effects, but also because the cost of the direct solver used on each subdomain
decreases superlinearly with the decreasing size of subdomains as the number375

of cores increases.
As the frequency ν increases, both the period T “ 1{ν and the time-step ∆t
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Figure 9: 2D-Marmousi model. Real part of the wave field with ω “ 2πν, ν “ 250 [Hz]
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Figure 10: 2D-Marmousi model. Total CPU-time in seconds for varying number of cores.
For each frequency ν, the FE-discretization and problem size remain fixed.

decrease, so that the number of time steps per CG iteration remains constant.
Since the number of CG iterations does not grow here with increasing ν, the
bulk of the computational work in the CMCG Algorithm in fact shifts to the380

run-up phase. For ν “ 10 Hz, for instance, the CMCG Algorithm stops after
273 CG iterations, while 74% of the total computational time is spent in the
time integration of (2.2), 16% in the elliptic solver (DDM) and 10% in the initial
run-up. In contrast, for ν “ 250 Hz, the CMCG Algorithm already stops after 5
CG iterations, while 99% of the total computational time is spent in the initial385

run-up and 1% in the CG iteration. By modifying the run-up time ttr, one
could arbitrarily shift the relative computational cost between run-up and CG
iterations and thus further optimize for a minimal total execution time.

4.3.2. 3D cavity

Finally, we compute the scattered wave from a sound-soft cavity – see Figure
11 – and hence consider (2.1) in Ω “ p0, 6q ˆ p0, 3q ˆ p0, 3q with c “ 1, k “ ω “
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Figure 11: 3D-cavity: a) front view of the opening with inner and outer radius, b) longitu-
dinal cross-section.

Figure 12: 3D-cavity; total wave field (2.1) with c “ 1, ω “ 2πν and ν “ 6 obtained with
the CMCG method

2πν, λ “ 1, f ” gD ” gN ” 0 and

gS “ ´pBn ´ ikqu
in, uinpxq “ exppik xᵀdq, d “ p1{2, 0,

?
3{2qᵀ.

We impose a homogeneous Dirichlet boundary condition on the obstacle and a390

Sommerfeld-like absorbing condition on the exterior boundary of Ω.
Now, we discretize (2.2) with P 1-FE in space and the second-order LF

method in time. To control the pollution error, we set hk3{2 „ const, as we
increase the frequency ν. Figure 12 shows the total wave field with ν “ 6 inside
the cavity. For fixed parameters and mesh size, we now solve (2.1) at frequen-395

cies ν “ 2, 3, 4, 6 with the CMCG method using an increasing number of cores
– see Table 2. Again, we observe in Figure 13 (better than) linear (strong)
scaling with increasing number of cores. In contrast to the previous Marmousi
problem, the ”do-nothing” approach without controllability fails here because
the 3D cavity is not convex.400
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Frequency #Unknowns #Tetrahedra CG iterations #Nodes
ν “ 2πω ndof 24 cores per node

2 8.17 ¨ 105 510511049 239 1–8
3 5.22 ¨ 106 3111901000 440 2–32
4 1.9 ¨ 107 11413911112 607 32–96
6 1.18 ¨ 108 70315901464 578 64–128

Table 2: 3D-cavity: CMCG methods with P 1-FEM. As η increases, the ratio hk3{2 remains
constant to avoid pollution errors [30].
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Figure 13: 3D-cavity: Total CPU-time in seconds for varying number of cores. For each
frequency ν, the FE-discretization and problem size remain fixed.

5. Concluding remarks

We have presented two inherently parallel controllability methods (CM)
for the numerical solution of the Helmholtz equation in heterogeneous media.
The first, based on the second-order formulation of the wave equation, uses a
standard (continuous) FE discretization in space with order preserving mass-405

lumping. Each conjugate gradient (CG) iteration then requires the explicit time
integration of a forward and backward wave equation, together with the solution
of the symmetric and coercive elliptic problem (2.16), which is independent of
the frequency. The second, based on the first-order (or mixed) formulation of
the wave equation, uses a recent hybridized discontinuous Galerkin (HDG) dis-410

cretization, which not only automatically yields a block-diagonal mass-matrix
but also completely avoids solving (2.16). Hence, it is trivially parallelized and
even leads to superconvergence after a local post-processing step.

Both CMCG methods are inherently parallel, as they lead to iterative al-
gorithms whose convergence rate is independent of the number of cores on a415

distributed memory architecture. Thanks to the well-known parallel efficiency
of explicit methods combined with the excellent scalability of two-level domain
decomposition preconditioners for coercive elliptic problems up to thousands of
cores implemented in HPDDM, even the second-order CMCG approach exhibits
parallel strong scalability.420

The CMCG method can be applied to general boundary-value problems gov-
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erned by the Helmholtz equation, such as sound-soft or sound-hard scattering
problems or wave propagation in physically bounded domains. Although the
CMCG solution will generally contain higher order spurious eigenmodes, we
have proposed in Section 2.2 a simple filtering procedure to remove them. Fur-425

thermore, including a transient initial run-up to determine a judicious initial
guess significantly accelerates the CG iteration. In fact, for scattering from
convex obstacles, simply solving the time-harmonically forced wave equation
over a long-time without any controllability can provide an even simpler, highly
parallel Helmholtz solver. For nonconvex obstacles, however, solving the wave430

equation without any controllability (”do-nothing” approach) is not a viable
option, as the long time asymptotic convergence to the time-harmonic regime
is simply too slow due to trapped modes. In all cases, the CMCG Algorithm
combined with the initial run-up leads to the smallest time-to-solution.

The CMCG approach developed here for the Helmholtz equation immedi-435

ately generalizes to other time-harmonic vector wave equations from electromag-
netics or elasticity. Its implementation is non-intrusive and particularly useful
when a parallel efficient time-dependent wave equation solver is at hand. In
the presence of local mesh refinement, local time-stepping methods [31] permit
to circumvent the increasingly stringent CFL condition without sacrificing the440

explicitness or inherent parallelism. Finally, the CMCG method can also be
used to compute periodic, but not necessarily time-harmonic, solutions of the
wave equations. In particular, if the source consists of a superposition of several
time-harmonic sources (”super-shot”) with rational frequencies, the solutions
to the different Helmholtz problems can be extracted via filtering from a single445

application of the CMCG method.
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