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The Helmholtz equation is notoriously difficult to solve with standard numerical methods, increasingly so, in fact, at higher frequencies. Controllability methods instead transform the problem back to the time-domain, where they seek the time-harmonic solution of the corresponding time-dependent wave equation. Two different approaches are considered here based either on the first or second-order formulation of the wave equation. Both are extended to general boundary-value problems governed by the Helmholtz equation and lead to robust and inherently parallel algorithms. Numerical results illustrate the accuracy, convergence and strong scalability of controllability methods for the solution of high frequency Helmholtz equations with up to a billion unknowns on massively parallel architectures.

Introduction

The efficient numerical solution of the Helmholtz equation is fundamental to the simulation of time-harmonic wave phenomena in acoustics, electromagnetics or elasticity. As the time frequency ω ą 0 increases, so does the size of the linear system resulting from any numerical discretization in order to resolve the increasingly smaller wave lengths. With the increase in frequency, however, the performance of standard preconditioners based on multigrid, incomplete factorization or domain decomposition approaches, originally developed for positive definite Laplace-like equations, rapidly deteriorates [START_REF] Ernst | Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods[END_REF].

In recent years, a growing number of increasingly sophisticated preconditioners has been proposed for the iterative solution of the Helmholtz equation;

Email addresses: marcus.grote@unibas.ch (Marcus J. Grote), nataf@ann.jussieu.fr (Frédéric Nataf), jet.tang@unibas.ch (Jet Hoe Tang), tournier@ljll.math.upmc.fr (Pierre-Henri Tournier) "Shifted Laplacian" preconditioners [START_REF] Erlangga | On a class of preconditioners for solving the Helmholtz equation[END_REF], for instance, have led to modern multigrid [START_REF] Calandra | A Geometric Multigrid Preconditioner for the Solution of the Helmholtz Equation in Three-Dimensional Heterogeneous Media on Massively Parallel Computers[END_REF][START_REF] Bollhöfer | Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media[END_REF] and domain decomposition preconditioners [START_REF] Graham | Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF][START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF]. While some of those preconditioners may achieve a desirable frequency independent convergence behavior in special situations [START_REF] Engquist | Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers[END_REF], that optimal behavior is often lost in the presence of strong heterogeneity. Moreover, they are typically tied to a special discretization or fail to achieve optimal scaling on parallel architectures.

Controllability methods (CM) offer an alternative approach for the numerical solution of the Helmholtz equation. Instead of solving the problem directly in the frequency domain, we first transform it back to the time domain where we seek the corresponding time-dependent periodic solution, yp¨, tq, with known period T " 2π{ω. By minimizing an energy functional Jpv 0 , v 1 q which penalizes the mismatch after one period, controllability methods iteratively adjust the (unknown) initial condition pv 0 , v 1 q thereby steering yp¨, tq towards the desired periodic solution. Once the minimizer of J has been found, we immediately recover from it the solution of the Helmholtz equation. As the CM combines the numerical integration of the time-dependent wave equation with a conjugate gradient (CG) iteration, it is remarkably robust and inherently parallel.

In [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF], Bristeau et al. proposed the first CM for sound-soft scattering problems based on the wave equation in standard second-order form. Since the initial condition pv 0 , v 1 q then lies in H 1 ˆL2 , the original formulation requires the solution of a coercive elliptic problem at each CG iteration. Heikkola et al. in [START_REF] Heikkola | Controllability method for acoustic scattering with spectral elements[END_REF][START_REF] Heikkola | Controllability method for the Helmholtz equation with higher-order discretizations[END_REF] presented a higher-order version by using spectral FE and the classical fourthorder Runge-Kutta (RK) method. For more general boundary-value problems, such as wave scattering from sound-hard obstacles, inclusions, or wave propagation in physically bounded domains, the original CM will generally fail because the minimizer of J is no longer unique. In [START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF], we proposed alternative energy functionals which restore uniqueness, albeit at a small extra computational cost, for general boundary-value problems governed by the Helmholtz equation.

More recently, Glowinski and Rossi [START_REF] Glowinski | A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation.(i): Controllability problem formulation and related iterative solution[END_REF] proposed a CM based on the wave equation in first-order (or mixed) form using classical Raviart-Thomas (RT) finite elements. As pv 0 , v 1 q then lies in L 2 ˆpL 2 q d , the solution of an elliptic problem at each CG iteration is no longer necessary and the CM becomes in principle trivially parallel. Still, the lack of availability of mass-lumping for RT elements again nullifies the main advantage of the first-order formulation because the mass-matrix now needs to be "inverted" at each time-step.

Here we revisit the original CM from [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF][START_REF] Glowinski | A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation.(i): Controllability problem formulation and related iterative solution[END_REF] and consider two distinct discretizations, which both lead to highly efficient and inherently parallel methods. In Section 2, we recall the CMCG method based on the wave equation in second-order form and propose a filtering procedure which permits the use of the original energy functional J, regardless of the boundary conditions. Next, in Section 3, we consider the CM based on the wave equation in first-order form and again show how to extend it to arbitrary boundary-value problems governed by the Helmholtz equation. Thanks to a recent hybrid discontinuous Galerkin (HDG) method [START_REF] Cockburn | An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation[END_REF], which automatically yields a block-diagonal massmatrix, the time integration of the wave equation then becomes truly explicit and the entire CMCG approach trivially parallel. In Section 4, we perform a series of numerical experiments to illustrate the accuracy, convergence behavior and inherent parallelism of the CMCG approach. In particular, we apply it to large-scale high-frequency Helmholtz problems with up to a billion unknowns to demonstrate its strong scalability on massively parallel architectures.

Controllability methods for the second-order formulation

Time-harmonic waves

We consider a time-harmonic wave field upxq in a bounded connected computational domain Ω Ă R d , d ď 3, with a Lipschitz boundary Γ. The boundary consists of three disjoint components, Γ " Γ D Y Γ N Y Γ S where we impose a Dirichlet, Neumann and impedance (or Sommerfeld-like absorbing) boundary condition, respectively; the boundary condition is omitted whenever the corresponding component is empty. In Ω, the wave field u hence satisfies the Helmholtz equation ´∆upxq ´k2 pxq upxq " f pxq,

x P Ω, (2.1a)

Bupxq Bn ´ikpxq upxq " g S pxq, x P Γ S , (2.1b) 
Bupxq Bn " g N pxq, x P Γ N , (2.1c) 
upxq " g D pxq,

x P Γ D , (2.1d) 
where ω ą 0 is the (angular) frequency, cpxq ą 0 the wave speed, kpxq " ω{cpxq the wave number, n the unit outward normal, and f , g N , g S and g D are known and may vanish. The above formulation is rather general and encompasses most common applications such as sound-soft scattering problems with Γ S ‰ H and Γ D ‰ H, sound-hard scattering problems with Γ S ‰ H and Γ N ‰ H, or physically bounded domains with Γ S " H. We shall always assume for any particular choice of ω, cpxq, or combination of boundary conditions that (2.1) is well-posed and has a unique solution u P H 1 pΩq.

Instead of solving the Helmholtz equation directly in the frequency domain, we now reformulate (2.1) in the time domain. Then, the corresponding timeharmonic wave field, Re upxq e ´iωt ( , satisfies the (real-valued) time-dependent wave equation [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF][START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF] proposed to determine upxq via controllability by computing a time-periodic solution ypx, tq of (2.2) with period T " 2π{ω. Once the initial values v 0 , v 1 of y are known, the solution u of the original Helmholtz equation (2.1) is immediately given by

u " v 0 `i ω v 1 , v 0 , v 1 P H 1 pΩq. (2.3)
To determine v 0 and v 1 , the problem is reformulated as a least-squares optimization problem over H 1 pΩq ˆL2 pΩq for the quadratic cost functional

Jpv 0 , v 1 q " 1 2 ż Ω |∇ypx, T q´∇v 0 pxq| 2 dx`1 2 ż Ω 1 c 2 pxq py t px, T q´v 1 pxqq 2 dx, (2.4)
where y satisfies (2.2) with the initial values v 0 and v 1 . The functional J measures in the energy norm the mismatch between the solution of (2.2) at the initial 75 time and after one period. It is non-negative and convex, while Jpv 0 , v 1 q " 0 if, and only if, ∇yp¨, T q " ∇yp¨, 0q and y t p¨, T q " y t p¨, 0q for any given initial values pv 0 , v 1 q; in particular, Jpv 0 , v 1 q " 0 if v 0 " Re tuu and v 1 " ω Im tuu.

For more general scattering problems, however, J is no longer strictly convex as the T -periodicity of y t and ∇y no longer guarantees a unique periodic solution 80 y of (2.2). Instead, for the general boundary-value problem (2.1), the situation is more complicated and summarized in the following theorem [START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF] .

Theorem 1. Let u P H 1 pΩq be the unique solution of (2.1) and y P C 0 pr0, T s; H 1 pΩqqX C 1 pr0, T s; L 2 pΩqq be a (real-valued) solution of (2.2) with initial values pv 0 , v 1 q P H 1 pΩq ˆL2 pΩq. If ∇y and y t are time periodic with period T " 2π{ω, then y admits the Fourier series representation pyp¨, tq, ϕq " pRe u e ´iωt ( , ϕq `pλ `ηt, ϕq

`ÿ | |ą1 pγ e iω t , ϕq (2.5) 
for any ϕ P H 1 D , where the constants λ, η P R and the eigenfunctions γ " α `iβ , α , β P H 1 pΩq, | | ą 1 satisfy ´∆γ pxq ´p kpxqq 2 γ pxq " 0,

x P Ω, (2.6a)

Bγ pxq Bn `i kpxq γ pxq " 0, x P Γ S , (2.6b) 
Bγ pxq Bn " 0,

x P Γ N , (2.6c 
)

γ pxq " 0, x P Γ D , (2.6d) Let v " v 0 `pi{ωq v 1 . Then v satisfies pv, ϕq " pu, ϕq `pλ `i ω η, ϕq `ÿ | |ą1 pα `i β , ϕq, @ϕ P H 1 D . (2.7) Furthermore, if |Γ S | ą 0, then η " 0. If |Γ D | ą 0, then λ " η " 0.
Here H 1 D :" tw P H 1 pΩq : w " 0 on Γ D u and p¨, ¨q denotes the standard L 2 pΩq inner product.

Proof. See [START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF].

For sound-soft scattering problems (|Γ S | ą 0, |Γ D | ą 0), where both Dirichlet and Sommerfeld-like absorbing boundary conditions are imposed on Γ, all the eigenfunctions γ , | | ą 1, and the constants λ, η in (2.7) vanish identically. Thus, the minimizer v " v 0 `pi{ωqv 1 of J in (2.4) then coincides with u.

For scattering problems from sound-hard obstacles or penetrable inclusions (|Γ S | ą 0, |Γ D | " 0), the eigenfunctions γ and the constant η in (2.7) still vanish identically, yet the constant λ may be nonzero. Given any minimizer v " u `λ of J, we can recover u by subtracting the spurious shift λ using the compatibility condition:

λ " 1 }k} 2 L 2 pΩq `i|k| L 1 pΓ S q ˆżΩ k 2 v `i ż Γ S kv `żΩ f `żΓ S g S `żΓ N g N ˙.
In fact, any impedance condition (2.1b) that includes a positive (or negative) definite zeroth order term, such as a more accurate absorbing boundary condition [START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior region[END_REF][START_REF] Grote | On nonreflecting boundary conditions[END_REF], also circumvents the indeterminacy due to λ.

For wave propagation in physically bounded domains (|Γ S | " 0), the eigenfunctions γ and the constants λ, η in (2.7) typically do not vanish. However, we can always restore uniqueness by replacing J with an alternative energy functional, thereby incurring a small increase in computational cost -see [START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF].

Fundamental frequency extraction via filtering

From Theorem 1 we conclude that a minimizer of J generally yields a timedependent solution y of (2.2), which contains a constant shift determined by λ, a linearly growing part determined by η, and higher frequency harmonics determined by γ , all superimposed on the desired time-harmonic field u with fundamental frequency ω. Those spurious modes can be eliminated by replacing J with an alternative energy functional at a small extra computational cost [START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF]. Instead we now propose an alternative approach via filtering which removes all spurious modes without requiring a modified energy functional.

Let ypx, tq be the time-dependent solution of (2.2) that corresponds to a minimizer pv 0 , v 1 q of J. Next, we define p y P tw P H (2.12)

We summarize the above derivation in the following proposition.

Proposition 1. Let u P H 1 pΩq be the unique solution of (2.1) and y the time dependent solution of (2.2) corresponding to a minimizer pv 0 , v 1 q P H 1 pΩq L 2 pΩq of J, i.e. Jpv 0 , v 1 q " 0. Then u is given by (2.10) with η " 0 if |Γ S | ą 0 or |Γ D | ą 0, and with η given by (2.12) when Γ N " BΩ.

Not only does the above filtering approach allow us to use the original cost functional J, it also involves a negligible computational effort or storage amount, as the time integral for p y can be calculated cumulatively via numerical quadrature during the solution of the wave equation (2.2).

The CMCG Algorithm

To minimize the quadratic cost functional J defined by (2.4) over H 1 pΩq L2 pΩq, a natural choice is the conjugate gradient (CG) method [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF], which requires the Fréchet derivative of J at v " pv 0 , v 1 q: xJ 1 pvq, δvy " ´żΩ ∇pypx, T q ´v0 pxqq ¨∇δv 0 pxq dx (2.13) ´żΩ 1 c 2 pxq py t px, T q ´v1 pxqqδv 1 pxq dx

`żΩ 1 c 2 pxq
`ppx, 0qδv 1 pxq ´pt px, 0qδv 0 pxqq dx (2.14)

`żΓ S 1 cpxq ppx, 0qδv 0 pxq ds.

Here δv " pδv 0 , δv 1 q denotes an arbitrary perturbation, x¨, ¨y the standard duality pairing, and p the solution of the adjoint (backward) wave equation: The derivation of (2.13) and (2.15) can be found in [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF]. In each CG iteration the derivative J 1 pvq requires the solution of the forward and backward (adjoint) wave equations (2.2) and (2.15) over one period r0, T s. Moreover, each CG iteration requires an explicit (Riesz) representer g " pg 0 , g1 q P H 1 D pΩq ˆL2 pΩq of the gradient g " pg 0 , g 1 q " J 1 pvq defined in (2.13), which is determined by solving the symmetric and coercive elliptic problem [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF][START_REF] Málek | Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs[END_REF]:

1 c 2 pxq B 2 B 2 t
p∇g 0 , ∇ϕq " ż Ω g 0 pxqϕpxq dx " ż Ω ∇pv 0 pxq ´ypx, T qq ¨∇ϕpxq ´1 c 2 pxq p t px, 0qϕpxq dx `żΓ S 1 cpxq ppx, 0qϕpxq ds, @ϕ P H 1 D , (2.16a) 
g1 " g 1 " v 1 ´yt p¨, T q `c´2 pp¨, 0q.

(2.16b)

For the sake of completeness, we list the full CMCG Algorithm -see [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF][START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF]:

CMCG Algorithm. (1) Initialize v p0q " pv p0q 0 , v p0q 
1 q (initial guess). ( 2) Solve the forward and the backward wave equations (2.2) and (2.15) to determine the gradient of J, g p0q " J 1 pv p0q q, defined by (2.13).
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(3) Solve the coercive elliptic problem (2.16) with g " g p0q to determine the new search direction gp0q . (4) Set r p0q " d p0q " gp0q .

(5) For " 1, 2, . . . 5.1 Solve the wave equation (2.2) with f " g D " g S " g N " 0 and the initial values d p q " pd p q 0 , d p q

1 q and the backward wave equation (2.15). Compute the gradient g p q " J 1 pd p q q defined by (2.13).

5.2 Solve the coercive elliptic problem (2.16) with g " g p q to get gp q .

5.3 α " } ∇r p q 0 } 2 L 2 pΩq `}p1{cq r p q 1 } 2 L 2 pΩq p ∇g p q 0 , ∇d p q 0 q L 2 pΩq `pp1{c 2 q gp q 1 , d p q
1 q L 2 pΩq 5.4 v p `1q " v p q ´α d p q 5.5 r p `1q " r p q ´α gp q 5.6 β " }∇r p `1q 0

} 2 L 2 pΩq `}p1{cq r p `1q 1 } 2 L 2 pΩq }∇r p q 0 } 2 L 2 pΩq `}p1{cq r p q 1 } 2 L 2 pΩq
5.7 d p `1q " r p `1q `β d p q 5.8 Stop when the relative residual lies below the given tolerance tol

g f f e }∇r p `1q 0 } 2 L 2 pΩq `}p1{cq r p `1q 1 } 2 L 2 pΩq }∇r p0q 0 } 2 L 2 pΩq `}p1{cq r p0q 1 } 2 L 2 pΩq ď tol.
(6) Return approximate solution u h of (2.1) given by

u h " v p q 0 `i ω v p q 1 .
Since g0 P H 1 pΩq, the updates of r in Steps 5.4, 5.5 and 5.7 in the CMCG Algorithm also remain in H 1 pΩq. We emphasize that (2.16a) is independent of ω and leads to a symmetric and positive definite linear system, which can be solved efficiently and in parallel with standard numerical (multigrid, domain decomposition, etc.) methods [START_REF] Dolean | An Introduction to Domain Decomposition Methods[END_REF][START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF].

Controllability methods for first-order formulations

The CMCG Algorithm from Section 2.3 iterates on the initial value pv 0 , v 1 q P H 1 pΩq ˆL2 pΩq of the second-order wave equation (2.2) until its solution is Ttime periodic. However, the gradient of the cost functional Jpv 0 , v 1 q, which is needed during the CG update, only lies in the dual space H ´1pΩq ˆL2 pΩq. To ensure that the solution remains sufficiently regular and in H 1 pΩq ˆL2 pΩq, the corresponding Riesz representative is computed at every CG iteration by solving the strongly elliptic problem (2.16a). In [START_REF] Glowinski | A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation.(i): Controllability problem formulation and related iterative solution[END_REF], Glowinski et al. derived an equivalent first-order formulation for sound-soft scattering problems, where the solution instead lies in pL 2 pΩqq d`1 , which is reflexive. As a consequence, all CG iterates automatically lie in the correct solution space pL 2 pΩqq d`1 , while the solution of (2.16a) is no longer needed.

First-order formulation for general boundary conditions

Again, we always assume for any particular choice of ω, cpxq, f and combination of boundary conditions that (2.1) has a unique solution u P H 1 pΩq.

Following [START_REF] Glowinski | A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation.(i): Controllability problem formulation and related iterative solution[END_REF], we now let v " y t , p " ∇y and rewrite the time-dependent wave equation (2.2) in first-order form: with the initial conditions ppx, 0q " p 0 pxq P R d , vpx, 0q " v 0 pxq P R,

1 c 2 pxq v t px
x P Ω. (3.1f)
Hence, the solution pp, vq of (3.1) lies in the function space Q [START_REF] Evans | Partial Differential Equation[END_REF][START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF],

Q " C 0 pr0, T s; Hpdiv; Ωq ˆL2 pΩqq X C 1 pr0, T s; pL 2 pΩqq d`1 q. ( 3.2) 
In terms of p and v, the energy functional J defined in (2.4) now becomes

p Jpp 0 , v 0 q " 1 2 ż Ω |ppx, T q ´p0 pxq| 2 dx `1 2 ż Ω 1 c 2 pxq pvpx, T q ´v0 pxqq 2 dx, (3.3) 
where pp, vq solves (3.1) with initial value pp 0 , v 0 q P Hpdiv; Ωq ˆL2 pΩq.

The CMCG Algorithm for the first-order formulation is identical to that for the second-order formulation from Section 2.3 except for Steps 2 and 5.1, where J 1 is now replaced by p J 1 :

x p J 1 pp 0 , v 0 q, pδp 0 , δv 0 qy "

ż Ω pp ˚px, 0q ´p˚p x, T qqδp 0 pxq dx (3.4) 
`żΩ pv ˚px, 0q ´v˚p x, T qqδv 0 pxq dx.

Here pδp 0 , δv 0 q P P ˆL2 pΩq denotes an arbitrary perturbation with

P " tp P Hpdiv; Ωq | p ¨n " 0 on Γ N u, (3.5) 
whereas pp ˚, v ˚q P P ˆL2 pΩq solves the backward (adjoint) wave equation in first-order form [START_REF] Glowinski | A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation.(i): Controllability problem formulation and related iterative solution[END_REF], that is (3.1) with f " g S " g N " g D " 0 and p ˚p¨, T q " pp¨, T q ´p0 , v ˚p¨, T q " vp¨, T q ´v0 .

For sound-soft scattering problems (|Γ D |, |Γ S | ą 0), the functional p J always has a unique (global) minimizer, which therefore coincides with the (unique) time-harmonic solution Re upxq e ´iωt ( of (3.1). For more general boundary value problems, however, the minimizer of p J is not necessarily unique, as shown in the following theorem. Theorem 2. Let u P H 1 pΩq be the unique solution of (2.1) and pp, vq P Q be a real-valued solution of (3.1) with initial values pp 0 , v 0 q P Hpdiv; Ωq ˆL2 pΩq. If p and v are time periodic with period T " 2π{ω, then p and v admit the Fourier series representation pp¨, tq " Re ∇u e ´iωt ( `λ `8 ÿ

| |ą1
γ p e ´iω t , (3.6a)

vp¨, tq " ω Im u e ´iωt ( `η `8 ÿ | |ą1 γ v e ´iω t , (3.6b) 
where the constant η P R, λ P P with

ż Ω λ ¨∇ϕ dx " 0, @ϕ P H 1 pΩq, ϕ| Γ D " 0, (3.7) 
and the complex-valued eigenfunctions γ p P P,

γ v P L 2 pΩq, | | ą 1 satisfy ´c2 pxq∇ ¨γp pxq `iω γ v pxq " 0, x P Ω, (3.8a) 
iω γ p pxq " ∇γ v pxq, x P Ω, (3.8b) 
cpxqγ p pxq ¨n `γv pxq " 0,

x P Γ S , (3.8c 
) γ p pxq ¨n " 0,

x P Γ N , (3.8d) 
γ v pxq " 0, x P Γ D . (3.8e) Furthermore, if |Γ S Y Γ D | ą 0, then η " 0.
Proof. Let qp¨, tq " pp¨, tq ´Re ∇u e ´iωt ( , wp¨, tq " vp¨, tq ´ω Im u e ´iωt ( .

Then w and q satisfy (3.1) with f " g D " g S " g N " 0 and initial values qpx, 0q " p 0 pxq ´Re t∇upxqu , wpx, 0q " v 0 pxq ´ω Im tupxqu , x P Ω.

Since p and v are T -periodic, so are q and w. Moreover, the mappings We shall now show that γ p and γ v satisfy (3.8) for all | | ě 1. First, integration by parts, (3.1a)-(3.1b) and the periodicity of q and w imply Together with definition (3.9) of γ p and γ v , we thus immediately obtain

t Þ Ñ pqp¨, tq, ψq, t Þ Ñ pwp¨,
γ v pxq " 1 T ż T 0 w t px
iω γ v ´c2 ∇ ¨γp " 0, iω γ p " ∇γ v in Ω.
Since wpx, tq " 0 for x P Γ D , we infer from (3.9) that

ż Γ D γ v pxqϕpxq ds " 1 T ż T 0 ż Γ D
wpx, tqϕpxq ds e ´iω t dt " 0, ϕ P L 2 pΓ D q, and hence γ v satisfies (3.8e). Similarly, (3.8c), (3.8d) follow from the fact that q and w satisfy (3.1c), (3.1d) with g N " g S " 0. Hence γ p , γ v satisfy (3.8) for all | | ě 1. In fact for " 1, (3.8) corresponds to (2.1) in first-order formulation with γ p 1 " ∇u, γ v 1 " iωu, homogeneous boundary conditions and no sources. By uniqueness, γ p 1 and γ v 1 , together with their complex conjugates, are therefore identically zero.

Next, we consider γ p 0 , γ v 0 . Again, since q and w satisfy (3.1a)-(3.1e) with f " 0 and homogeneous boundary conditions, we obtain from (3.9) with " 0 and the periodicity of q and w ż Ω p∇ ¨γp 0 q ϕ dx "

1 T ż T 0 ż Ω 1 c 2 w t ϕ dxdt " 0, @ϕ P L 2 pΩq, (3.10) 
ż Ω γ v 0 ∇ ¨ψ dx " 1 T ż T 0 ż Ω q t ¨ψ dxdt ´1 T ż T 0 ż Γ S w ψ ¨n dsdt (3.11) " 1 T ż T 0 ż Γ S c q ¨n ψ ¨n dsdt " ż Γ S
c γ p 0 ¨n ψ ¨n ds, @ψ P P.

In particular, (3.10)-(3.11) implies with ϕ " γ v 0 and ψ " γ p 0 that ż Γ S c|γ p 0 ¨n| 2 ds " 0, and hence, γ p 0 ¨n " 0 on Γ S , since c ą 0. Moreover, Green's formula, together with (3.10) and the homogeneous boundary conditions, implies that ż Ω γ p 0 ¨∇ϕ dx " ´żΩ p∇ ¨γp 0 q ϕ dx `żBΩ γ p 0 ¨n ϕ ds " 0, @ϕ P H 1 pΩq, ϕ| Γ D " 0, and therefore λ " γ p 0 satisfies (3.7).
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To show that γ v 0 is constant, we now let ϕ P C 8 c pΩq and ψ " e j ϕ P Hpdiv; Ωq, j " 1, . . . , d, where e j is the j-th unit basis vector of R d . Integration of (3.1b) over r0, T s, definition (3.9) with " 0 and the periodicity of q then yield 0 "

1

T ż T 0 ż Ω q t ψ dxdt " ´1 T ż T 0 ż Ω w ∇ ¨ψ dxdt " ´żΩ γ v 0 Bϕ Bx j dx. (3.12)
From (3.12), we conclude that B xj γ v 0 " 0, j " 1, . . . , d, which implies From the real part of (2.1) we than conclude that u " ´k´2 `Re tf u `∇ ¨p0 q `iω ´1v 0 .

γ v 0 pxq " η, γ v 0 P H 1 pΩq. Since γ v 0 satisfies (3.1e) with " 0, η " γ v 0 " 0, if |Γ D | ą 0. Similarly, if |Γ S ą 0|, (3.
(3.13)

Fundamental frequency filtering for first-order formulation

When the CMCG method is applied to the first-order formulation (3.1), any minimizer of p Jpp 0 , v 0 q " 0 generally consists of spurious perturbations η, λ and eigenfunctions γ p , γ v superimposed on the desired (unique) solution u of (2.1). To extract u from pp 0 , v 0 q, we apply a filtering approach, similar to that in Section 2.2, and thereby restore uniqueness. Again, we multiply the Fourier series representation in (3.6) of v by e iωt and integrate over p0, T q. Since η and λ are independent of time, while e iωt is orthogonal to e iω t , | | ą 1, all spurious modes vanish and the resulting expression simplifies to: We summarize this result in the following proposition.

Proposition 2. Let u P H 1 pΩq be the unique solution of (2.1) and pp, vq P Q be a T -time periodic solution of (3.1). Then u is given by (3.14) .

Hybrid DG FE-Discretization

In [START_REF] Glowinski | A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation.(i): Controllability problem formulation and related iterative solution[END_REF], Glowinski et al. used standard Raviart-Thomas (RT) finite elements to discretize (3.1). Since no mass-lumping is available for RT elements on triangles or tetrahedra [START_REF] Bécache | An analysis of new mixed finite elements for the approximation of wave propagation problems[END_REF], each time-step then requires the inversion of the mass-matrix. To avoid that extra computational cost, which strongly impedes parallelization, we instead consider the recent hybrid discontinuous Galerkin (HDG) FEM [START_REF] Cockburn | An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation[END_REF] to discretize (2.1) in its corresponding first-order formulation together with (3.1). Then, the mass-matrix is block-diagonal, with (small and constant) block size equal to the number of dof's per element, so that the time-stepping scheme becomes truly explicit and inherently parallel.

Let T h denote a regular triangulation of Ω h , E h the set of all faces and P r the space of polynomials of degree r. In addition, we define P h " tr P pL 2 pΩqq d : r| K P pP r pKqq d , @K P T h u,

V h " tw P L 2 pΩq : w| K P P r pKq, @K P T h u,

M h " tµ P L 2 pE h q : µ| F P P r pF q, @F P E h u.

(3.17)

Following [START_REF] Cockburn | An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation[END_REF], the HDG Galerkin FE formulation reads: Find pp h , v h , p v h q P P h ˆVh ˆMh such that 

`Bp h Bt , r ˘K " ´pv h , ∇ ¨rq K `xp v h , r ¨ny BK , (3.18a) 
for all pr, w, µq P P h ˆVh ˆMh , K P T h and t P r0, T s, where p¨, ¨qK and x¨, ¨yD denote the L 2 -inner product on K or D, respectively and the numerical flux is

p p h ¨n " p h ¨n ´τ pv h ´p v h q on BK (3.18f)
with the stabilization function τ from [START_REF] Cockburn | An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation[END_REF]. In addition, pp h , v h q satisfies the initial conditions

p h px, 0q " p 0 pxq, v h px, 0q " v 0 pxq, x P Ω. (3.18g)
For the time integration of (3.18), we use the standard explicit fourth-order Runge-Kutta (RK4) method.

Convergence and superconvergence

For a FE discretization with piecewise polynomials of degree r, we usually expect convergence as Oph r`1 q with respect to the L 2 -norm. For the above HDG discretization, however, an extra power in h can be achieved by applying Figure 1: Convergence and superconvergence: the numerical error }u ´uh } vs. mesh size h " 2 ´i, i " 3, . . . , 6, obtained with the CMCG method for the second-order formulation with P 2 -/P 3 -FE or for the first-order formulation with P 2 -HDG discretization, either with or without post-processing.

a cheap local post-processing step [START_REF] Cockburn | An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation[END_REF]. The same (super-) convergence in space of order r `2 using only P r -FE can be achieved with the CMCG method by applying the post-processing step to the numerical solutions pp n T h , v n T h q of (3.1) at the final time T " n T ∆t.

Let pp m h , v m h , vm h q denotes the fully discrete solution of (3.18) at t m " m∆t. First, we compute the new (more accurate) approximation p n T ,h of pp¨, T q by solving the local problem pp n T ,h , ψq L 2 pKq " ´pv n T h , ∇ ¨ψq L 2 pKq `xp v n T h , ψ ¨ny BK , @ψ P P h on each K P T h . Then, we calculate the additional approximations y n T ,h of yp¨, T q " Retupxqu given by (3.13), v n T ,h of vp¨, T q in P r`1 pKq, which satisfy p∇y n T ,h , ∇ϕq L 2 pKq " pp n T h , ∇ϕq L 2 pKq , @ϕ P P r`1 pKq, py n T ,h , 1q L 2 pKq " py n T h , 1q L 2 pKq , p∇v n T ,h , ∇ϕq L 2 pKq " pp n T ,h , ∇ϕq L 2 pKq , @ϕ P P r`1 pKq,

pv n T ,h , 1q L 2 pKq " pv n T h , 1q L 2 pKq ,
for any element K P T h . The new approximate solution u is then given by (3.14)
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with p and v replaced by p n T ,h and v n T ,h . To illustrate the accuracy and verify the expected convergence rates for the various FE discretizations in the CMCG method, we now consider the following one-dimensional solution upxq " ´exppikxq of (2.1) in Ω " p0, 1q with c " 1, k " 5π{4, Γ D " t0u and Γ S " t1u. Figure 1 shows the error }u ´uh } obtained with the CMCG method for the first-order formulation (2.2) and a P 2 -HDG discretization on a sequence of increasingly finer meshes h " 2 ´i, i " 3, . . . , 6. Clearly as we refine the mesh, we always reduce the time-step in the RK4 method to satisfy the CFL stability condition.

The CG iteration stops once the tolerance tol " 10 ´12 is reached. We also compare the solutions obtained with the CMCG method applied to the secondorder formulation using a (continuous) P 2 or P 3 -FEM. All numerical solutions display the expected optimal convergence of order r `1 with polynomials of degree r, while the first-order HDG approach even achieves superconvergence of order r `2, once local post-processing is applied to the final CG iterate.

Physically bounded domain

In the absence of Dirichlet or impedance boundary conditions, the first-order formulation does not yield the correct minimizer of J. As a simple remedy, we proposed in Section 3.2 a filtering procedure which removes the unwanted spurious modes. To illustrate the effectiveness of the filtering procedure, we now consider the exact solution of (2.1)

upxq " 16x 2 px ´1q 2 (3.20)
in Ω " p0, 1q with homogeneous Neumann boundary conditions and k " ω " π{4, c " 1. Note that k 2 is not an eigenvalue of (2.6) and therefore the solution of (2.1) is well-posed. However, as p4kq 2 " π 2 indeed corresponds to the first eigenvalue of the negative Laplacian, the CMCG method in general will not yield the correct (unique) solution -see Theorems 1 and 2. Indeed as shown in Figure 2, the original CMCG method [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF] applied to the second-order formulation with the energy functional J in (2.4) does not yield the exact solution of (2.1), unlike the numerical solutions obtained after filtering -see Sections 2.2 and 3.2.

Numerical results

Here we present a series of numerical examples that illustrate the accuracy, convergence behavior and parallel performance of the CMCG method. First, we verify that the numerical solution u h of (2.1) obtained with the CMCG method converges to the numerical solution u h obtained with a direct solver for the same spatial FE discretization as the time step ∆t Ñ 0 in the numerical integration of (2.2). Next, we evaluate different stopping criteria for the CG iteration in the CMCG Algorithm from Section 2.3. We also compare the CMCG Algorithm to a long-time solution of the wave equation without controllability ("do-nothing" approach) to demonstrate its effectiveness, in particular for nonconvex obstacles. Moreover, we show how an initial run-up yields a judicious initial guess pv 0 , v 1 q for the CG iteration thereby further accelerating convergence. Finally, we apply the CMCG method to large scale scattering problems on a massively parallel architecture, where the elliptic problem (2.16) is solved in parallel with domain decomposition methods.

Semi-discrete convergence

First, we consider a simple 1D example to show for a fixed FE-mesh that the numerical solution u h , obtained with the CMCG method, converges to the numerical solution u h, obtained with a direct solver, as ∆t Ñ 0. Hence we consider the following solution u of (2.1) in Ω " p0, 1q with ω " k " 6π, c " 1 and f " 0: upxq " exppikxq, with up0q " 1, u 1 p1q ´ik up1q " 0. Now, let u hpxq be the FE Galerkin solution corresponding to the direct solution of the linear system

A h u h " b h , (4.1)
resulting from the same standard H 1 -conforming or HDG P 2 -FE discretization of the Helmholtz equation (2.1) in second-or first-order formulation, respectively. For the time integration of (2.2) or (3.1) in the CMCG Algorithm, we use the standard explicit fourth order Runge-Kutta (RK4) method. Usually we avoid inverting the mass-matrix at each time step via order preserving mass-lumping [START_REF] Cohen | Higher order triangular finite elements with mass lumping for the wave equation[END_REF] which, however, introduces an additional spatial discretization error. Here to ensure a consistent comparison, we thus compute u h and u h both either with, or without, mass-lumping (ML). For the CG iteration, we always choose v p0q 0 " 0, v p0q 1 " 0 and fix the tolerance to tol " 10 ´14 to ensure convergence to machine precision accuracy.

In Figure 3, we monitor the difference between the numerical solution u h or u h,HDG of (4.1), obtained with a direct solver, and u h or u h,HDG , obtained with the CMCG method using either the second or the first order formulation, respectively. As expected, for increasingly smaller ∆t and a fixed stringent tolerance in the CG iteration, the numerical solution of the CMCG method always converges to the discrete solution of the Helmholtz equation for the same FE discretization.

CG iteration and initial run-up

Next, we first compare different stopping criteria for the CG iteration in the CMCG Algorithm applied to the original second-order formulation from Section 2. We then illustrate how the CMCG method greatly accelerates the convergence of a solution of the wave equation to its long-time asymptotic limit, in particular for nonconvex obstacles. Finally, we show how an initial run-up yields a judicious initial guess for the CG iteration, which further accelerates the convergence of the CMCG Algorithm.

Hence, we consider a two-dimensional sound-soft scattering problem (2.1) with c " 1, k " ω " 2π, f " g D " g N " 0 and g S " ´pB n ´ikqu in in a bounded square domain Ω " p0, 10λq ˆp0, 10λq, λ " 1, either with a convex obstacle or a semi-open square shaped cavity. On the boundary Γ D of the obstacle, we impose a homogeneous Dirichlet condition and on the exterior boundary Γ S a Sommerfeld-like absorbing condition on the total wave field. The incident plane wave

u in pxq " exppikpx 1 cospθq `x2 sinpθqqq (4.2)
impinges with the angle θ " 135 ˝upon the obstacle.

CG iteration and stopping criteria

In Algorithm (Section 2.3), the CMCG method terminates at the -th iteration and returns

u p q h " v p q 0 `pi{ωqv p q 1 (4.3)
when the relative CG-residual in Step 5.8,

|u p q h | CG :" g f f e }∇r p `1q 0 } 2 L 2 pΩq `}p1{cq r p `1q 1 } 2 L 2 pΩq }∇r p0q 0 } 2 L 2 pΩq `}p1{cq r p0q 1 } 2 L 2 pΩq , (4.4)
is less than the tolerance tol. Indeed, a small CG-residual indicates that the gradient of J is sufficiently small at pv p q 0 , v p q 1 q and thus that a minimum has been reached.

Since the cost functional J also vanishes at the minimum, we can use J itself, instead of its gradient, to monitor convergence of the CG iteration via the relative periodicity misfit,

|u p q h | J :" b Jpv p q 0 , v p q 1 q }f } L 2 pΩq `}g S } L 2 pΓ S q . ( 4.5) 
In fact, the convergence criterion (4.5) is typically used in long-time simulations of the wave equation without controllability ("do-nothing" approach) to determine the current misfit from periodicity in the energy norm.

Alternatively, we may also directly compute the current relative Helmholtz residual from (2.1):

|u p q h | H :" }A h u p q h ´bh } 2 }b h } 2 , (4.6) 
where A h and b h result from a FE discretization of (2.1) without mass-lumping, u p q h corresponds to the discrete vector of FE coefficients of u p q h , and }¨} 2 denotes the discrete Euclidean norm.

In Figure 5, we monitor |u

p q h | CG , |u p q h | J and |u p q
h | H , defined in (4.4)-(4.6) for the CMCG solution u p q h at the -th CG iteration. Whether for a convex (Figure 4a) or a nonconvex (Figure 4b) obstacle, both the CG-residual |u p q h | CG and the periodicity misfit |u p q h | J rapidly converge to zero. In contrast, the Helmholtz residual |u p q h | H stagnates beyond the first hundred CG iterations, as the mass-matrix that appears in A h in (4.6) is discretized here without masslumping. That additional discretization error together with the numerical error in the time integration of (2.2) both prevent the discrete Helmholtz residual |u p q h | H from converging to zero; hence, (4.6) is generally not a reliable stopping criterion for the CMCG method, unless the spatial FE discretizations used in (2.1) and (4.1) are identical. 

|u p q h | CG |u p q h | J |u p q h | H (b) nonconvex obstacle

CMCG method vs. long-time wave equation solver

In general, the solution wpx, tq of the time-harmonically forced wave equation (2.2) converges asymptotically to the time-harmonic solution [START_REF] Bardos | Variational algorithms for Helmholtz equation using time evolution and artificial boundaries[END_REF] wpx, tq " Re tupxq expp´iωtqu as t Ñ `8, (

where u is the (unique) solution of the Helmholtz equation (2.1). Thus, with a wave equation solver at hand, one can in principle compute u from w by solving (2.2) without controllability until a quasi-periodic regime is reached. Given the current value of wp¨, tq at time t " T , ě 1, one can extract from it the complex-valued approximate solution of (2.1),

w p q h :" wp¨, T q `i ω w t p¨, T q, ě 1, T " p2πq{ω, (4.8) 
which converges to u as Ñ `8. This "do-nothing" approach only requires the time integration of (2.2) without controllability or CG iteration, but it may converge arbitrarily slowly for nonconvex obstacles due to trapped modes [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF][START_REF] Grote | On controllability methods for the Helmholtz equation[END_REF].

In Figure 6, we monitor the periodicity misfit of |u p q h | J and |w p q h | J , where u p q h is the CMCG solution at the -th CG iteration and w p q h is given by (4.8). In addition, we also compare both numerical solutions with the direct solution u h of the linear system (4.1), resulting from the same underlying FE discretization, yet without mass-lumping.

We observe that the asymptotic solution w p q h and the CMCG solution u p q h indeed both converge to the time-harmonic solution u h, until the additional errors caused by mass-lumping and the time discretization dominate the total errorsee Section 4.1. For the convex obstacle, the number of CG iterations required by u p q h is only half the number of time periods needed for w p q h to reach the same 200 400 600 800 1,000 h , obtained with the CMCG method at the -th CG iteration and the approximate solution w p q h , obtained via (4.8) from the solution of the wave equation at time t " T without controllability. level of accuracy. However, since each CG iteration requires not only the solution of a forward and backward wave equation but also of the elliptic problem 300 (2.16a), simply computing a long-time solution of the time-harmonically forced wave equation (2.2) without controllability in fact proves cheaper here than the CMCG Algorithm. For a nonconvex obstacle, however, the long-time numerical solution of the time-dependent wave equation w p q h converges extremely slowly and fails to reach the asymptotic time-harmonic regime even after 1000 periods.

´6 ´4 ´2 1 10 2 }u h ´wp q h } |w p q h | J }u h ´up q h } |u p q h | J (a) convex obstacle 200 400 600 800 1,000 10 ´6 10 ´4 10 ´2 1 10 2 }u h ´wp q h } |w p q h | J }u h ´up q h } |u p q h | J (b) nonconvex obstacle
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In contrast, the convergence of the CMCG solution u p q h remains remarkably insensitive to the non-convexity of the obstacle.

Initial run-up

In [START_REF] Mur | The finite-element modeling of three-dimensional electromagnetic fields using edge and nodal elements[END_REF], Mur suggested that convergence of the time-harmonically forced wave equation (2.2) to the time-harmonic asymptotic regime can be accelerated by pre-multiplying the time-harmonic sources in (2.2) with the smooth transient function θ tr from zero to one,

θ tr ptq " $ & % ˆ2 ´sin ˆt t tr π 2 ˙˙sin ˆt t tr π 2 ˙, 0 ď t ď t tr , 1, t ě t tr , (4.9) 
active during the initial time interval r0, t tr s, t tr " T -see also [START_REF] Bristeau | Controllability Methods for the Calculation of Time-Periodic Solutions[END_REF]. Again, we consider plane wave scattering either from a convex or nonconvex obstacle -see Figure 4. Now, we first solve the wave equation (2.2) with the modified source terms and zero initial conditions until time t " T , ě 1, which 20 yields the time-dependent solution y tr . After that initial run-up phase, we then apply the CMCG Algorithm (Section 2.3) using the initial guess v p0q 0 " y tr p¨, T q, v p0q 1 " py tr q t p¨, T q.

To estimate the total computational effort, we count the total number of time periods for which the (forward or backward) wave equation is solved: during initial run-up and 2 ˆ#iter CG during the CG iteration. In Figure 7 we display the total number 2 ˆ#iter CG ` of time periods needed until convergence with tol " 10 ´6, as we vary the number of periods in the initial run-up. For a convex obstacle, the CMCG Algorithm without any initial run-up requires 888 time periods. However, as in Section 4.2, convergence can also be achieved at a comparable computational effort simply by solving the wave equation, here with the source terms pre-multiplied by θ tr in (4.9). Still, the minimal computational cost is achieved when both the initial run-up and the CMCG Algorithm are combined.

For the nonconvex obstacle, however, simply solving the time-harmonically forced wave equation over a very long time, be it with or without θ tr ptq smoothing, fails to reach the long-time asymptotic final time-harmonic state. Regardless of the length of the initial run-up, convergence indeed cannot be achieved here (within 1000 time periods) without controllability because of trapped modes.

Nevertheless, the initial run-up always speeds up the convergence of the CMCG method by providing a judicious initial guess for the CG iteration.

Parallel computations

Both the CMCG method for the second-order formulation from Section 2 and that for the first-order formulation from Section 3 lead to inherently paral-lel non-intrusive algorithms, as long as an efficient parallel solver for the timedependent wave equation is available. As the first-order formulation with the HDG discretization neither requires mass-lumping nor the solution of an elliptic problem, it is in fact trivially parallel. Here we demonstrate that even the CMCG approach for the second-order formulation, which does require the solution of (2.16a) at each CG iteration, nonetheless achieves strong scalability on a massively parallel architecture.

The CMCG Algorithm from Section 2.3 is implemented within FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF], an open source finite element software written in C++. FreeFem++ defines a high-level Domain Specific Language (DSL) and natively supports distributed parallelism with MPI. The parallel implementation of the CMCG method relies on the spatial decomposition of the computational domain Ω into multiple subdomains, each assigned to a single computing core. Local finite element spaces are then defined on the local meshes of the subdomains, effectively distributing the global set of degrees of freedom across the available cores.

The bulk of the computational work for solving the forward and backward wave equations in Step 5.1 of the CMCG Algorithm simply consists in performing a sparse matrix-vector product at each time step, which is easily parallelized in this domain decomposition framework: it amounts to performing local matrix-vector products in parallel on the local set of degrees of freedom corresponding to each subdomain, followed by local exchange of shared values between neighboring subdomains.

While the explicit time integration of the wave equation is trivially parallelized thanks to mass-lumping, achieving good parallel scalability for the elliptic problem in Step 5.2 of the CMCG Algorithm is more difficult. Here we use domain decomposition (DD) methods [START_REF] Dolean | An Introduction to Domain Decomposition Methods[END_REF], which are well-known to produce robust and scalable parallel preconditioners for the iterative solution of large scale partial differential equations. We use the parallel DD library HPDDM [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF], which implements efficiently various Schwarz and substructuring methods in C++11 with MPI and OpenMP for parallelism and is interfaced with FreeFem++ .

The elliptic problem (2.16a) in the CMCG algorithm is solved by HPDDM using a two-level overlapping Schwarz DD preconditioner, where the coarse space is built using Generalized Eigenproblems in the Overlap (GenEO) [START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF]. The Ge-nEO approach has proved effective in producing highly scalable preconditioners for solving various elliptic problems [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF].

All computations were performed on the supercomputer OCCIGEN at CINES, France1 , with 50544 (Intel XEON Haswell ) cores.

2D Marmousi Model

Here we consider the well-known Marmousi model from geophysics [START_REF] Bourgeois | Marmousi, model and data[END_REF], that is (2.1) in Ω " p0, 9.2q ˆp0, 3q rkms with the source f pxq " expp´2000ppx ´x1 q 2 `py ´x2 q 2 qq, px 1 , x 2 q " p6, ´3{16q. The velocity profile cpxq is shown in Figure 8 and we apply absorbing boundary conditions on the lateral and lower boundaries and a homogeneous Dirichlet condition at the top. For the spatial discretization, we use a P 2 -FE method with (order preserving) mass-lumping [START_REF] Cohen | Higher order triangular finite elements with mass lumping for the wave equation[END_REF] and at least 15 points per wave length.

For the time integration of (2.2), we apply the leap-frog scheme (LF); here, the number of T {∆t " 390 time steps per period remains constant at all frequencies ν " ω{2π, as both T and ∆t are inversely proportional to ν. To speed-up the convergence of the CMCG method, we also use an initial run-up (Section 4.2) until time t tr , which lets waves travel at least once across the entire computational domain during run-up; hence, we set "

R ? 9.2 2 `32 T c min V , t tr " T, T " p2πq{ω.
For any particular frequency ν, we apply the CMCG method for fixed parameters and FE-mesh while increasing the number of (CPU) cores. Figure 9 displays the real part of the wave field with ν " 250 [Hz]. In Figure 10, we observe linear speed-up (strong scaling) at every frequency with increasing number of cores. In fact, the speed-up is even slightly better than linear due to cache effects, but also because the cost of the direct solver used on each subdomain decreases superlinearly with the decreasing size of subdomains as the number of cores increases.

As the frequency ν increases, both the period T " 1{ν and the time-step ∆t decrease, so that the number of time steps per CG iteration remains constant. Since the number of CG iterations does not grow here with increasing ν, the bulk of the computational work in the CMCG Algorithm in fact shifts to the 380 run-up phase. For ν " 10 Hz, for instance, the CMCG Algorithm stops after 273 CG iterations, while 74% of the total computational time is spent in the time integration of (2.2), 16% in the elliptic solver (DDM) and 10% in the initial run-up. In contrast, for ν " 250 Hz, the CMCG Algorithm already stops after 5 CG iterations, while 99% of the total computational time is spent in the initial 385 run-up and 1% in the CG iteration. By modifying the run-up time t tr , one could arbitrarily shift the relative computational cost between run-up and CG iterations and thus further optimize for a minimal total execution time.

3D cavity

Finally, we compute the scattered wave from a sound-soft cavity -see Figure 11 -and hence consider (2.1) in Ω " p0, 6q ˆp0, 3q ˆp0, 3q with c " 1, k " ω " 2πν, λ " 1, f " g D " g N " 0 and g S " ´pB n ´ikqu in , u in pxq " exppik x dq, d " p1{2, 0, ? 3{2q .

We impose a homogeneous Dirichlet boundary condition on the obstacle and a

Sommerfeld-like absorbing condition on the exterior boundary of Ω. Now, we discretize (2.2) with P 1 -FE in space and the second-order LF method in time. To control the pollution error, we set hk 3{2 " const, as we increase the frequency ν. Figure 12 shows the total wave field with ν " 6 inside the cavity. For fixed parameters and mesh size, we now solve (2.1) at frequencies ν " 2, 3, 4, 6 with the CMCG method using an increasing number of cores -see Table 2. Again, we observe in Figure 13 (better than) linear (strong) scaling with increasing number of cores. In contrast to the previous Marmousi problem, the "do-nothing" approach without controllability fails here because the 3D cavity is not convex. 

Concluding remarks

We have presented two inherently parallel controllability methods (CM) for the numerical solution of the Helmholtz equation in heterogeneous media. The first, based on the second-order formulation of the wave equation, uses a standard (continuous) FE discretization in space with order preserving mass-405 lumping. Each conjugate gradient (CG) iteration then requires the explicit time integration of a forward and backward wave equation, together with the solution of the symmetric and coercive elliptic problem (2.16), which is independent of the frequency. The second, based on the first-order (or mixed) formulation of the wave equation, uses a recent hybridized discontinuous Galerkin (HDG) dis-410 cretization, which not only automatically yields a block-diagonal mass-matrix but also completely avoids solving (2.16). Hence, it is trivially parallelized and even leads to superconvergence after a local post-processing step.

Both CMCG methods are inherently parallel, as they lead to iterative algorithms whose convergence rate is independent of the number of cores on a 415 distributed memory architecture. Thanks to the well-known parallel efficiency of explicit methods combined with the excellent scalability of two-level domain decomposition preconditioners for coercive elliptic problems up to thousands of cores implemented in HPDDM, even the second-order CMCG approach exhibits parallel strong scalability.
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The CMCG method can be applied to general boundary-value problems gov-erned by the Helmholtz equation, such as sound-soft or sound-hard scattering problems or wave propagation in physically bounded domains. Although the CMCG solution will generally contain higher order spurious eigenmodes, we have proposed in Section 2.2 a simple filtering procedure to remove them. Furthermore, including a transient initial run-up to determine a judicious initial guess significantly accelerates the CG iteration. In fact, for scattering from convex obstacles, simply solving the time-harmonically forced wave equation over a long-time without any controllability can provide an even simpler, highly parallel Helmholtz solver. For nonconvex obstacles, however, solving the wave equation without any controllability ("do-nothing" approach) is not a viable option, as the long time asymptotic convergence to the time-harmonic regime is simply too slow due to trapped modes. In all cases, the CMCG Algorithm combined with the initial run-up leads to the smallest time-to-solution.

The CMCG approach developed here for the Helmholtz equation immediately generalizes to other time-harmonic vector wave equations from electromagnetics or elasticity. Its implementation is non-intrusive and particularly useful when a parallel efficient time-dependent wave equation solver is at hand. In the presence of local mesh refinement, local time-stepping methods [START_REF] Grote | Newmark local time stepping on high-performance computing architectures[END_REF] permit to circumvent the increasingly stringent CFL condition without sacrificing the explicitness or inherent parallelism. Finally, the CMCG method can also be used to compute periodic, but not necessarily time-harmonic, solutions of the wave equations. In particular, if the source consists of a superposition of several time-harmonic sources ("super-shot") with rational frequencies, the solutions to the different Helmholtz problems can be extracted via filtering from a single application of the CMCG method.

  1c), together with γ p 0 ¨n " 0 on Γ S ¨n `wpx, tq ‰ dt " cpxqγ p 0 pxq ¨n `γv 0 pxq " η, x P Γ S .Thus, η " 0 when |Γ D Y Γ S | ą 0, which completes the proof.For sound-soft scattering problems, where |Γ D | ą 0 and |Γ S | ą 0, η " 0 and all eigenfunctions γ p , γ v , | | ą 1 of (3.8) trivially vanish in (3.6)[START_REF] Cummings | Sharp regularity coefficient estimates for complexvalued acoustic and elastic Helmholtz equations[END_REF]. Therefore, (3.6)-(3.7) in Theorem 2 with t " 0 imply that 175 pp 0 , ∇ϕq " pRe t∇uu , ∇ϕq, ϕ P H 1 pΩq, ϕ| Γ D " 0, v 0 " ω Im tuu .
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 2 Figure2: Physically bounded domain: comparison of the exact solution u of (2.1) with the numerical solutions u h obtained with the CMCG method either applied to the second-order formulation with standard FEM or to the first-order formulation with an HDG discretization.

Figure 3 :

 3 Figure3: Semi-discrete convergence: Comparison of the numerical solution u h , obtained with the CMCG method, and u h , obtained with a direct solver for the same fixed P 2 -FE discretization (H 1 -conforming or HDG), both either with or without mass-lumping (ML)
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 4 Figure 4: Computational domain Ω with a convex square (a) or a nonconvex cavity (b) shaped obstacle

Figure 5 :

 5 Figure 5: CG iterations and stopping criteria: relative CG residual |u p q h | CG in (4.4), Helmholtz residual |u p q h | H in (4.6), and periodicity mismatch |u p q h | J in (4.5) at the -th CG iteration.
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 6 Figure 6: CMCG method vs. long-time wave equation solver: plane wave scattering from a convex (a) or a nonconvex obstacle (b). Comparison between the numerical solution, u p q

  of time periods during run-up #periods in run-up #periods in CMCG method (a) convex obstacle of time periods during run-up #periods in run-up #periods in CMCG method (b) nonconvex obstacle

Figure 7 :

 7 Figure 7: Initial run-up. Plane wave scattering problems from (a) a convex or (b) a nonconvex obstacle: total number of forward and backward wave equations solved over one period r0, T s until convergence.

Figure 8 :

 8 Figure 8: Marmousi model: propagation velocity 1.5 ď cpxq ď 5.5 rkm{ss Frequency Wave number #Unknowns #Nodes ν [Hz] k " ω{c " 2πν{c ndof 24 cores per node 10 11 -42 1 1 658 1 443 1-8 20 22 -84 6 1 628 1 881 1-16 40 45 -168 26 1 505 1 761 8-64 60 68 -252 59 1 630 1 641 16-128 80 91 -336 106 1 003 1 521 16-128 160 182 -671 423 1 975 1 041 64-256 250 285 -1048 1 1 035 1 241 1 009 128-512

Figure 9 :Figure 10 :

 910 Figure 9: 2D-Marmousi model. Real part of the wave field with ω " 2πν, ν " 250 [Hz]

Figure 11 :

 11 Figure 11: 3D-cavity: a) front view of the opening with inner and outer radius, b) longitudinal cross-section.

Figure 12 :

 12 Figure 12: 3D-cavity; total wave field (2.1) with c " 1, ω " 2πν and ν " 6 obtained with the CMCG method

Figure 13 :

 13 Figure 13: 3D-cavity: Total CPU-time in seconds for varying number of cores. For each frequency ν, the FE-discretization and problem size remain fixed.

  1 pΩq | w " g D on Γ D u as

	e iωt and integrate in time over p0, T q to obtain
		p ypxq "	1 T	ż T 0 `Retu e ´iωt u `λ `ηt `i Imtu e ´iωt u	`iη ω	˘eiωt dt
			"	1 T	ż T 0	u e ´iωt e iωt dt	´iη ω	" u	´iη ω	.	(2.9)
	This yields							
							upxq " p ypxq	`iη ω	,	x P Ω	(2.10)
	where λ and all γ have vanished but the constant η is still undetermined.
	If |Γ S | ą 0 or |Γ D | ą 0, Theorem 1 implies that η " 0 and thus upxq " p ypxq.
	Otherwise in the pure Neumann case (Γ " Γ N ), we determine η by integrating
	(2.10), multiplied by k 2 pxq, over Ω and using the compatibility condition
										ż
				´żΩ	k 2 pxqupxq dx "	f pxq dx	`żBΩ g N pxq ds.	(2.11)
										Ω
	from (2.1a). This immediately yields the remaining constant
	iη ω	"	´1 }k} 2 L 2 pΩq ˆżΩ	f pxq dx	`żBΩ g N pxq ds	`żΩ	k 2 pxqp ypxqdx ˙.
					p ypxq :"	1 T	ż T 0	`ypx, tq	`i ω	y t px, tq ˘eiωt dt.	(2.8)
	To extract upxq from ypx, tq, we now take advantage of the mutual orthogonality
	of different time harmonics exppiω tq in L 2 p0, T q. Hence, we multiply (2.5) with

Table 1 :

 1 2D-Marmousi model: P 2 -FE with 15 points per wave length

			1 658 1 443	1-8
	20	22 -84	6 1 628 1 881	1-16
	40	45 -168	26 1 505 1 761	8-64
	60	68 -252	59 1 630 1 641	16-128
	80	91 -336	106 1 003 1 521	16-128
	160	182 -671	423 1 975 1 041	64-256
	250	285 -1048	1 1 035 1 241 1 009	128-512

Table 2 :

 2 3D-cavity: CMCG methods with P 1 -FEM. As η increases, the ratio hk 3{2 remains constant to avoid pollution errors[START_REF] Babuška | Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers[END_REF].

		Frequency #Unknowns #Tetrahedra CG iterations	#Nodes
		ν " 2πω		ndof				24 cores per node
		2	8.17 ¨10 5	5 1 051 1 049		239		1-8
		3	5.22 ¨10 6	31 1 190 1 000		440		2-32
		4	1.9 ¨10 7	114 1 391 1 112		607		32-96
		6	1.18 ¨10 8	703 1 590 1 464		578		64-128
									1.1
	CPU-time [sec.]	10 2 10 3 10 4	1.2	1.2	ν " 2	ν " 3	1.0	ν " 4 ν " 6 ν " 2 ν " 3 ν " 4
									ν " 6
		24x1	24x2	24x4	24x8	24x16	24x32	24x64	24x128

https://www.cines.fr/calcul/materiels/occigen/

Acknowledgement: This work was supported by the Swiss National Science Foundation under grant SNF 200021 169243. Access to the HPC resources of CINES was granted under allocation 2018-A0040607330 by GENCI.